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1 Introduction

Answer Set Programming (ASP) is a suitable setting for modeling incomplete in-
formation [1]. In ASP, default rules, i.e. normative statements such as normally

p’s are q’s, are usually modeled by rules of the form q ← p, not ab which contain
abnormality atoms (ab) preceded by negation as failure (not). According to this
approach, abnormality atoms block the applicability of (default) rules in the rea-
soning process in a way such that the answer sets of a logic program tend to be
those in which everything is as normal as possible [1, 2]. However, when rules are
in conflict, that is, they support conflicting conclusions, a criterion for deciding
which rules to select is desirable. In nonmonotonic reasoning, the selection of de-
fault rules is a matter of preferences [16, 17]. While in some cases preferences can
be implicitly obtained by considering the specificity of the defaults [22, 33], most
proposals for handling preferences in ASP rely on explicit preferences among rules
or atoms of a logic program [26, 47].

Among explicit preference-based approaches, Logic Programs with Ordered
Disjunction (LPODs) is a logic programming specification that allows for the spec-
ification of conditional preference statements of the form normally, if c, then a is

preferred to b (encoded as a × b ← c, not ab) [15]. From a nonmonotonic reasoning
point of view, these preference statements make it possible to represent a prefer-
ence order among exceptions w.r.t. the default rules in a logic program, and, con-
sequently, to select the preferred default rules to be used in the reasoning [16]. For
instance, given two default rules stating that normally birds can fly (f ← b, not ¬f)
and normally penguins cannot fly (¬f ← p, not f), then an LPOD (preference) rule
stating that normally, in the case of penguins, it is preferred to assume that birds

cannot fly rather than they can (¬f × f ← p, not b) can be an effective way to choose
the most plausible conclusion (that is, penguins cannot fly).

ASP has also been shown to be convenient for modeling uncertain informa-
tion in terms of possibilistic logic. The pioneer work of Possibilistic Answer Set
Programming (PASP) is the first proposal that join nonmonotonic reasoning and
possibilistic uncertainty management in ASP [41]. The joint handling of incom-
plete and uncertain information is an important issue. It has also been addressed
in logical-based frameworks [39, 46]. Similar to what happens in nonmonotonic
reasoning, uncertain default rules can support conflicting conclusions and a way
to select uncertain default rules can be valuable.

The aim of our work is to propose a framework to join together in one single
formalism explicit preferences for the selection of default rules and reasoning under
uncertainty. We will assume that preference rules about exceptions to default rules
that we want to privilege are uncertain. For instance, one may consider that a
preference rule stating that an exception ab1 is preferred over an exception ab2 is
less certain than another preference rule stating that an exception ab2 is preferred

over an exception ab1. In such a case, a mechanism which allows one to consider
the most certain preference rule can be useful. To illustrate the main ideas behind
our work, let us consider the following example.

Example 1 Let us suppose that we have the following default rules (i) Antarctic

birds are birds, (ii) birds normally fly and (iii) Antarctic birds normally do not fly.
Furthermore, we have two preference rules which express our preferences among
exceptions to the previous rules. In particular, let us suppose that one preference
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rule states that (iv) in case of penguins, it is preferred to assume that birds cannot

fly rather than Antarctic birds can fly, and another rule states that (v) in case of

super-penguins, it is preferred to assume that Antarctic birds can fly rather than birds

cannot fly. Finally, we have two further rules expressing that (vi) Antarctic birds are

penguins and (vii) Antarctic birds are super-penguins. The latter rules are uncertain,
since we can imagine that in Antarctica there are many penguins that do not fly
together with only a few super-penguins that can fly. Let us suppose, for now in
an informal way, to associate each rule with a label indicating its certainty. The
resulting program is (we also observe an Antarctic bird):

P =


r1 = 1 : b ← ant. r6 = 1 : ← ab1, ab2.

r2 = 1 : f ← b, not ab1. r7 = 0.6 : p ← ant.

r3 = 1 : ¬f ← ant, not ab2. r8 = 0.4 : sp ← ant.

r4 = 1 : ab1 × ab2 ← p. r9 = 1 : ant ← >.
r5 = 1 : ab2 × ab1 ← sp.


The above program without any certainty label is a classical LPOD. In such

a case, no choice can be made between the two alternative answer sets, that are,
{ant, p, sp, b, ab1,¬f} and {ant, p, sp, b, ab2, f}.1 In other words, the conflict between
the defaults r2 and r3 cannot be solved. Intuitively, since the rule r7 is more certain
than the rule r8, the selection of which exception to privilege, in order to sanction
the conflict between the rules r2 and r3, should also take into account the certainty
about the information encoded in the program. This can be done in principle by
considering that the preference rule r4 is more important than r5, since it depends
on more certain information.

This simple example suggests that in order to select uncertain default rules,
and, consequently, to select the most preferred and certain beliefs to be used in the
reasoning, not only the preferences over exceptions, but also the certainty encoded
in the logic program, can matter. To this end, we extend LPODs in several ways.
First, we define a possibilistic semantics which can formally handle uncertainty.
Secondly, we study a set of transformation rules able to propagate uncertainty
values between the rules and able to preserve the possibilistic semantics.2 Finally,
by taking uncertain preference rules and transformation rules into account, we
define a preference relation which can consider preferences and uncertainty in order
to select the preferred uncertain default rules and to order possibilistic answer sets.
The contributions of this paper are many.

We join the LPODs and PASP frameworks in the formalism of Logic Programs

with Possibilistic Ordered Disjunction (LPPODs). The LPPODs framework embeds
in a unified way several aspects of common-sense reasoning such as nonmonotonic-
ity, explicit preferences, and uncertainty, where each part is underpinned by a well
established formalism. We define a syntax which extends LPODs to associate pro-
gram rules with necessity values for measuring to what extent atoms and rules are

certain. We define a possibilistic semantics for capturing LPPODs which is a gener-
alization of the LPODs semantics. In this respect, we provide two alternative, but
equivalent, characterizations. The first one has a syntactical flavor and it is defined

1 The LPODs semantics is presented in Section 2.2.
2 Transformation rules have other nice properties as well as we state later in the paper.
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in terms of the possibilistic ×-reduction (Definition 7) and the possibilistic conse-
quence operator ΠT for possibilistic definite logic programs [41]. This leads to a
straightforward definition of the LPPODs semantics (Definition 10). The second
characterization is given in terms of the least possibility distribution of possibilis-
tic definitive logic programs (Definition 11). Similar to what happens in PASP,
an LPPOD can be seen as a compact representation of the possibility distribution
defined in the interpretations representing the information (Proposition 4).

We propose a set of transformation rules for transforming an LPPOD program.
Based on these transformations, we define a rewriting system (Definition 19) and
we show how these transformations have noticeable properties. First, they always

reduce the size of an LPPOD (the rewriting system is noetherian) and they always

guarantee that a normal form can be reached (the rewriting system is confluent).3

Most importantly, we show that this normal form is unique and that we can
reach it from any LPPOD preserving the LPPODs semantics (Theorem 1). It is
worth mentioning that transformation rules have shown to be a solid approach
for characterizing different logic programming semantics such as the well-founded
semantics [12] and the stable model semantics [10].

The use of transformation rules can be motivated in several ways. First, they
make it possible to propagate necessity values between rules. This will be useful
in order to define a criterion for comparing possibilistic answer sets which takes
preference and uncertainty degrees into account (Definition 20). Secondly, they
reduce the size (i.e. number or rules and atoms) of an LPPOD. This is important
for the computation of the LPPODs semantics. Since the LPPODs complexity is
directly proportional to the number of rules in an LPPOD and to the number of
certainty levels (Section 6), it is useful to have a mechanism able to reduce the size
of an LPPOD. Based on these results, we also present an algorithm for computing
the LPPODs semantics and its implementation by means of an ASP-based system
called posPsmodels.4

This paper extends our previous work in [21] by providing an alternative LP-
PODs semantics definition based on the least possibility distribution, a more de-
tailed description of the transformation rules involved, a semantics implementa-
tion and a related work section. The proofs of all the results are also provided
(Appendix A). The rest of the paper is structured as follows. After giving some
background information on the main concepts involved (Section 2), in Section 3
we define the syntax and semantics of LPPODs. In Section 4, we define a rewrit-
ing system for LPPODs. Section 5 describes a strategy for comparing possibilistic
answer sets of an LPPOD based on a set of transformation rules and a possibilistic
preference relation. In Section 6, we describe the LPPODs algorithm and its im-
plementation. Section 7 is devoted to comparing our framework with other works
dealing with uncertainty and preferences. Finally, Section 8 concludes the paper.

2 Background

In this section, we provide all the necessary terminology and relevant definitions
in order to make this paper self-contained. In particular, we overview the answer

set semantics (Section 2.1) and the LPODs formalism (Section 2.2).

3 A program is said to be in normal form when none of the transformations can be applied.
4 http://github.com/rconfalonieri/posPsmodels/tarball/master
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2.1 Answer Set Semantics

The language of a propositional logic has an alphabet consisting of (i) proposition
symbols: >, p0, p1, ... (ii) connectives : ∨,∧,←,¬, not and (iii) auxiliary symbols: ( ,
) in which ∨,∧,← are binary-place connectives and ¬, not are unary-place connec-
tives, The proposition symbols stand for the indecomposable propositions, which
we call atoms, or atomic propositions. Atoms negated by ¬ will be called extended

atoms. We will use the concept of atom without paying attention to whether it is
an extended atom or not. The negation sign ¬ is regarded as the so called strong

negation by the ASP’s literature and the negation not as the negation as failure. A
literal is an atom a, called positive literal, or the negation of an atom not a, called
negative literal. Given a set of atoms {a1, ..., an}, we write not {a1, ..., an} to denote
the set of literals {not a1, ..., not an}. An extended normal rule, r, is denoted:

a0 ← a1, . . . , aj , not aj+1, . . . , not an (1)

in which n ≥ 0 each ai is an atom5. When n = 0 the rule is an abbreviation of
a0 ← > such that > is the proposition symbol that always evaluates to true. A
constraint is a rule of the form:

← a1, . . . , aj , not aj+1, . . . , not an (2)

An extended normal program P is a finite set of extended normal rules and con-
straints. By LP , we denote the set of atoms in the language of P .

Sometimes, we denote an extended normal rule r by a0 ← B+, not B−; B+
contains all the positive body literals and B− contains all the negative body literals.
We denote by head(r) the head a0 of rule r. When B− = ∅, the rule is called a
definite rule. A set of definite rules is called a definite logic program. For managing
the constraints in our logic programs, we will replace each rule of the form ←
B+ not B− by a new rule of the form f ← B+, not B−, not f such that f is a new
atom symbol which does not appear in LP .

Let A be a set of atoms and P be a (definite or normal) logic program. r =
a0 ← B+, not B− ∈ P is applicable in A if B+ ⊆ A. App(A,P ) denotes the subset
of rules of P which are applicable in A. r = a0 ← B+, not B− ∈ P is closed in A if
r is applicable in A and head(r) ∈ A.

We will manage the strong negation (¬), in our logic programs, as it is done in
ASP [1]. Basically, each extended atom ¬a is replaced by a new atom symbol a′

which does not appear in the language of the program and the constraint ← a, a′

is added.
From now on, we assume that the reader is familiar with the notion of an

interpretation [25]. It is standard to provide interpretations only in terms of a
mapping from LP to {0, 1}. Also, it is standard to use sets of atoms to represent
interpretations. The set corresponds exactly to those atoms that evaluate to 1.

An interpretation I is called a (2-valued) model of the logic program P if and
only if for each rule r ∈ P , I(r) = 1. A theory is consistent if it admits a model,
otherwise it is called inconsistent. Given a theory T and a formula ϕ, we say that
ϕ is a logical consequence of T , denoted by T |= ϕ, if every model I of T holds that
I(ϕ) = 1. We say that a model I of a program P is a minimal model if a model I ′

of P different from I such that I ′ ⊂ I does not exist.

5 Notice that these atoms can be extended atoms.
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The answer set semantics was first defined in terms of the so called Gelfond-

Lifschitz reduction [34] and it is usually studied in the context of syntax dependent
transformations on programs. Let P be an extended normal logic program. For
any set S ⊆ LP , let PS be the definite logic program obtained from P by deleting

(i) each rule that has a formula not a in its body with a ∈ S, and then
(ii) all formulæ of the form not a in the bodies of the remaining rules.

Clearly PS does not contain not; hence S is called an answer set of P if and only
if S is the minimal model of PS .

2.2 Logic Programs with Ordered Disjunction

The formalism of Logic Programs with Ordered Disjunction (LPODs) was created
with the idea of expressing explicit context-dependent preference rules in order to
select the most plausible atoms to be used in the reasoning and to order answer
sets [15].

Technically speaking, LPODs is based on extended logic programs augmented
by an ordered disjunction connector × which allows for the expression of qualitative
preferences in the head of rules [15]. An LPOD is a finite collection of rules of the
form:

r = c1 × . . .× ck ← b1, . . . , bm, not bm+1, . . . , not bm+n (3)

where ci’s (1 ≤ i ≤ k) and bj ’s (1 ≤ j ≤ m + n) are atoms. The intuitive reading
behind a rule like (3) is that if the body of r is satisfied, then some ci must
be true in an answer set, if possible c1, if c1 is not possible then c2, and so on.
As previously stated, from a nonmonotonic reasoning point, each of the ci’s can
represent alternative ranked options for selecting the most plausible (default) rules
of an LPOD.

The LPODs semantics was defined in terms of split programs. Split programs
are a way to represent every option of ordered disjunction rules with the property
that the set of all answer sets of an LPOD corresponds exactly to the answer sets
of the split programs. An alternative and more straightforward characterization of
the LPODs semantics was also given in terms of a program reduction defined as
follows:

Definition 1 (×-reduction) [15] Let r = c1 × . . . × ck ← b1, . . . , bm, not bm+1,

. . . , not bm+n be an ordered disjunction rule and M be a set of atoms. The ×-
reduction of a rule r is defined as:

rM× = {ci ← b1, . . . , bm|ci ∈M ∧M ∩ ({c1, . . . , ci−1} ∪ {bm+1, . . . , bm+n}) = ∅}

The ×-reduction is generalized to an LPOD P in the following way:

PM
× =

⋃
r∈P

rM×

Based on the ×-reduction, the LPODs semantics is defined by the following
definition:
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Definition 2 (SEMLPOD) [15] Let P be an LPOD and M be a set of atoms.
Then, M is an answer set of P if and only if M is closed under all the rules in
P and M is the minimal model of PM

× . We denote by SEMLPOD(P ) the set of
answer sets of P .

One interesting characteristic of LPODs is that they provide a means to represent
preferences among answer sets by considering the satisfaction degree of an answer
set w.r.t. a rule [15].

Definition 3 (Rule Satisfaction Degree) [15] Let M be an answer set of an
LPOD P . The satisfaction degree M w.r.t. a rule r = c1 × . . . × ck ← b1, . . . , bm,

not bm+1 . . . , not bm+n, denoted by degM (r), is

– 1 if bj 6∈M for some j (1 ≤ j ≤ m), or bi ∈M for some i (m+ 1 ≤ i ≤ m+ n),
– j (1 ≤ j ≤ k) if all bl ∈ M (1 ≤ l ≤ m), bi 6∈ M (m + 1 ≤ i ≤ m + n), and
j = min{r | cr ∈M, 1 ≤ r ≤ k}.

The degrees can be viewed as penalties, as a higher degree expresses a lesser
degree of satisfaction. Therefore, if the body of a rule is not satisfied, then there
is no reason to be dissatisfied and the best possible degree 1 is obtained [15]. A
preference order on the answer sets of an LPOD can be obtained by means of the
following preference relation.

Definition 4 [15] M1 is preferred to M2 (denoted by M1 >p M2) if and only if
∃ r ∈ P ′ such that degM1

(r) < degM2
(r) and @r′ ∈ P ′ such that degM2

(r′) <

degM1
(r′).

To illustrate the LPODs semantics and the preference relation, let us consider
the following example.

Example 2 Let us consider the logic program P presented in the introduction (Ex-
ample 1) without certainty labels:

P =


r1 = b ← ant. r6 = ← ab1, ab2.

r2 = f ← b, not ab1. r7 = p ← ant.

r3 = ¬f ← ant, not ab2. r8 = sp ← ant.

r4 = ab1 × ab2 ← p. r9 = ant ← >.
r5 = ab2 × ab1 ← sp.


Given the set of atoms M1 = {ant, p, sp, b, ab1,¬f} and M2 = {ant, p, sp, b, ab2, f},
by Definition 2, it can be seen that P is reduced into two programs PM1

× and

PM2
× which have exactly answer sets M1 and M2. Let us consider the satisfaction

degrees of M1 and M2 w.r.t. r4 and r5 which are degM1
(r4) = 1, degM1

(r5) = 2,
degM1

(r4) = 2, degM1
(r5) = 1. It is easy to see that, according to Definition 4,

neither M1 is preferred to M2, nor M2 is preferred to M1.

In this paper, we will show that, by combining LPODs and PASP and by
means of a set of transformation rules, the preference relation in Definition 4 can
be extended to consider the necessity values associated with program rules.
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3 Logic Programs with Possibilistic Ordered Disjunction

In order to associate certainty labels with LPODs rules, we join LPODs and PASP.
In this section, we propose a syntax and a semantics able to capture Logic Pro-
grams with Possibilistic Ordered Disjunction (LPPODs). Similar to what happens
in PASP, an LPPOD can be seen as a compact representation of the possibility
distribution defined in the interpretations representing the information. Therefore,
we are able to provide two equivalent characterizations of the LPPODs semantics:
a syntactical characterization based on a fix-point operator (Definition 10) and a
semantical characterization defined in terms of the least possibility distribution
(Proposition 4).

3.1 Syntax

Our syntax is based on the syntax of LPODs and PASP. A possibilistic atom is
a pair p = (a, α) ∈ A × S in which A is a set of atoms and S ⊆ (0, 1] is a finite
totally ordered set of necessity values. The projection ∗ for any possibilistic atom
p is defined as p∗ = a. Given a set of possibilistic atoms M , the projection of ∗
over M is defined as M∗ = {p∗ | p ∈M}. A possibilistic ordered disjunction rule r
is of the form:

α : c1 × . . .× ck ← b1, . . . , bm, not bm+1, . . . , not bm+n (4)

where α ∈ S and c1 × . . .× ck ← b1, . . . , bm, not bm+1, . . . , not bm+n is an ordered
disjunction rule as defined in Section 2.2.

The projection ∗ for a possibilistic ordered disjunction rule r is r∗ = c1 × . . .×
ck ← b1, . . . , bm, not bm+1, . . . , not bm+n. Nec(r) = α is a necessity degree repre-
senting the certainty of the information described by r. A possibilistic constraint
c is of the form 1 : ← b1, . . . , bm, not bm+1, . . . , not bm+n. Observe that the neces-
sity value of a possibilistic constraint is 1 since, like constraints in standard ASP,
the purpose of the possibilistic constraint is to eliminate possibilistic answer sets.
Hence, it is assumed that there is no uncertainty about the information captured
by a possibilistic constraint. The projection ∗ for a possibilistic constraint c is
c∗ = ← b1, . . . , bm, not bm+1, . . . , not bm+n.

A Logic Program with Possibilistic Ordered Disjunction (LPPOD) is a finite set
of possibilistic ordered disjunction rules and/or possibilistic constraints. If an LP-
POD does not contain possibilistic ordered disjunction rules then it is known as
a possibilistic normal logic program. If a possibilistic normal logic program does not
contain negation as failure not then it is a possibilistic definite logic program. The
projection of ∗ over P is defined as P ∗ = {r∗ | r ∈ N}. Please notice that P ∗ is an
LPOD.

Example 3 We are now able to represent our introductory program as described
before. By using the following certainty scale: 1 is absolutely certain, 0.9 is quasi

certain, 0.6 is almost certain, and 0.4 is little certain, we can associate a certainty
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degree to each rule:

P =


r1 = 1 : b ← ant. r6 = 1 : ← ab1, ab2.

r2 = 0.9 : f ← b, not ab1. r7 = 0.6 : p ← ant.

r3 = 0.6 : ¬f ← ant, not ab2. r8 = 0.4 : sp ← ant.

r4 = 1 : ab1 × ab2 ← p. r9 = 1 : ant ← >.
r5 = 1 : ab2 × ab1 ← sp.


The first rule states that we are absolutely certain that an Antarctic bird is a bird
(r1). Then, we are quasi certain that birds normally fly (r2), while we are almost

certain that Antarctic birds normally do not fly (r3). We also consider that rule r4,
i.e. being a penguin it is more reasonable to assume that Antarctic birds cannot
fly rather than that they can fly, and rule r5, i.e. being a super-penguin it is more
reasonable to assume that Antarctic birds can fly rather than that they cannot fly,
are absolutely certain. However, r7 and r8 express that we are almost certain that
an Antarctic bird is a penguin and that we are little certain that an Antarctic bird
is a super-penguin. The last rule (r9) indicates that we are absolutely certain that
we are observing an Antarctic bird.

Certainty values induce a certainty scale which has to be taken into account
when inferring the possibilistic answer sets of an LPPOD. In the next sections,
we show how it is possible to characterize the LPPODs semantics in two different
ways which lead to the same possibilistic answer sets.

3.2 Possibilistic Answer Sets of LPPODs by Fix-Point

The first characterization of the LPPODs semantics is in terms of the possibilis-

tic least model for possibilistic definite logic programs [41]. Before presenting this
characterization, we introduce some relevant concepts. As we are dealing with pos-
sibilistic atoms, the basic relations between ordinary sets have to be extended to
be able to consider possibilistic atoms.

Given a finite set of atoms A and S ⊆ (0, 1], the finite set of all the possibilistic
atom sets induced by A and S is denoted by PS′ = 2A×S and PS = PS′ \
{A|A ∈ PS such that x ∈ A and Cardinality({(x, α)|(x, α) ∈ A}) ≥ 2}6 Informally
speaking, PS is the subset of PS′ such that each A ∈ PS has no atoms with
different uncertain value.

Definition 5 [41] Given A,B ∈ PS the relations u, t and v between sets of
possibilistic atoms are defined as follows:
A uB = {(a,min{α, β})|(a, α) ∈ A ∧ (a, β) ∈ B}
A tB = {(a, α)|(a, α) ∈ A ∧ a /∈ B∗} ∪ {(a, β)|a /∈ A∗ ∧ (a, β) ∈ B} ∪

{(a,max{α, β})(a, α) ∈ A ∧ (a, β) ∈ B}.
A v B ⇐⇒ A∗ ⊆ B∗ ∧ ∀a, α, β, (a, α) ∈ A ∧ (a, β) ∈ B then α ≤ β.

The LPPODs semantics is based on a possibilistic fix-point operator which
was introduced in [41] by considering possibilistic definite logic programs. To be
able to reuse such result, we have first defined a syntactic reduction for LPPODs.
It extends the LPODs reduction by taking the necessity values of the rules into
account.

6 Cardinality is a function which returns the cardinality of a set.
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Definition 6 (Possibilistic Reduction rM× ) Let r = α : c1× . . .× ck ← b1, . . . , bm,

not bm+1, . . . , not bm+n be a possibilistic ordered disjunction rule and M be a set
of atoms. The ×-possibilistic reduction rM× is defined as follows:

rM× = {α : ci ← {b1, . . . , bm}|ci ∈M ∧M ∩ ({c1, . . . , ci−1} ∪ {bm+1, . . . , bm+n}) = ∅}

Definition 7 (Possibilistic Reduction PM
× ) Let P be an LPPOD and M be a

set of atoms. The ×-possibilistic reduction PM
× is defined as follows:

PM
× =

⋃
r∈P

rM×

Example 4 Let P be the LPPOD in Example 3 and let us consider the following
sets of atoms M∗1={ant, p, sp, ab1, b,¬f} and M∗2 = {ant, p, sp, ab2, b, f}. We can see
that:7

P
M∗1
× =



r1 = 1 : b ← ant.

r2 = 0.9 : f ← b.

r4 = 1 : ab1 ← p.

r5 = 1 : ab1 ← sp.

r7 = 0.6 : p ← ant.

r8 = 0.4 : sp ← ant.

r9 = 1 : ant ← >.


P

M∗2
× =



r1 = 1 : b ← ant.

r3 = 0.6 : ¬f ← ant.

r4 = 1 : ab2 ← p.

r5 = 1 : ab2 ← sp.

r7 = 0.6 : p ← ant.

r8 = 0.4 : sp ← ant.

r9 = 1 : ant ← >.


Please observe that the programs P

M∗1
× and P

M∗2
× are possibilistic definite logic

programs.

In general, once an LPPOD P has been reduced by a set of atoms M∗, it
is possible to test whether M is a possibilistic answer set of the program P by
considering the possibilistic least model ΠCn of P . ΠCn is defined in terms of
the β-applicability of a rule w.r.t. a set of possibilistic atoms and in terms of the
possibilistic consequence operator ΠT . In order to define ΠCn, let us introduce
some basic definitions. Given a possibilistic definite logic program P and a ∈ LP∗ ,
head(P, a) = {r|r ∈ P and head(r∗) = a}, and head(P ∗) = {head(r∗)|r∗ ∈ P ∗}.

Definition 8 (β-applicability) [41] Let r be a possibilistic definite rule of the
form α : c← b1, . . . , bm and M be a set of possibilistic atoms,

– r is β-applicable in M if there are α1, . . . , αn such that {(b1, α1), . . . , (bm, αn)} v
M and β = min{α, α1, . . . , αn}.

– r is 0-applicable otherwise.

And then, for all atom a ∈ LP∗ we define:

App(P,M, a) = {r ∈ head(P, a)|r is β-applicable in M and β > 0}

Given a set of possibilistic atoms M , the applicability degree β of a rule β-
applicable in M captures the certainty of the conclusion that the rule can produce
w.r.t. M . If the body is empty, then the rule is applicable with its own certainty
degree. If the body is not satisfied by M , then the rule is not applicable at all.
Otherwise, the applicability level of the rule depends on the certainty level of the
propositions.

7 r6 is deleted by our possibilistic reduction by the way in which we manage possibilistic
constraints in our LPPODs (see Section 3.1).
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Example 5 Let P1 be the possibilistic definite logic program in Example 4 obtained

by the possibilistic reduction P
M∗1
× . We can see that if we consider M = ∅ and the

atom ant, then r9 is 1-applicable in M . In fact, we can see that App(P, {∅}, ant) =
{r5}. Also, we can see that if M = {(ant, 1)} and the atoms p and sp are considered,
then r7 and r8 are 0.6-applicable and 0.4-applicable in M respectively.

Based on the β-applicability of a rule w.r.t. a set of possibilistic atoms (Defi-
nition 8), the consequence operator ΠTP for logic programs has been extended in
the following way:

Definition 9 (Possibilistic consequence operator ΠTP ) [41] Let P be a possi-
bilistic definite logic program and M be a set of possibilistic atoms. The immediate
possibilistic consequence operator ΠTP maps a set of possibilistic atoms to another
one as follows:

ΠTP (M) = {(a, δ)|ϕ ∈ head(P ∗), App(P,M, a) 6= ∅,
δ = maxr∈App(P,M,a){β|r is β-applicable in M}}

Then the iterated operator ΠT k
P is defined by

ΠT 0
P = ∅ and ΠTn+1

P = ΠTP (ΠTn
P ), ∀n ≥ 0

ΠTP is a monotonic operator and it always reaches a fix-point. The possibilistic
answer set of a possibilistic definite logic program is characterized in the following
way.

Proposition 1 [41] Let P be a possibilistic definite logic program, then ΠTP has a

least fix-point
⊔

n≥0ΠT
n
P that is called the set of possibilistic consequences of P and it

is denoted by ΠCn(P ).

By considering the fix-point operator ΠCn(P ) and the possibilistic reduction
PM
× , the LPPODs semantics is related to the LPODs semantics and the possibilis-

tic answer set semantics. This directly leads to the following definition.

Definition 10 (Possibilistic Answer Set for LPPODs) Let P be an LPPOD,
M be a set of possibilistic atoms such that M∗ is an answer set of P ∗. M is
a possibilistic answer set of P if and only if M = ΠCn(PM∗

× ). We denote by
SEMLPPOD(P ) the set of all possibilistic answer sets of P and by SEMLPPOD

the LPPOD semantics.

Example 6 Let P be the LPPOD introduced in Example 3 and let us consider the
sets of atoms M∗1={ant, p, sp, ab1, b,¬f} and M∗2 = {ant, p, sp, ab2, b, f}. In order
to infer the possibilistic answer sets of P , we have to infer the answer sets of the
LPOD P ∗. It can be proven that both M∗1 and M∗2 are valid answer sets of P ∗.

As seen in Example 4, P
M∗1
× and P

M∗2
× are possibilistic definite logic programs.

Therefore, the possibilistic answer sets of P are:

ΠCn(P
M∗1
× ) = {(ant, 1), (p, 0.6), (sp, 0.4), (b, 1), (¬f, 0.9), (ab1, 0.6)}

since
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ΠT 0

P
M∗1
×

= ∅

ΠT 1

P
M∗1
×

= ΠT
P

M∗1
×

(∅) = {(ant, 1)}

ΠT 2

P
M∗1
×

= ΠT
P

M∗1
×

({(ant, 1)}) = {(ant, 1), (p, 0.6), (sp, 0.4), (b, 1)}

ΠT 3

P
M∗1
×

= ΠT
P

M∗1
×

({(ant, 1), (p, 0.6), (sp, 0.4), (b, 1)}) =

{(ant, 1), (p, 0.6), (sp, 0.4), (b, 1), (¬f, 0.9), (ab1, 0.6)}
ΠT 4

P
M∗1
×

= ΠT
P

M∗1
×

({(ant, 1), (p, 0.6), (sp, 0.4), (b, 1), (¬f, 0.9), (ab1, 0.6)}) =

{(ant, 1), (p, 0.6), (sp, 0.4), (b, 1), (¬f, 0.9), (ab1, 0.6)}
ΠT k+1

P
M∗1
×

= ΠT k

P
M∗1
×

, ∀k > 3

The computation of Cn(P
M∗2
× ) can be understood in a similar way and it leads to

the possibilistic answer setM2 = {(ant, 1), (p, 0.6), (sp, 0.4), (b, 1), (f, 0.6), (ab2, 0.6)}.

From Definition 10, we can observe that there is an important condition w.r.t.

the definition of a possibilistic answer set of an LPPOD: a possibilistic set M cannot
be a possibilistic answer set of an LPPOD P , if M∗ is not an answer set of an LPOD
P ∗. Hence an important relation between the possibilistic semantics of LPPODs
and the semantics of LPODs can be formalized by the following proposition.

Proposition 2 (Relation between Semantics) Let P be an LPPOD and M be a

set of possibilistic atoms. If M is a possibilistic answer set of P , then M∗ is an answer

set of P ∗.

When all the possibilistic rules of an LPPOD P have the necessity value of 1,
each answer set of P ∗ can be directly generalized to be a possibilistic answer sets
of P .

Proposition 3 (Generalization) Let P be an LPPOD and M∗ is an answer set of

P ∗. If ∀r ∈ P , Nec(r) = 1, then M = {(a, 1) | a ∈ M∗} is a possibilistic answer set

of P .

An alternative characterization of the LPPODs semantics can be given by the
least possibilistic distribution associated with a possibilistic definite logic program
as will be discussed in the next section.

3.3 Possibilistic Answer Sets of LPPODs by Possibility Distribution

Definition 10 proposes a syntactical way to compute the possibilistic answer sets
of an LPPOD by means of the possibilistic ×-reduction (Definition 7) and the
fix-point operator ΠCn (Proposition 1). Similar to what has been done in [41] for
possibilistic normal programs, we characterize the LPPODs semantics in terms of
the least specific distribution for possibilistic definite logic programs.

Definition 11 [41] Let P be a possibilistic definite logic program, M be a set of
atoms, and πP : 2LP 7−→ [0, 1] be a possibility distribution. πP is compatible with
P and it is the least specific distribution for P if:8

8 A definite logic program P ∗ is said to be grounded if it can be ordered as a sequence
〈r1, . . . , rn〉 such that ∀i, 1 ≤ i ≤ n, ri ∈ App(P, head({r1, . . . , ri−1})).
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∀M ∈ 2LP


πP (M) = 0, M * head(App(P ∗,M))

πP (M) = 0, App(P ∗,M) not grounded

πP (M) = 1, M is an answer of P ∗

πP (M) = 1−maxr∈N{Nec(r) |M 2 r∗}, otherwise

The possibility distribution πP induces two dual measures which can be used
to infer in the ASP framework the necessity degrees of each atom of a possibilistic
definite logic program.

Definition 12 [41] Let P be a possibilistic definite logic program and πP its asso-
ciated possibility distribution. The possibility and necessity measures are defined
as:

– ΠP (a) = maxM∈2LP {πP (M) | a ∈M}
– NP (a) = 1−maxM∈2LP {πP (M) | a /∈M}

Given the above definitions and the ×-possibilistic reduction PM
× , it is possible

to give a characterization of a possibilistic answer set of an LPPOD in terms of
the possibility distribution for possibilistic definite logic programs.

Proposition 4 Let P be an LPPOD and M be a set of possibilistic atoms such that

M∗ is an answer set of P ∗, then

ΠM(PM∗

× ) = {(a,NPM∗
×

(a))|a ∈ LPM∗
×

, NPM∗
×

(a) > 0}

is a possibilistic answer set of P .

Example 7 Let P be the LPPOD in Example 3, M∗1={ant, p, sp, ab1, b,¬f}, M∗2 =

{ant, p, sp, ab2, b, f} be the answer sets of P ∗, and P
M∗1
× , P

M∗2
× be the reductions

of P w.r.t. M∗1 and M∗2 respectively (Example 4). Let us consider the possibil-
ity distribution πP for a possibilistic definite logic program in Definition 11 and
let L

P
M∗1
×

= {ant, p, sp, ab1, b,¬f} = S. The least specific possibility distribution

induced by P
M∗1
× on 2S is:

– π
P

M∗1
×

({ant, b}) = 1−max{0.9, 0.6, 0.4} = 0.1

– π
P

M∗1
×

({ant, b,¬f}) = 1−max{0.6, 0.4} = 0.4

– π
P

M∗1
×

({ab1, ant, b, p}) = 1−max{0.4, 0.9} = 0.1

– π
P

M∗1
×

({ab1, ant, b, sp}) = 1−max{0.6, 0.9} = 0.1

– π
P

M∗1
×

({ab1, ant, b,¬f, p}) = 1−max{0.6} = 0.4

– π
P

M∗1
×

({ab1, ant, b,¬f, p}) = 1−max{0.4} = 0.6

– π
P

M∗1
×

({ab1, ant, b,¬f, p, b}) = 1 (the answer set)

– for all the other sets S′ ∈ 2S , π
P

M∗1
×

(S′) = 0

As all the atoms in the signature of P
M∗1
× belong to the answer set of P ∗, their

level of consistency with respect to P
M∗1
× is the most possible value. As expected,

the possibility measures associated with each of the atoms are:
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Π
P

M∗1
×

(ant) = 1 Π
P

M∗1
×

(ab1) = 1

Π
P

M∗1
×

(p) = 1 Π
P

M∗1
×

(b) = 1

Π
P

M∗1
×

(sp) = 1 Π
P

M∗1
×

(¬f) = 1

Instead, necessity measures evaluate the certainty level at which each atom is

inferred from P
M∗1
× . As expected, necessity values inferred by the possibility distri-

bution π
P

M∗1
×

are consistent with the necessity values associated to each possibilistic

atom in the possibilistic answer set of M1 of P which was inferred by the fix-point
in Example 6.

N
P

M∗1
×

(ant) = 1 N
P

M∗1
×

(ab1) = 0.6

N
P

M∗1
×

(p) = 0.6 N
P

M∗1
×

(b) = 1

N
P

M∗1
×

(sp) = 0.4 N
P

M∗1
×

(¬f) = 0.9

The inference of the necessity values related to M∗2 = {ant, p, sp, ab2, b, f} in the

possibilistic definite logic program P
M∗2
× can be understood in a similar way.

Therefore, the LPPODs semantics can be defined by two equivalent charac-
terizations: the syntactical characterization based on a fix-point operator and the
semantical characterization based on the possibility distribution for possibilistic
definite logic programs. For the sake of computation, in Section 6, we will see how
the syntactical characterization provides a straightforward methodology for the
LPPODs semantics computation.

In the next section, we present a set of transformation rules which allow one to
propagate necessity values between rules while preserving the LPPODs semantics.
These results are important for the definition of a comparison criterion. Based
on these transformations, in Section 5, we will define a comparison criterion for
selecting possibilistic answer sets which can consider both necessity values and
satisfaction degrees of possibilistic ordered disjunction rules.

4 Transformation Rules for LPPODs

Generally speaking, a transformation rule is a syntactic rule which specifies the
conditions under which a logic program P can be transformed into another logic
program P ′. In the logic programming literature, transformation rules have been
studied for several classes of logic programs in order to characterize and infer logic
programming semantics [10, 28]. A common requirement is that the transforma-
tions can be used to reduce the size of a logic program provided that they do
not affect its semantics. In this context, several notions of equivalence between
logic programs have been defined [37]. We generalize some basic transformations
of normal programs (EC, RED+, RED−, Success, Failure, Loop) to LPPODs and
we show how these transformations can reduce the structure of an LPPOD to a
normal form without affecting the LPPODs semantics. To this end, we first prove
that the transformations preserve the LPPODs semantics and we reuse the theory
of rewriting system [27] to guarantee that the normal form is always unique.

In this section, we denote a possibilistic ordered disjunction rule r (of the
form expressed by 4) by α : C× ← B+, not B−, in which C× = {c1, . . . , ck},
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B+ = {b1, . . . , bm}, and B− = {bm+1, . . . , bm+n}. We write HEAD(P ) for the set
of all atoms occurring in rule heads of an LPPOD P . In the following, we state
that two LPPODs P and P ′ are equivalent w.r.t. the LPPODs semantics (denoted
SEMLPPOD(P ) ≡ SEMLPPOD(P ′)) if they possess the same possibilistic answer
sets.

We refer to a rewriting rule as a program transformation as defined in [44]. A
program transformation → is a binary relation on Prog〈A,S〉 where Prog〈A,S〉 is
the set of all LPPODs with atoms from the signature A and necessity values from
S ⊆ (0, 1]. A program transformation → maps an LPPOD P to another LPPOD
P ′. We use P →T P ′ to denote that we get P ′ from P by applying a transformation
rule T to P .

We illustrate the transformations by means of the following running example:

Example 8

P0 =



r1 = 1 : a× b ← not c, not d.

r2 = 1 : c× d ← e, not e.

r3 = 1 : b× a ← c.

r4 = 1 : a× b ← d.

r5 = 1 : ← a, b.

r6 = 0.6 : c ← not e.

r7 = 0.4 : d ← not e.

r8 = 0.8 : q ← r.

r9 = 0.8 : r ← q.


Definition 13 (Possibilistic Elimination of Contradictions) Given two LP-
PODs P and P ′, P ′ results from P by possibilistic elimination of contradictions
(P →PeC P ′) if P contains a rule r = α : C× ← B+, not B− which has an atom b

such that b ∈ B+ and b ∈ B−, and P ′ = P\{r}.

By applying this first transformation to the program in Example 8, we get rid of
rule r2 and we obtain P1:

Example 9 (P0 →PeC P1)

P1 =



r1 = 1 : a× b ← not c, not d.

r3 = 1 : b× a ← c.

r4 = 1 : a× b ← d.

r5 = 1 : ← a, b.

r6 = 0.6 : c ← not e.

r7 = 0.4 : d ← not e.

r8 = 0.8 : q ← r.

r9 = 0.8 : r ← q.


We would also like to delete not e from all rule bodies whenever e does not appear
in the head of an LPPOD. This can be guaranteed by the Possibilistic Positive

Reduction. On the contrary, if an LPPOD contains α : a ← >, then the atoms in
the head must be true, so rules contained in their bodies not a are surely false and
should be deleted. This can be guaranteed by the Possibilistic Negative Reduction.

Definition 14 (Possibilistic Positive Reduction) Given two LPPODs P and P ′,
P ′ results from P by possibilistic positive reduction PRED+ (P →PRED+ P ′), if
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there is a rule r = α : C× ← B+, not (B− ∪{b}) in P and such that b /∈ HEAD(P ),
and P ′ = (P\{r}) ∪ {α : C× ← B+, not B−}.

Definition 15 (Possibilistic Negative Reduction) Given two LPPODs P and
P ′, P ′ results from P by possibilistic negative reduction PRED− (P →PRED− P

′),
if P contains the rules r = α : a ← >, and r′ = β : C× ← B+, not (B− ∪ {a}), and
P ′ = (P\{r′}).

An application of these reductions reduces the size of an LPPOD. In our example,
we can apply →PRED+ (two times) to obtain P2 and then →PRED− to obtain P3.

Example 10 (P1 →PRED+ P2 →PRED+ P3, P3 →PRED− P4)

P3 =



r1 = 1 : a× b ← not c, not d.

r3 = 1 : b× a ← c.

r4 = 1 : a× b ← d.

r5 = 1 : ← a, b.

r6 = 0.6 : c ← >.
r7 = 0.4 : d ← >.
r8 = 0.8 : q ← r.

r9 = 0.8 : r ← q.


P4 =



r3 = 1 : b× a ← c.

r4 = 1 : a× b ← d.

r5 = 1 : ← a, b.

r6 = 0.6 : c ← >.
r7 = 0.4 : d ← >.
r8 = 0.8 : q ← r.

r9 = 0.8 : r ← q.


The following two transformations are usually used to replace the Generalize Prin-
ciple of Partial evaluation (GPPE) [10, 11].

Definition 16 (Possibilistic Success) Given two LPPODs P and P ′, P ′ results
from P by possibilistic success (P →PS P ′), if P contains a fact α : a ← > and a
rule r = β : C× ← B+, not B− such that a ∈ B+, and P ′ = (P\{r}) ∪ {min{α, β} :
C× ← (B+\{a}), not B−}.

Definition 17 (Possibilistic Failure) Given two LPPODs P and P ′, P ′ results
from P by possibilistic failure (P →PF P ′), if P contains a rule r = α : C× ←
B+, not B− such that a ∈ B+ and a /∈ HEAD(P ), and P ′ = (P\{r}).

The Possibilistic Success is particularly important for LPPODs because it allows
for the propagation of necessity values between LPPOD rules. Please observe how
such transformation reflects the possibilistic modus ponens [32]. By applying→PF

to P4 (two times), we obtain:

Example 11 (P4 →PS P5 →PS P6)

P6 =



r3 = 0.6 : b× a ← >.
r4 = 0.4 : a× b ← >.
r5 = 1 : ← a, b.

r6 = 0.6 : c ← >.
r7 = 0.4 : d ← >.
r8 = 0.8 : q ← r.

r9 = 0.8 : r ← q.


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Sometimes, in a logic program, one can identify a positive dependency between
atoms which form a cycle. For instance, by considering r8 and r9 from P6, one can
see that there is a positive dependency between the atoms q and r. Observe that
these atoms can be considered as false without affecting the semantics of P6; this
means that one can remove r8 and r9 from P6. In order to identify these kinds of
positive dependencies which form a cycle, the possibilistic loop transformation is
defined.

For its definition it is useful to map an LPPOD to a possibilistic normal pro-
gram. Given a possibilistic ordered disjunction rule r = α : C× ← B+, not B−,
we write ordis − nor(r) to denote the set of possibilistic normal rules {α : c ←
B+, not (B− ∪ (C×\{c}))|c ∈ C×} and we extend this definition to LPPODs as
follows. Let P be an LPPOD, then ordis − nor(P) denotes the possibilistic normal
program

⋃
r∈P ordis − nor(r). Given a possibilistic normal program ordis − nor(P),

we write def (ordis − nor(P)) to denote the possibilistic definite logic program that
is obtained from ordis − nor(P) by removing every negated-by-failure atom in
ordis − nor(P). Given a definite logic program def (ordis − nor(P))∗, Cn(def (ordis−
nor(P))∗) denotes the unique minimal model of def (ordis − nor(P))∗ (that always
exists for definite logic program, see [38]).

Definition 18 (Possibilistic Loop) Let P1 = P ′1 ∪ C and P2 = P ′2 ∪ C be two
LPPODs in which P ′1 and P ′2 do not contain constraints and C is a set of pos-
sibilistic constraints. P2 results from P1 by possibilistic loop (P1 →PLoop P2), if
P ′2 = {α : C× ← B+, not B−|α : C× ← B+, not B− ∈ P ′1 and B+ ∩ unf(P ′1) = ∅},
where unf(P ′1) = LP∗\Cn(def (ordis − nor(P ′1 )∗) and P1 6= P2.

Example 12 (P6 →PLoop P7)

P7 =


r3 = 0.6 : b× a ← >.
r4 = 0.4 : a× b ← >.
r5 = 1 : ← a, b.

r6 = 0.6 : c ← >.
r7 = 0.4 : d ← >.


Based on these transformations, we define an abstract rewriting system that con-
tains the possibilistic transformation rules introduced in the previous definitions.

Definition 19 (Rewriting System for LPPODs) Let P be an LPPOD and
CSLPPOD be the rewriting system based on the possibilistic transformation rules
{→PeC , →PRED+ , →PRED− , →PS , →PF , →PLoop}. We denote the normal form
of P w.r.t. CSLPPOD by normCSLPPOD

(P ).9

As stated before, an essential requirement of program transformations is that
they preserve the semantics of the programs to which they are applied. The follow-
ing lemma is an important result, since it allows for the reduction of an LPPOD
without affecting its semantics.

Lemma 1 (CSLPPOD preserves SEMLPPOD) Let P and P ′ be two LPPODs re-

lated by any transformation in CSLPPOD. Then SEMLPPOD(P ) ≡p SEMLPPOD(P ′).

9 Soon, we will show that this normal form is unique.
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Returning to the description of the running example, it can be observed that
the program P7 has the property that it cannot be further reduced under the
CSLPPOD system (none of our transformations are applicable). Therefore, P7 =
normCSLPPOD

(P0). However, the normal form of P could have been obtained by
applying a different set of transformations. The following theorem is a strong
result as it shows that a different application of our transformations (in a different
ordering) leads to the same reduced program.

Theorem 1 (confluence and termination) Let P be an LPPOD. Then CSLPPOD

is confluent, noetherian and normCSLPPOD
(P ) is unique.

These results have important implications. In the case of the LPPODs se-
mantics implementation, the confluence guarantees that the order in which the
transformations are applied does not matter and that an LPPOD can always be
reduced to a unique normal form. Consequently, the semantics of LPPODs can be
computed on the normal form of an LPPOD. Moreover, the Possibilistic Success is
particularly important for LPPODs because it also allows necessity values between
LPPODs rules to be propagated. These results are of interest in the next section.

5 Possibilistic Answer Sets Selection

In LPODs, the × connective is used to express a preference order among atoms.
Such preference order induces an order among the answer sets of a logic program,
since each answer set is associated with a rule satisfaction degree. Concerning
LPPODs, we can consider the projection ∗ to use the rule satisfaction degree and
the preference relation defined for LPODs (see Section 2.2) in order to rank the
possibilistic answer sets of an LPPOD.

Example 13 Let us return to the LPPOD in Example 3.

P =


r1 = 1 : b ← ant. r6 = 1 : ← ab1, ab2.

r2 = 0.9 : f ← b, not ab1. r7 = 0.6 : p ← ant.

r3 = 0.6 : ¬f ← ant, not ab2. r8 = 0.4 : sp ← ant.

r4 = 1 : ab1 × ab2 ← p. r9 = 1 : ant ← >.
r5 = 1 : ab2 × ab1 ← sp.


As seen before (Examples 6-7), P has two possibilistic answer sets: M1 = {(ant, 1),
(p, 0.6), (sp, 0.4), (b, 1), (¬f, 0.9), (ab1, 0.6)} and M2 = {(ant, 1), (p, 0.6), (sp, 0.4),
(b, 1), (f, 0.6), (ab2, 0.6)}. Let us consider the rule satisfaction degrees of M1 and
M2:

Table 1 Example of Rule Satisfaction Degrees

Rule degM∗1 degM∗2
r∗4 = ab1 × ab2 ← p 1 2
r∗5 = ab2 × ab1 ← sp 2 1

From Definition 4, it is easy to see that it is not possible to compare the possibilistic
answer sets.
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Therefore, rule satisfaction degrees are not enough to compare the possibilistic
answer sets of a program such as P . However, the rules in our LPPODs are asso-
ciated with certainty values, i.e. one ordered disjunction rule can be more certain
than another one. This observation is the motivation for the need to explore a
more precise comparison criterion able to take necessity values into account when
needed.

By exploiting the set of transformation rules we have defined in the previous
section, we can define a preference relation that takes the necessity values of LP-
POD rules into account in order to compare possibilistic answer sets. The following
possibilistic preference relation is able to consider rule satisfaction degrees and rule
necessity values to specify an order between the possibilistic answer sets of an
LPPOD.

Definition 20 (Possibilistic Preferred Relation) Let P be an LPPOD, M1 and
M2 be possibilistic answer sets of P , normCSLPPOD

(P ) be the normal form of P
w.r.t. the rewriting system CSLPPOD. M1 is possibilistic preferred to M2 (M1 �pp

M2) iff ∃ r ∈ normCSLPPOD
(P ) such that degM∗1 (r∗) < degM∗2 (r∗), and @r′ ∈

normCSLPPOD
(P ) such that degM∗2 (r′∗) < degM∗1 (r′∗) and Nec(r) < Nec(r′).10

This definition tells us that, once we have rewritten an LPPOD P by applying
the transformations seen before, we are able to compare the possibilistic answer
sets directly using the normal form of the program To illustrate the above defini-
tion, let us consider the following example.

Example 14 Let P be the LPPOD in the example above (Example 13), and CSLPPOD

be the abstract rewriting system we defined for LPPODs. By applying Possibilistic

Success (three times), we can first rewrite r1, r7, and r8 in P to obtain P3:

P3 =


r1 = 1 : b ← >. r6 = 1 : ← ab1, ab2.

r2 = 0.9 : f ← b, not ab1. r7 = 0.6 : p ← >.
r3 = 0.6 : ¬f ← ant, not ab2. r8 = 0.4 : sp ← >.
r4 = 1 : ab1 × ab2 ← p. r9 = 1 : ant ← >.
r5 = 1 : ab2 × ab1 ← sp.


By applying the same transformation another two times, we can rewrite rule r4
and r5 and obtain P5 which represents the normal form of P :

P5 =


r1 = 1 : b ← >. r6 = 1 : ← ab1, ab2.

r2 = 0.9 : f ← b, not ab1. r7 = 0.6 : p ← >.
r3 = 0.6 : ¬f ← ant, not ab2. r8 = 0.4 : sp ← >.
r4 = 0.6 : ab1 × ab2 ← >. r9 = 1 : ant ← >.
r5 = 0.4 : ab2 × ab1 ← >.


Indeed, it can be proven that P5 = normCSLPPOD

(P ) and that it has the same
possibilistic answer sets of P , as expected. Once we have obtained the normal form
of P , we can apply the possibilistic preference relation to compare M1 and M2.
By considering rule satisfaction degrees of M1 and M2 (Table 1) and the necessity
values of rules r4 and r5, i.e. Nec(r4) = 0.6 and Nec(r5) = 0.4, it is not difficult to

10 Nec(r) denotes the necessity value of a rule r as explained in Section 3.1.
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see that M1 �pp M2, since Nec(r4) > Nec(r5) (M2 6�pp M1 follows by Definition
20 as well).

From a knowledge representation point of view, we can interpret this result
in the following way. In the original LPPOD P , we were assuming that rule r4,
i.e. being a penguin it is more reasonable to assume that birds cannot fly rather
than that Antarctic birds can fly, and rule r5, i.e. being a super-penguin it is
more reasonable to assume that Antarctic birds can fly rather than birds cannot
fly, were absolutely certain. However, these rules are supported by two pieces of
knowledge, rules r7 and r8, which are almost certain and little certain respectively.
As expected, these certainty values must be considered at the moment of deciding
which one of the exceptions ab1 and ab2 w.r.t. the default rules r2 and r3 is the
most plausible. This has been achieved by means of a mechanism able to propagate
necessity values between the rules of LPPOD P .

The reader may observe that, when necessity values are equal, it is not possible
to achieve a total order between possibilistic answer sets of an LPPOD. However,
this is in someway what can be expected when both scales prevent such a decision.

Nevertheless, we can observe that there is an important property w.r.t. the
possibilistic preference relation for possibilistic answer sets. A possibilistic answer
set M is comparable if M∗ is comparable in the LPOD P ∗. In fact, our exten-
sion generalizes the preference relation between answer sets of LPODs w.r.t. the
preference relation for LPODs.

Proposition 5 Let M1 and M2 be possibilistic answer sets of an LPPOD P , �p be the

preference relation based on rules satisfaction degrees only, and �pp be the possibilistic

preference relation. If M∗1 �p M
∗
2 then M1 �pp M2.

It is worthy adding that the approach we have defined in this section for com-
paring possibilistic answer sets based on the rewriting system CSLPPOD can be
replaced by other strategies. An alternative strategy can be obtained by associat-
ing a unique value, which merges necessity and satisfaction degree together, with
each possibilistic answer set and to use such value to rank-order the possibilistic
answer sets.11 Other possible strategies can be proposed by defining an alternative
program reduction which focuses on the propagation of necessity values only; or
by transforming an LPPOD to an equivalent possibilistic normal logic program
where special atoms are introduced for denoting the satisfaction degree of possi-
bilistic ordered disjunction rules and by defining a comparison criterion based on
the necessity values associated with these atoms.

6 Computing the LPPODs Semantics

In Section 3, we have seen how the LPPODs semantics can be characterized in
two different ways: syntactically, in terms of a syntactic reduction and a fix-point
operator, and semantically, in terms of the least specific possibility distribution
compatible with an LPPOD.

11 A possible way to associate a unique value to each possibilistic answer set is by means of

the following function:
∑

1≤i≤n
Nec(ri)

degM∗ (ri)nr
, in which nr is the number of rules in an LPPOD

P .
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Algorithm 1 SEMLPPOD

Input: An LPPOD P
Output: Ordered Set of Possibilistic Answer Sets
PM← ∅
PLPOD ← P ∗

M← SEMLPOD(PLPOD)
while M 6= ∅ do
M ← pop(M)
PM ← ΠCn(PM× )

push(PM, PM)
end while
return PM

For the sake of computation, the former characterization is of special interest as
it defines a straightforward methodology for the LPPODs semantics implementa-
tion. According to Definition 10, the LPPODs semantics is defined in terms of the
LPODs semantics [15] and the possibilistic answer set semantics [41]. Since both
semantics are computable, the decision problem of the existence of a possibilistic
answer set of an LPPOD is computable, as stated in the following theorem.

Theorem 2 Let P be an LPPOD, such that P ⊆ Prog〈A,S〉, where Prog〈A,S〉 is the

set of all LPPODs which can be generated by a finite set of atoms A and a finite

set of necessity values S. Then, the LPPODs semantics is computed by the function

SEMLPPOD : P → PS.

The algorithm that computes the LPPODs semantics is described as follows.
Algorithm 1 accepts an LPPOD P and it returns an ordered set of possibilistic
answer sets of P . To be able to infer the possibilistic answer set of P , the algorithm
follows the methodology provided by the LPPODs semantics syntactical charac-
terization in a straightforward way. As the first step, the projection ∗ is applied
to P to obtain its classical part (PLPOD). Since PLPOD is an LPOD, the LPOD
semantics (SEMLPOD) can be used to infer its answer sets (M). If no answer set
of PLPOD can be found, then the algorithm terminates. Otherwise, each answer
set of PLPOD is used to reduce P (PM

× ) to a possibilistic definite logic program
to which the fix-point operator can be applied in order to infer the necessity val-
ues of the atoms corresponding to the possibilistic answer sets of P . Since the
consequence operator is monotonic, PS is finite, and each ps ⊂ PS is also finite,
the operator always reaches a fix-point in a finite number of steps. Therefore, the
algorithm always terminates. In this way, the algorithm provides an effective way
to compute the LPPODs semantics.

Furthermore, the relation of the LPPODs semantics with the LPODs and pos-
sibilistic answer set semantics suggests other important results.

First, it can be observed the way in which the problem of deciding whether an
LPPOD has a possibilistic answer set stays in the same complexity of finding an
answer set of an LPOD, i.e. ΣP

2 . This is given by the fact that finding a possibilistic
answer set of an LPPOD can be done in polynomial time from the moment an
answer set of its associated LPOD is provided. This comes in a straightforward
way from the fact that (i) the ×-possibilistic reduction converts an LPPOD to a
possibilistic definite logic program and, (ii) the computation of the possibilistic
answer set of a possibilistic definite logic program P can be done in polynomial
time w.r.t. k×|P | in which k is the number of different levels of certainty occurring
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Fig. 1 Overview of the posPsmodels system

in P and |P | is the number of rules in P . This is an important result, since it
shows how LPPODs can yield a more expressive framework without increasing
the complexity of its classical part.

Secondly, as the LPODs and possibilistic answer set semantics are already
implemented, we have been able to implement a proof-of-concept prototype of
the algorithm using as main components the LPOD solver psmodels [15] and the
possibilistic normal logic programs solver posSmodels [41] as the main components.

We have implemented Algorithm 1 in a C++ program called posPsmodels (Fig-
ure 1).12 The system accepts an LPPOD according to the syntax presented in
Section 3.1 and returns an ordered set of possibilistic answer sets. In our system
we have used lparse (2), psmodels (3) and posSmodels (6) in an interleaved fash-
ion and we have implemented the modules for the LPPOD projection (1), the
LPPODs transformations (4), the LPPODs possibilistic ×-reduction (5), and the
possibilistic preference relation (7).

7 Related Work

Since the LPPODs framework combines preferences, nonmonotonicity and uncer-
tainty in a logic programming framework together, there are several works which
relate to ours from different perspectives. Most of the existing approaches either
deal with uncertain nonmonotonic reasoning or deal with preference handling.

7.1 Uncertain Nonmonotonic Reasoning

Concerning research on logic programming with uncertainty, existing approaches
in the literature interpret the uncertainty in a qualitative or in a quantitative way.

As far as qualitative treating of uncertainty is concerned, the most popular ap-
proaches are based on possibility theory. The first approach which combines possi-
bilistic logic and logic programming, is an idea presented in [31]. In this work, logic
programming rules are associated with necessity measures and certainty about the
atoms in valid interpretations of a logic program are inferred using possibilistic
resolution [32]. This approach is able to deal with inconsistent programs by means

12 A beta version of the posPsmodels system can be downloaded from http://github.com/
rconfalonieri/posPsmodels/tarball/master.
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of the α-cut [31, 32], but it is not able to capture incomplete knowledge as it does
not consider negation as failure, as is usually done in ASP.

In the context of ASP, one of the first works about qualitative uncertainty
handling is the work of PASP [41] which combines possibility theory with normal
logic programs. Our approach clearly relates to this work as the LPPODs semantics
is based on their possibilistic semantics. Moreover, when all possibilistic rules in
an LPPOD are × free, the LPPODs semantics coincides with PASP (indeed it
generalizes PASP).

PASP was later extended to disjunctive programs [42]. The main motivation
of this approach was to define a description language and a reasoning process
where the user could consider relative likelihoods for modeling different levels of
uncertainty. Our approach differs in these aspects as we are more focused on the
selection of uncertain default rules. Moreover, uncertainty labels in [42] belong to a
partially ordered set (i.e. lattice), while in our approach necessity values belong to
a totally ordered scale. Despite these slight differences, it is not difficult to see how
the two semantics relate to each other. As the × connector in LPPODs is a special
disjunction and as the possibilistic disjunctive semantics [42] is based on minimal
models13, it is possible to represent an LPPOD by means of a possibilistic disjunc-
tive program. The main difference is in the selection of the possibilistic answer set
of the program. Nevertheless, it seems also possible to recover the satisfaction de-
gree of LPPODs in a possibilistic disjunctive program as well. Intuitively, as in
LPPODs a satisfaction degree is associated with a possibilistic answer set w.r.t. a
possibilistic ordered disjunction rule. This degree can be recovered in a possibilis-
tic disjunctive rule by defining a satisfaction relation for possibilistic disjunction
rules that takes the position of the satisfied atoms into account.

Another possibilistic extension of the semantics of LPODs, based on possibilis-
tic pstable semantics [43], is the approach proposed in [20]. The main motivation
behind this work is the handling of possibilistic rules of the form α : a ← not a,
which under possibilistic answer set semantics are considered inconsistent. The
core idea of the approach is first to characterize the LPODs semantics in terms
of the pstable semantics and then to generalize such result to possibilistic LPODs
[20]. Although the research line of such a framework is in paraconsistent logic, pos-
sibilistic pstable semantics for LPODs relates to LPPODs semantics, since each
possibilistic answer set is a possibilistic pstable model in which the main difference
consists in the necessity values of the inferred atoms (see Proposition 2 in [20]).

A noticeable approach to uncertainty handling in ASP based on possibility
theory is reported in [4]. The authors propose a revisited semantics for PASP. The
core idea of this approach is to translate a normal program to a set of constraints
on possibility distributions and, then, to extend this idea to cover possibilistic
ASP. Our approach differs from [4] in the way in which the possibilistic answer
sets are computed. Indeed, we first compute the answer sets of the no possibilistic
program and, then, we use the possibilistic semantics for inferring the necessity
values (according to PASP). This revisited possibilistic semantics has recently also
been extended to possibilistic disjunctive logic programs [5].

In the case the uncertainty is treated quantitatively the most used formalism
is probability theory as in [3, 45]. Basically these approaches differ from ours in

13 Given a possibilistic disjunctive rule α : a ∨ b, {(a, α)} and {(b, α)} are valid possibilistic
answer sets, whereas {(a, α), (b, α)} is not.
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the underlying notion of uncertainty and how uncertainty values associated to
clauses and facts are managed. The work in [3] presents a nonmonotonic prob-
abilistic logic programming language (P-log) which is based on, and generalizes,
logic programming under answer set semantics and Causal Bayesian networks. The
P-log semantics is defined in terms of probabilistic models representing possible
worlds of the domain being represented. Nonmonotonicity is achieved by means
of an updating mechanism which changes the collection of possible worlds when
new probabilistic information is added to the program. Another example of prob-
abilistic nonmonotonic formalism can be found in [45]. In this work, it is possible
to represent rules in which every atom is annotated with a probability interval.
Then, the associated semantics is defined in terms of a probabilistic well-founded
semantics and a probabilistic stable model semantics.

Finally, among logic-based approaches, the most noticeable works are presented
in [39, 46] in the probabilistic and possibilistic logic settings. In [39], a weak non-
monotonic probabilistic logic is proposed to handle statements such as normally

p’s are q’s with probability of at least α in a uniform framework. Such framework
can handle strict logical knowledge and purely probabilistic knowledge from prob-
abilistic logic, as well as default logical knowledge from conditional knowledge
bases. In the possibilistic setting [46], uncertain default rules such as normally p’s

are q’s with certainty at least α are handled by a two step process. First, default
rules are rewritten into possibilistic logic formulas and preferential entailment is
used to draw plausible conclusions. Then, possibility logic resolution [32] is used to
handle the certainty associated with the information described in the possibilistic
knowledge base.

7.2 Preference Handling

Preference handling has been a hot investigation topic in the last two decades. In
logic programming, besides providing an effective way to express an order among
rules or among beliefs to be used in the reasoning process [16, 17, 26, 47], qualita-
tive preferences are also very important when user preferences have to be encoded
in a compact way [14, 17, 18, 36]. Among quantitative approaches to preference
specification, the work of Costantini et al. [23], in which an extension of ASP is
designed to model quantitative resources and to enable the specification of non-
linear preferences (both in the heads and in the bodies), is worth mentioning. This
approach has also been applied to pure ASP in order to capture weight constraints
with preferences [24].

Other noticeable approaches to the treatment of the problem of conditional
(qualitative) preference specification, are the works in the possibility theory [6, 8]
and in the CP-nets [9] settings. For a more general overview about preferences in
AI, we refer to [29, 35].

Concerning possibility theory, a closer relationship between possibilistic logic
and LPPODs can be drawn when considering the recent work of Bosc et al. [8]. In
[8], the authors discuss a different perspective on possibilistic logic able to represent
preferences and uncertainty at the same time as it happens in LPPODs. This is
the case when the possibilistic logic setting is used to encode preference queries
to possibilistic databases where the data is pervaded with uncertainty [7, 8]. Since
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this approach is close to ours, a more detailed discussion is presented in the next
section.

7.3 Preference Queries to a Possibilistic Database

In the context of possibilistic databases, the use of possibilistic logic for repre-
senting uncertain data can provide a strong representation system for the whole
relational algebra [7]. In particular, a possibilistic database can be directly en-
coded in possibilistic logic by mapping keys into variables, attributes into pred-
icates, and database tuples into instantiated formulas [7]. Then, answering a
query such as ∃x C1(x) ∧ . . . ∧ Cn(x) (resp. ∃x C1(x) ∨ . . . ∨Cn(x)) amounts to
add the possibilistic logic formula {(¬C1(x) ∨ . . .¬Cn(x) ∨ answer(x), 1)} (resp.
{(¬C1(x) ∨ answer(x), 1),. . . ,(¬Cn(x) ∨ answer(x), 1)}) to the possibilistic base
and to evaluate the query by the repeated application of possibilistic resolution
(¬P (x) ∨Q(x, y), α), (P (a) ∨R(z), β) `PL (Q(a, y) ∨R(z),min(α, β)) [32].

However, it is possible for these queries to either return an empty set of an-
swers or to return too many results. Such cases have motivated the study of a way
to incorporate qualitative preferences inside queries in the context of possibilis-
tic logic. When modeling preferences in possibilistic logic, the necessity measure
α associated with a classical formula p in (p, α) is understood as the priority of
p rather than its certainty level [6]. The incorporation of preferences inside a
query can be achieved by assigning a (total) order over the necessity values as-
sociated with the query. In [8], the authors show how it is possible to represent
conjunctive and disjunctive preference queries asking for items satisfying conditions
C1, C2, . . . , Cn−1, Cn with the information that C1 is required and if possible C2

also,. . . , and if possible Cn too and Cn is required, or better Cn−1,. . .,or still better C1

respectively.
For instance, given three conditions C1(x), C2(x), C3(x) and the necessity

measures 1, α, β (seen as priority levels associated with the possibilistic formula
representing the queries) with 1 > α > β, the possibilistic logic encoding of a con-
junctive (resp. disjunctive) query is {(¬C1(x) ∨ ¬C2(x) ∨ ¬C3(x) ∨ answer(x),1),
(¬C1(x) ∨ ¬C2(x) ∨ answer(x),α), (¬C1(x) ∨ answer(x),β)} (resp. {(¬C1(x) ∨
answer(x),1), (¬C2(x) ∨ answer(x),α), (¬C3(x) ∨ answer(x),β)}).

Once a preference query is evaluated, the retrieved items are associated with
two levels: to what extent the answer satisfies the query (i.e. 1, α, β), and to what

extent the data used in the query evaluation is certain (i.e. the necessity measures
in the database). These scales are used to achieve a totally ordered set of query
results [8].

In the following, we show how it is possible to encode uncertain data and
preference queries in the LPPODs framework. To this end, we first show how
a preference query is represented and processed in possibilistic logic and, then,
how it can be represented and processed in the LPPODs framework. We only
show the case of a conjunctive query, since an equivalence between conjunctive
and disjunctive queries exists [8]. For the comparison, we will borrow an example
presented in [8].

Let us consider a database example DB with three relations Cities, Markets,
and Museums which contain uncertain pieces of data (Table 2). We adopt the
model proposed in [7]. According to it, each uncertain attribute value is associated
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Table 2 Table Cities (top-left), Markets (top-right), and Museums (bottom) (example
taken from [8])

id Name City

1 John (Brest,a)
2 Mary (Lannion,b)
3 Peter (Quimper,c)

City Flea Market

Brest (yes,d)
Lannion (no,e)
Quimper (no,f)
Rennes (yes,g)

City Museum

Rennes (modern,h)
Quimper (contemporary,i)

Brest (modern,k)

with a certainty degree which is modeled as a lower bound of a necessity measure.
For instance, the intuitive reading behind a tuple such as 〈1, John, (Brest,a)〉 is
that, a person named John exists for sure, who lives in Brest with certainty a.
The remaining tuples can be understood in a similar way.

Given the possibilistic database DB, let us consider the following preference
query asking:

Example 15 [8] Find people living in a city with a flea market (fleaMarket(x)) and

preferably a museum of modern art (modern(x)) and, if possible, a museum of con-

temporary art (contemp(x)).

The query is clearly conjunctive and its possibilistic logic representation is:

Q∧ =


(¬fleaMarket(x) ∨ ¬modern(x) ∨ ¬contemp(x) ∨ answer(x), 1)

(¬fleaMarket(x) ∨ ¬modern(x) ∨ answer(x), α)
(¬fleaMarket(x) ∨ answer(x), β)


where 1 > α > β.

By applying possibilistic logic resolution, it can be proven that valid answers to the
query are: {answer(”John”), α,min(a, d, k)} and {answer(”John”), β,min(a, d)}.

In the encoding of the database DB in LPPODs, we adopt the same convention
used in [7]. According to it, keys become variables, attributes become predicates,
and database tuples are encoded by instantiated predicates. As attribute certainty
is modeled as a necessity measure, we can directly map it to the necessity values
of program rules in our LPPODs framework. Therefore, the LPPOD representing
the DB in Table 2, denoted by PDB , is:

PDB =


r1 = a : city(”John”, ”Brest”). r6 = f : ¬fleaMarket(”Quimper”).

r2 = b : city(”Mary”, ”Lannion”). r7 = g : fleaMarket(”Rennes”).
r3 = c : city(”Peter”, ”Quimper”). r8 = h : modern(”Rennes”).
r4 = d : fleaMarket(”Brest”). r9 = i : modern(”Brest”).

r5 = e : ¬fleaMarket(”Lannion”). r10 = k : contemp(”Quimper”).


Let us consider now the query in Example 15. Its encoding in the LPPODs frame-
work, denoted by PQ∧ , is:
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r11 = 1 : q1(X)← city(X,Y ), f leaMarket(Y ),modern(Y ), contemp(Y ),
not q2(X), not q3(X).

r12 = 1 : q2(X)← city(X,Y ), f leaMarket(Y ),modern(Y ), not q1(X), not q3(X).
r13 = 1 : q3(X)← city(X,Y ), f leaMarket(Y ), not q1(X), not q2(X).
r14 = 1 : q1(X)× q2(X)× q3(X).

The main difference w.r.t. the possibilistic logic encoding is in the way in which
we represent the query priority. In fact, we encode priority about a query by
a possibilistic ordered disjunction rule (r14) rather than by means of necessity
values as done in possibilistic logic. Then, we associate queries and preferences
about the queries with a necessity of 1 in order to keep the necessity values of the
queries results as the certainty values computed by the fix-point operator (which
reflects the possibilistic modus ponens).

Concerning the query execution, it can be confirmed that the program PDB ∪
PQ∧ does not have any result matching q1 (as in Example 15), while we obtain
M1 = {q2(”John”),min(a, d, k)} with degM1

(r14) = 2 matching q2 and M2 =
{q3(”John”),min(a, d)} with degM2

(r14) = 3 matching q3. Please observe that the
retrieved items are associated with two levels: (i) the satisfaction degree of the
possibilistic answer set w.r.t. the ordered disjunction rule, (ii) and the necessity
values as certainty measures w.r.t. the data used in the query evaluation. This
is clearly in accordance with the result obtained in the possibilistic logic setting.
Moreover, the total order of the preference query in the possibilistic logic setting
is reflected in LPPODs as well. In fact, according to the possibilistic preference
relation, M1 is preferred to M2 since degM1

(r14) < degM2
(r14) (see Definition 20).

To conclude, the representation of preference queries in the LPPODs setting
seems to be feasible and there is a close relation between the two approaches.
However, on a representational level the possibilistic setting seems to be more
expressive. In [8], how possibilistic logic can also accommodate some cases of dis-
junctive information (for instance the case in which the third tuple of relation R is
〈Peter, (Quimper∨Rennes, c)〉) is discussed. Instead, the LPPODs syntax does not
allow disjunction in the head of program rules. A possible way to overcome this
limitation is by extending the LPPODs syntax and semantics with possibilistic
disjunction [42]. On the other hand, LPPODs can provide a computational ma-
chinery for computing preference queries in a possibilistic database in a practical
way, whereas possibility theory addresses the problem of flexible querying in a
theoretical way only.

8 Concluding Remarks

In this paper, we have proposed a possibilistic logic programming framework which
is able to capture explicit preferences about rules having exceptions and uncer-
tainty values in terms of necessity measures according to possibilistic logic [32]. As
reported in Section 7, the use of possibilistic logic in ASP is not new and several
proposals under different specifications have been studied [4, 41, 42]. Neverthe-
less, LPPODs is the first logic programming specification able to consider explicit
preferences and uncertainty together based on possibilistic answer set semantics.14

14 In [20], we proposed a possibilistic extension of LPODs based on possibilistic pstable
semantics [43].
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In defining our framework, we have embedded several aspects of common-
sense reasoning, nonmonotonocity, preferences, and uncertainty, where each part is
underpinned by a well established formalism: LPODs [15] and PASP [41]. In joining
these works together, we have obtained a framework which is able to consider two
scales to specify an order between the solutions of an LPPOD: the rule satisfaction

degree of a possibilistic answer set w.r.t. a possibilistic ordered disjunction rule,
and the necessity values of the possibilistic rules themselves. In working in this
direction, we have progressively built all the theoretical knowledge needed to define
a possibilistic preference relation which can consider the satisfaction degree and
necessity values of program rules for comparing LPPODs solutions.

First, we have extended the LPODs syntax with necessity values and we have
defined the LPPODs semantics in terms of the LPODs and possibilistic answer
set semantics (Definition 10). We have also shown how the LPPODs semantics
can be defined in terms of the least possibility distribution of possibilistic definite
logic programs (Proposition 4). Then, we have introduced a set of transformation
rules (Definition 19) which represent an efficient way to reduce the size of an
LPPOD and to propagate the necessity values between LPPOD rules (preserving
the semantics, Lemma 1 and Theorem 1). In this way, necessity values can be taken
into account in the possibilistic answer sets selection (Definition 20). Moreover,
since the LPPODs semantics is a generalization of both the LPODs semantics and
the possibilistic answer set semantics (Definition 10, Proposition 3), the rewriting
system we have defined for LPPODs can be applied, in principle, both to LPODs
and to possibilistic normal programs.

We have proven that the LPPODs semantics is computable (Theorem 2) and
we have discussed how the complexity of the LPPODs semantics belongs to the
same complexity class of its classical part, i.e. LPODs. This is an important result
since it shows that LPPODs yield a more expressive framework without affecting
the complexity. We have presented the LPPODs semantics implementation as an
ASP-based solver called posPsmodels. The solver implements the transformation
rules and the possibilistic preference relation, and thus generally speaking, the
LPPODs framework can be tailored to real applications where a best option has to
be chosen taking into account both preferences and uncertainty. Some applications
of the LPPODs framework have been explored in [17, 19].

In [17], we described how the solver has been integrated in a context-aware sys-
tem, where LPPODs is used to build user profiles and preferences are considered
to enhance the recommendation results. In [19], we proposed an LPPODs-based
methodology to model qualitative decision making under uncertainty problems. It
is shown how, when knowledge and preferences are kept separate, the LPPODs
framework can provide a convenient setting to compute an optimal decision ac-
cording to optimistic and pessimistic decision criteria formulated according to
possibility theory [30].
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14. Brewka G, Niemelä I, Truszczyński M (2003) Answer Set Optimization. In:
Gottlob G, Walsh T (eds) Proceedings of 18th International Joint Conference
on Artificial Intelligence, (IJCAI’03), Morgan Kaufmann, pp 867–872
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sis, Universitat Politècnica de Catalunya, Barcelona, Spain

18. Confalonieri R, Nieves JC (2011) Nested Preferences in Answer Set Program-
ming. Fundamenta Informaticae 113, DOI 10.3233

19. Confalonieri R, Prade H (2011) Answer Set Programming for Computing De-
cisions Under Uncertainty. In: Liu W (ed) Proceedings of the 11th European
Conference on Symbolic and Quantitative Approaches to Reasoning with Un-



30 Roberto Confalonieri et al.

certainty (ECSQARU 2011), Lecture Notes in Artificial Intelligence, vol 6717,
Springer-Verlag, Berlin, Heidelberg, pp 485–496

20. Confalonieri R, Nieves J, Vázquez-Salceda J (2009) Pstable Semantics for
Logic Programs with Possibilistic Ordered Disjunction. In: Serra R, Cucchiara
R (eds) Proceedings of the 11th International Conference of the Italian Asso-
ciation for Artificial Intelligence on Emergent Perspectives in Artificial Intelli-
gence, (AI*IA ’09), Lecture Notes in Artificial Intelligence, vol 5883, Springer
Berlin, Berlin, Heidelberg, pp 52–61

21. Confalonieri R, Nieves JC, Osorio M, Vázquez-Salceda J (2010) Possibilistic
Semantics for Logic Programs with Ordered Disjunction. In: Link S, Prade H
(eds) Proceedings of 6th International Symposium on Foundations of Infor-
mation and Knowledge Systems, (FoIKS 2010), Lecture Notes in Computer
Science, vol 5956, Springer-Verlag, Berlin, Heidelberg, pp 133–152

22. Confalonieri R, Prade H, Nieves JC (2011) Handling Exceptions in Logic Pro-
gramming without Negation as Failure. In: Liu W (ed) Proceedings of the 11th
European Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty (ECSQARU 2011), Lecture Notes in Artificial Intelligence,
vol 6717, Springer-Verlag, Berlin, Heidelberg, pp 509–520

23. Costantini S, Formisano A (2009) Modeling preferences and conditional prefer-
ences on resource consumption and production in ASP. Journal of Algorithms
64(1):3–15

24. Costantini S, Formisano A (2011) Weight Constraints with Preferences in ASP.
In: Delgrande J, Faber W (eds) Proceedings of the 11th International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR11),
Lecture Notes in Artificial Intelligence, vol 6645, Springer-Verlag, Berlin, Hei-
delberg, pp 229–235

25. van Dalen D (1994) Logic and Structure, 3rd edn. Springer-Verlag, Berlin
26. Delgrande J, Schaub T, Tompits H, Wang K (2004) A classification and Sur-

vey of Preference Handling Approaches in Nonmonotonic Reasoning. Compu-
tational Intelligence 20(2):308–334

27. Dershowitz N, Plaisted DA (2001) Rewriting. In: Robinson JA, Voronkov A
(eds) Handbook of Automated Reasoning, Elsevier and MIT Press, pp 535–610

28. Dix J, Osorio M, Zepeda C (2001) A General Theory of Confluent Rewriting
Systems for Logic Programming and its Applications. Annals of Pure and
Applied Logic 108(1–3):153–188
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A Result Proofs

Proposition 1 Let P be a possibilistic definite logic program, then ΠTP has a least fix-
point

⊔
n≥0ΠT

n
P that is called the set of possibilistic consequences of P and it is denoted by

ΠCn(P ).

Proof We can observe that the operator TP is monotonic. Therefore, by Tarsky’s theorem [48],
TP reaches a fix-point (as also observed in the proof of Proposition 8 in [41]).

ut

Proposition 2 Let P be an LPPOD and M be a set of possibilistic atoms. If M is a
possibilistic answer set of P then M∗ is an answer set of P ∗.

Remark 1 (PM
∗

× )∗ = ((P ∗)M
∗

× )

Proof If M is a possibilistic answer set of P , then it is a possibilistic answer set of ΠCn(PM
∗

× )

(by Definition 10). Thus, M∗ is answer set of ((P ∗)M
∗

× ) (by Definition 2 of answer set of an

LPOD), so M∗ is an answer set of P ∗. ut

Proposition 3 Let P be an LPPOD, and M∗ is an answer set of P ∗. If ∀r ∈ P , Nec(r) = 1,
then M = {(a, 1) | ϕ ∈M∗} is a possibilistic answer set of P .

Proof By Definition 10, we know that if M∗ is answer set of P ∗, then M = ΠCn(PM
∗

× ) is
a possibilistic answer set of P . So we have to prove that the necessity value of the atoms of
the possibilistic answer set of the possibilistic definite logic program PM

∗
× corresponds to 1.

By the possibilistic consequence operator definition (Definition 9), we know that given a set
of possibilistic atoms M , the applicability degree β of a rule in M captures the necessity of
the conclusion that the rule can produce with respect to M . Given a rule r = 1 : c← B+, we
consider the following cases:

Case (i): B+ = ∅, then the rule is 1-applicable in M
Case (ii) B+ *M , then the rule is 0-applicable in M .
Case (iii): B+ ⊆M , then the rule is 1-applicable in M since min{α, α1, . . . , αm} = 1 where
∀(bi, αi) ∈ B+, 1 ≤ i ≤ m, (bi, αi) vM and α = α1 = . . . = αm = 1.

The necessity values of the atoms contained in the fix-point reached by the possibilistic
consequence operator (Definition 9) are inferred by
ΠTP (M) = {(a, δ)|a ∈ head(P ∗),App(P ,M , a) 6= ∅,

δ = maxr∈App(P,M ,a){β|r is β-applicable in M}}
but all applicable rules are 1-applicable in M . Thus, δ = 1. Hence, M = {(a, 1) | a ∈ M∗} is
a possibilistic answer set of P . ut

Proposition 4 Let P be an LPPOD and M be a set of possibilistic atoms such that M∗ is
an answer set of P ∗. Then

ΠM(PM
∗

× ) = {(a,N
PM∗
×

(a))|a ∈ L
PM∗
×

, N
PM∗
×

(a) > 0}

is a possibilistic answer set of P .
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Remark 2 PM
∗

× is a possibilistic definite logic program.

Proof By Definition 10, given that M∗ is an answer set of P ∗, M is a possibilistic answer set
of P if and only if M = ΠCn(PM

∗
× ). Hence, we have to prove that Π(PM

∗
× ) = ΠCn(PM

∗
× ).

This follows Theorem 1 in [41] in a straightforward way since PM
∗

× is a possibilistic definitive
logic programs. Thus, M is a possibilistic answer set of P . ut

Lemma 1 Let P and P ′ be two LPPODs related by any transformation in CSLPPOD. Then
SEMLPPOD(P ) ≡p SEMLPPOD(P ′).

Definition 21 (Rewriting System for LPODs) Let P be an LPOD and CSLPOD be the
rewriting system based on transformation rules {→C , →RED+ , →RED− , →S , →F , →Loop},
where each transformation is defined by redefining CSLPPOD omitting the necessity values
associated with programs rules in each transformation.

Remark 3 It can be noticed how SEMLPPOD(P )∗ ≡p SEMLPPOD(P ′)∗ is equivalent to
SEMLPOD(P ∗) ≡ SEMLPOD(P ′∗), where SEMLPOD is the LPODs semantics (Definition
2), and ≡ denotes the equivalence relation w.r.t. the LPODs semantics.

Remark 4 Let P be a definite logic program, the least model M of P can be computed as the
least fix-point of the consequence operator TP : 2LP → 2LP such that TP (M ) = head(App(P ,
M )).

Proof To prove that SEMLPPOD(P ) ≡p SEMLPPOD(P ′), we have to show that given two
LPPODs P and P ′ related by any transformation {→PC ,→PRED+ ,→PRED− ,→PS ,→PF ,

→PLoop}, it holds that ΠCn(PM
∗

× ) = ΠCn(P
′M∗

× ). As the LPPODs semantics is a general-
ization of the LPOD semantics, we prove this lemma by first proving that the transformation
rules for LPODs are invariant w.r.t. the LPODs semantics.

Let us consider P ∗, P ′∗, and CSLPOD (Definition 21). By Remark 3, we have to show

that SEMLPOD(P ∗
M∗

× ) = SEMLPOD((P ′)∗
M∗

× )). We can observe that P ∗
M∗

× , and (P ′)∗
M∗

×
are definite logic programs. From [13] it is known that the stable semantics is closed w.r.t.
the rewriting system CS′LPOD = CSLPOD\(→Loop) and in [44] it has been proven that the
transformation rule→Loop for disjunctive programs also preserves the stable semantics. In the
case of LPODs, the stable semantics is also closed under→Loop. This is straightforward to see
since we can notice that ∀M ∈ SEMLPOD(P ), M ∩ unf(P ) = ∅ by construction (Definition
19), i.e. only program rules which contain false atoms are removed by →Loop. Therefore, the
LPOD semantics is closed under CSLPOD.

Then, we can see in a straightforward way that the LPPODs semantics is closed under
the transformation rules in the rewriting system CS′LPPOD = CSLPPOD\(→PS) since the
transformation rules {→PC ,→PRED+ ,→PRED− ,→PF ,→PLoop} do not affect the necessity
values associated with program rules.

The only transformation that affects necessity values is the Possibilistic Success. Hence, we
have to prove that given two LPPODs P and P ′,→PS , and M∗ answer set of P ∗, ΠCn(PM

∗
× )

= ΠCn(P
′M∗

× ). For a better visibility, let us call ΠCn(PM
∗

× ) = M1 and ΠCn(P
′M∗

× ) = M2.

Now, let us suppose P = P1 ∪ {α : C× ← b. ; β : b.} and P ′ = P1 ∪ {min{α, β} : C×.
; β : b.}. By applying the ×-possibilistic reduction using M∗ to both P and P ′, we obtain

PM
∗

× = PM
∗

1×
∪ {α : c ← b. ; β : b.} and P

′M∗

× = PM
∗

1×
∪ {min{α, β} : C×. ; β : b.}. It can be

observed that PM
∗

1×
is the same subprogram.

Then, we can observe that given the answer set semantics definition in terms of fix-point
of the immediate consequence operator (Remark 4) and that →S is closed under answer set

semantics, since M∗ is an answer set of P ∗, then (ΠCn(PM
∗

× ))∗ = (ΠCn(P
′M∗

× ))∗, i.e. M∗1 =
M∗2 .

To prove ΠCn(PM
∗

× ) = ΠCn(P
′M∗

× ), let us suppose by contradiction that M1 6= M2.
Since M∗1 = M∗2 , this basically means that M1 and M2 have the same atoms but they can
differ in at least in one of the necessity values associated with their atoms. Let us consider P ∗,
and P ′∗. Without loss of generality let us assume that P1 = ∅ and thus P ∗1 = ∅ as well. This
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means that M∗1 = M∗2 = {(c, b)}. However, by assuming M1 6= M2, then M1 = {(c, δ), (b, β)},
and M2 = {(c, δ′), (b, β)}, where δ 6= δ′.

But if we apply the fix-point operator to PM
∗

× we obtain:

ΠT 0
PM
×

= ∅

ΠT 1
PM
×

= ΠTPM
×

(∅) = {(b, β)}

ΠT 2
PM
×

= ΠTPM
×

({(b, β)}) = {(b, β), (c,min{α, β})}

ΠT 3
PM
×

= ΠTPM
×

({(b, β), (c,min{α, β})}) = {(b, β), (c,min{α, β})}

And if we apply the fix-point operator to P
′M∗

× we obtain:

ΠT 0

P
′M
×

= ∅

ΠT 1

P
′M
×

= ΠTPM
×

(∅) = {(b, β)}

ΠT 2

P
′M
×

= ΠTPM
×

({(b, β)}) = {(b, β), (c,min{α, β,min{α, β}})}

ΠT 3

P
′M
×

= ΠTPM
×

({(b, β), (c,min{α, β,min{α, β}})}) = {(b, β), (c,min{α, β,min{α, β}})}

Thus, M1 = {(b, β), (c,min{α, β})}, and M2 = {(b, β), (c,min{α, β,min{α, β}})}. But the
necessity values associated with the atoms are the same and no other rules may have influenced
the necessity values of the atoms themselves, as we have assumed that P1 = ∅. This contradicts
the hypothesis that M1 6= M2. Thus, the LPPODs semantics is closed under CSLPPOD.

ut

Theorem 1 Let P be an LPPOD. Then CSLPPOD is confluent, noetherian and normCSLPPOD

(P ) is unique.

Remark 5 Let CS = 〈S,→〉 be an abstract rewriting system, → be a binary relation on a
given set S, and →∗ be the reflexive and transitive closure of →. Then, a rewriting system is
[27]:

noetherian: if @x1 → x2 → . . .→ xi → xi+1 → . . ., where ∀i xi 6= xi+1,
confluent: if ∀u ∈ S such that u→∗ x and u→∗ y then ∃z ∈ S such that x→∗ z and y →∗ z,
locally confluent: if ∀u ∈ S such that u → x and u → y then ∃z ∈ S such that x →∗ z and

y →∗ z.
If CS is noetherian and confluent, every element x reduces to a unique normal form [27].

Remark 6 Let T1 and T2 be two transformation rules, and P , P1, P2, and P3 be logic programs.
T1 and T2 commute, if P →T1

P1 and P →T2
P2 then P1 →T2

P3 and P2 →T1
P3.

Remark 7 Let T1 and T2 be two transformation rules, and P , P1, P2 be logic programs. T1
absorbs T2, if P →T1

P1 and P →T2
P2 then P2 →T1

P1.

Proof We have to prove that CSLPPOD is confluent and noetherian, as from rewriting system
theory it is known that if a rewriting system is confluent and noetherian then its normal form
always exists and it is unique (Remark 5). This means that we have to prove that:

– CSLPPOD is noetherian
– CSLPPOD is confluent

We can observe in a straightforward way that CSLPPOD is noetherian, since all our pro-
gram transformations decrease the size of an LPPOD.

The confluence of CSLPPOD can be proven using local confluence as stated by New-
man’s lemma [40]. According to [40], a noetherian rewriting system is confluent if it is locally
confluent. Since commutation and absorption are special cases of local confluence, proving
that CSLPPOD is locally confluent amounts to show that for each pair of transformations in
CSLPPOD either the two transformations commute (Remark 6) or one transformation absorbs
the other one (Remark 7). To this end, let us suppose that we have an LPPOD P and we apply
a transformation to get P1. Let us also suppose that from P it is possible to apply another
transformation to get P2. Thus, we need to show that P3 exists in such a way that P1 can
arrive to P3 by using some transformations (possibly none) and that P2 can arrive to P3 by
using of some transformations (possibly none). Then, we have to consider the following pairs
of transformations:
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Case 1: →PC and →PS commute. Let P be:
P : α1 : Head1 ← c, not c, Body1.

α2 : Head2 ← e, Body2.
α3 : e.
P ′

where, α1 > α2 > α3 are necessity values in S = {α3, α2, α1} , P ′ denotes the rest of the
rules in P , Head1 and Head2 denote rules heads, and Body1, Body2 denote the rest of
the rules body.
Thus, if we apply →PS to P , then we obtain P1 and, if we apply →PC to P , then we
obtain P2:

P1: α1 : Head1 ← c, not c, Body1. P2:
α3 : Head2 ← Body2. α2 : Head2 ← e, Body2.
α3 : e. α3 : e.
P ′ P ′

Now, if we apply →PC to P1, then we obtain P3, and if we apply →PS to P2, then we
obtain P3:

P3: P3:
α3 : Head2 ← Body2. α3 : Head2 ← Body2.
α3 : e. α3 : e.
P ′ P ′

Thus, both transformation rules →PC and →PS commute.
Case 2: →PC and →PRED− commute. Let P be:

P : α1 : Head1 ← c, not c, Body1.
α2 : Head2 ← not e, Body2.
α3 : e.
P ′

Thus, if we apply →PC to P , then we obtain P1, and if we apply →PRED− to P , then
we obtain P2:

P1: P2: α1 : Head1 ← c, not c, Body1.
α2 : Head2 ← not e, Body2.
α3 : e. α3 : e.
P ′ P ′

Now, if we apply →PRED− to P1, then we obtain P3, and if we apply →PC to P2, then
we obtain P3

P3: P3:

α3 : e. α3 : e.
P ′ P ′

Thus, both transformation rules →PC and →PRED− commute.
Case 3: →PLoop absorbs →PC . Let P be:

P : α1 : a← b, not b.
α2 : c← c.
α3 : d.

Thus, if we apply →PLoop to P , then we obtain P1 (since unf(P ) = {a, b, c}). If we apply
→PC to P , then we obtain P2:

P1: P2:
α2 : c← c.

α3 : d. α3 : d.

Now, if we apply →PLoop to P2, then we obtain P1 (since unf(P2) = {c}):

P1: P1:

α3 : d. α3 : d.

Thus, →PLoop absorbs →PC (it can be shown how →PLoop and →PC also commute.)
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Table 3 Summary of Transformation Local Confluence

Case Pair of Transformations Locally Confluent by

1 →PC , →PS commute
2 →PC , →PRED− commute
3 →PLoop, →PC absorb/commute
4 →PRED+ , →PRED− absorb/commute
5 →PC , →PRED+ absorb/commute
6 →PC , →PF commute
7 →PRED+ , →PF commute
8 →PRED+ , →PS commute
9 →PLoop, →PRED+ absorb/commute
10 →PRED− , →PF commute
11 →PRED− , →PS absorb/commute
12 →PRED− , →PLoop absorb/commute
13 →PF , →PS absorb/commute
14 →PLoop, →PF absorb
15 →PS , →PLoop commute

Case 4: →PRED+ absorbs →PRED− . Let P be:

P : α1 : Head1 ← not b, not p, Body1.
α2 : p.
P ′

Let us suppose that b /∈ HEAD(P ). If we apply →PRED− to P , then we obtain P1 and,
if we apply →PRED+ to P , then we obtain P2:

P1: P2: α1 : Head1 ← not p, Body1
α2 : p. α2 : p.
P ′ P ′

Now, if we apply →PRED− to P2, then we obtain P1:

P1: P1:
α2 : p α2 : p.
P ′ P ′

Thus, →PRED− absorbs →PRED+ (it can be shown how →PRED− and →PRED+ also
commute.)

In a similar way, it can be confirmed that the following pairs of transformations are locally
confluent in the remaining cases:
Case 5: →PC absorbs →PRED+ . They also commute.
Case 6: →PC and →PF commute.
Case 7: →PRED+ and →PF commute.
Case 8: →PRED+ and →PS commute.
Case 9: →PLoop absorbs →PRED+ . They also commute.
Case 10: →PRED− and →PF commute.
Case 11: →PRED− absorbs →PS . They also commute.
Case 12: →PLoop absorbs →PRED− . They also commute.
Case 13: →PF absorbs →PS . They also commute.
Case 14: →PLoop absorbs →PF .
Case 15: →PS and →PLoop commute.

Table 3 summarizes all pairs of transformations and it shows whether they absorb and/or
commute.
Finally, as CSLPPOD is noetherian and as all pair of transformations in CSLPPOD are locally
confluent, CSLPPOD is confluent.

ut

Proposition 5 Let M1 and M2 be possibilistic answer sets of an LPPOD P , >p be the
preference relation for LPODs (Definition 4), and >pp be the possibilistic preference relation.
If M∗1 >p M

∗
2 then M1 >pp M2.
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Remark 8 M∗1 >p M∗2 iff ∃ r ∈ P ∗ such that degM∗1 (r) < degM∗2 (r), and @r′ ∈ P ∗ such that

degM∗2 (r′) < degM∗1 (r′) (Definition 4).

Remark 9 (normLPPOD(P )∗) = normLPOD(P ∗)

Proof Let us suppose that M1 ≯pp M2. By contradiction, we have two cases: either (i) M2 >pp
M1 or (ii) M2 ≯pp M1 (and M1 ≯pp M2).
Case 1: M2 >pp M1. If M2 >pp M1 it means that ∃r ∈ normCSLPPOD

(P ) such that
degM∗2 (r∗) < degM1 (r∗), and @r′ ∈ normCSLPPOD

(P ) such that degM∗1 (r′∗) < degM∗2 (r′∗)

and Nec(r) < Nec(r′). By Remark 9 this would mean that ∃r∗ ∈ normLPOD(P ∗)
such that degM∗2 (r∗) < degM∗1 (r∗), and @r′∗ ∈ normLPOD(P ∗) such that degM∗1 (r′∗) <

degM∗2 (r′∗), i.e. M∗2 >p M
∗
1 . But this contradicts the hypothesis M∗1 >p M

∗
2 (Remark 8).

Case (ii): M2 ≯pp M1. If M2 ≯pp M1 (and M1 ≯pp M2) then it means that neither ∃r ∈
normCSLPPOD

(P ) such that degM∗2 (r∗) < degM∗1 (r∗), and @r′ ∈ normCSLPPOD
(P ) such

that degM∗1 (r′∗) < degM2 (r′∗) and Nec(r) < Nec(r′), nor ∃r ∈ normCSLPPOD
(P ) such

that degM∗1 (r∗) < degM∗2 (r∗), and @r′ ∈ normCSLPPOD
(P ) such that degM∗2 (r′∗) <

degM∗1 (r′∗) and Nec(r) < Nec(r′). This is only true if ∀r ∈ P , degM∗1 (r∗) = degM∗2 (r∗)

and ∃r′ ∈ P such that degM∗1 (r∗) = degM∗2 (r∗) and Nec(r) = Nec(r′). However by

Remark 9 this would mean that ∀r∗ ∈ normLPOD(P ∗), degM∗1 (r∗) = degM∗2 (r∗) and thus

M∗2 ≯p M∗1 and M∗1 ≯p M∗2 . But this contradicts the hypothesis M∗1 >p M
∗
2 (Remark 8).

ut

Theorem 2 Let P be an LPPOD, such that P ⊆ Prog〈A,S〉, where Prog〈A,S〉 is the set of
all LPPODs which can be generated by a finite set of atoms A and a finite set of necessity
values S. Then, the LPPODs semantics is computed by the function SEMLPPOD : P → PS.

Proof The proof is straightforward since Algorithm 1 computes the LPPODs semantics. ut

B Possibilistic Logic

Possibilistic logic emanates from possibility theory and it was developed as a sound and com-
plete logic system which extends classical logic for representing qualitative uncertainty [32].

At the semantic level, possibilistic logic is defined in terms of a possibility distribution π on
the universe of interpretations which represents the compatibility of an interpretation ω with
available information (or beliefs) about the real world. By convention π(ω) = 0 means that ω
is impossible and π(ω) = 1 means that nothing prevents ω for being true in the real world. A
possibility distribution π induces two dual measures grading respectively the possibility and
certainty of a formula ϕ. The possibility measure Π, defined as Π(ϕ) = max{π(ω)|ω � ϕ}, is
the possibility degree which evaluates the extent to which ϕ is consistent with the available
beliefs. The necessity measure N , defined as N(ϕ) = 1−Π(¬ϕ), is the certainty degree which
evaluates the extent to which ϕ is entailed by the available beliefs.

At the syntactic level in the necessity-valued case, possibilistic logic handles necessity-
valued formula of the form (ϕ, α) where ϕ is a classical logic formula and α ∈ (0, 1] is interpreted
as a lower bound of a necessity measure N expressing that the formula ϕ is certain at least to
the level α. Given a possibilistic knowledge base Σ as a finite set of necessity-valued formula,
i.e. Σ = {(ϕi, αi)|1 ≤ i ≤ n} there can be many distributions satisfying the constraints in
the knowledge base (i.e. N(ϕi) ≥ αi). However, in practice one is interested in the least
specific distribution only, since it is the distribution that makes the least possible number of
assumptions. Formally a possibility distribution π is said to be the least specific one between all
compatible distributions if there is no possibility distribution π′ with π 6= π′ compatible with
Σ such that ∀ω, π′(ω) ≥ π(ω). The least specific distribution always exists and is characterised
by πΣ(ω) = min1≤i≤nπ(ϕi,αi)

(ω) with π(ϕi,αi)
(ω) = 1 if ω � ϕi, and π(ϕi,αi)

(ω) = 1− αi if
ω 2 ϕi.

A possibilistic knowledge base is a compact representation of the possibility distribution
defined in the interpretations representing the information. Indeed the treatment of the base
in terms of formula and necessity values (syntactical way) leads to the same results of the
treatment done in terms of interpretations and possibility distribution (semantical way) [32].


