Relaxation in Partial-Order Programming

Juan Carlos Nieves, Bharat Jayaraman

Department of Computer Science and Engineering
State University of New York at Buffalo,
Buffalo, NY 14260, USA,
jenieves@cse.buffalo.edu (Visiting Scholar)
bharat@cse.buffalo.edu

Abstract. Optimization has been a hot topic in the area computer sci-
ence for many years. In many applications, optimal solutions may be
difficult or impossible to obtain, and hence we are interested in finding
suboptimal solutions. In this paper we introduce the concept of relaxation
in the framework of Partial-Order Programming. The idea of introduce
relaxation in Partial-Order Programming is allow to the users give sub-
optimal solutions in Partial-Order Programming. For this purpose, we
define a declarative semantics based on stable semantics which extends
the standard declarative semantics to Partial Order Programs defined in
[8]-

keywords: Logic programming, declarative languages, optimization.

1 Introduction

In two recent papers we formulated a functional query language based upon
partial-order clauses [2,7], and we refer the reader to these papers for a full
account of the paradigm. In comparison with traditional equational clauses for
defining functions, partial-order clauses offer better support for defining recursive
aggregate operations. We illustrate this with an example from [7]: Suppose that
a graph is defined by a predicate edge(X,Y,C), where C is the non-negative
distance associated with a directed edge from a node X to node Y, then the
shortest distance from X to Y can be declaratively specified through partial-order
clauses as follows:

short (X,Y) < C :- edge(X,Y,C)

short (X,Y) < C+short(Z,Y) :- edge(X,Z,C)
The meaning of a ground expression (such as short(a,b)) is the greatest lower
bound (smallest number in the above example) of the results defined by the
different partial-order clauses. In order to have a well-defined function using
partial-order clauses, whenever a function is circularly defined it is necessary that
the constituent functions be monotonic. This could happen in the above example
when the underlying graph is cyclic. We refer to this paradigm as partial-order
programming, and we have found that it offers conciseness, clarity, and flexibility
in programming problems in graph theory, optimization, program analysis, etc.
Partial-order program clauses are actually a generalization of subset program

clauses [5, 6] which allow one to elegantly and efficiently program set-oriented
computations.

The present paper, we introduce the concept of relaxation in the framework of
Partial-Order Programming. The idea of introduce relaxation in Partial-Order
Programming is allow to the users give suboptimal solutions in Partial-Order
Programming. For this purpose, we define a declarative semantics based on stable
semantics which extends the standard declarative semantics to Partial Order
Programs defined in [8].

In order to show the idea of relaxation in Partial-Order Programming, we
consider again our example of shortest distance with the following extended
database:

edge(a,b,10).
edge(a,m,12).
edge(b,m,5) .
edge(m,x,5) .
edge(x,2,20).
edge(m,z,3).

Ope

12 3

Fig. 1. Graph depicting the edge predicate.

The corresponding graph to the above facts is shown in Figure 1. As we can
see the shortest distance between the node a and the node z is 15. But what
happen, if we are interesting on the shortest distance between the node a and
the node z such that it includes the node b. In this case, we have to relax our
goal. For this purpose we introduce the concept of relaxing goal as follows:

relax short(a,z) such that short(a,z) = short(a,b) + short(b,z)

The intuitive mean of the before relaxing goal is: compute the shortest distance
between the node a and the node z such that it includes the node b. Other
interesting goal is when we want the shortest distance between the node a and
the node z such that it is greatest that 15. In this case, we can express a relaxation
goal as follows:

relax short(a,z) such that short(a,z) > 15

As we can look the relaxing goals allow to specify goals where the objective
is compute suboptimal solutions. The declarative semantics of this framework is
defined using stable semantics. And the mail idea is translate the partial order
clauses to normal clauses, this idea will be presented in the section 3.

The rest of the paper is structured as follows : In section 2, we present an
informal introduction to the paradigm of partial-order programming. In section
3, we present the translation of Partial-Order Programs to Normal Programs
w.r.t. a relaxing goal and finally in the last section we present our conclusions.

2 Background

We give an informal introduction of the paradigm of partial-order programming.
There are two kinds of partial-order clauses: unconditional and conditional. Un-
conditional partial-order clauses have the form:

f(terms) > expression
f(terms) < expression

where each variable in ezpression also occurs in terms. For simplicity of presen-
tation in this paper, we assume that every function f is defined either with >
or < clauses, but not both-this restriction has been easy to meet and it cover
a large class of practical programs. The syntax of terms and expression is as
follows:

term : := variable | constant | c(terms)

terms ::= term | term , terms

expression : := term | cCexprs) | flexprs)

exprs i := expression | expression , exprs
Conditional partial-order clauses are of the form:

f(terms) > expression :- condition
f(terms) < expression :- condition

where each variable in expression occurs either in terms or in condition, and
condition is in general a conjunction of relational or equational goals defined as
follows.

condition ::= goal | goal, condition
goal ::= p(terms) | — p(terms) | f(terms) = term

Declaratively speaking, the meaning of a clause is that, for all its ground
instantiations, the partial-order at the head is taken to be true if the condition
is true. In general, multiple clauses may be used in defining some function f. For
a function defined by > clauses, we define the meaning of a ground expression
f(terms) to be equal to the least-upper bound (respectively, greatest-lower bound
for < clauses) of the resulting terms defined by the different partial-order clauses
for f. Procedurally, condition is processed first before ezpression is evaluated.
When new variables appear in condition (i.e., those that are not on the left-
hand side), the goals in condition are processed in such an order so that all

functional goals (f(terms)) and all negated goals (= p(terms)) are invoked with
ground arguments—note that negation-as-failure may be unsound for nonground
negated goals. The predicates appearing in p(terms) are referred to as extensional
database predicates(EDB) because they are defined by ground unconditional (or
unit) clauses.

Definition 2.1. A relazing goal is of the form: relax f(t) such that condition,
where £ is an user function, t a ground term and condition is of the form:

h(expression) where h is a function or a relational symbol

To illustrate the framework of Partial-Order Programming. We present some
interesting examples.

Ezample 2.1 (Data-flow Analysis). Partial-order clauses can be used for carrying
out sophisticated flow-analysis computations, as illustrated by the following pro-
gram which computes the reaching definitions and busy expressions in a program
flow graph. This information is computed by a compiler during its optimization
phase [1]. The example also shows the use of monotonic functions.

reach_out (X) > reach_in(X) - kill(X).

reach_out (X) > gen(X).

reach_in(X) > reach out(Y) :- pred(X,Y).
In the above program, kill(X) and gen(X), are predefined set-valued functions
specifying the relevant information for a given program flow graph and basic
block X. We assume an EDB pred (X,Y), that defines when Y is predecessor of
X. The set-difference operator (=) is monotonic in its first argument, and hence
the program has a unique intended meaning as it is shown in [1]. A general result
that explains this fact can be found in [7]. Our operational semantics behaves
exactly as the algorithm proposed in [1] to solve this problem.

Ezample 2.2 (0-1 Knapsack Problem,).
This is a well-known optimization problem that is known to be NP-complete.
Suppose we are given weights w; and profits p;, for 1 < ¢ < n, and a capacity
m. For 0 <M < m, and 1 < I < n, define kngs(I,M) to be the profit of the
optimal solution to the 0-1 knapsack problem, using objects 1, ..., I, and knapsack
capacity M. Then, kng; is defined by the following inequalities:

kn01(O,M) Z 0.

kn01(I,M) Z kn01(I - 1,M) -1 Z 1.

kngs (I,M) > knps (I — 1,M—c(I)) +g(I) :- I > 1, c(I) < M.

The top-level query might look as follows, knes (5, 30), assuming 5 products and

a budget of 30. The meanings of the three clauses are explained below:

(1) Consider kIlo]_(O,M) Z 0.
If we have 0 objects (regardless of our capacity) our profit is 0. Our rule
is a weaker assertion, namely, that our profit should be > 0. But no other
clauses support another greater value as a conclusion. Thus, by a form of
closed word assumption we conclude that Kng; (0,M) = 0.

(2) Consider kng;(I,M) > kngy (I —1,M) :- I > 1.

In the second clause, if we have a least one object and capacity M, then our
profit is > that we could get by taking out one element (in this case the last
one).

(3) Consider kng; (I,M) > kno1 (I —1,M—c(I)) +g(I) :- I > 1, c(I) < M.
In the last clause, suppose that the cost of our last object < to our current
capacity. Suppose in addition that we decided to carry it. Thus, our capacity
will decrease to M —¢(I). However, we can count the profit of this object. So,
our profit in this case would be kng; (I — 1,M — ¢(I)) + g(I) (1). Moreover,
our real profit would be surely > (1).

Note that we only have to state valid inequalities and the “current” equality is

inferred by our semantics. Thus, if in some cases the second and the last clauses

are satisfied, our semantics selects the one that maximizes the profits.

3 Translation

In this section, we present the translation of partial- order programs to normal
programs w.r.t. a relaxation goal. We transform our programs to normal pro-
grams because we use Stable Semantics[3] to define the declarative semantics of
our framework.

We have already study how can we translate partial order programs to normal
programs in [8], so the new contribution is adding the relaxation concept.

The notation used to introduce partial-order clauses in section 2 will be
referred to henceforth as the nested form. But, formally, we will see each clause
as a short hand of a normal clause. This is done by flattening all expressions so
that the arguments of all function calls are terms. Since all variables range over
the universe of terms, this flattened form makes more explicit that the result of
an expression must be a term (for a good introduction to flattened form see [4]).
For example, we consider again our program of the introduction which is in the
nested form. The flattened form of this program is as follows:

short (X,Y) < C :- edge(X,Y,C)

short (X,Y) <D :- edge(X,Z,C1), short(Z,Y)= C2, C1+ C2 = D.

The second step of the translation is associated a normal form to the partial-
order clauses. For instance, the associated normal form of the above clauses are
the normal clauses:

short<(X,Y,C) : —edge(X,Y,C)

short<(X,Y,D) : —edge(X, Z,C1), short<(Z,Y,C2),C1+ C2 =D.
where each atom with predicate symbol short< is called an atom<. We assume
that the new predicate symbol short< is not present in the original language.
Observe that the associated normal form to short (Z,Y)= C2is short<(Z,Y,C2).

The last step of the transformation lies in add some normal clauses such that
these compute the optimal answer w.r.t. the query’s condition. For example, we
suppose that we want to compute the following relaxing goal: relax sh(a,z)
such that sh(a,z) > 15. Then the translation of the shortest distance pro-
grams to normal programs w.r.t. relax sh(a,z) such that sh(a,z) > 15is
as follows:

. short<(X,Y, top).

. short<(X,Y,C) :- edge(X,Y,C).

. short<(X,Y,C) :- edge(X,Z,C1), short<(Z,Y,C2), C=C1+ C2.
shortrerax(W, W1, X) :- short<(W,W1,X), shortcongition(W, W1, X).
shortcengition(a, 2, C) :- short<(a,z,C),C > 15.

. short<(W,W1,X) :- shortyerax(W,W1,X1), X1 < X.

. short_(W,W1,X) :- shortreiax(W,W1,X), 7short (W, W1, X).

. query(a,z,X) :- short_(a, z,X).

Of course, this program is completed with its extended database of the pred-
icate edge. The clause 4 defines the predicate shortyeiay which takes all the
possible answers such that satisfy the query’s condition. The clause 5 represents
the query’s condition. The purpose of the clauses 6 and 7 is compute all the
optimal answers. And finally, the clause 8 takes the answer to the query.

As, we have a normal program so we can use a semantics to normal programs
as Stable Semantics to compute the intending meaning of the program.

Now, we will present some definitions about the translation and the definition
of our declarative semantics.

Definition 3.1. Let Q). be a relaxing goal of the form £ (t) such that condition.
We define Flat(Q.) as the flattened form of condition.

To illustrate the before definition, we consider the following relaxing goal:
relax sh(a,e) such that sh(a,e) > 30. So Flat(Q,) := sh(a,e) = C,C >
30.

Definition 3.2. Given a flattened form Flat(Q,) of a query’s condition. We
define the normal_form(Flat(Q,)) as the formal form associated to Flat(Q,).

We suppose that Flat(Q,) := sh(a,e) = C,C > 30, so normal_form(Flat(Q,)) =
sh<(a,e,C),C > 30

Definition 3.3 (Head symbols). Given a program P, we define head(P) to
be the set of head symbols of P, i.e., the head symbols on the literals on the
left-hand sides of partial-order clauses.

Definition 3.4. Given a predicate symbol £> and a relazing goal Q. of the form
£(t) such that condition, we define basic_ext(f, Q) as the following set of
clauses:

(1) f_(Z, S) :- frene (Z, S); - f >(Z; S)
(2) £5(Z, S) := fre02(Z,81), S1>S

(3) frelax(zy S) B fZ(Z; S)yfcondition(z7s)

(4) fcondition(tJS) T normal_form(Flat(Qr))

(5) fz(z, S) :- fz(z,81), S1 > 8

6) £ (Z, 1)

(7) fz(Z,C) - f Z(Zaci); fZ(Z,CQ), 1ub(Cl,C2,C).

Notice that one of the fongition s arguments is ground. In fact, this argument
is the mail query’s argument.

Definition 3.5. Given a relazing goal of the form: £(t) such that condition,
we define query-clause(f) as following:

query(t,S) : _f=(t7 S)
where f— is a predicate defined in basic_ext(f)

Definition 3.6 (Basic_ext and basic_trans of a program). Given a pro-
gram P and a relazing goal Q,, we define

basic_ext(P,Qy) := Ufze head(P) basic_ext(f>,Qr), and

basic_trans(P,Q,) := P' U basic_ext(P,Q;).
Where P' is the program obtained from P translating each partial-order clause
of P to a normal program.

Proposition 3.1. For any partial-order program P and a relazing goal Q,, ba-
sic_trans(P,Q..) is stratified.

Definition 3.7. For any partial-order program P and relaxing goal Qr of the
form:£(t) such that condition, we define its declarative semantics of PUQr
denoted as D(P U Qr), as the stable model semantics for basic_trans(P,Q,)U
query-clause(t) .

4 conclusion

In this paper we introduce the concept of relaxation in the framework of Partial-
Order Programming. The idea of introduce relaxation in Partial-Order Program-
ming is allow to the users give suboptimal solutions in Partial-Order Program-
ming. For this purpose, we define a declarative semantics based on stable seman-
tics which extends the standard declarative semantics to Partial Order Programs
defined in [8].

References

1. Alfred V. Aho, Ravi Setvi, and Jeffrey D. Ullman. Compilers Principles, Techniques,
and Tools. Addison Wesley, 1988.

2. Mauricio Osorio Bharat Jayaraman and K. Moon. Partial order programming (re-
visited). In M. Nivat V.S. Alagar, editor, Proc. AMAST, LNCS 936, pages 561-575.
Springer-Verlag, 1995.

3. Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic
Programming. In R. Kowalski and K. Bowen, editors, 5th Conference on Logic
Programming, pages 1070-1080. MIT Press, 1988.

4. D. Jana and Bharat Jayaraman. Set constructors, finite sets, and logical semantics.
Journal of Logic Programming, 38(1):55-77, 1999.

. Bharat Jayaraman. Implementation of subset-equational programs. Journal of Logic
Programming, 11(4):299-324, 1992.

. Bharat Jayaraman and K. Moon. Subset logic programs and their implementation.
Journal of Logic Programming, 41(2):71-110, 2000.

. Bharat Jayaraman Mauricio Osorio and David Plaisted. Theory of partial-order
programming. Science of Computer Programming, 34(3):207-238, 1999.

. Mauricio Osorio and Bharat Jayaraman. Aggregation and negation-as-failure. New
generation computing, 17(3):255-284, 1999.

