
PStable semantics for possibilistic logic programs

Mauricio Osorio1 and Juan Carlos Nieves2

1 Universidad de las Américas - Puebla
CENTIA, Sta. Catarina Mártir, Cholula, Puebla, 72820 México

osoriomauri@googlemail.com
2 Universitat Politècnica de Catalunya

Software Department (LSI)
c/Jordi Girona 1-3, E08034, Barcelona, Spain

jcnieves@lsi.upc.edu

Abstract. Uncertain information is present in many real applications e.g., medi-
cal domain, weather forecast, etc. The most common approaches for leading with
this information are based on probability however some times; it is difficult to
find suitable probabilities about some events. In this paper, we present a pos-
sibilistic logic programming approach which is based on possibilistic logic and
PStable semantics. Possibilistic logic is a logic of uncertainty tailored for reason-
ing under incomplete evidence and Pstable Semantics is a solid semantics which
emerges from the fusion of non-monotonic reasoning and logic programming;
moreover it is able to express answer set semantics, and has strong connections
with paraconsistent logics.

1 Introduction

To find a representation of the information under uncertainty has been subject of much
debate. For those steeped in probability, there is only one appropriate model for numeric
uncertainty, and that is probability. But probability has its problems. For one thing, the
numbers are not always available. For another, the commitment to numbers means that
any two events must be comparable in terms of probability: either one event is more
probable than the other, or they have equal probability [4]. In fact, in [7], McCarthy and
Hayes pointed out that attaching probabilities to a statement has some objections. For
instance:

The information necessary to assign numerical probabilities is not ordinary
available. Therefore, a formalism that required numerical probabilities would
be epistemologically inadequate [7].

Hence it is not surprising that many other representations of uncertainty have been con-
sidered in the literature. For instance in the MYCIN project which is one of the clearest
representatives of the experimental side of Artificial Intelligence (IA) was shown that
probability theory has limitations for developing automated assistance for medical diag-
nosis [2]. In this project, it was adopted a less formal model. This model uses estimates
provided by expert physicians that reflect the tendency of a piece of evidence to prove
or disprove a hypothesis. The syntax adopted by MYCIN was based on IF-THEN rules
with certainty factors. The following is an English version of one of MYCIN’s rules:

IF the infection is primary-bacteremia (a)
AND the site of the culture is one of the sterile sites (b)
AND the suspected portal of entry is the gastrointestinal tract (c)
THEN there is suggestive evidence (0.7) that infection is bacteroid (d).

The 0.7 is roughly the certainty that the conclusion will be true given the evidence. If
the evidence is uncertain the certainties of the bits of evidence will be combined with
the certainty of the rule to give the certainty of the conclusion.

John McCarthy pointed out in his seminal paper [6] that the MYCIN’s major inno-
vation over many previous expert systems was that it uses measures of uncertainty (not
probabilities) for its diagnoses and the fact that it is prepared to explain its reasoning
to the physician. We can say that MYCIN was one of the most successful projects at
its time; however, it seems that AI’s community has taken few lessons from MYCIN’s
experience for developing new intelligence support systems.

One of the main problems of MYCIN was that it developed a monotonic reasoning
about its diagnoses. Then to update the medical knowledge in order to improve its diag-
noses was a problem. Nowadays, logic programming and non-monotonic reasoning are
solid areas in AI. For instance, during the last two decades, one of the most successful
logic programming approaches has been Answer Set Programming (ASP). ASP is the
realization of much theoretical work on Non-monotonic Reasoning and Artificial Intel-
ligence applications. It represents a new paradigm for logic programming that allows,
using the concept of negation as failure, to handle problems with default knowledge
and produce non-monotonic reasoning [1].

In [9], it was proposed a possibilistic logic programming framework for reasoning
under uncertainty. It is a combination between Answer Set Programming (ASP) [1]
and Possibilistic Logic [3]. This framework is able to deal with reasoning that is at the
same time non-monotonic and uncertain. Since this framework was defined for normal
programs, it was generalized in [10] for capturing possibilistic disjunctive programs
and allowing the encoding of uncertain information by using either numerical values or
relative likelihoods.

We can accept that the language’s expressiveness of the Possibilistic Answer Set
Programming approach (PASP) presented in [9, 10] is rich enough for capturing a wide
family of problems where one have to confront with incomplete information and uncer-
tain information. For instance, the MYCIN’s rule presented previously can be expressed
as follows:

07 : d ← a, b, c.

where a, b, c, d are propositional atoms whose intended meanings are described in the
previous MYCIN’s rule.

PASP could be considered as a good option for developing new intelligence sup-
port systems like MYCIN system such that the support systems could perform non-
monotonic reasoning. However it is obvious that an intelligence support system always
must have an answer to any query to its knowledge base. Since PASP was defined as
an ASP’s extension, there are some possibilistic logic programs which have no possi-
bilistic answer sets. For instance, a single possibilistic claus as α : a ← not a does

not have a possibilistic answer set. In fact, the existence of one clause of this form will
affect all the possibilistic knowledge base such that all the possibilistic knowledge base
will not have a possibilistic answer set. It is quite obvious that this situation could not
be permitted in an intelligence support system like MYCIN.

In this paper, we define a possibilistic logic programming semantics called possi-
bilistic pstable semantics. This semantics is based on pstable semantics [11, 12]. Pstable
semantics emerges from the fusion of paraconsistent logics and ASP. This semantics is
able to capture ASP; moreover it is less sensitive than the answer set semantics.

Like in possibilistic answer set semantics, possibilistic pstable semantics is based on
possibilistic logic. Possibilistic logic is a type of logic of uncertainty tailored for reason-
ing under incomplete evidence and partially inconsistent knowledge. At the syntactic
level it handles formulae of propositional or first-order logic to which are attached de-
grees of necessity. The degree of necessity (or certainty) of a formula expresses to what
extent the available evidence entails the truth of this formula [3]. We argue that possi-
bilistic logic is an excellent approximation of the approach adopted by MYCIN system
which showed that it is practical in real applications.

It is worth mentioning that possibilistic pstable semantics is close related to possi-
bilistic logic. For instance, it has the property that given a possibilistic logic program P
P , if P `PL (x α) then P is equivalent to P ∪ {(x α)} under the possibilistic pstable
semantics.

The rest of the paper is divided as follows: In §2, some basic definitions of possi-
bilistic logic and pstable semantics are presented. In §3, the syntax of our possibilistic
framework is presented. In §4, the possibilistic pstable semantics is defined. Finally in
the last section, we present our conclusions.

2 Background

In this section, we define some basic concepts of Possibilistic Logic and Pstable mod-
els. We assume familiarity with basic concepts in classic logic and in semantics of logic
programs e.g., interpretation, model, etc. A good introductory treatment of these con-
cepts can be found in [1, 8].

2.1 Possibilistic Logic

A necessity-valued formula is a pair (ϕ α) where ϕ is a classical logic formula and
α ∈ (0, 1] is a positive number. The pair (ϕ α) expresses that the formula ϕ is certain
at least to the level α, i.e. N(ϕ) ≥ α, where N is a necessity measure modeling our
possibly incomplete state knowledge [3]. α is not a probability (like it is in probability
theory) but it induces a certainty (or confidence) scale. This value is determined by
the expert providing the knowledge base. A necessity-valued knowledge base is then
defined as a finite set (i.e. a conjunction) of necessity-valued formulae.

Dubois et al.[3] introduced a formal system for necessity-valued logic which is
based on the following axioms schemata (propositional case):

(A1) (ϕ → (ψ → ϕ) 1)

(A2) ((ϕ → (ψ → ξ)) → ((ϕ → ψ) → (ϕ → ξ)) 1)
(A3) ((¬ϕ → ¬ψ) → ((¬ϕ → ψ) → ϕ) 1)

As in classic logic, the symbols ¬ and → are considered primitive connectives, then
connectives as ∨ and ∧ are defined as abbreviations of ¬ and →. Now the inference
rules for the axioms are:

(GMP) (ϕ α), (ϕ → ψ β) ` (ψ min{α, β})
(S) (ϕ α) ` (ϕ β) if β ≤ α

According to Dubois et al., basically we need a complete lattice in order to ex-
press the levels of uncertainty in Possibilistic Logic. Dubois et al., extended the axioms
schemata and the inference rules for considering partially ordered sets. We shall de-
note by `PL the inference under Possibilistic Logic without paying attention if the
necessity-valued formulae are using either a totally ordered set or a partially ordered
set for expressing the levels of uncertainty.

The problem of inferring automatically the necessity-value of a classical formula
from a possibilistic base was solved by an extended version of resolution for possibilis-
tic logic (see [3] for details).

2.2 Syntaxis: Logic programs

The language of a propositional logic has an alphabet consisting of

(i) proposition symbols: p0, p1, ...
(ii) connectives : ∨,∧,←,¬, not,⊥
(iii) auxiliary symbols : (,).

where ∨,∧,← are 2-place connectives, ¬, not are 1-place connective and ⊥ is 0-
place connective. The proposition symbols, ⊥, and the propositional symbols of the
form ¬pi (i ≥ 0) stand for the indecomposable propositions, which we call atoms, or
atomic propositions. The negation sign ¬ is regarded as the so called strong negation
by the ASP’s literature and the negation not as the negation as failure. A literal is an
atom, a, or the negation of an atom not a. Given a set of atoms {a1, ..., an}, we write
not {a1, ..., an} to denote the set of literals {not a1, ..., not an}.

An extended normal clause, C, is denoted:

a ← a1, . . . , aj , not aj+1, . . . , not an

where n ≥ 0, a is an atom and each ai is an atom. When n = 0 the clause is an
abbreviation of a. An extended normal program P is a finite set of extended normal
clauses. By LP , we denote the set of atoms in the language of P .

We will manage the strong negation (¬), in our logic programs, as it is done in ASP
[1]. Basically, it is replaced each atom of the form ¬a by a new atom symbol a′ which
does not appear in the language of the program. For instance, let P be the extended
normal program:

a ← q. ¬q ← r. q. r.

Then replacing the atom ¬q by a new atom symbol q′, we will have:

a ← q. q′ ← r. q. r.

In order not to allow inconsistent answer sets in the ASP’s programs, usually it is added
a normal clause of the form f ← q, q′, f such that f /∈ LP . We will omit this clause
in order to allow an inconsistent level in our possibilistic pstable models. However the
user could add this clause without losing generality.

Sometimes we denote an extended normal clause C by a ← B+, not B−, where
B+ contains all the positive body literals and B− contains all the negative body literals.
When B− = ∅, the clause is called definite clause. A set of definite clauses is called a
definite logic program.

2.3 Pstable semantics

First to definite pstable semantics, we define some basic concepts. Logic consequence
in classic logic is denoted by `. Given a set of proposition symbols S and a theory (a
set of well-formed formulae) Γ , if Γ ` S if and only if ∀s ∈ S Γ ` s. When we treat
a logic program as a theory, each negative literal not a is replaced by ∼ a such that
∼ is regarded as the classical negation in classic logic. Given a normal program P, if
M ⊆ LP , we write P ° M when: P ` M and M is a classical 2-valued model of
P (i.e. atoms in M are set to true, and atoms not in M to false; the set of atoms is a
classical model of P if the induced interpretation evaluates P to true).

Pstable semantics is defined in terms of a single reduction which is defined as fo-
llows:

Definition 1. [12] Let P be a normal program and M a set of literals. We define

RED(P, M) := {l ← B+, not (B− ∩M)|l ← B+, not B− ∈ P}

Let us consider the set of atoms M1 := {a, b} and the following normal program P1:

a ← not b, not c.
a ← b.
b ← a.

We can see that RED(P, M) is:
a ← not b.
a ← b.
b ← a.

By considering the reduction RED, it is defined the semantics pstable for normal
programs.

Definition 2. [12] Let P be a normal program and M a set of atoms. We say that M
is a pstable model of P if RED(P,M) ° M . We use Pstable to denote the semantics
operator of pstable models.

Let us consider again M1 and P1 in order to illustrate the definition. We want to
verify whether M1 is a pstable model of P1. First, we can see that M1 is a model of P1,
i.e. ∀ C ∈ P1, M1 evaluates C to true. Now, we have to prove each atom of M1 from
RED(P1,M1) by using classical inference, i.e. RED(P1,M1) ` M1 . Let us consider
the proof of the atom a, which belongs to M1, from RED(P1, M1).

1. (a ∨ b) → ((b → a) → a) Tautology
2. ∼ b → a Premise from RED(P1, M1)
3. a ∨ b From 2 by logical equivalency
4. (b → a) → a) From 1 and 3 by Modus Ponens
5. b → a Premise from RED(P1, M1)
6. a From 4 and 5 by Modus Ponens

Remember that the formula ∼ b → a corresponds to the normal clause a ← not b
which belongs to the program RED(P1,M1). The proof for the atom b, which also
belongs to M1, is similar. Then we can conclude that RED(P1, M1) ° M1. Hence,
M1 is a pstable model of P1.

3 Possibilistic Normal Logic Programs

In this section, we introduce our possibilistic logic programming framework. We shall
start by defining the syntax of a valid program and some relevant concepts, after that we
shall define the semantics for the possibilistic normal logic programs. In whole paper,
we will consider finite lattices. This convention was taken based on the assumption
that in real applications rarely we will have an infinite set of labels for expressing the
incomplete state of a knowledge base.

3.1 Syntax

First of all, we start defining some relevant concepts3. A possibilistic atom is a pair
p = (a, q) ∈ A ×Q, where A is a finite set of atoms and (Q,≤) is a lattice. We apply
the projection ∗ over p as follows: p∗ = a. Given a set of possibilistic atoms S, we
define the generalization of ∗ over S as follows: S∗ = {p∗|p ∈ S}. Given a lattice
(Q,≤) and S ⊆ Q, LUB(S) denotes the least upper bound of S and GLB(S) denotes
the greatest lower bound of S. Three basic operations between sets of possibilistic atoms
are formalized as follows:

Definition 3. Let A be a finite set of atoms and (Q,≤) be a lattice. Consider PS =
2A×Q the finite set of all the possibilistic atom sets induced by A and Q. ∀A,B ∈ PS ,
we define.
A uB = {(x,GLB{q1, q2})|(x, q1) ∈ A ∧ (x, q2) ∈ B}
A tB = {(x, q)|(x, q) ∈ A and x /∈ B∗} ∪

{(x, q)|x /∈ A∗ and (x, q) ∈ B} ∪
{(x, LUB{q1, q2})|(x, q1) ∈ A and (x, q2) ∈ B}.

A v B ⇐⇒ A∗ ⊆ B∗, and ∀x, q1, q2,
(x, q1) ∈ A ∧ (x, q2) ∈ B then q1 ≤ q2.

3 Some concepts presented in this subsection extend some terms presented in [9].

Proposition 1. [10] (PS,v) is a complete lattice.

Now, we define the syntax of a valid possibilistic normal logic program. Let (Q,≤)
be a lattice. A possibilistic normal clause is of the form:

r := (α : a ← B+, not B−)

where α ∈ Q. The projection ∗ over the possibilistic clause r is: r∗ = a ← B+, not B−.
n(r) = α is a necessity degree representing the certainty level of the information de-
scribed by r.

A possibilistic normal logic program P is a tuple of the form 〈(Q,≤), N〉, where
(Q,≤) is a lattice and N is a finite set of possibilistic normal clauses. The generalization
of the projection ∗ over P is as follows: P ∗ = {r∗|r ∈ N}. Notice that P ∗ is an
extended normal program. When P ∗ is a definite program, P is called a possibilistic
definite logic program.

In order to illustrate a possibilistic normal logic program, let us consider the follow-
ing scenario:

Example 1. Let us suppose that a patient suffering from certain symptoms takes a blood
test, and that the results show the presence of a bacterium of a certain category in his
blood. There are two types of bacteria in this category, and the blood test does not pin-
point whether the bacteria present in the blood is either streptococcus viridans or X. The
problem is that if the bacterium is streptococcus viridans the patient have to be treated
by antibiotics of large spectrum because streptococcus viridans suggests endocarditis.
However, the doctor tries not to prescribe antibiotics of large spectrum, because they
are harmful to the immune system. Then, the doctor in this case must evaluate each
potential choice, where each potential choice has different levels of uncertainty4.

In order to encode this scenario let us consider the lattice 〈{Open, Supported,
P lausible, Supported, Probable, Confirmed, Certain},¹〉, where the following
relations hold: Open ¹ Supported, Supported ¹ Plausible, Supported ¹ Probable,
Probable ¹ Confirmed, Plausible ¹ Confirmed, and Confirmed ¹ Certain.
The elements of this lattice represent relative likelihoods which will be used for en-
coding the uncertainty of our scenario. Then, we could model the doctor’s beliefs as
follows: One doctor’s belief is that it is confirmed that the patient has a bacterium of
category n. Then, this belief could be encoded by:

confimed : category_n.

Another doctor’s belief is that the category n implies two possible bacteria. Then it
could be encoded by:

certain : streptoccus_viridans ← category_n, not bacterium_x.
certain : bacterium_x ← category_n, not streptoccus_viridans.

4 This example is an adaptation of Example 6 from [5]

Now, if the bacterium is streptococcus_viridans, then the patient have to be treated
by antibiotics of large spectrum.

certain : antibiotics_large_spectrum← streptococcus_viridans.

If the bacteria is x, then the patient could be treated without antibiotics of large spec-
trum.

probable : alternative_treatment← bacterium_x.

One of the main doctor’s belief is that he should not use antibiotics of large spectrum if
it has not been established that there is not another alternative treatment.

plausible : ¬antibiotics_large_spectrum← not ¬alternative_treatment.
plausible : ¬alternative_treatment← not ¬antibiotics_large_spectrum.

We can appreciate the use of relative likelihoods could facilitate the modeling of
incomplete states of a belief.

4 Pstable semantics and possibilistic programs

In this section, we define the possibilistic pstable semantics. In order to define pstable
semantics for possibilistic normal programs, let us define the following single reduction
based on Definition 4.

Definition 4. Let P be a possibilistic normal program and M a set of literals. We define

PRED(P,M) := {(α : l ← B+, not (B− ∩M))|(α : l ← B+, not B−) ∈ P}

Let us consider the following example.

Example 2. First, let S be the set {(a, 0.6), (b, 0.7)} and P1 be the following pos-
sibilistic normal program where the possibilistic clauses are built under the lattice
Q := ({0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1},≤)5:

0.7 : a ← not b, not c.
0.6 : a ← b.
0.8 : b ← a.

Then, the program PRED(P1,M) is:
0.7 : a ← not b.
0.6 : a ← b.
0.8 : b ← a.

5 ≤ is the traditional relation between rational numbers.

Definition 5 (Possibilistic Pstable Semantics). Let P be a possibilistic normal logic
program and M be a set of possibilistic atoms such that M∗ is a pstable model of P ∗.
We say that M is a possibilistic pstable model of P if and only if PRED(P,M) `PL

M and @M ′ such that M ′ 6= M , PRED(P, M) `PL M ′ and M v M ′.

Example 3. Let P1 be the possibilistic program of Example 2 and S := {(a, 0.6), (b, 0.7)}.
We have already seen that PRED(P1, S) is:

0.7 : a ← not b.
0.6 : a ← b.
0.8 : b ← a.

Then, we want to know if S is a possibilistic pstable models of P1. First of all, we have
already seen in Section 2.3 that S∗ is a pstable models of P ∗1 . Hence, we have to con-
struct a proof in possibilistic logic for (a, 0.6) and (b, 0.7). Let us consider the proof for
the possibilistic atom (a, 0.6):

1. (a ∨ b) → ((b → a) → a) 1 Tautology
2. ∼ b → a 0.7 Premise from PRED(P1,M1)
3. a ∨ b 0.7 From 2 by possibilistic logical equivalency
4. (b → a) → a) 0.7 From 1 and 3 by GMP
5. b → a 0.6 Premise from PRED(P1,M1)
6. a 0.6 From 4 and 5 by GMP

The proof for (b, 0.7) is similar to the proof of (a, 0.6). Notice that @ S′ such that
PRED(P1, S) `PL S′ and S v S′. Therefore, we can conclude that S is a possibilistic
pstable models of P1.

It is worth mentioning that the possibilistic program P1 is an example where the
possibilistic pstable semantics is different to the possibilistic stable semantics [9] and
the possibilistic answer set semantics [10]. In fact, P1 has no possibilistic stable model
neither possibilistic answer set.

In order to complete Example 1, we can see that the scenario has two possibilistic
pstable models:

1. {(category_n, confimed), (streptoccus_viridans, certain),
(antibiotics_large_spectrum, certain), (¬alternative_treatment, plausible)}

2. {(category_n, confimed), (bacterium_x, certain),
(alternative_treatment, probable), (¬antibiotics_large_spectrum, plausible)}

Notice that each one suggests a treatment depending of the bacterium. In this example
the possibilistic pstable semantics coincides with the possibilistic answer semantics
[10].

Even thought, there are programs where the possibilistic pstable semantics does
not coincide with the possibilistic stable semantics neither the possibilistic answer set
semantics, we can identify a relationship between the possibilistic answer set semantics
and the possibilistic pstable semantics.

Lemma 1. Let P be a possibilistic normal program. If M is a possibilistic answer set
of P implies that M is a possibilistic pstable model of P .

Remark 1. It is worth mentioning that when P = 〈(Q,≤), N〉 is a possibilistic program
which does not contain extended atoms i.e. atoms of form ¬a and (Q,≤) is a totally
ordered set, it will be true that: If M is a possibilistic stable model of P implies that M
is a possibilistic pstable model of P .

An outstanding property of the possibilistic pstable semantics is that this semantics
support a kind of monotony w.r.t. the inference under possibilistic logic. In order to
formalize this property, we will say that P is equivalent to P ′ under the possibilistic
pstable semantics if and only if any possibilistic pstable model of P is also a possibilis-
tic pstable model of P ′ and vice versa.

Lemma 2. Let P be a possibilistic normal program. If P `PL (x α) then P is equiv-
alent to P ∪ {(x α)} under the possibilistic pstable semantics.

Notice that the possibilistic answer set semantics [10] and the possibilistic stable
semantics [9] do not satisfy that if P `PL (x α), then P is equivalent to P ∪ {(x α)}
under either the possibilistic answer set semantics or the possibilistic stable semantics.
In order to show this, let us consider the single possibilistic logic program P :

α : a ← not a

It is clear that P `PL (a α). P has no possibilistic stable model neither possibilistic
answer set. However P ∪ {(a α)} has a possibilistic stable model and a possibilistic
answer set which is the same in both cases and is {(a, α)}.

The possibilistic semantics introduced in [10] was defined for the family of possi-
bilistic disjunctive logic programs. This means that the possibilistic clauses could have
a disjunction in their heads. Since the possibilistic pstable semantics is defined for pos-
sibilistic normal programs, one can think that the possibilistic pstable semantics is less
expressive than the possibilistic answer semantics. However, an interesting result is that
the possibilistic pstable semantics is the same expressive than the possibilistic answer
sets. By lack of space, we will omit the formal presentation of this result.

5 Conclusions

Uncertain information is present in many real applications e.g., medical domain, weather
forecast, etc. To find a suitable representation of this kind of information has been sub-
ject of much debate. The most common approaches for leading with this information
are based on probability however some times; it is difficult to find suitable probabilities
about some events.

According to the experimental side of Artificial Intelligence, it seem that a good
form of capturing uncertain information is to adopted models where they could be close
to the common sense of an expert of an area. For instance, MYCIN project [2] used
estimates provided by expert physicians that reflect the tendency of a piece of evidence
to prove or disprove a hypothesis.

Possibilistic logic is a type of logic of uncertainty tailored for reasoning under in-
complete evidence and partially inconsistent knowledge. At the syntactic level it han-
dles formulae of propositional or first-order logic to which are attached degrees of ne-
cessity. The degree of necessity (or certainty) of a formula expresses to what extent

the available evidence entails the truth of this formula [3]. We argue that possibilistic
logic is an excellent approximation of the approach adopted by MYCIN system which
showed that it is practical in real applications.

In this paper, we introduce a new possibilistic logic programming semantics called
possibilistic pstable semantics. This semantics is closer to possibilistic logic than the
two possibilistic semantics defined until now [9, 10]. Since the possibilistic pstable se-
mantics is less syntactic sensitive than the possibilistic stable semantics [9] and the
possibilistic answer set semantics [10], this semantics guaranties the existences of pos-
sibilistic pstable models. It is worth mentioning that since the possibilistic pstable se-
mantics is based on pstable semantics which emerges from the fusion of paraconsistent
logics ans ASP, the possibilistic pstable semantics is influenced by paraconsistent logic
and ASP.

Acknowledgement

We are grateful to anonymous referees for their useful comments. J.C. Nieves wants to
thank CONACyT for his PhD Grant.

References
1. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press, Cambridge, 2003.
2. B. G. Buchanan and E. H. Shortliffe. Rule-Based Expert Systems: The MYCIN Experiments

of the Stanford Heuristic Programming Project. Addison-Weslay, 1985.
3. D. Dubois, J. Lang, and H. Prade. Possibilistic logic. In D. Gabbay, C. J. Hogger, and J. A.

Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic Programming, Vol-
ume 3: Nonmonotonic Reasoning and Uncertain Reasoning, pages 439–513. Oxford Univer-
sity Press, Oxford, 1994.

4. J. Y. Halpern. Reasoning about uncertainty. The MIT Press, 2005.
5. H. Jakobovits and D. Vermeir. Robust semantics for argumentation frameworks. Journal of

logic and computation, 9(2):215–261, 1999.
6. J. McCarthy. Some Expert System Need Common Sense. Annals of the New York Academy

of Sciences, 426(1):129–137, 1984.
7. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of artificial

intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages 463–502.
Edinburgh University Press, 1969. reprinted in McC90.

8. E. Mendelson. Introduction to Mathematical Logic. Chapman and Hall/CRC, Fourth edition
1997.

9. P. Nicolas, L. Garcia, I. Stéphan, and C. Lafèvre. Possibilistic Uncertainty Handling for
Answer Set Programming. Annal of Mathematics and Artificial Intelligence, 47(1-2):139–
181, June 2006.

10. J. C. Nieves, M. Osorio, and U. Cortés. Semantics for possibilistic disjunctive programs
(poster). In G. B. Chitta Baral and J. Schlipf, editors, Ninth International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR-07), number 4483 in LNAI,
pages 315–320. Springer-Verlag, 2007.

11. M. Osorio, J. A. Navarro, J. R. Arrazola, and V. Borja. Ground nonmonotonic modal logic
s5: New results. Journal of Logic and Computation, 15(5):787–813, 2005.

12. M. Osorio, J. A. Navarro, J. R. Arrazola, and V. Borja. Logics with Common Weak Com-
pletions. Journal of Logic and Computation, 16(6):867–890, 2006.

