
Evaluating OO Example Programs for CS1

Jürgen Börstler
Dept. of Computing Science

University of Umeå, Sweden

jubo@cs.umu.se

Henrik B. Christensen
Dept. of Computer Science

University of Aarhus, Denmark

hbc@daimi.au.dk

Jens Bennedsen
IT University West

Aarhus, Denmark

jbb@it-vest.dk

Marie Nordström
Dept. of Computing Science

University of Umeå, Sweden

marie@cs.umu.se

Lena Kallin Westin
Dept. of Computing Science

University of Umeå, Sweden

kallin@cs.umu.se

Jan Erik Moström
Dept. of Computing Science

University of Umeå, Sweden

jem@cs.umu.se

Michael E. Caspersen
Dept. of Computer Science

University of Aarhus, Denmark

mec@daimi.au.dk

ABSTRACT
Example programs play an important role in learning to
program. They work as templates, guidelines, and inspira-
tion for learners when developing their own programs. It
is therefore important to provide learners with high quality
examples. In this paper, we discuss properties of exam-
ple programs that might affect the teaching and learning of
object-oriented programming. Furthermore, we present an
evaluation instrument for example programs and report on
initial experiences of its application to a selection of exam-
ples from popular introductory programming textbooks.

Categories and Subject Descriptors
K3.2 [Computers & Education]: Computer and Informa-
tion Science Education—computer science education

General Terms
Experimentation, Human Factors, Measurement

Keywords
CS1, example programs, object-orientation, quality

1. INTRODUCTION
Examples are important tools for teaching and learning.

Both students and teachers cite example programs as the
most helpful materials for learning to program [10]. Also
research in cognitive science confirms that “examples appear
to play a central role in the early phases of cognitive skill
acquisition” [18, p 515]. Moreover, research in cognitive load

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’08, June 30–July 2, 2008, Madrid, Spain.
Copyright 2008 ACM 978-1-60558-115-6/08/06 ...$5.00.

theory has shown that carefully worked-out examples (so
called worked examples) play an important role in order to
increase learning outcome [5].

In mathematics education exemplification is a well re-
searched topic [11] and “the choice of examples that learners
are exposed to plays a crucial role in developing their ability
to generalize” [21, p 131]. Examples must therefore always
be consistent with all learning goals and follow the princi-
ples, guidelines, and rules we want to convey. Otherwise,
students will have a difficult time recognizing patterns and
telling an example’s non-essential properties (noise) from
those that are structurally or conceptually important.

Learner’s will learn from examples, but we cannot guaran-
tee that they abstract the properties and rules we want them
to learn. They might not see the generality and just mimic
irrelevant example properties and features [13]. The rules
they construct might be erroneous, since there are many
ways to interpret and generalize example features [7, 9, 18].
It is therefore also important to present examples in a way
that conveys their “message”, but at the same time be aware
of what learners might actually see in an example [13].

Carefully developed and presented examples, can help pre-
venting misconceptions [4, 8].

In this paper, we discuss quality properties of example
programs and formulate criteria which are used to develop
an evaluation instrument. We then present the results of
using this instrument on a selection of program examples
from popular textbooks. Finally, we discuss the issues con-
cerning the design and usage of the evaluation instrument
and outline how our work can be taken further.

2. RELATED WORK
Although examples are perceived as one of the most im-

portant tools for the teaching and learning of programming,
there is very little research in this area. Most often ex-
ample issues are only discussed in the narrow context of a
single simple and concrete example, like the recurring “Hello
World”-type discussions [6, 19], or they are regarded as a lan-
guage issue [2, 15]. Only few authors have taken a broader
view by investigating features of example programs and their
(potential) effects on learning.

47



Wu et al. studied programming examples in 16 high school
computer textbooks and concluded that most of them“lacked
detailed explanation of some of the problem-solving steps,
especially problem analysis and testing/debugging”[20, p 225].
Almost half of the examples fell into either the math-problem
(27%) or syntax-problem (21%) category.

Holland et al. [9] provide guidelines for designing example
programs to prevent object-oriented misconceptions, which
are successfully used by Sanders and Thomas [16] for assess-
ing student programs.

Malan and Halland [12] describe four common pitfalls
that should be avoided when developing example programs.
They argue that examples that are too abstract or too con-
crete, that do not apply the taught concepts consistently,
or that undermine the concept they are introducing, might
hinder learning.

Furthermore, there are many studies of software develop-
ment in general showing that adherence to common software
design principles, guidelines, and rules [3], as well as certain
coding, commenting, naming guidelines, and rules [14, 17]
support program understanding.

There is also a large body of research on worked examples
providing general guidelines regarding the form and presen-
tation of examples [5].

However, to our knowledge, neither of the above princi-
ples, guidelines, and rules have been used to evaluate exam-
ple programs from programming textbooks.

3. RESEARCH APPROACH
This project is carried out by two research groups from

two countries. During an initial two-day workshop, a large
number of example programs from different textbooks were
discussed to identify common strengths and weaknesses. The
goal was to define a set of criteria to effectively discriminate
between different levels of “quality”, based on accepted prin-
ciples, guidelines, and rules from the literature (see Sec-
tion 2) and our own teaching experience. The outcome of
this workshop was an initial evaluation instrument and a
test set of textbook examples.

The instrument was tested on two examples by four re-
viewers, which lead to several revisions of the instrument.
After testing further examples, the instrument was finally
refined to the one described in Section 4. The instrument
was then used by six reviewers (two female, four male; age
37–48) to evaluate five example programs. All reviewers are
experienced computer science lecturers in object-oriented
programming, most of them at the introductory level. A
summary of the evaluation results are presented in Section 5.
Finally, validity and reliability of detailed results were dis-
cussed between reviewers and researchers (the groups over-
lapped considerably) in small groups and by e-mail. A sum-
mary of these discussions is presented in Section 6.

Table 1: Categorization of example programs.

First First user- Several
example defined class classes Inheritance

E1 — — X —
E2 X — — partly
E3 — X — —
E4 — X partly —
E5 — — X X

To cover a wide range of aspects, we chose representa-
tive examples of different levels of quality and complexity

covering the following aspects; the very first example of a
textbook, the first exemplification of developing/writing a
(user-defined) class, the first application involving at least
two interacting classes and a non-trivial (but still simple) ex-
ample of using inheritance. Table 1 summarizes the features
of our five examples E1–E5.

4. EVALUATION INSTRUMENT
Inspiration for the evaluation instrument was drawn from

the checklist-based evaluation by the Benchmarks for Sci-
ence Literacy project [1] by defining a set of specific, well-
defined criteria that can be evaluated on a uniform scale.
All criteria should be based on accepted programming prin-
ciples, guidelines, and rules; educational research; and the
groups’ collective teaching experience. The resulting set of
11 criteria was grouped into three independent categories of
quality; technical quality (three items), object-oriented qual-

ity (two items) and didactic quality (six items).

Technical quality (T1–T3). The criteria in this category
focus on technical aspects of example programs that are in-
dependent of the programming paradigm. Examples should
be syntactically and semantically correct, written in a con-
sistent style, and follow accepted programming principles,
guidelines, and rules (see Table 2).

Table 2: Checklist items for technical quality.

T1 Problem versus implementation. The code is appropri-

ate for the purpose/problem (note that the solution need

not be OO, if the purpose/problem does not suggest it).

T2 Content. The code is bug-free and follows general coding

guidelines and rules. All semantic information is explicit.

E.g., if preconditions and/or invariants are used, they must

be stated explicitly; dependencies to other classes must be

stated explicitly; objects are constructed in valid states; the

code is flexible and without duplication.

T3 Style. The code is easy to read and written in a consistent

style. E.g., well-defined intuitive identifiers; useful (strate-

gic) comments only; consistent naming and indentation.

Object-oriented quality (O1–O2). The criteria in this
category address technical aspects that are specific for the
object-oriented paradigm, i.e., how well an example can
be considered a role model of an object-oriented program.
In contrast to technical quality, the principles, guidelines,
and rules covered here are specific for the object-oriented
paradigm (see Table 3).

Table 3: Checklist items for object-oriented quality.

O1 Modeling. The example emphasizes OO modeling.

E.g., emphasizes the notion of OO programs as collec-

tions of communicating objects (i.e., objects sending mes-

sages to each other); models suitable units of abstrac-

tion/decomposition with well-defined responsibilities on all

levels (package, class, method).

O2 Style. The code adheres to accepted OO design principles.

E.g., applies proper encapsulation and information hiding;

adheres to the Law of Demeter (no inappropriate intimacy);

avoids subclassing for parameterization; etc.

Didactical quality (D1–D6). The criteria in this cate-
gory deal with instructional design, i.e., comprehensibility
and alignment with learning goals for introductory (object-
oriented) programming (see Table 4).

In order to evaluate an example the expected previous
knowledge of a student and supporting explanations must
be taken into account. In textbooks the placement of an ex-
ample naturally defines the expected previous knowledge of

48



Table 4: Checklist items for didactic quality.

D1 Sense of purpose. Students can relate to the example’s

domain and computer programming seems a relevant ap-

proach to solve the problem. In contrast to, e.g., flat wash-

ers which are only relevant to engineers, if the concept or

word is at all known to students outside the domain (or

English-speaking countries).

D2 Process. An appropriate programming process is fol-

lowed/described. I.e., the problem is stated explicitly, an-

alyzed, a solution is designed, implemented and tested.

D3 Breadth. The example is focused on a small coherent set

of new concepts/issues/topics. It is not overloaded with

new “stuff” or things introduced “by the way”. Students’

attention must not be distracted by irrelevant details or

auxiliary concepts/ideas; they must be able to get the point

of the example and not miss “the forest for the trees”. In

contrast to, e.g., explaining JavaDoc in detail when the

actual topic is introducing classes.

D4 Detail. The example is at a suitable level of abstraction for

a student at the expected level and likely understandable

by such a student (avoid irrelevant detail). In contrast to,

e.g., when an example sets out to describe the concept of

state of objects, but winds up detailing memory layout in

the JVM).

D5 Visuals. The explanation is clear and supported by mean-

ingful visuals. E.g., uses visuals to explain the differences

between variables of primitive (built-in) types and object

types. In contrast to, e.g., showing a generic UML diagram

as an after-thought without relating to the actual example.

D6 Prevent misconceptions. The example illustrates (rein-

forces) fundamental OO concepts/issues. Precautions are

taken to prevent students from overgeneralizing or drawing

inappropriate conclusions. E.g., multiple instances of at

least one class (to highlight the difference between classes

and objects); not just “dumb” data-objects (with only set-

ters and getters); show both primitive attributes and class-

based attributes; methods with non-trivial behavior; dy-

namic object creation; etc.

a student. In the context of this work an example is consid-
ered as a complete application or applet plus all supporting
explanations related to this particular program.

To summarize, one could say that T1–T3 and O1–O2 as-
sess the actual code of an example program and D1–D6 as-
sess how it is presented to and conceived by a student. The
categories complement each other; an example of high tech-
nical and object-oriented quality will not be very effective,
if it cannot be understood by the average student. However,
such an example might still be a very valuable teaching re-
source, in case the educator using it finds better ways to
explain it.

All ratings in the resulting checklist are on a Likert-type
scale from 1 (strongly disagree) to 5 (strongly agree). Since
all checklist items are formulated positively, 5 is always best.
Beyond the criteria described in Tables 2–4, the actual check-
list also contains additional fields for commenting each rat-
ing and a field for overall comments that might not fit any of
the available criteria. An example of a filled-in checklist can
be found at http://www.cs.umu.se/research/education/
checklist_iticse08.pdf.

5. RESULTS
The results presented here are based on the evaluation

that was made in order to answer two questions:
• Can the instrument distinguish between “good” and

“bad” examples?
• Do reviewers interpret the items of the instrument in

the same way?
Figure 1 summarizes the results of six reviewers’ evalua-

tion of the five examples, E1–E5 (see also Table 1). As can

be seen, only one example (E1) is consistently rated very
high across all three quality categories. Low average ratings
have almost always a relatively high standard deviation (i.e.,
disagreement between reviewers).

Figure 1: Average grade (bars) and standard de-

viation (line) for evaluation of five examples. Re-

sults are shown by item category (technical, object-

oriented, and didactic quality).

Besides the overall high rating of E1, there are several
other noteworthy observations. The overall technical qual-
ity of the reviewed example programs is very high, except
for E5 which did not correctly implement its stated require-
ments. The section on object-oriented quality has the largest
variation. It should, however, be noted that E2 is a “Hello
World”-type example which cannot be expected to achieve
high ratings in this category. Given that we used examples
from quite popular textbooks, the overall ratings for didactic
quality and the ratings of E3–E5 on object-oriented quality
were surprisingly low.

Figure 2 shows the overall distribution of ratings for each
of the six reviewers, R1–R6. It can be noted that the re-
viewers utilize the rating scale differently. Reviewer R5, for
example, used the best grade (5) only half as much as the
average (21.8% compared to 43% for all reviewers together).
Reviewer R6, on the other hand, did not use a single 1. How-
ever, except for reviewer R5, the distributions of ratings are
quite similar (in total the usage of rating 1 was only 7.3%).

It seems that teaching experience somewhat influences the
grading. One reviewer, R5, has exclusively taught advanced

Didactic quality (D1-D6)

1

2

3

4

5

E1 E2 E3 E4 E5

A
v

e
r
a

g
e
 g

r
a

d
e

0.00

0.40

0.80

1.20

1.60

S
ta

n
d

a
r
d

 d
e
v

ia
ti

o
n

Object-oriented quality (O1-O2)

1

2

3

4

5

E1 E2 E3 E4 E5
A

v
e
r
a

g
e
 g

r
a

d
e

0.00

0.40

0.80

1.20

1.60

S
ta

n
d

a
r
d

 d
e
v

ia
ti

o
n

Technical quality (T1-T3)

1

2

3

4

5

E1 E2 E3 E4 E5

A
v

e
r
a

g
e
 g

r
a

d
e

0.00

0.40

0.80

1.20

1.60

S
ta

n
d

a
r
d

 d
e
v

ia
ti

o
n

49



0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R1

R2

R3

R4

R5

R6

Tot

Fives Fours Threes Twos Ones

Figure 2: Distribution of ratings between reviewers.

programming courses for the last couple of years, and grades
given by R5 tend to be slightly lower on average.

To summarize, it is evident that the instrument distin-
guishes between examples. Furthermore, the example with
the overall highest ratings, E1, is also considered to be a
“good” example by the reviewers. However, when looking at
Figure 2, it is evident that there are differences in ratings
among the reviewers.

6. DISCUSSION
The purpose of the presented instrument has been to re-

place intuitive “I know it, when I see it” assessments of ex-
ample programs with a more objective and reliable measure-
ment. So what conclusions can we draw from the results?
Are the criteria meaningful? How well do assessment results
using the instrument reflect an experienced teacher’s overall
“gut feeling” of example quality?

This section summarizes the discussions among researchers
and reviewers regarding validity and reliability of the eval-
uation instrument.

6.1 Quality Categories
Overall, we find that the instrument ranked examples as

we might have done based on “gut feeling” alone. The in-
strument was quite useful to point out particular strengths
and weaknesses. The reviewers found the three categories
natural and covering all important issues of examples.

Technical quality (T1–T3). Assuming that textbook au-
thors have developed and tested their examples carefully,
one would generally expect the technical grades to be very
high. This is also reflected in consistent and high ratings.
The only exception is E5, that contains a defect and the re-
sulting program does not fulfill its stated requirements. This
issue was well captured by criteria T2. The standard devi-
ation is generally low, indicating objectivity of the criteria.

Object-oriented quality (O1–O2). In general, the object-
oriented characteristics of examples seem to be captured
well. E1 received the highest rating and was also agreed to
be an exemplary example. E2 is the first example in a text-
book (see Table 1) and not really focusing on object-oriented
techniques, which is reflected by its low rating in this cat-
egory. In three of the examples, the standard deviation is
high. One reason for this seems to be a lack of common

agreement on the importance of explicit object interaction.
Another reason seems to be the dependency between O1 and
O2 (see Section 6.2).

Didactic quality (D1–D6). When comparing the average
grades in this category, one example is rated high; the others
are rated lower but at approximately the same level. This is
also in concordance with the comments from the discussion
after the evaluation. Three of the examples exhibit a high
standard deviation indicating a high degree of disagreement
among the reviewers. It seems that the reviewers do not
share a common understanding of the meaning of the criteria
and how they should be rated.

6.2 Criteria
Although all criteria were discussed thoroughly and the

instrument was tested twice, we underestimated the seman-
tical issues concerning the criteria. It was implicitly assumed
that all reviewers shared the same interpretation of each sin-
gle criterion. However, careful inspection of all evaluations
revealed that the rating still was difficult in some cases.

O1 vs. O2. Since criteria are supposed to be independent,
several reviewers gave high ratings for O2 and low ratings
for O1 for the same example. They argued that accepted
object-oriented principles and guidelines (like encapsulation
and information hiding) could very well be followed even
by examples that are not considered object-oriented and we
should not “penalize” an example twice for the same rea-
son. However, this is in conflict with the overall intention
of the category, namely rating object-oriented quality. Lack
of object-orientedness should result in low ratings. There-
fore, it is necessary to agree on and carefully describe the
intended use of O1 and O2.

A solution could be to replace O1 and O2 by a single item
for overall object-orientedness and conditional items for a
more detailed assessment of object-oriented characteristics.
The detailed assessment would then only be carried for ex-
amples above a certain threshold value for overall object-
orientedness.

D3 vs. D4. Breadth and detail are two views on extrane-
ous or superfluous material. It can therefore be difficult to
decide how to balance ratings on these and there might be
cases where an example has been penalized twice. A solu-
tion could be to use only one criterion assessing the amount
of extraneous or superfluous material.

D5. Some reviewers gave high ratings for visuals, although
the example lacked visuals, arguing that the explanation
was perfectly clear and understandable even without visu-
als. Discussing this aspect revealed that there might be a
more general problem of rating criteria that are simply not
addressed properly by an example, e.g., O1, O2, and D2.

D6. When the instrument was constructed it was debated
whether D6 should be regarded as “object-oriented quality”
rather than “didactic quality”. Moving the ratings for D6
to this category resulted, however, only in minor changes of
the results as compared to Figure 1.

Granularity and impact. It might be tempting to com-
pute a single value for the rating of an example. However,
granularity and impact of criteria can never be perfectly
equal. Even within a category, criteria will be valued differ-
ently by different people. Moreover, categories with many
criteria might be overemphasized.

50



We have tried to balance criteria within a category. How-
ever, an overall total (over all categories) seems not very
meaningful.

6.3 Rating Instructions
Already when developing the instrument, a recurring topic

of discussion was when to rate a criterion for an example as 1
and when to rate it as 5, i.e., to get a common understanding
of the extremes for each criterion. During these discussions,
examples were often used to illustrate these extremes. De-
spite these discussions, reviewers utilized the rating scale
quite differently (see Figure 2). If this or a similar instru-
ment is to be used in a community, we strongly recommend
supplying a written instruction, containing prototypical ex-
amples, with the instrument.

7. SUMMARY AND CONCLUSIONS
In this paper, we have described the design and test of an

instrument for evaluating object-oriented examples for edu-
cational purposes. The instrument was tested by six expe-
rienced educators on five examples, which we consider quite
representative for a wide range of examples from introduc-
tory programming textbooks.

Our results show that such an instrument is a useful tool
for indicating particular strengths and weaknesses of exam-
ples. Although only five examples from introductory pro-
gramming textbooks were formally evaluated, the results in-
dicate that there might be large variations regarding object-
oriented and didactic quality of textbook examples. Since
examples play an important role in learning to program, it
would be valuable to formally evaluate textbook examples
at a larger scale.

However, we consider the evaluation instrument presented
here not reliable enough for evaluations on a larger scale;
inter-rater agreement is too low. As discussed in Section 6,
this problem can be reduced by revising the criteria to avoid
misunderstandings and, most importantly, developing de-
tailed rating instructions.

8. REFERENCES
[1] AAAS. Benchmarks for science literacy, a tool for

curriculum reform, 1989. http://www.project2061.
org/publications/bsl/default.htm, last visited
2007-12-07.

[2] L. Böszörményi. Why Java is not my favorite
first-course language. Software-Concepts & Tools,
19(3):141–145, 1998.

[3] L. Briand, C. Bunse, and J. Daly. A controlled
experiment for evaluating quality guidelines on the
maintainability of object-oriented designs. IEEE

Transactions on Software Engineering, 27(6):513–530,
2001.

[4] M. Clancey. Misconceptions and attitudes that infere
with learning to program. In S. Fincher and M. Petre,
editors, Computer Science Education Research, pages
85–100. Taylor & Francis, Lisse, The Netherlands,
2004.

[5] R. Clark, F. Nguyen, and J. Sweller. Efficiency in

Learning, Evidence-Based Guidelines to Manage

Cognitive Load. Wiley & Sons, San Francisco, CA,
USA, 2006.

[6] M. H. Dodani. Hello World! goodbye skills! Journal of

Object Technology, 2(1):23–28, 2003.
[7] A. E. Fleury. Programming in Java:

Student-constructed rules. In Proceedings of the

thirty-first SIGCSE technical symposium on Computer

science education, pages 197–201, 2000.
[8] M. Guzdial. Centralized mindset: A student problem

with object-oriented programming. In Proceedings of

the 26th Technical Symposium on Computer Science

Education, pages 182–185, 1995.
[9] S. Holland, R. Griffiths, and M. Woodman. Avoiding

object misconceptions. In Proceedings of the 28th

Technical Symposium on Computer Science Education,
pages 131–134, 1997.

[10] E. Lahtinen, K. Ala-Mutka, and H. Järvinen. A study
of the difficulties of novice programmers. In
Proceedings of the 10th Annual SIGCSE Conference

on Innovation and Technology in Computer Science

Education, pages 14–18, 2005.
[11] Liz, Bills, T. Dreyfus, J. Mason, P. Tsamir,

A. Watson, and O. Zaslavsky. Exemplification in
mathematics education. In Proceedings of the 30th

Conference of the International Group for the

Psychology of Mathematics Education, Vol. 1, pages
126–154, 2006.

[12] K. Malan and K. Halland. Examples that can do harm
in learning programming. In Companion to the 19th

Annual Conference on Object-Oriented Programming

Systems, Languages, and Applications, pages 83–87,
2004.

[13] J. Mason and D. Pimm. Generic Examples: Seeing the
General in the Particular. Educational Studies in

Mathematics, 15(3):277–289, 1984.
[14] P. Oman and C. Cook. Typographic style is more than

cosmetic. Communications of the ACM,
33(5):506–520, 1990.

[15] N. Ourosoff. Primitive types in Java considered
harmful. Communications of the ACM, 45(8):105–106,
2002.

[16] K. Sanders and L. Thomas. Checklists for grading
object-oriented cs1 programs: Concepts and
misconceptions. In Proceedings of the 12th annual

SIGCSE conference on Innovation and technology in

computer science education, pages 166–170, 2007.
[17] A. Takang, P. Grubb, and R. Macredie. The effects of

comments and identifier names on program
comprehensibility: an experimental investigation.
Journal of Programming Languages, 4(143):167, 1996.

[18] K. VanLehn. Cognitive skill acquisition. Annual

Review of Psychology, 47:513–539, 1996.
[19] R. Westfall. ‘Hello, World’ considered harmful.

Communications of the ACM, 44(10):129–130, 2001.
[20] C.-C. Wu, J. M.-C. Lin, and K.-Y. Lin. A content

analysis of programming examples in high school
computer textbooks in taiwan. Journal of Computers

in Mathematics and Science Teaching, 18(3):225–244,
1999.

[21] R. Zazkis, P. Liljedahl, and E. J. Chernoff. The role of
examples in forming and refuting generalizations.
ZDM Mathematics Education, 40:131–141, 2008.

51


