
Semantics for Possibilistic Disjunctive Programs

Juan Carlos Nieves1, Mauricio Osorio2, and Ulises Cortés1

1 Universitat Politècnica de Catalunya
Software Department (LSI)

c/Jordi Girona 1-3, E08034, Barcelona, Spain
{jcnieves,ia}@lsi.upc.edu

2 Universidad de las Américas - Puebla
CENTIA, Sta. Catarina Mártir, Cholula, Puebla, 72820 México

osoriomauri@googlemail.com

Abstract. In this paper by considering an answer set programming approach and
some basic ideas from possibilistic logic, we introduce a possibilistic disjunctive
logic programming approach that is able to deal with reasoning under uncertainty
and incomplete information. Our approach permits to use explicit labels like cer-
tain, probable, plausible,etc., for capturing the incomplete state of a belief in a
disjunctive logic program.

1 Introduction

Many decisions that we make in our common life are based on beliefs concerning the
likelihood of uncertain events. In fact, we commonly use statements such as “I think
that . . . ”, “chances are. . . ”, “it is probablethat . . . ”, “it is plausiblethat . . . ”, etc.,
for supporting our decisions. In this kind of statements usually we have appealed to
our experience or our commonsense. It is not surprising to think that a reasoning based
on these kind of statements could reachbias conclusions. However these conclusions
could reflect the experience or commonsense of an expert. Pelletier and Elio pointed
out in [19] that people simply have tendencies to ignore certain information because
of the (evolutionary) necessity to make decisions quickly. This gives rise to “biases” in
judgments concerning what they “really” want to do. A deep study of the importance of
the biassed and heuristics in judgment under uncertainty is presented in the book [12].

In view of the fact that we know that a reasoning based on statements which are
quantified by relative likelihoods could capture our experience or our commonsense,
the question is: how could these statements be captured by real application systems like
Multi Agent Systems? For those steeped in probability, Halpern has remarked in [10]
that probability has its problems. For one thing, the numbers are not always available.
For another, the commitment to numbers means that any two events must be comparable
in terms of their probabilities: either one event is more probable than the other, or they
have equal probability. Also in [13], McCarthy and Hayes pointed out that attaching
probabilities to a statement has the following objections:

1. It is not clear how to attach probabilities to statements containing quanti-
fiers in a way that corresponds to the amount of conviction people have.



2. The information necessary to assign numerical probabilities is not ordinar-
ily available. Therefore, a formalism that required numerical probabilities
would be epistemologically inadequate.

Now, the question is why not to use explicit labels likepossible, probable, plausible,
etc., for capturing the incomplete state of a belief in a logic program when the numerical
representations are not available or difficult to get. For instance, these kind of labels
have been explored in argumentation theory for modeling incomplete information of an
argument [7, 17].

During the last two decades, one of the most successful logic programming ap-
proaches has been Answer Set Programming (ASP). ASP is the realization of much
theoretical work on Non-monotonic Reasoning and Artificial Intelligence applications.
It represents a new paradigm for logic programming that allows, using the concept
of negation as failure, to handle problems with default knowledge and produce non-
monotonic reasoning [1]. In [15], it was proposed a possibilistic framework for rea-
soning under uncertainty. It is a combination between ASP and possibilistic logic [6].
This framework is able to deal with reasoning that is at the same time non-monotonic
and uncertain. Nicolaset al.’s approach is based on the concept ofpossibilistic stable
modelwhich defines a semantics for possibilistic normal logic programs. One weak
point of this approach is that it relies on the expressiveness of normal logic programs
and it always depends on a numerical representation for capturing the incomplete state
of a belief. Since Nicolaset al.’s approach does not permit disjunctions in the head of a
possibilistic clause, there is not a natural way for expressing incomplete information.

In this paper, we introduce the use ofpossibilistic disjunctive clauseswhich are
able to captureincomplete informationandincomplete states of a knowledge baseat the
same time. It is important to point out that our approach is not exactly a generalization
of Nicolaset al.’s approach. Whereas Nicolaset al.’s approach only permits to express
the states of a belief by totally ordered sets, our approach permits to consider partially
ordered sets for expressing the states of a belief. Moreover we do not adopt to usestrict
α-cuts for handling an inconsistent possibilistic logic program. However in the class
of possibilistic normal logic programs, our approach coincides with Nicolaset al.’s
approach when it considers totally ordered sets for capturing the incomplete state of a
belief and the possibilistic program is consistent.

One of our main motivations for considering a generalization of the possibilistic
stable models was our necessity for modeling medical knowledge. We have been work-
ing in the decision making process for deciding if a human organ is viable or not for
being transplanted [21, 16, 20]. Our experience suggests that in our medical domain,
we require aqualitativetheory of default reasoning like ASP for modeling incomplete
information and aquantitativetheory like possibilistic logic for modeling uncertain
events.

By considering partially ordered sets, it is possible to capture the confidence of a
claim by using qualifiers like the Toulmin’s famous “qualifiers”[22]. For instance, in [7]
Fox and Modgil discuss the expressiveness of these qualifiers for capturing the uncer-
tainty of medical claims. We use relative likelihoods for modeling different qualifiers



e.g., certain, confirmed, probable, plausible, supportedandopen3, where each quali-
fiers is a possible world/class of beliefs. The user can provide a likelihood ordering for
the worlds/classes of beliefs as it is shown in Fig. 1.

Fig. 1. A lattice where the following relations hold:Open ¹ Supported, Supported ¹
Plausible, Supported ¹ Probable, Probable ¹ Confirmed, Plausible ¹ Confirmed,
andConfirmed ¹ Certain.

In general terms, we are proposing a possibilistic disjunctive logic programming ap-
proach that is able to deal with reasoning under uncertainty and incomplete information.
Moreover, it permits to encode uncertainty by using either numerical values or relative
likelihoods. In terms of computability, we observe that our approach is computable.

It worth mentioning that in [18], we presented an alternative semantics for possi-
bilistic logic program. The main difference of this semanticsw.r.t. the semantics that
we are presenting here is that the semantics presented in [18] is based on an operatorT
which is inspired in partial evaluation [2] and GMP (an inference rule of possibilistic
logic [6]), and the semantics presented in this paper is only based on the proof theory
of possibilistic logic.

The rest of the paper is divided as follows: In §2, some basic concepts of possi-
bilistic logic and standard ASP are presented. In §3, the syntax and semantics of our
possibilistic framework are presented. In §4, we discuss a little bit the inconsistency of
a possibilistic knowledge base. Finally in the last section, our conclusions are presented
and the future work is outlined.

2 Background

In this section, we define some basic concepts of Possibilistic Logic and ASP. We as-
sume familiarity with basic concepts in classic logic and in the semantics of logic pro-

3 This set of labels was taken from [7].



gramse.g.,interpretations, models,etc. A good introductory treatment of these concepts
can be found in [1, 14]

2.1 Possibilistic Logic

A necessity-valued formula is a pair(ϕ α) whereϕ is a classical logic formula and
α ∈ (0, 1] is a positive number. The pair(ϕ α) expresses that the formulaϕ is certain
at least to the levelα, i.e. N(ϕ) ≥ α, whereN is a necessity measure modeling our
possibly incomplete state knowledge [6].α is not a probability (like it is in probability
theory) but it induces a certainty (or confidence) scale. This value is determined by
the expert providing the knowledge base. A necessity-valued knowledge base is then
defined as a finite set (i.e.a conjunction) of necessity-valued formulae.

Dubois et al.[6] introduced a formal system for necessity-valued logic which is
based in the following axioms schemata (propositional case):

(A1) (ϕ → (ψ → ϕ) 1)
(A2) ((ϕ → (ψ → ξ)) → ((ϕ → ψ) → (ϕ → ξ)) 1)
(A3) ((¬ϕ → ¬ψ) → ((¬ϕ → ψ) → ϕ) 1)

Inference rules:

(GMP) (ϕ α), (ϕ → ψ β) ` (ψ min{α, β})
(S) (ϕ α) ` (ϕ β) if β ≤ α

According to Duboiset al., basically we need a complete lattice in order to ex-
press the levels of uncertainty in Possibilistic Logic. Duboiset al., extended the axioms
schemata and the inference rules for considering partially ordered sets. We shall de-
note by`PL the inference under Possibilistic Logic without paying attention if the
necessity-valued formulae are using either a totally ordered set or a partially ordered
set for expressing the levels of uncertainty.

The problem of inferring automatically the necessity-value of a classical formula
from a possibilistic base was solved by an extended version ofresolutionfor possibilis-
tic logic (see [6] for details).

2.2 Answer Set Programming

Syntaxis The language of a propositional logic has an alphabet consisting of

(i) proposition symbols:p0, p1, ...
(ii) connectives :∨,∧,←,¬, not,⊥
(iii) auxiliary symbols : ( , ).

where∨,∧,← are 2-place connectives,¬, not are 1-place connective and⊥ is 0-
place connective. The proposition symbols,⊥, and propositional symbols of the form
¬pi (i ≥ 0) stand for the indecomposable propositions, which we callatoms, or
atomic propositions. The negation sign¬ is regarded as the so calledstrong negation
by the ASP’s literature and the negationnot as thenegation as failure. A literal is an



atom,a, or the negation of an atomnot a. Given a set of atoms{a1, ..., an}, we write
not {a1, ..., an} to denote the set of literals{not a1, ..., not an}.

An extended disjunctive clause,C, is denoted:

a1 ∨ . . . ∨ am ← a1, . . . , aj , not aj+1, . . . , not an

wherem ≥ 0, n ≥ 0, eachai is an atom. Whenn = 0 andm > 0 the clause is an abbre-
viation ofa1 ∨ . . .∨ am. Whenm = 0 the clause is an abbreviation of⊥ ← a1, . . . , an

such that⊥ is the proposition symbol that always evaluates to false. Clauses of this
form are called constraints (the rest, non-constraint clauses). An extended disjunctive
programP is a finite set of extended disjunctive clauses. ByLP , we denote the set of
atoms in the language ofP .

We will manage the strong negation (¬), in our logic programs, as it is done in ASP
[1]. Basically, it is replaced each negative atom¬a by a new atom symbola′ which does
not appear in the language of the program. For instance, letP be the normal program:

a ← q.
¬q ← r.
q.
r.

Then replacing each negative atom by a new atom symbol, we will have:
a ← q.
q′ ← r.
q.
r.

In order not to allow inconsistent models of the non-possibilistic logic programs,
usually it is added a constraint of the form← q, q′. We will omit this constraint in order
to allow complementary literals in a possibilistic answer set. However the user could
add this constraint without losing generality.

We denote an extended disjunctive clauseC byA ← B+, not B−, whereA con-
tains all the head atoms,B+ contains all the positive body atoms andB− contains all the
negative body atoms. WhenB− = ∅, the clause is called positive disjunctive clause. A
set of positive disjunctive clauses is called a positive disjunctive logic program. When
A is a singleton set, the clause can be regarded as a normal clause. A normal logic pro-
gram is a finite set of normal clauses. Finally, whenA is a singleton set andB− = ∅,
the clause can be also regarded as a definite clause. A finite set of definite clauses is
called a definite logic program.

Given a set of proposition symbolsS and a theory (a set of well-formed formulae)
Γ in a logicX. If Γ `X S if and only if ∀s ∈ S Γ `X s.

SemanticsThe answer set semantics was first defined in terms of the so calledGelfond-
Lifschitz reduction[8] and it is usually studied in the context of syntax dependent trans-
formations on programs. The following definition of an answer set for general programs
generalizes the definition presented in [8] and it was presented in [9]: LetP be any
extended disjunctive program. For any setS ⊆ LP , let PS be the positive program
obtained fromP by deleting



(i) each rule that has a formulanot a in its body witha ∈ S, and then
(ii) all formulae of the formnot a in the bodies of the remaining rules.

Clearly PS does not containnot (this means thatPS is either a positive disjunctive
logic program or a definite logic program), henceS is an answer set ofP if and only if
S is a minimal model ofPS .

In the answer set definition, we are omitting the restriction that ifS has a pair of
complementary literals thenS := LP . This means that we are allowing that an answer
set could have a pair of complementary literals. For instance, let us consider the program
P :

a. ¬a. b.
then, the only answer set of this program is :{a,¬a, b}.

It is worth mentioning that in the literature there are several forms for handling an
inconsistency program. For instance, by applying the original definition [9] the only sta-
ble model is:{a,¬a, b,¬b}. On the other hand, the DLV system [5] returns no models
if the program is inconsistent.

3 Possibilistic Disjunctive Logic Programs

In this section, we introduce our possibilistic logic programming framework. We shall
start by defining the syntax of a valid program and some relevant concepts, after that
we shall define the semantics for the possibilistict disjunctive logic programs.

3.1 Syntax

First of all, we start defining some relevant concepts4. In all the paper, we will consider
finite lattices. This convention was taken based on the assumption that in real applica-
tions we will rarely have an infinite set of labels for expressing the incomplete state of
a knowledge base.

A possibilistic literalis a pairl = (a, q) ∈ L×Q, whereL is a finite set of literals
and (Q,≤) is a lattice (since the lattice is finite then it is complete). We apply the
projection∗ as follows:l∗ = a. Given a set of possibilistic literals S, we define the
generalization of∗ over S as follows:S∗ = {l∗|l ∈ S}. Given a lattice(Q,≤) and
S ⊆ Q, LUB(S) denotes the least upper bound ofS andGLB(S) denotes the greatest
lower bound ofS.

Definition 1. Let L be a finite set of literals and (Q,≤) be a lattice. ConsiderPS =
2L×Q the finite set of all the possibilistic literal sets induced byL andQ. ∀A,B ∈ PS,
we define.
A uB = {(x,GLB{q1, q2})|(x, q1) ∈ A ∧ (x, q2) ∈ B}
A tB = {(x, q)|(x, q) ∈ A and x /∈ B∗} ∪

{(x, q)|x /∈ A∗ and (x, q) ∈ B} ∪
{(x, LUB{q1, q2})|(x, q1) ∈ A and (x, q2) ∈ B}.

A v B ⇐⇒ A∗ ⊆ B∗, and∀x, q1, q2,
(x, q1) ∈ A ∧ (x, q2) ∈ B thenq1 ≤ q2.

4 Some concepts presented in this subsection extend some terms presented in [15].



Proposition 1. (PS,v) is a complete lattice.

Proof. The proof is straightforward.

Now, we define the syntax of a valid possibilistic logic program. Let(Q,≤) be a
lattice. A possibilistic disjunctive clause is of the form:

r = (α : A ← B+, not B−)

whereα ∈ Q. The projection∗ for a possibilistic clause isr∗ = A ← B+, not B−.
n(r) = α is a necessity degree representing the certainty level of the information de-
scribed byr. A possibilistic constraint is of the form:

c = (TOPQ : ← B+, not B−)

whereTOPQ is the top of the lattice(Q,≤). As in possibilistic clauses, the projection∗
for a possibilistic constraint is :c∗ = ← B+, not B−. A possibilistic disjunctive logic
programP is a tuple of the form〈(Q,≤), N〉, whereN is a finite set of possibilistic
disjunctive clauses and possibilistic constraints. The generalization of∗ over P is as
follows: P ∗ = {r∗|r ∈ N}. Notice thatP ∗ is an extended disjunctive program. When
P ∗ is a normal program,P is called a possibilistic normal program. Also whenP ∗ is a
positive disjunctive program,P is called a positive possibilistic logic program.

In order to illustrate a possibilistic disjunctive logic program, let us consider the
following scenario:

Example 1.Let us suppose that a patient suffering from certain symptoms takes a blood
test, and that the results show the presence of a bacterium of a certain category in his
blood. There are two types of bacteria in this category, and the blood testdoes not pin-
pointwhether the bacterium presented in the blood is either streptococcus viridans or X.
The problem is that if the bacteria is streptococcus viridans the patient have to be treated
by antibiotics of large spectrum because streptococcus viridans suggestsendocarditis.
However, the doctor tries not to prescribe antibiotics of large spectrum, because they
are harmful to the immune system. Then, the doctor in this case must evaluate each
potential choice, where each potential choice has different levels of uncertainty5.

In order to encode this scenario let us consider the lattice presented in Fig. 1. Then,
we could model the doctor’s beliefs as follows: First, one doctor’s belief is that it is
confirmedthat the patient has a bacterium of categoryn. Then, this belief could be en-
coded by:

confirmed : category_n.

Another doctor’s belief is that the categoryn implies two possible bacteria. Then it
could be encoded by:

5 This example is an adaptation of Example 3 from [16] and Example 6 from [11]. Part of the
medical information was taken from [3].



certain : streptoccus_viridans ∨ bacterium_x ← category_n.

Now, if the bacterium isstreptococcus_viridans, then the patienthave to betreated
by antibiotics of large spectrum.

certain : antibiotics_large_spectrum← streptococcus_viridans.

If the bacteria isx, then the patientcould betreated without antibiotics of large spec-
trum.

probable : alternative_treatment← bacterium_x.

It is plausible that the doctor does not use antibiotics of large spectrum if it has not been
established that there is not another alternative treatment.

plausible : ¬antibiotics_large_spectrum← not ¬alternative_treatment.

Finally, it is also plausible that the doctor does not use an alternative treatment if it has
not been established that antibiotics of large spectrum are not necessary.

plausible : ¬alternative_treatment← not ¬antibiotics_large_spectrum.

We can appreciate the use of relative likelihoods could facilitate the modeling of the
incomplete state of the knowledge.

3.2 Semantics

The semantics of the possibilistic disjunctive logic programs is defined in terms of a
syntactic reduction which is defined as follows:

Definition 2 (Reduction PM ). Let P = 〈(Q,≤), N〉 be a possibilistic disjunctive
logic program, M be a set of literals.P reduced byM is the positive possibilistic dis-
junctive program:
PM := {(n(r) : A ∩M ← B+)|r ∈ N,A ∩M 6= ∅, B− ∩M = ∅,B+ ⊆ M}
wherer∗ is of the formA ← B+, not B−.

Notice that(P ∗)M is not exactly theGelfond-Lifschitz reduction. In fact, our reduc-
tion is stronger than Gelfond-Lifschitz reduction whenP ∗ is a disjunctive program.

In order to illustrate the definition, we present a couple of examples.

Example 2.First, let us consider again the possibilistic programP presented in Section
3.1 and the possibilistic set of literals:S := {(category_n, confirmed),
(streptoccus_viridans, certain), (antibiotics_large_spectrum, certain),
(¬alternative_treatment, plausible)}. Then, it is easy to see thatPS∗ is:

confirmed : category_n.
certain : streptoccus_viridans← category_n.
certain : antibiotics_large_spectrum← streptococcus_viridans.
plausible : ¬alternative_treatment.



Notice that in this example, the reduced program has no possibilistic disjunctive
clauses. However, it does not always happen in the reduced programs. Let us consider
the following example, where the reduced program has possibilistic disjunctive clauses.

Example 3.First, letS be the set{(a, 0.7), (b, 0.6)} andP1 be the following possibilis-
tic logic program where the possibilistic clauses are built under the latticeQ := ({0,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1},≤)6:

0.7 : a ∨ b ← not c.
0.6 : c ← not a, not b.
0.8 : a ← b.
0.6 : b ← a.

Then, the programPS∗
1 is:

0.7 : a ∨ b. 0.8 : a ← b. 0.6 : b ← a.

Notice that always the reduced program(PM∗
)∗ is either a positive disjunctive logic

program or at the best of the cases a definite logic programe.g.,PS∗ of Example 2.
Once a possibilistic logic programP has been reduced by a set of possibilistic

literalsM , it is possible to test whetherM is a possibilistic answer set of the program
P by considering the following definition.

Definition 3 (Possibilistic answer set).Let P = 〈(Q,≤), N〉 be a possibilistic dis-
junctive logic program andM be a set of possibilistic literals such thatM∗ is an an-
swer set ofP ∗. M is a possibilistic answer set of P if and only ifPM∗ `PL M and
@M ′ ∈ PS such thatM ′ 6= M , P (M ′)∗ `PL M ′ andM v M ′.

In order to illustrate the definition, let us consider again the reduced programPS∗

of Example 2. By applying successiveGMP to PS∗ , we can inferS from PS∗ . Then,
this means thatPS∗ `PL S. It is important to see thatS is the only set that we can
be infer fromPS∗ , thenS is unique. It is easy to see thatS∗ is an answer set ofP ∗,
therefore we can say thatS is a possibilistic answer set ofP .

Example 4.LetP1 be the possibilistic program from Example 3 andS := {(a, 0.7), (b, 0.6)}.
We have already seen thatPS∗

1 is:
0.7 : a ∨ b. 0.8 : a ← b. 0.6 : b ← a.

Then, we want to know ifS is apossibilistic answer setof P1. First of all, it is easy to
see thatS∗ is an answer set ofP ∗1 . Hence, we have to construct a proof in possibilistic
logic for (a, 0.7) and (b, 0.6) by consideringPS∗

1 . Let us consider the proof for the
possibilistic atom(a, 0.7):

1. ((a ∨ b) → ((b → a) → a) 1) Tautology
2. (a ∨ b 0.7) Premise fromPS

1

3. ((b → a) → a) 0.7) From 1 and 2 by GMP
4. (b → a 0.8) Premise fromPS

1

5. (a 0.7) From 3 and 4 by GMP

6 ≤ is the standard relation between rational numbers.



The proof for(b, 0.6) is similar to the proof of(a, 0.7). Notice that@ S′ such that

P
(S′)∗

1 `PL S′ andS v S′. Therefore, we can conclude thatS is apossibilistic answer
setof P1.

We have to notice that there is an important conditionw.r.t. the definition of thepos-
sibilistic answer sets. This is that a possibilistic setS is not a possibilistic answer set of
a possibilistic logic programP if S∗ is not an answer set of the extended logic program
P ∗. This condition guarantees any clause ofP ∗ is satisfied byM∗. For instance, let us
consider the possibilistic logic programP :

0.4 : a. 0.6 : b.

and the possibilistic setS = {(a, 0.4)}. We can see thatPS∗ `PL S. However,S∗ is
not an answer set ofP ∗. ThenS could not be a possibilistic answer set ofP . Hence,
a straightforward relation between the possibilistic answer semantics and answer set
semantics is formalized by the following proposition.

Proposition 2. LetP be a possibilistic disjunctive logic program. IfM is a possibilistic
answer set of P, thenM∗ is an answer set ofP ∗.

Proof. The proof is straightforward by the possibilisitic answer set’s definition.

When all the possibilistic clauses of a possibilistic programP have as certainty level
the top of the lattice that was considered inP , the answer sets ofP ∗ can be directly
generalized to the possibilistic answer sets ofP .

Proposition 3. Let P = 〈(Q,≤), N〉 be a possibilistic disjunctive logic program and
TOPQ be the top of the lattice(Q,≤). If ∀r ∈ P , n(r) = TOPQ, andM ′ is an answer
set ofP ∗, thenM := {(l, TOPQ)|l ∈ M ′} is a possibilistic answer set ofP .

Proof. (Sketch) We know that ifM is a possibilistic answer set ofP , thenM∗ is an an-
swer set ofP ∗ (by Proposition 2) andNM∗ `PL M . Now, since (GMP)(ϕ TOPQ), (ϕ →
ψ TOPQ) `PL (ψ TOPQ), then any formula inferred from P by GMP will have
TOPQ as necessity-value. Then, ifM ′ is an answer set ofP ∗, then{(l, TOPQ)|l ∈
M ′} will be a possibilistic answer set ofP .

For the class of possibilistic normal logic programs, our definition of possibilistic
answer set is closely related to the definition of possibilistic stable model presented in
[15]. In fact, both semantics coincide.

Proposition 4. LetP be a possibilistic normal logic program.M is a possibilistic an-
swer set of P if and only ifM is a possibilistic stable model ofP .

Proof. (Sketch) It is not difficult to see that whenP is a possibilistic normal program,
then the syntactic reduction of Definition 2 and the syntactic reduction of Definition 10
from [15] coincide. Then the problem is reduced to possibilistic definite programs. But,
this case is straightforward, since essentially GMP is applied for inferring the possi-
bilistic models of the program in both approaches.

In terms of computability, since there is an extended version ofresolutionfor possi-
bilistic logic ([6]) it is not difficult to see that the there exists an algorithm that computes
the set of possibilistic answer sets of any possibilistic disjunctive logic program.



Proposition 5. Given a possibilistic programP there exists an algorithm that computes
the set of possibilistic answer sets ofP .

Proof. This results follows from the generalization of resolution for Possibilistic Logic
[6] and the answer solvers that there are in the literature [1].

4 Inconsistent possibilistic logic programs

As we commented in the background section, there are several approaches for handling
an inconsistent program in ASP. Most of them do not give a useful answer. However,
frequently we have to confront with inconsistent knowledge bases and it is needed a
concrete answer.

Let us consider again Example 1. By continuing with the described situation, now
we will suppose that the patient fell in dead brain and now the patient is considered
as a potential donor of organs. The problem is that if the donor had endocarditis due to
streptococcus viridans, then the recipient could be infected by the same microorganism.
Therefore, the organs from this donor could not be viable for transplanting.

A short representation of this medical situation could be the following programP2

(again in this program we consider the relative likelihoods of Figure 1):

probable : endocarditis ← >.
probable : ¬endocarditis ← >.
confirmed : non_viable ← endocarditis
plausible : viable ← not ¬endocarditis.

The first two rules say that the doctor does not know if the donor has endocarditis.
The third one says that if the donor has endocarditis then his organs are not viable for
transplanting and the last one says that if the donor explicitly does not have endocarditis
then it is plausible that his organs are viable for transplanting.

Notice thatP2 is an inconsistent possibilistic program. Nicolaset al., in [15] sug-
gested to consider an inconsistent degree for eliminating the formulae involved in the
inconsistency. Formally, this process is calledstrict α-cut. However to apply astrict
α-cut to an inconsistent program could eliminate important information in order to sup-
port/infer conclusions. In order to illustrate this problem, let suppose that the strictα-cut
just deletes fromP2 the possibilistic clauses:

probable : endocarditis ← >.
probable : ¬endocarditis ← >.

It is worth mentioning that the strictα-cut was defined in terms of totally ordered
sets. Hence we are applying a hypothetical cut toP2 where we are supposing that
probable ≤ plausible andplausible ≤ confirmed and the inconsistent degree of
P2 is probable. Then the consistent programP ′2 that we get after applying the strict
α-cut toP2 is:

confirmed : non_viable ← endocarditis
plausible : viable ← not ¬endocarditis.



The only possibilistic answer set ofP ′2 is: {(viable, plausible)}. Then this possi-
bilistic answer set suggests that the organs of the donor could be viable for transplant-
ing. But this is adangerousconclusion, because we are omitting the premises that the
donor could be infected by streptococcus viridans.

Now, since we are allowing that an answer set could have a pair of complementary
literals, we can apply directly the definition of possibilistic answer set toP2. Then the
only possibilistic answer set ofP2 is:{(endocarditis, probable), (¬endocarditis, probable),
(non_viable, probable)}. This possibilistic answer set suggests that the donor’s organs
probable are not viable for transplanting. Notice that this conclusion is a more cautious
conclusion.

In general, we believe that to eliminate information for handling inconsistent knowl-
edge bases could carry unexpected results. In addition, not to have a concrete answer
from an inconsistent knowledge base could be an expected result when we have to make
or support a decision.

5 Conclusions and future work

We have been working in the decision making process for deciding if a human or-
gan is viable or not for being transplanted [21, 16, 20]. Our experience suggests that in
our medical domain, we require aqualitativetheory of default reasoning like ASP for
modeling incomplete information and aquantitativetheory like possibilistic logic for
modeling uncertain events.

This paper describes a possibilistic disjunctive logic programming approach which
considers ideas from ASP and possibilistic logic. This approach introduces the use of
possibilistic disjunctive clauses which are able to captureincomplete informationand
incomplete states of a knowledge baseat the same time. In fact, one of the main mo-
tivations of our approach is to define a description language and a reasoning process
where the user could consider relative likelihoods for modeling different levels of un-
certaintye.g.,Toulmin’s “qualifiers”[22]:possible, probable, plausible, supportedand
open, where each likelihood is a possible world/class of beliefs. We know that this kind
of representation of uncertainty could reachbias conclusions. However, we have to ac-
cept that this form of reasoning is commonly performed by ordinary people. In fact,
these kind of bias are many times well-accepted since they could reflect the experience
or commonsense of an expert in a field [12].

The approach of possibilistic logic programming is not new in the literature [4, 23,
15]. However, to the best of our knowledge all of the well-known approaches suggested
until now do not include possibilistic disjunctive programs. Moreover, our approach is
enough flexible for using lattices for expressing incomplete states of a knowledge base
and is close related to possibilistic logic.

In general terms, we are proposing a possibilistic disjunctive logic programming
framework able to deal with reasoning under uncertainty and incomplete information.
This framework permits to use explicitly labels likepossible, probable, plausible, etc.,
for capturing the incomplete state of a belief in a disjunctive logic program when the
numerical representations are not available or difficult to get.



In terms of computability, we observe that our approach is computable. By the mo-
ment, we do not have resultsw.r.t.complexity of our approach; however it is an issue for
our future work. Also we have observed that the possibilistic normal logic programs can
be expressed by standard logic programs. In fact, we have an experimental approach for
mapping possibilistic normal programs into standard logic programs. However it seems
that to express possibilistic disjunctive logic programs into standard logic programs is
not straightforward.

Nowadays, we are interested in supporting decision making in the medical domain.
Especially in the process of organ transplanting. In this issue, we have been defining an
argumentation framework for building arguments that support a given decision [17]. We
have seen that the use of arguments could help to infer consistent information from an
inconsistent knowledge base. In [17], it is described a process for inferring consistent
information from an inconsistent possibilistic knowledge base. This process consists
mainly of three steps:

1. To infer the possibilistic stable models from the possibilistic knowledge base,
2. To build arguments, and
3. Selection of arguments.

In [17], the knowledge base only could be expressed by possibilistic normal pro-
grams. Now, as future work we will define an argumentation framework based on
the possibilistic answer sets for inferring consistent information from an inconsistent
knowledge base.

Acknowledgements

We are grateful to anonymous referees for their useful comments. J.C. Nieves wants
to thank CONACyT for his PhD Grant. J.C. Nieves and U. Cortés were partially sup-
ported by the grant FP6-IST-002307 (ASPIC). The views expressed in this paper are
not necessarily those of ASPIC consortium.

References

1. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge, 2003.

2. S. Brass and J. Dix. Semantics of (Disjunctive) Logic Programs Based on Partial Evaluation.
Journal of Logic Programming, 38(3):167–213, 1999.

3. F. Caballero, A. López-Navidad, M. Perea, C. Cabrer, L. Guirado, and R. Solá. Successful
liver and kidney transplantation from cadaveric donor with left-sided bacterial endocarditis.
American Journal of Transplantation, 5:781–787, 2005.

4. C. V. Damásio and L. M. Pereira. Monotonic and residuated logic programs. InECSQARU,
volume 2143 ofLecture Notes in Computer Science, pages 748–759. Springer, 2001.

5. S. DLV. Vienna University of Technology. http://www.dbai.tuwien.ac.at/proj/dlv/, 1996.
6. D. Dubois, J. Lang, and H. Prade. Possibilistic logic. In D. Gabbay, C. J. Hogger, and J. A.

Robinson, editors,Handbook of Logic in Artificial Intelligence and Logic Programming, Vol-
ume 3: Nonmonotonic Reasoning and Uncertain Reasoning, pages 439–513. Oxford Univer-
sity Press, Oxford, 1994.



7. J. Fox and S. Modgil. From arguments to decisions: extending the Toulmin view. InArguing
on the Toulmin model: New essays on argument analysis and evaluation. Argumentation
Library series published by Kluwer Academic, Currently in press.

8. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In
R. Kowalski and K. Bowen, editors,5th Conference on Logic Programming, pages 1070–
1080. MIT Press, 1988.

9. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases.New Generation Computing, 9:365–385, 1991.

10. J. Y. Halpern.Reasoning about uncertainty. The MIT Press, 2005.
11. H. Jakobovits and D. Vermeir. Robust semantics for argumentation frameworks.Journal of

logic and computation, 9(2):215–261, 1999.
12. D. Kahneman, P. Slovic, and A. Tversky.Judgment under uncertainty:Heuristics and biases.

Cambridge Univertisy Press, 1982.
13. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of artificial

intelligence. In B. Meltzer and D. Michie, editors,Machine Intelligence 4, pages 463–502.
Edinburgh University Press, 1969. reprinted in McC90.

14. E. Mendelson.Introduction to Mathematical Logic. Chapman and Hall/CRC, Fourth edition
1997.

15. P. Nicolas, L. Garcia, I. Stéphan, and C. Lafèvre. Possibilistic Uncertainty Handling for
Answer Set Programming.Annal of Mathematics and Artificial Intelligence, 47(1-2):139–
181, June 2006.

16. J. C. Nieves, M. Osorio, and U. Cortés. Supporting decision making in organ transplating us-
ing argumentation theory. InLANMR 2006: 2nd Latin American Non-Monotonic Reasoning
Workshop, pages 9–14, 2006.

17. J. C. Nieves, M. Osorio, and U. Cortés. Modality-based argumentation using possibilistic
stable models. In R. Kibble, F. Grasso, and C. Reed, editors,7th Workshop on Computational
Models of Natural Argument (CMNA VII), pages 35–41, Hyderabad, India, January 2007.

18. J. C. Nieves, M. Osorio, and U. Cortés. Semantics for possibilistic disjunctive programs. In
G. B. Chitta Baral and J. Schlipf, editors,Ninth International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR-07), number 4483 in LNAI, pages 315–320.
Springer-Verlag, 2007.

19. F. J. Pelletier and R. Elio.Scope of Logic, Methodology and Philosophy of Science, volume 1
of Synthese Library, chapter Logic and Computation, pages 137–156. Dordrecht: Kluwer
Academic Press, 2002.

20. P. Tolchinsky, U. Cortés, S. Modgil, F. Caballero, and A. López-Navidad. Increasing
Human-Organ Transplant Availability: Argumentation-Based Agent Deliberation.IEEE In-
telligent Systems: Special Issue on Intelligent Agents in Healthcare, 21(5):30–37, Novem-
ber/December 2006.

21. P. Tolchinsky, U. Cortés, J. C. Nieves, A. López-Navidad, and F. Caballero. Using arguing
agents to increase the human organ pool for transplantation. InProc. of the Third Workshop
on Agents Applied in Health Care (IJCAI 2005), 2005.

22. S. E. Toulmin.The Uses of Argument. Cambridge University Press, 1958.
23. G. Wagner. Negation in fuzzy and possibilistic logic programs. In T. Martin and F. Arcelli,

editors,Logic programming and Soft Computing. Research Studies Press, 1998.


