
Transitioning to OOP/Java — A Never
Ending Story

Jürgen Börstler, Marie Nordström, Lena Kallin Westin, Jan-Erik Moström,
and Johan Eliasson

Department of Computing Science, Ume̊a University, Sweden
{jubo,marie,kallin,jem,johane}@cs.umu.se

Abstract. Changing the introductory programming course from a tra-
ditional imperative model to an object-oriented model is not simply a
matter of changing compilers and syntax. It requires a profound change
in course materials and teaching approach to be successful. We have
been working with this transition for almost ten years and have realized
that teaching object-oriented programming is not as simple or “natural”
as some proponents claim. In fact, it has proven difficult to convey to
the students the advantages and methodologies associated with object-
oriented programming. To help ourselves and others in a transition like
this we have developed a number of “course design principles” as well
as teaching methods and examples that have proven to have positive
influence on student learning outcome.

1 Introduction

The object-oriented paradigm has become the most common programming par-
adigm for introductory programming courses1[de Raadt et al., 2004; Stephenson
and West, 1998; Chen et al., 2005]. The transition to this paradigm has proven to
be more difficult than expected. Traditionally, programming concepts have been
systematically introduced one after one, each building nicely on the concepts
already learned. Abstract and advanced concepts (e.g., modules and abstract
data types) were deferred to later courses. In the object-oriented paradigm, on
the other hand, the basic concepts are tightly interrelated and cannot easily be
taught and learned in isolation [Roberts et al., 2006], as illustrated in Figure 1.
Furthermore, the basic object-oriented concepts are on a higher level of abstrac-
tion2. Together, this results in a higher threshold and steeper learning curve for
the learner.

It is generally accepted that transitioning to the object-oriented paradigm is
not just a programming language issue. Object-oriented development requires a
new way of thinking [Bacvanski and Börstler, 1997]. This is particularly impor-
tant in education. A syntax-driven approach can take the students’ attention

1 Even in upper secondary school (high school).
2 Whether this is an advantage or disadvantage for teaching or learning is unclear.

J. Bennedsen et al. (Eds.): Teaching of Programming, LNCS 4821, pp. 80–97, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Transitioning to OOP/Java — A Never Ending Story 81

Fig. 1. Dependencies between basic concepts to be introduced in imperative - (a) and
object-first approaches (b), respectively

away from the underlying concepts and principles (see also Model-Driven Pro-
gramming by Bennedsen and Caspersen and CS1: Getting Started by Caspersen
and Christensen). Studies show that there is a mismatch between the program-
ming language used and the paradigm that is actually taught. In Australia for
example, about 82% of the introductory programming instructors used an object-
oriented language, but only about 37% taught their courses by using an object-
oriented approach [de Raadt et al., 2004]. Approaches for teaching introductory
programming courses are still heavily discussed [Bruce, 2005].

In this chapter, we describe our experience transitioning from a traditional
approach using (Turbo) Pascal to a true objects-first approach in Java. The
advantages of using object-orientation for teaching are many. It provides pow-
erful mechanisms for the structuring and organisation of models (in particular
designs and code) and decreases the conceptual distance between problem and
solution models. This makes it much easier to communicate models and keep
them consistent [West, 2004].

However, these advantages come at a price. The basic object-oriented con-
cepts are highly interrelated and cannot easily be taught or learned in isolation
(as illustrated in figure 1(b)). There also is no commonly accepted pedagogical
approach to overcome this problem [Bruce, 2005]. It is furthermore very diffi-
cult, if not impossible, to develop “simple” examples. A proper and meaningful
object-oriented example requires quite some overhead [Westfall, 2001]. Many
textbook examples are, therefore, unnecessarily complex, not meaningful, or not
even “truly” object-oriented [ACM-Forum, 2002; Hu, 2005]. During our “journey
from Pascal to Java” we stumbled across these and other problems and made a
few detours before realising that the object-oriented approach not only requires
a new way of thinking, but also, a new way of teaching.

There are more factors contributing to a student’s success or failure than the
course material and how a course is taught. We have observed that our students
as a group are less motivated and not as well prepared3 compared to a few

3 This problem has been observed by most math, science and engineering programs.

82 J. Börstler et al.

years ago. Attendance rates at exams, lectures and other scheduled events have
decreased. Reading assignments are neglected to a high degree and mandatory
assignments are submitted late. We introduced Supplemental Instruction (SI)
[Arendale, 1997] to increase student activity and thereby improve course out-
come. SI is a non-mandatory part of the course. In some course offerings, only
half of the students participated in the SI programme while in other the majority
of students participated. In all course offerings, students participating in SI have
a higher attendance rate at exams and also get higher grades on average than
the group of students not attending SI [Nordström and Kallin Westin, 2006].

The remainder of this chapter is organised as follows. First, we briefly explain
the motives behind the principles we used for designing our new course, and
how these were actually implemented. In section 4, we evaluate how well this
new course worked with respect to our original principles. Section 5 summarises
the lessons we have learned since we made the transition to the object-oriented
paradigm in 1998. In sections 6 and 7, we discuss external factors affecting
student performance and related work, respectively. The chapter concludes with
a summary of our experience.

2 Principles for Course Design

Prior to our transition, we introduced object-oriented concepts in our data types
and algorithms4 course, following the introductory programming course. How-
ever, this was not sufficient to enable students to effectively use the object-
oriented paradigm. Most students perceived object-orientation as a simple
extension to imperative programming. They did not realise that object-oriented
programs are conceptually different from strictly imperative ones and that us-
ing object-oriented syntax does not automatically lead to object-oriented
programs.

When switching to the object-oriented paradigm in our introductory pro-
gramming course in 1998, we only made minor changes to our traditional course
design. Initially, our students did very well on this course, but we soon realised
that their ability to develop code true to the object-oriented paradigm was not
satisfactory. After several course offerings with unsatisfactory learning outcomes,
we decided to develop a “truly” objects-early approach. When proficiency in a
certain paradigm is the major learning goal of a course, it seemed sensible to
start with that paradigm as early as possible [Bruce, 2005; Bergin, 2000b].

To support the design of such a course we developed a list of principles, to
guide course development. These principles were either based on our teaching ex-
perience [Bacvanski and Börstler, 1997; Börstler et al., 2002; Börstler and Sharp,
2003; Kallin Westin and Nordström, 2003, 2004] or the collected advice and ex-
perience from the literature in computer science education (see e.g., [Bruce, 2005;
Westfall, 2001; ACM-Forum, 2002; Guzdial, 1995; Holland et al., 1997; Kölling
and Rosenberg, 2001; Kölling, 2003; Turk, 1997; and Using BlueJ to Introduce
Programming by Kölling]).
4 More or less similar to a CS2 course.

Transitioning to OOP/Java — A Never Ending Story 83

2.1 High-Level Goals

No magic (P1). We must provide a correct and consistent frame of reference,
so that the students always can make sense of new material. The students must
be able to associate the new material with something familiar or wellknown. The
succession of learning units and topics must be carefully worked out. The frame
of reference must be refined or extended accordingly. The current frame of refer-
ence should always be sufficient to understand new material and validly explain
what is going on [Zull, 2002]. Everything requiring a comment like “don’t worry
now, you’ll understand later,” must be revised or delayed. Language specific com-
plexities should be hidden until students are sufficiently mature to understand
the underlying language design issues.

Students will always try to make sense of new material. If we cannot pro-
vide them with a correct and consistent frame of reference, they might construct
invalid explanations by themselves. This can easily lead to persistent misconcep-
tions about object technology and programming [Holland et al., 1997; Börstler,
2005; Clancey, 2004; Ragonis and Ben-Ari, 2005].
Objects from the very beginning (P2). Everything should build on the no-
tion of objects, since they are at the very heart of object-orientation. Therefore,
objects should be introduced in the very first lecture. The earlier we start with
the most important concept, the more often we can reinforce it and the more
time we give students to fully understand it.
General concepts favoured over language specific realisations (P3).
Learning units should be based on the teaching and learning of general object-
oriented concepts. Although the mastery of a particular programming language
is an important learning goal, it is secondary to the understanding of the under-
lying concepts. Focusing on concepts does not necessarily mean to move strictly
from concept to syntax for each new topic. It is, however, important to stress
fundamental principles and techniques and not the elements of a particular lan-
guage. This can, for example, be achieved by means of moving from concrete to
abstract as proposed in CS1: Getting Started by Caspersen and Christensen.
No exceptions to general rules (P4). By general rules, we not only mean
the definitions that constitute the object-oriented paradigm5, but also design
and programming guidelines and all the other pieces of advice we provide to
our students. We must always “do as we say,” only use sound and meaningful
objects, only show well-designed classes, and certainly not do unnecessary main-
programming. Concepts must never be introduced or be reinforced by using
flawed examples (see also P6).

2.2 Tools

OOA&D early (P5). It is necessary to provide students with simple tools to
approach a problem systematically and to evaluate alternative solutions before
5 Like for example “objects are instances of classes with state, behaviour and identity,”

or “in object-oriented programs, problems are solved by objects sending messages
to each other.”

84 J. Börstler et al.

starting to code. Early OOA&D conveys to the students that responsibilities are
distributed amongst the objects that solve a problem [Börstler, 2005; Andrianoff
and Levine, 2002.]
Exemplary examples (P6). All examples used in classes and exercises should
comprise well-designed classes that fill a purpose (besides exemplifying a certain
concept or language specific detail) [Holland et al., 1997; Nordström, 2007].
Consequently, examples should be non-trivial and involve multiple classes. All
examples should be made available for experimentation, e.g., by making the
source code available for download from the course web page.
Easy-to-use tools (P7). Students should be provided with tools that support
object-oriented thinking. The tools must be easy to learn and easy to use. Tool
usage must add as little cognitive load as possible to the students’ tasks. Usability
should be favoured over any “bells and whistles.”

2.3 Pragmatics

Hands-on (P8). Programming is a skill that must be “trained.” Topics should
be reinforced by means of practical exercises. Lectures should be followed by
supervised in-lab sessions. For each session, step-by-step instructions and exem-
plary examples should be provided.
Less “from scratch” development (P9). “Reading before modifying before
coding.” All software development takes place in context (see also Using BlueJ
to Introduce Programming by Kölling). Reuse is an important aspect of the
object-oriented paradigm and should be emphasised early. To be able to read, to
understand, and to modify existing code is, therefore, as important as developing
understandable code.
Alternative forms of examination (P10). Assessment should support learn-
ing. It is very important to evaluate actual programming skills as well as con-
ceptual understanding. Furthermore, assessment should not be separated from
teaching. For example, peer evaluation or peer marking can call the students’ at-
tention to alternative ways of solving certain problems. It is important to realise
that there rarely is a single, correct solution to a problem.
Emphasise the limitations of computers (P11). Students should learn that
computations can produce erroneous or unexpected results due to limitations in
data representation, even in logically correct programs.

To summarise, our main goal was to follow an object-oriented approach in a
true and consequent way. In addition, we wanted to provide our students with
easy-to-use tools supporting “object thinking” and the systematic development
of proper object-oriented code (see also Model-Driven Progamming by Benned-
sen and Caspersen).

3 Implementation

The first course, based on these principles, was offered in spring 2001. After a
case study in summer 2001 [Börstler et al., 2002], we have refined our teaching

Transitioning to OOP/Java — A Never Ending Story 85

approach and successively implemented it in all our introductory programming
courses6. Some of the principles are very difficult to implement, or even in conflict
with each other. In particular the principles No magic (P1) and Exemplary
examples (P6) still cause a lot of work.

From an organisational point of view, we made four major changes to our
original course as follows:

1. We introduced BlueJ [BlueJ, 2007], a programming environment particularly
designed for the teaching and learning of object-oriented programming to
novices (P7) [Kölling and Rosenberg, 2001; Kölling et al., 2003]

2. We introduced CRC-cards, a simple informal tool for collaborative object-
oriented modelling (P5, P7) [Beck and Cunningham, 1989]. The strength of
the CRC-card approach lies in its associated scenario role-play activities
[Börstler, 2005; Andrianoff and Levine, 2002]. During the role-plays the stu-
dents explore hypothetical, but concrete situations of system usage (scenar-
ios). They enact the objects in the model, much like actors following a script
when playing the characters in play. This supports “object thinking” and
helps the students to develop a mental model of the workings of an object-
oriented program (P1-P4) [Börstler and Schulte, 2005].

3. To accommodate for more practical training (P8), we substituted our tradi-
tional lecture room exercises by guided, hands-on exercises in computer-labs.

4. The traditional pen and paper exam was split into a shorter one, half way
through the course, and a computer-based exam was used at the end to test
actual programming skills (P10).

In addition to these changes, we started to offer Supplemental Instruction (SI)
[Kallin Westin and Nordström, 2003] to improve students’ study skills and to
make them more active participants in the course. SI is targeted towards his-
torically difficult classes to help students master content while developing and
integrating strategies for learning and studying [Arendale, 1997]. This is done
through sessions guided by a model-student, the SI leader.

A major difference between SI and other forms of collaborative learning is
the role of the SI leader. Rather than forming study cluster groups and then
releasing them in an unsupervised environment, the SI leader is present to keep
the group on task with the content material and to model appropriate learning
strategies that the other students can adopt and use in the present course, as
well as other ones in future academic work.

Since the “roll out” of our teaching approach, we have made several changes
to our introductory programming courses (see Figure 2 for an overview). For
example, we have postponed graphics and event handling to a newly developed
advanced programming course. We have also slightly adapted our course for
non-CS majors. However, we are still faithful to all our principles.

6 We offer introductory courses in object-oriented programming for three different
technical degree programs.

86 J. Börstler et al.

Fig. 2. Major steps in the evolution of the introductory programming course

4 Evaluation

In this section, we restrict our discussion to an evaluation of our principles as
defined in section 2. Overall, we conclude that changing to a “truly” object-
oriented approach according to our principles worked well. However, there are
many factors not directly related to the teaching and learning of object-oriented
programming itself that affect course design and outcome. Many important fac-
tors are difficult to control like prerequisites and attitudes of the students enter-
ing our programs, for example. This will be discussed in section 6.

4.1 High-Level Goals

In common for all high-level goals (P1-P4) is the urge to be “truly faithful”
to the object-oriented approach. This means to avoid concepts or examples that
seem to question or even contradict the idea of object-orientation, such as objects
without meaningful state or behaviour, excessive use of static methods and public
attributes, Singletons7, etc. [Westfall, 2001; Hu, 2005]. To be “truly faithful” also
means to strive for meaningful objects in realistic contexts.

No magic (P1). Our ambition has always been to use examples and contexts
not only simple enough for the students to understand, but that also emphasises
the object-oriented paradigm. BlueJ is an excellent tool for this since it allows
teachers and students to concentrate on the object-oriented aspects instead of
dealing with editors, configuration files, compilers, etc. BlueJ achieves this by
visually representing classes and objects and manipulating them directly using
its graphical user interface (see figure 3). Unfortunately, this approach has some
limitations that can generate misconceptions that can be harmful and great care
has to be taken to avoid them. A short example will illustrate the problem.

Since the very beginning we have used an example with geometrical shapes sup-
plied with the BlueJ environment [Barnes and Kölling, 2003; and Using BlueJ
to Introduce Programming by Kölling]. In BlueJ, objects are represented by red
7 A Singleton is a class with one single instance only.

Transitioning to OOP/Java — A Never Ending Story 87

blocks in the object bench (see for example c: Circle in figure 3). Actually, to
be more precise, these red blocks represent object references and not the objects
themselves. This is a small, but important difference as explained below.

One can send messages to objects in the object bench by right clicking them.
This will display a menu with the methods defined for this object. When selecting
makeVisible(), a graphical surface is created (“automagically”) and a repre-
sentation of c is drawn on it (see Window BlueJ Shapes Demo in Figure 3).
Whenever the state of an object is changed, its representation is changed or
animated accordingly. This gives immediate feedback and helps students to un-
derstand the difference between classes and objects. On the other hand, it blurs
the difference between the objects themselves and their references. Furthermore,
the details of the graphics are quite involved and too complicated to understand
(“magic”) for a novice.

Fig. 3. Screenshot of the Shapes example

Another problem with the Shapes example is the cognitive difficulty to dif-
fer between the visual representation of an object (the circle in window BlueJ
Shapes Demo) and the object itself, which actually cannot be seen. If, for in-
stance, the reference to the object (the red block in the object bench) is removed,
nothing happens in the drawing. This is puzzling for the inexperienced because
the coloured dots on the canvas are mistaken for the object itself! Misconceptions
like this are very hard to deal with. Other examples of difficulties are discussed
in [Ragonis and Ben-Ari, 2005].

This example shows how difficult it is to create assignments early in the course,
without (unintentionally) introducing magic or material not taught yet.

Objects from the very beginning (P2). To make the students immediately
acquainted with the idea of objects, we use a kind of interactive exercise the first

88 J. Börstler et al.

lecture [Andrianoff and Levine, 2002; Bergin, 2000a]. Without previous explana-
tion, the students are asked to discuss in general terms, something that needs to
be modelled like, for example, a ticket machine or an employee. During the dis-
cussion the lecturer collects specific and general characteristics and behaviours
on the whiteboard. At the end of the lecture, these things are pointed out as
“properties” belonging to a single object or a class, respectively.

Nevertheless, it is difficult to convey to the students that they are working
with an isolated “component” in a larger program, instead of a whole program.
Many students, particularly those with previous programming experience, find
it quite frustrating that there is no “program” to execute like they are used to.
They seem to have difficulties focusing on the properties and responsibilities of
objects without controlling its context at the same time [Guzdial, 1995].

General concepts favoured over language specific realisations (P3).
The learned programming and problem solving should be transferable to other
programming languages. It is important, therefore, to focus on general concepts.
We try to highlight general concepts, knowledge and skills and to avoid language
specific details and idiosyncrasies.

This has resulted in using elementary UML-notation throughout the course,
instead of some kind of simplified temporary notation. However, we do not ex-
plicitly introduce UML. We just use its most intuitive parts consistently.

Furthermore, semi-formal syntax-diagrams are used. This makes it much eas-
ier to talk about the syntax, semantics and pragmatics of programming lan-
guages. Information hiding is also stressed as a general (design) concept and the
usefulness of Boolean variables to formulate easy to read expressions.

On the other hand, topics like anonymous objects and classes are not dis-
cussed. These concepts require a thorough understanding of object-orientation
and are saved for later courses. We try to avoid language idiosyncrasies as long
as possible in particular shortcuts like ++, +=, ?:, etc. and forced returns out
of for-loops and methods. They just make code harder to read and, therefore,
their use is actually discouraged.

No exceptions to general rules (P4). It is important to be consistent with
the frame of reference we provide to our students (see P1 in section 2.1). Students
will hopefully adopt what the teachers present to them eventually. It is impor-
tant, therefore, not to misguide them (see also P6). We must never present any
material, explanation or example that we might reject as an answer or solution
from a student.

Unfortunately, Java courseware in particular is littered with examples that
contradict the “rules” or “styles” we want our students to adopt. The concept of
objects, for example, should not be exemplified by using Java strings. In Java,
String objects cannot be modified and do not posses all the characteristics
we require from proper objects [Thimbleby, 1999]. Since Math has only static
methods and there are no objects of this class type, its use should be postponed
until the students have a firm understanding of the concepts class and object.
The main method is an atypical method since there is no object it belongs to.

Transitioning to OOP/Java — A Never Ending Story 89

Thus, the method is never invoked explicitly and its parameters seem to be
supplied by magic forces (see also P1).

4.2 Tools

OOA&D early (P5). The purpose of this principle is twofold: showing the
students a systematic way to develop a solution for a given problem, and pro-
viding them with a tool to reason about object-oriented solutions without the
need of actual code.

By using CRC-cards [Beck and Cunningham, 1989], we can do both. The
object-as-person metaphor helps students with “object thinking” and to develop
a conceptual model of the inner workings of an object-oriented program [West,
2004; Börstler and Schulte, 2005]. Another advantage of this approach is that it
does not require any prerequisite knowledge.

A problem noted in [Bellin and Simone, 1997] and described in detail in
[Börstler, 2005] is that CRC-cards are used as surrogates for classes (in the mod-
elling activities) as well as for objects (in the role-play activities). This conflicts
with the No exception principle (P4) and can easily confuse novices.

To address these problems, we enact a live CRC session in front of the class
to give the students a feeling for the dynamics of such a session. In addition to
that, we have developed so-called Role-Play Diagrams (RPDs) to support and
document the role-play activities [Börstler, 2004]. RPDs combine elements from
UML object and collaboration diagrams [OMG, 2003]. However, the notation
is informaland much less extensive. In RPDs, we use specific object cards to
denote objects and thereby, avoid the double role of the CRC-cards. Although
the enhanced “method” is more complicated than the original one, the students
have fewer problems using it. The RPDs also provide an excellent documentation
of the role-play. To give the students some practical experience in CRC-card role-
playing, we schedule two CRC exercises where the students develop designs for
small problems. One of these designs is later implemented as an assignment.

Exemplary examples (P6). As discussed in No magic (P1), it has turned
out to be difficult to find or to develop suitable problems and examples for the
initial introduction of objects. The range of concepts and syntactical elements
known to the students is still very limited. Examples should also be small and
to the point, so that students do not lose sight of the concept exemplified. This
limits the degree of freedom for defining “realistic” objects. For example, what
would constitute a reasonable context illustrating the concepts of loops? What
kind of object would have such behaviour? Immediately the example grows to
justify the use of a simple construct and tends to conceal the small component
it was intended to show.

Another problematic example is the usage of Singleton classes, like the popular
Pig-Latin translator [Nordström, 2007]. One might ask whether it is reasonable
to have a class PigLatinTranslator? How many objects of this class would
anyone need? Singleton classes do probably not qualify as good examples. The
main idea behind classes is instantiating as many objects as necessary. Singletons

90 J. Börstler et al.

are special cases, i.e. an exception to the general rules (c.f. P4). Their treatment
should, therefore, be delayed to more advanced courses.

Many examples use print statements to present some result. This is not a
representative way to illustrate objects and classes. Usually, results are returned
and used by other objects. In an object-oriented program, objects communicate
to fulfil a task. Objects that use printing to present results are rarely useful in
other contexts. Students are not able to reuse such examples as prototypes or
templates to solve more general problems.

Exploiting the “naturalness” of the object-oriented approach can also be dif-
ficult. Object-oriented models of real-life objects might have behaviours and
responsibilities their real life counterparts never would or could have. Therefore,
it is very important to make a distinction between the model and the entity
being modelled. A typical example of this could be the model of an employee
in an economy system for a company. The model of the employee could have
the responsibility to know its salary, the number of remaining days of vacation
and so on. This is conflicting to how things are in real life. No company would
rely on their employees to be the only source of information for the payment of
salaries. So, how could it be possible for the inexperienced designer to foresee
this responsibility in the model?

Easy-to-use tools (P7). Some of the advantages of BlueJ turned out to be
disadvantages for the students (initially). The interaction with entities is done
by right-clicking a class or an object. The problem for the student is to un-
derstand the equivalence of right-clicking and generating the same action in
code. Another problem is to realise the difference between classes and objects
[Ragonis and Ben-Ari, 2005]. However, as the students continue to practise their
skills using BlueJ they realise the strengths of this simple, but powerful, inter-
action with objects.

The ability to write code must not depend on the tools we provide to our stu-
dents. Students must not be “locked” into BlueJ for example. This is also high-
lighted by the BlueJ developers (see also Using BlueJ to Introduce Programming
by Kölling). They should develop and run at least one complete application out-
side BlueJ. Although experienced students tend to dislike BlueJ, we think they
should be encouraged to at least try it. They might very well get some new
insights into the object-oriented paradigm.

4.3 Pragmatics

Hands-on (P8). The initial idea of guided in-lab sessions directly following
the lectures did not work as expected. The students complained about lack of
time to think about the new material before using it. Most students actually had
difficulties applying the ideas presented. They merely consumed the presentation
at the lecture.

In later years, we have thus rescheduled the lab sessions. We still have the
same number of hands-on sessions, but they are no longer scheduled on the
same day as the corresponding lectures. We also developed very detailed guides

Transitioning to OOP/Java — A Never Ending Story 91

to make sure students succeed with initial tasks and so they can gain some
confidence in working with the environment. Too detailed guidelines or fill-in-the
blanks exercises, however, can be counter-effective. Students might be enabled to
perform successfully without actually understanding their answers and activities.
Students and teachers as well might get a faulty feeling of mastery of the subject.

Less “from scratch” development (P9). The practise of reading and manip-
ulating existing code before actually writing own code turned out to be a major
problem for our students. Inexperienced students acquired a passive practice and
had difficulties writing complete programs on their own. It is important then to
train some programming from scratch. Experienced students, on the other hand,
often want to have full control over their programs and might reject “foreign”
code [Guzdial, 1995]. However, code reuse is a crucial practice that requires code
reading and understanding and needs to be trained as well.

Alternative forms of examination (P10). The content of the course is
initially focused on object-oriented concepts, while the second half is heavier on
actual problem solving and programming. To reinforce the need to work with
and to understand basic concepts early on, we divided the examination into two
parts. Halfway through the course a written (theoretical), closed-book test is
given and at the very end, a practical problem solving and programming test is
given. The results of the two tests are added and graded as one. In addition to
this, the students have mandatory assignments and some of them orally assessed.
The idea of splitting the examination into two tests with rather different focus
was appreciated by the students. Furthermore, the exam results better reflect
student skills than a single pen-and-paper test.

Emphasise the limitations of computers (P11). This principle had its
origin in the numerical tradition of our department. We make students aware
of problems and limitations in data representation and how these can lead to
erroneous computations. We emphasise this by discussing examples leading to
unexpected results in logically correct programs.

5 Lessons Learned

In this section, we briefly summarise the practices that worked particularly well
for us. We have grouped them together into recommendations to make them
easily accessible to the reader.

Teach “object thinking” and modelling explicitly.

– Start the first lecture with a modelling or role-play activity (no syntax in-
volved). Students can be asked then to describe (model) an employee or a
ticket-machine to illustrate the basic object properties (state, behaviour and
identity).

– Introduce CRC-cards and scenario role-plays. This provides students with
a framework to think in terms of (active) objects and their responsibilities.
Furthermore, it teaches them basic modelling/ problem solving skills.

92 J. Börstler et al.

– Introduce role-play diagrams so that students easily can track and document
scenario role-plays. This also helps to prevent some problems inherent in the
original CRC approach [Börstler, 2005; Börstler and Schulte, 2005].

Schedule guided and supervised lab activities. Programming is a skill
that needs to be trained extensively. Students should visit the labs as frequently
as possible and receive immediate help when getting “stuck.”

– Reduce the number of traditional lectures and introduce supervised lab ses-
sions instead. Guide students through practical exercises in the labs. We
provide for example step-by-step guides, including reflective questions, which
the students have to work through. Lecturers and teaching assistants should
always be present to discuss and resolve problems.

– As much as possible, move supervising time from office rooms to the com-
puter labs to force students to visit the labs to ask questions.

Use and utilise a suitable programming environment. The environment
must be easy to use and to support the object-oriented paradigm. However, it is
also important to show how programs are developed and executed outside such
an environment. We have used BlueJ [BlueJ, 2007] successfully since 2001.

Examine the “right” things. It is important to assess actual and individual
programming skills in addition to conceptual and syntactical knowledge. This
can be done, for example, by practical computer based tests (problem-solving and
programming) and individual oral demonstrations of mandatory assignments.

There is no course design that fits all target groups. Different groups
of students need different types or flavours of courses. It is important to be
sensitive to changes in the field as well as the context and the environment of
a course [Forte and Guzdial, 2005; Jenkins and Davy, 2000; and Using On-line
Tutorials in Introductory IT Courses by Thomsen]. Our principles have been
a useful guideline to us when adopting the course to different student groups.
The principles make sure that the core of the course is the same and taught in
roughly the same way, regardless of lecturer and student group.

Do not lull students and teachers into false security. Fill-in-the-blanks
guides and exercises can give a faulty feeling of students’ subject mastery. Too
much help or undemanding tasks can lead to mechanical answering. If no re-
flection or second thought is necessary, then students can successfully complete
such exercises without learning anything. Also, teacher expectations about what
the students really have learnt might be too high.
Good examples are crucial, but very hard to develop. Truly object-
oriented examples are very difficult to find or to develop. Educators should resist
constructing examples “on-the-fly” (for example to exemplify a specific feature),
since they rarely will follow principles P1, P4 and P6.

Transitioning to OOP/Java — A Never Ending Story 93

– Programming in a true object-oriented style often leads to overly (unneces-
sary) complex examples, due to the additional layers of abstraction imposed
by the paradigm. This can be frustrating to students since they cannot under-
stand why the different abstraction layers are necessary (e.g., “Why should I
do it like that, it’s easier and faster to read the information directly from the
database”). It is a challenge for the teacher to explain that optimization is
secondary to a good object-oriented design. Our main goal is to devise a good
solution that fulfils certain quality criteria and not to simply make it work
somehow. Students are not mature enough to differ between optimizations
and proper design.

– Although often claimed, there is no 1:1 relationship between real-world ob-
jects and their corresponding software abstractions. A physical book for ex-
ample is removed from the library, when it is checked out. A book object
in a (software) model, however, stays in the library and is only marked as
“on loan.” Furthermore, in a “real world” library, we would never make the
borrowers responsible for keeping track of their unpaid overdue fines. In a
(software) model however, this might be a good design choice since trust is
no issue there.

Keep students active. Data collected during the SI-projects shows without a
doubt that student attendance and activity correlate with course results [Aren-
dale, 1997; Kallin Westin and Nordström, 2003, 2004.] Mandatory in-lab exer-
cises and a two-stage examination keep the students alert and active from the
start. SI gives the students opportunities to work with the course material in a
structured way and helps them to recognise the strength of collaboration. After
introducing SI, the attendance rate on the examination rose from 80 percent to
above 95 percent (see Section 6, in particular Figure 4).

6 Discussion

When analysing student performance over the years (see Figures 4 - 6) our case
for a “truly-objects-first” approach does not look convincing. However, there are
also external factors affecting student performance. These factors have lead to
considerable changes in the student population in recent years.

Assessment consists of mandatory assignments, a pen-and-paper test and a
computer-based test (see P10 in Section 4.3). In Figure 4, the passing rate after
the first opportunity to finish the course is shown as a solid line. Java was
introduced in 1998 and our “truly” object-first approach was introduced in 2002
(see Figure 2). The dashed line in Figure 4 shows the attendance rate on the exam
(i.e. the proportion of students submitting at least one mandatory assignment or
attempting at least one test). SI was introduced in 2002 to raise attendance rates
and it seems to have an effect8. Participation in SI correlates with overall student
8 In 2001, the seemingly high attendance rate was due to an examination system where

handing in assignments (not necessary correct ones) gave credit points on the final
exam. The numbers for 2001 in figures 4 - 6 must be seen, therefore, as statistical
outliers.

94 J. Börstler et al.

Fig. 4. Performance data for CS majors on our introductory programming course. The
solid line represents the passing rate after the first opportunity to finish the course. The
dashed line represents the proportion of students submitting at least one mandatory
assignment or attempting at least one test.

Fig. 5. Performance data for CS majors on the discrete mathematics course, compared
to our introductory programming course (cf. figure 4)

Transitioning to OOP/Java — A Never Ending Story 95

Fig. 6. The number of students per seat on our programme is shown as a dotted line
added to Figure 5

performance. Unfortunately, the weakest students seem not to be motivated
to participate in SI. An investigation of the students with severe problems in
keeping up with the pace of the curricula of the programme showed that a vast
majority had not attended SI at all, or only tried it a few times.

Another factor is that knowledge and skills in mathematics have been de-
creasing in general [Högskoleverket, 1999; Helenius and Tengstrand, 2005]. It is
believed that mathematical ability is strongly connected to performance in intro-
ductory programming [Denning, 2004]. Skills, like (array) indexing and creating
series of numbers seem to be more of a problem nowadays. Students also have
a weak understanding of functions, in particular, their parameters and return
(computed) values. This lack of understanding might result in the assumption
that the only possible way to get something out of a method is by printing a
string to the screen. We strongly believe this contributes to the lower passing
rates, especially for mandatory assignments.

Our CS majors take a course in discrete mathematics in the same term as their
introductory programming course. In Figure 5, we can see that the students also
have problems in the discrete mathematics course. Attendance rates are even
lower in discrete mathematics where students only have a single traditional exam
at the end of the course. However, in the introductory programming course, a
student needs to attend only one of the three exam parts to be counted as
“active”. This might falsely indicate high attendance rates.

The dotted line in Figure 6 represents the number of students per seat. In
Sweden, each programme has a fixed number of student seats available. The
applications to IT-related programmes have severely suffered from the turbulent
situation within the IT business. Practically, this means that all students apply-
ing are admitted as long as they fulfil the basic prerequisites. Historically, we

96 J. Börstler et al.

have had 2 to 3 applications for each seat available, resulting in a higher grade
average for the students admitted.

A further factor is a shift in motivation among novices. In a study we per-
formed in 1994, the main reason for students applying for our programme was
an interest in the subject itself (or in mathematics). In a later study, the motiva-
tion had shifted to “want high salary,” “want to be a civil engineer,” and other
reasons not connected to the subject or the programme itself. Thus, students’
interest in computing science is far from obvious [Kallin Westin and Nordström,
2001, 2003; Eliasson et al., 2006a,b]. Similar trends are reported internationally
[Forte and Guzdial, 2005; Jenkins and Davy, 2000].

7 Related Work

There have been several attempts to explain why students are having difficulties
in their first Java course. Three common explanations are the following:

– The students can program, they are just having problems with the design
part [McCracken et al., 2001].

– We are not teaching object-orientation the correct way, we need to teach the
subject in a pure, object-oriented way [Bergin, 2000a; Kölling and Rosenberg,
2001.]

– Java has so many special cases, like public static void main and string
handling so that it becomes difficult for the students to remember and to
understand all the special cases [Bruce et al., 2005].

In a multi-national cross-university study, [McCracken et al., 2001] investigated
how well students actually could program. They proposed a list of five steps that
students should be able to follow successfully after passing CS1.

– Abstract the problem from its description.
– Generate sub-problems.
– Transform sub-problems into sub-solutions.
– Recompose the sub-solutions into a working program.
– Evaluate and iterate.

The results from this study were disappointing. The students’ programming
skills were at a much lower level than expected. Somewhat surprising, the most
difficult part seemed to be the first step (e.g., to abstract the problem).

[Lister, 2004] followed up on these results and investigated students’ ability
to read, to understand and to modify existing code. Here, the results were dis-
appointing also. A surprisingly large proportion of the students had difficulties
completing even the most basic tasks. It seems that students not only have prob-
lems with the abstraction step, they also have problems with the more basic task
of reading and understanding code.

[Lister, 2004] also investigated the annotations students made while solving
the problems. In general, it turns out that students who carefully trace executions
are more likely to provide correct answers than those who do not. However,

Transitioning to OOP/Java — A Never Ending Story 97

there are considerable differences between universities [McCartney et al., 2005].
Students from some universities used annotations (traces) to a very high degree
while others did not.

Considering the scope of this book it is interesting to note that the two uni-
versities with the least annotations are in Sweden and Denmark. Despite the low
annotation level, these students performed on average compared to the students
from other universities. Whether this is a coincidence or due to differences in
object-oriented programming education needs to be further investigated.

8 Summary and Conclusions

The transition to object-orientation is not easy. It is not sufficient to simply
change the language of instruction in an otherwise traditional introductory pro-
gramming course. The strong relationships between basic, objected-oriented con-
cepts constitute a high threshold to the learning and teaching of programming.
Considerable changes to the course design are necessary to convey to the students
the real power of the object-oriented approach.

We have presented and evaluated a set of eleven principles for course design
that have helped us to stay on track in our efforts continuously to improve our
introductory programming course. We have seen several factors that influence
the results of an introductory programming course apart from the course itself.
Attendance rates drop on all parts of the course and many students seem to
think that knowledge can be acquired passively.

It is our firm believe that it is necessary to be faithful to the object-oriented
approach. Tools that help students to “think in objects” are very important
for successfully teaching basic object-oriented concepts. We must provide our
students with a consistent frame of reference. This frame of reference will change
with the knowledge and skills the students acquire. However, its core (i.e., the
basic rules) should not be constantly contradicted by our own exercises and
examples.

	Transitioning to OOP/Java — A Never Ending Story
	Introduction
	Principles for Course Design
	High-Level Goals
	Tools
	Pragmatics

	Implementation
	Evaluation
	High-Level Goals
	Tools
	Pragmatics

	Lessons Learned
	Discussion
	Related Work
	Summary and Conclusions

