Is the Class of well-behaved Semantics so
small?

JUAN CARLOS NIEVES, GABRIEL CERVANTES
Universidad de las Americas Puebla, Departamento de Ingenieria en Sistemas Computacionales,
Sta. Catarina Martir, Cholula, 72820 Puebla, Mexico

sp205000@mail.udlap.mx - gcervantes@kim.ece.buap.mx

ABSTRACT.

We introduce a new semantics (WFS*) that is well behaved, rational, and satisfies
C3, different than WF'S and W F'S’. This broke a conjecture that stood for the last
eight years. Since WFS* extends WFS, has suitable properties and furthermore
it is polynomial time computable, we believe that it can be taken as a possible
substitute of WFS.

1 Introduction

There has been a continued research towards the “best” properties that a
semantics should verify. Too many efforts has been done and many seman-
tics has been proposed for capturing the intended meaning of a program P.
Schlipf [Schipf, 1992] and Dix [Dix, 1995] (among others researchers) have
developed the fundamental theory of the principles of “suitable” semantics.
The main properties that different proposed semantics satisfy were investi-
gated by Dix [Apt and Bol, 1994]. Dix defines the notion of a well-behaved
semantics and shows that the WFS semantics is the weakest well-behaved
semantics. Schlipf [Levi, 1994] suggests to use this notion of well-behaved
semantics as a standard for motivation and comparison of logic program-
ming semantics. In 1992, Dix conjectures in [Dix, 1992] that the class of
well-behaved sematics is too small. Later, in [Dix, 1995] he restates these
conjectures, namely:

Conjecture 1 (Characterization of WFS, WFS* and WFS?)
There are no well-behaved and rational semantics other that WFS, WFST
and WFS".

Conjecture 2 (WFST)
WFSt is the only well-behaved and rational semantics satisfying Supraclas-
sicality.

189
Proceedings of the Fifth ESSLLI Student Session

Catherine Piliere (editor)
Copyright © 2000

Is the Class of well-behaved Semantics so small?

Conjecture 3 (Characterization of WFS and WFS’)
There are no well-behaved and rational semantics satisfying C38 other than

WFES and WEFS’.

These conjectures have been restated in a recent book (end of chapter 7)
[Brewka, Dix and Konolige, 1997], where the authors call them “important
representation theorems”. In [Osorio, Dix and Zepeda, 2000] it is shown
that the the first conjecture is false. The goal of our paper is to show that
the third conjecture is also false.

The rest of this paper is organized as follows: In section Bl we provide
some basic background on well-behaved semantics and others concepts. In
section Bl we present our main results. Finally in last section we present our
conclusionsﬂp

2 Background

A signature £ in a finite set of elements that we call atoms. A literal is an
atom or its negation. Given a set of atoms {a1, ..., ap }, we write ={a1, ..., an}
to denote the set {—aq, ..., ~an}.

A normal program clause C is a rule a < [y,...,l,, where a is an atom
and each [; is a literal. We also use the notation a - BT, —=B~, where BT
contains all the positive body atoms and B~ contains all the negative body
atoms. We use body(C) to denote BT U—=B~. A normal program is a finite
set of normal program rules. If body(C) =) then we say that the rule is a
fact that we denote by a < or just as a. A (partial) interpretation based on
a signature £ is a disjoint pair of sets (I1, Is) such that I; Uly C L. A partial
interpretation is total if Iy U s = L. A general semantics SEM is a function
on Prog, which associates with every program a partial interpretation.

Let Prog, be the set of all normal propositional programs with atoms
from L. By Lp we understand it to mean the signature of P, i.e. the set of
atoms that occur in P.

Definition 2.1 (SEM,,;,) [Osorio, Diz_and Zepeda, 2000]

For any program P we define HEAD(P) = {a| a<+ B*,-B~ € P} the set
of all head-atoms of P. We also define SEM,;, (P) = (Ptrve, Pfalse) where
Plrue .— [p| p< € P}, Pfelse .= {p| p € Lp\HEAD(P)}.

The main concept on which our semantis is based, is the concept of a
transformation rule.

Definition 2.2 (Basic Transformation Rules)
A transformation rule is a binary relation on Prog,.. The following trans-
formation rules are called basic. Let a program P € Prog, be given.

!The interested reader could find a more complete version of this paper in :
http://wuw.udlap.mx/\simjosorio/jc/publications.html

190

http://www.udlap.mx/$sim $josorio/jc/publications.html

Juan Carlos Nieves, Gabriel Cervantes

RED™ (R"): This transformation can be applied to P, if there is an atom
a which does not occur in HEAD(P) and there is b < body € P such

that —a € body. The transformation R, reduces a program P to
Py := (P \ {b + body}) U{b <+ (body \ {—a})} .

RED~ (R7): This transformation can be applied to P, if there is a rule
a <€ P and there is b < body € P such that —a € body. R~ trans-
forms P to Py := P\ {b < body}.

Sub (Sb): This transformation can be applied to P, if P contains two
clauses a < body,, and a < body ,, where body, C body,. Sb transforms
P to the program where the clause a < bodys has been removed.

Success (Sc): Suppose that P includes a fact a and a clause g < body such
that a € body. Then we replace the clause q < body by q < body\ {a}.

Failure (Fa): Suppose that P contains a clause q < body such that a €
body and a ¢ HEAD(P). Then we erase the given clause.

Equivalence (Eq): Suppose P contains a rule C which has the same atom
in its head and in its positive body. Then we remove this rule.

Loop (Lp): We say that Py results from Pi by Lpa if there is a set A
of atoms such that for each rule a < body € P, if a € A, then
bodyNA#0, Py :={a<+ body € P, : bodyN A =0}, P, # P5.

By-Cases (B-C): P, result from P if the following condition holds. Sup-
pose b an atom. Let Ps:= {a<+ Bt,~(B~\{b}) | a+B*,-B~ € P}
and Py := {a+ BT\ {b},-B~ | a«-BT,-B~ € P}. Let P} and P,
programs resulting from P3 and Py repectively by appling Success® and
let H := {p| p € PyN P} Then the transformation By — Cases derives
P uU{a} where a € H and aéé b. In order to emphasis the role of a, b
then we write By — Casesy. A

We use P, =T P, for denote that we get P, by the transformation 7'
from P;j.

Although these rules are not really functions on Prog,, they induce a
set of operators on Prog, as we will show. An operator, denoted as op, is a
function over the set of programs that transforms a program P to a program
P°P. If the transformation can not be applied then the operator behaves as
the identity function. On the other hand, if P # P°, where P is program
and op an operator, we say that op is executed.

*We use P, =T P, for denote that we get P, by the transformation T from P;.
3T* denote the reflexive and transitive closure of the relation T where T is any tran-
formation defined.

191

Is the Class of well-behaved Semantics so small?

Given a program P and a list of operators ops, we define the application
of ops to P, denoted as P, as follows: Pl := P | plerlers] .— (por)ors (We
use the notation [_ | _] as in Prolog).

Definition 2.3 (Confluence) A rewriting system is confluent if whenever
u —=* and u —* y then there is a z such that © —* z and y —* 2l

Definition 2.4 (Noetherian) A rewriting system is noetherian if there is
no infinite chain 1 — o — ... = T; = Tiy1 — ..., where for all © the
elements z; and ;41 are different.

Definition 2.5 (Locally confluent) A rewriting system is locally conflu-
ent if whenever u — = and u — y then there is a z such that © —* z and
y = z.

Definition 2.6 (Partial Distribution) [Osorio, Diz and Zepeda, 2000]
A confluent LP-system CS satisfies partial distribution if for every op, P
and a such that a € HEAD(P) and P°P is ezecuted, then (P U {a})? =
PP U {a}.

Definition 2.7 (C3) [Brewka, Diz and Konolige, 1997]
A semantics SEM satisfies C3 iff for all the rules: a < body;, if body; is
false in SEM then a is false in SEM.

Definition 2.8 (P reduced by M) |Brewka, Diz and Konolige, 1997
Let P be a program and M be a set of literals. 7P reduced by M” is the
program PM := {ruleM | rule € P} where (A < By, ..., By, ~C1, ...,~Cp,)M
is defined by

delete if 3j|C; € M or ~Bj € M,
(A By,...,By,=Cl, ..., mC)™ = { delete if Ac M or ~Aec M,
rule’ otherwise.

Here, rule’ stands for the clause “A < Bi,...,B,,,~C1,...,~C! ,”, where
the set {Bj | i € I'} (resp {—C} | i € I'}) is just an enumeration of the set
{Bi|i€I}\M (resp. {-C;le I}\ M).

We define the associated lenguage Lpum for PM to be Lp\ M, i.e. Lpu
consists of all symbols occurring in P but different from those in M.

The condition of Relevance uses the notions of dependencies_of and
rel_rul that are defined as follows[Brewka, Dix and Konolige, 1997):

“Where — is a binary relation on a given set S. Let —* be the reflexive, and transitive
closure of —. When z —* y we say that x reduces to y

192

Juan Carlos Nieves, Gabriel Cervantes

dependencies_of (X) := {a : X depends on a}E and rel_rul(P,X) is the set
of relevant rules of P with respect to X, i.e. the set of rules that contain an
a€ dependencz’es_of(X)E

The follows definition is defined in [Brewka, Dix and Konolige, 1997].

Definition 2.9 (Well-behaved Semantics)

A well-behaved semantics SEM is semantics such that the following con-
ditions are satisfied: Relevance, Reduction, PPE, Modularity, Isomorphy,
Equivalence and Cut.

Relevance : The principle of Relevance states:
SEM(P)(a) = SEM((rel_rul(P,a))(a).

Reduction : Let a set of literals M C Bp U —Bp be given. The principle
of Reduction states that SEM(P U M) = SEM(PM)u M.

PPE : Let P be a propositional program and let an atom c¢ occur only
positively in P. Let ¢ < body, ..., c < body, be all the rules of P with
¢ in their heads. Any program clause of the form a < c¢,body can be
replaced by rules

a < body,, body

a < body,, body

Modularity : Let P = P, U Py, and for every atom a that appear Po:
rel_rul(P,a) C P,. The principle of Modularity is: SEM(P) =
SEM(PSFMP) | py).

Isomorphy : A semantics SEM satisfies Isomorphy, iff SEM(Z(P)) =
Z(SEM)(P)) for all programs P and isomorphisms I.

Equivalence : A semantics SEM allows FEquivalence, iff rules of the
form a < body where a € body, can be eliminated without changing
the semantics.

Cut : A semantics SEM satisfies Cut iffa € SEM(P) andbe SEM(PU
{a}) then be SEM/(P)

Definition 2.10 (Rationality) A semantics SEM satisfies Rationality iff
a € SEM(P) and -b¢ SEM(P) then a € SEM(P U {b})

5The relation depends on is denined in [Brewka, Dix and Konolige, 1997].
5Let dependenciesof(=X) := dependenciesof(X), and relrul(P,-X) :=
rel_rul(P, X).

193

Is the Class of well-behaved Semantics so small?

3 Declarative Semantics

Let CS1 be the rewriting system which contains exactly the transformations
defined in the definition Our main results are given in this section.

Theorem 3.1 (Confluent and Terminating) The system CS1 is conflu-
ent and terminating. It induces a semantics that we call WFS* and we
define it as WFS*(P) = SEMpn(rescs, (P)). [l

Proof. Clearly, the system is noetherian. To prove that the system is
confluent, note first that CS; \ {B — C} is known to be confluent. Thus
we need to verify that B-C is locally confluent with respect to the other
operators. The most interesting case is B-C vs Lp. The others caes are
relative easy to prove confluence. We present only the proof of B-C vs Lp.

Suppose P =P P and P -8~ P, where P # P and P # P,. Then
we have two cases: 1.- b€ A or 2.- b ¢ A.

Case 1: First, is easy to verify that P, —IPA P; (where P, # P3).
Clearly b ¢ HEAD(Py) and so we can take P; and apply (R")* and Sc*
to get Py and a € Py (that is P, —(BF)*,Ser Py). In the same way we can
take P3 and apply as well (R1)* and Sc* to get P5s. But due to the fact
that P3 = P; U {a} and a € P, then Py = P;. Case 2: Here is not hard to
check that Lp and B — C commute because of the following reason: P is
the form P’ U P” such that P! =5-%% {a} U P!, P' C P, P" =B-C p",
P'NnP"=¢.

Thus in both cases B — C and Lp are locally confluent with the help of
R" and Sc). m

Remark: The condition that a # b in the definition of B-C is unweak-
able in the proof before, consider the program:

a << ~Ta.
a < a.

Then we would get the irreducible program {a < —a.}. On the other
hand we would derive also {a < }.

Definition 3.1 Let P a normal program and M a set of consistent literals
such that M = M U M~ where M contains all the positive literals from
M and M~ contains all the negative literals from M. Then PWM is defined
as follows:

PyM=P\{l<bodycP|I°c M~ }UM*

where € is define as follows: 1° = =l if | is a positive atom, or [=1 if | is
a negative atom.

"Where rescs, (P) is the normal form of P under the CS1 system.

194

Juan Carlos Nieves, Gabriel Cervantes

NIEVlemma 3.1 Let P a normal program and let My and My sets of lit-
erals. Then PW (M; UM;) = (PWM;)w M.

Proof. We first prove (C): Let a < body € P W (M; U M), then
—a & M UM, and a < body € P. Then —~a ¢ M, , therefore a «+
body € P W M; by definition. Moreover we know that —a & M, , then
a < body € (PW M) ¢ M.

Now we will prove (2D): Let a < body € (P& M)W My, then a < body €
Py M, and —a &€ M, since a < body € P M; then —~a ¢ M| . Therefore
-a & M; UM, , then a < body € PW (M UM;). m

NIEVlemma 3.2 Let P a normal program and let M be a sets of literals
and let | a literal such that 1°,1 & M, then (Pw M) = P}y M.

Proof. The proof is by induction w.r.t. the size of M. Base case:
If [M| = 0 the proof is trivial now if |M| = 1. To prove (P& {e}){} =
P w{e}. If e is a positive literal is direct. Now we consider the case
when e = —a. We need to show that: (P {-a})} = P} w{-a}: Let
b+ body € (Pw{-a}){" then b # a and b # I. Then b «+ body € P,
Therefore b + body € P & {—a}.

Inductive step: We know that (P w M)} = P}y M is true when
|M| = K by induction hypothesis. Now we will prove when |[M| = K + 1.
Proof: (PuwM)# = (Pw({m}uM\{m}))"} by lemma B (Pw({m}UM\
{mIN = (Pw{m})w M\ {m}){¥ by induction hypothesis and taking
(Pw{m}) as a program ((Pw{m})w M\ {m}){} = (Pu{m}HBwr\{m}
by induction hypothesis (P W {m}){} w M\ {m} = (P w{m})w M\ {m}
by lemma B (P w {m}) w M\ {m} = P w (M \ {m} U {m}) and
PUBw(M\{m}u{m})=PHluM m

NIEVlemma 3.3 Let P a normal program and let A and M sets of literals
such that M N A = (), then (PM)A = pMUA,

Proof. Is straightforward by definition of the reduction P™. m

Corollary 3.1 Let P a normal program and M a set of literals, then

Proof. The proof is direct. =

NIEVlemma 3.4 Let P a normal program and let | a positive literal, then
SEM(Pu{1}) = SEM(PW) U {i}.

Proof. Straightforward. =

NIEVlemma 3.5 Let P a normal program and let | a negative literal and
-l € Lp, then SEM(PT™H) = SEM (P U {1},

195

Is the Class of well-behaved Semantics so small?

Proof. We know that -/ € Lp and by definition of PM | ¢ HEAD(P{™!})
Then -l € SEM(P!) m

Theorem 3.2 The WFS* semantics is well-behaved, rational and satisfies

C3.
Proof. (Sketch)

Equivalence: Follows straightforward by construction of our semantics.

Reduction: The proof is by induction w.r.t. the size of M. Base case: If
|M| = 0 the proof is trivial. Let |M| = 1, then there are two cases,
when M is a positive literal (M = {a}) and when M is a negative literal
(M = {-a}). First case: M = {a}, then to prove: SEM(P W {a}) =
SEM(P{%}) U {a}: We know that if P, =S P, then SEM(P;) =
SEM(P;) that P W {a} —{505eR7} plet y {a}. Then SEM(P &
{a}) = SEM(P{*} U{a}). Therefore by lemma 4 SEM (P {a}) =
SEM (Pt u{a}. Second case : M = {—a}, then by proof: SEM(Pw
{=a}) = SEM(P1%) U {-a}: Follows the idea of the first case we
show that P & {-a} —CS1 P{79} Given that P & {-a} —{B"Fa}®
P79} then by lemma BH SEM (P W {-a}) = SEM(P{™%}) U {-a}.
Induction step: To prove: SEM (Pw(MU{e})) = SEM(PMY{eD)y
(MU{e}): By lemmaBISEM(Py(MU{e})) = SEM((PWM)w{e}),
then by induction hypothesiﬂ SEM((PwW M) 4 {e}) = SEM((P W
M){ehu{e}, the by lemmaB2ASEM (PwM)ie)u{e} = SEM(P{¢y
M) U {e}, by induction hypothesis SEM ((P{e})M) U M U {e} this is
last equals. Therefore by lemma B3 it is equal to SEM ((P{e}VM) y
(M U {e})

Relevance: Is possible to define the concept of relevance transformation.
Then we prove that the reflexive, transitive clousure of the transfor-
mation system is relevant. Thus, the semantics induced by CS; is
relevant.

Cut and Rationality : By theorem B CS; is confluent and terminating,
moreover satisfies partial distributionf] then by theorem 2 in
[Osorio, Dix and Zepeda, 2000] W F'S* satisfies cut and rationality.

PPE: Let P —»PPE P'. We need to prove SEM(P) = SEM(P'). The
proof is by induction over the number of transformation steps applied
to P to obtain its normal form. Base case: If P is in normal form
then since P’ does not allow the application of B — C*. The result
follows immediately. Induction step: Suppose that P reduces to its

8Taking (P W M) as a program.
®In [Osorio, Dix and Zepeda, 2000] shown that CS; \ {B — C} satisfies also partial
distribution as the reader can verify.

196

Juan Carlos Nieves, Gabriel Cervantes

normal form in 7 steps (n > 0). Let P; be obtained on the first step.
Let P, —»PPE P! by induction hypothesis SEM(P;) = SEM(P])
but also SEM(P) = SEM(P,). Is easy to check that exists P” such
that P’ —¢S1 P" and P] =St P", thus SEM(P') = SEM(P]). So
SEM(P) = SEM(P,) = SEM(P]) = SEM(P'), as we wanted to
show.

Modularity: We already showed that our semantics satisfies Relevance,
Reduction. Extended Cumulativity[Dix, 1995], our semantics also sat-
isfies, as the reader could verify, then by Lemma 5.18 in [Dix, 1995]
satisfies Modularity.

C3: Suppose that ~a ¢ SEM (P) then we have two cases: 1) a € SEM(P)
or 2) a is undefined. If ¢ € SEM(P) then there is a < o € P such
that « is not false in SEM (P) Now if a is undefined then there exists
a < o € P such that a < a € rescs, (P) and a C o'. But we know
that « is undefined then o is also undefined.

Isomorphy: We already showed that our semantics satisfies Relevance.
Then, following the idea of Dix in [Brewka, Dix and Konolige, 1997]
we can prove that, a non-trivial semantics that satisfies Relevance also
satisfies Isomorphy.

[]

We now show that W FS* is different from WFS and WFS’. Consider
the next program given in [Apt and Bol, 1994] (section 7.4)

P:={p+ ~q q<+< p r+«<p 1<« qt Then WFS(P) = ¢
and WFS*(P) = {r}. Note in addition that [Apt and Bol, 1994] presented
the given example as a drawback of the WFS semantics because it can not
derive r. Therefore W F'S* can also be considered as a proposal to improve
WFS.

Moreover W FS* is different to WFS’, as the follows program shows:
P:={a<+b,c. a<——-b a<+ —c. b< —c. c+4 —b.} where WFS*(P) =
¢ and WFS'(P) = {a}. Another semantics similar to W FS* is introduced
in [Osorio, Dix and Zepeda, 2000]. But this semantics is not well-behaved.
A nice property of W FS* is that it is polynomial time computable, however
WFS'is co-NP-compl[Dix, 1995 -).

4 Conclusion

We exhibit a semantics that is well behaved, rational, and satisfies C3, dif-
ferent than W F'S and WF'S’. This broke the conjecture that stood for the
last eight years. Our result has three main implications: First, it shows that
the class of well-behaved semantics is bigger than expected and so it opens
future research to obtain its real characterization. Second, WFS* provides a

197

BIBLIOGRAPHY

partial solution to the drawback of WFS as noted in [Apt and Bol, 1994].
Third, since WFS* extends WFS, has suitable properties and furthermore
it is polynomial time computable. We believe that W F'S* can be taken as
a possible substitute of WF'S.

Bibliography

[Apt and Bol, 1994] Krzysztof R. Apt and Roland N. Bol. Logic Programming and
Negation: A Survey. Journal of Logic Programming, 19-20:9-71, 1994.

[Arrazola, Dix and Osorio,1999] J. Dix J. Arrazola and Mauricio Osorio. Confluent
term rewriting systems for non-monotonic reasoning. Computacion y
Sistemas, 11(2-3):299-324, 1999.

[Brewka, Dix and Konolige, 1997] Gerd Brewka, Jiirgen Dix, and Kurt Konolige.
Nonmonotonic Reasoning: An Overview. CSLI Lecture Notes 73. CSLI
Publications, Stanford, CA, 1997.

[Dix, 1992] Jiirgen Dix. A Framework for Representing and Characterizing Seman-
tics of Logic Programs. In B. Nebel, C. Rich, and W. Swartout, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of
the Third International Conference (KR ’92), pages 591-602. San Mateo,
CA, Morgan Kaufmann, 1992.

[Dix, 1995] Jirgen Dix. A Classification-Theory of Semantics of Normal Logic
Programs: II. Weak Properties. Fundamenta Informaticae, XXII(3):257—
288, 1995.

[Dix, 1995 - b] Jiirgen Dix. Semantics of Logic Programs: Their Intuitions and
Formal Properties. An Overview. In A. Fuhrmann and Hans Rott (eds.),
Logic, Action and Information—FEssays on Logic in Philosophy and Ar-
tificial Intelligence, pages 241-327, De Gruyter, September 1995.

[Osorio, Dix and Zepeda, 2000] Mauricio Osorio J. Dix and Claudia Zepeda. A
general theory of confluent rewriting systems for logic programming and
its applications. Annals of Pure and Applied Logic, 7:7, 2000.

[Levi, 1994] Giorgio Levi. Advances in logic programming theory. Ox-
ford:Clarendon Press, 1994.

[Schipf, 1992] John S. Schlipf. Formalizing a Logic for Logic Programming. Annals
of Mathematics and Artificial Intelligence, 5:279-302, 1992.

1
OWe mentioned this issue in the previous section

198

