Defining new argumentation-based semantics by minimal models

Juan Carlos Nieves and Ulises Cortés
Universitat Politecnica de Catalunya
Software Department

c¢/Jordi Girona 1-3, E08034, Barcelona, Spain

{jcnieves,ia}@lsi.upc.edu

Mauricio Osorio
Universidad de las Américas - Puebla
CENTIA, Sta. Catarina Martir

Cholula, Puebla, 72820 México
osoriomauri@googlemail.com

Ivan Olmos and Jesus A. Gonzalez
Instituto Nacional de Astrofisica, Optica y Electronica
Luis Enrique Erro No. 1, Sta Maria Tonantzintla, México, C.P. 72840
{iolmos,jagonzalez } @inaoep.mx

Abstract

Dung’s argumentation approach is a unifying ap-
proach which has played an influential role on argu-
mentation research and Artificial Intelligence (Al).
Based on a proper representation of Dung’s argumenta-
tion approach and minimal models, we introduce a novel
argumentation semantics called preferred™ seman-
tics which follows the preferred semantics’ philosophy.
Also, we show how to infer preferred™ semantics us-
ing a software tool called SI-COBRA that was introduced
recently.

Key words Argumentation, Logic programming,
subgraph isomorphism.

1. Introduction

The main purpose of argumentation theory is to
study the fundamental mechanism, humans use in ar-
gumentation, and to explore ways to implement this
mechanism on computers. In fact, argumentation the-
ory has a wider range of application, for instance, ar-
gumentation is gaining increasing importance as a fun-
damental approach in multi-agent interaction, mainly
because it enables rational dialogue and because it en-
ables richer forms of negotiation that have hitherto
been possible in game theory or heuristic based mod-
els [21]. Also, argumentation theory is a suitable ap-
proach for practical and uncertain reasoning, where
arguments support conclusions. The reasoning in ar-
gumentation theory is not explained in terms of the
interpretation of a defeasible condition, but in terms

of the interactions between conflicting arguments. Sur-
veys of this research field are [20, 7).

Although several approaches have been proposed for
argument theory, Dung’s approach presented in [11],
is a unifying framework which has played an influen-
tial role on argumentation research and Al. In fact,
Dung’s approach has been influencing subsequent pro-
posals for argumentation systems, e.g., [4]. Besides,
Dung’s approach is mainly relevant in fields where con-
flict management plays a central role. For instance,
Dung showed that his theory naturally captures the
solutions of the theory of n-person game and the well-
known stable marriage problem. In our case, the moti-
vation of this research is to support medical decision-
making in multi-agent systems [22, 13].

Dung’s framework is captured by four argumenta-
tion semantics: stable semantics, preferred semantics,
grounded semantics, and complete semantics. The cen-
tral notion of these semantics is the acceptability of the
arguments. An argument is called acceptable if and only
if it belongs to a set of arguments which is called ez-
tension.

Although Dung’s framework is captured by four ar-
gumentation semantics, the main semantics for collec-
tive acceptability are the grounded semantics and the
preferred semantics. The first one adheres to the so-
called unique-status approach, since for a given argu-
mentation framework it always identifies a single ex-
tension, called grounded extension. The preferred se-
mantics follows, instead, a multiple-status approach by
identifying a set of preferred extensions. Since, the pre-
ferred semantics overcomes the limitations of the stable
semantics and the grounded semantics, it is regarded
as the most satisfactory approach. For instance, John

Pollock made preferred semantics one of the key ingre-
dients of his revised formalism [19]. Also, it has been
shown that some non-monotonic logic programming se-
mantics can be viewed as a special form of this abstract
argumentation semantics [5, 11].

Nowadays, it has been pointed out that the preferred
semantics has some problems [20, 3, 6]. Although, the
preferred semantics’ problems happen in some partic-
ular cases, it is not difficult to build examples in our
medical domain where preferred semantics’ problems
protrude [13]. So, we need to find some new abstract
argumentation semantics, however it is clear that the
new argumentation semantics mostly follows the pre-
ferred semantics’ philosophy, since preferred semantics
has shown its utility.

In this paper, we introduce an interesting and cau-
tious preferred semantics’ extension which is called
preferred™ semantics. The preferred™ semantics has
some interesting properties. For instance, one of the
computational problems of the preferred semantics is
that there are few algorithms to infer preferred ex-
tensions. As, the preferred® semantics is characterized
by a proper representation of an argumentation frame-
work and minimal models. Then, it is possible to use
several techniques in order to find preferred™ exten-
sions. For instance, by assuming a polynomial time pre-
possessing of an argumentation framework, we can use
the following techniques: DLV System[10, 15, 14, 1],
UNSAT- algorithms[1], SAT-solvers[1], Graph theory
8]

It is well-known that the decision problem of the
preferred extensions of an argumentation framework is
CO-NP-Complete [12]. Hence, it is important to ex-
plore alternative approaches to solve the problem. In
that sense, we propose to use a novel graph algorithm
called SI-COBRA [17] to infer preferred® extensions.
Notice that, the preferred™ semantics is an extension
of the preferred semantics, so this technique is also a
new technique to infer preferred extensions.

The SI-COBRA algorithm is capable to detect in-
stances of a graph G’ in a graph G (subgraph iso-
morphism detection) using a linear sequence of codes
to represent the graphs. As a result, the algorithm
might show the association between the vertices and
edges of G’ with the corresponding vertices and edges
of G (when a valid mapping exists). This algorithm
has successfully been applied in theoretical and practi-
cal domains. For example, it has been used in genome
databases in order to find low-complexity sequences

1 It is important, to point out that all these techniques are also
useful to infer only the preferred semantics. This because the
preferred extensions are also characterized by minimal models
(see [14] for details).

[18], in web-log files to find access patterns [16] and
in chemical compound domains [16].

The rest of the paper is structured as follows: In §2,
we present the syntax and semantics of our logic pro-
grams, and also a short description of Dung’s approach.
In §3, we do a short road map of the basic principles
which any preferred semantics’ extension should always
satisfy. In §4, we present our novel semantics. In §5, we
present how to use the SI-COBRA algorithm for infer-
ring preferred™ extensions. And finally in the last sec-
tion, we present our conclusions.

2. Background

In this section, we define the syntax of the logic pro-
grams that we will be using in this paper. Also, we will
present a short description of the Dung’s argumenta-
tion theory.

2.1. Syntax

A literal is an atom, a, or the negation of an
atom —a. Given a set of atoms {a1,...,a,}, we write
—{ai, ..., an} to denote the set of atoms {—ay, ..., ~a,}.
A normal clause, C, is denoted: a < ly,...,[,, where
n > 0, a is an atom, and each [; is a literal. Whenn =0
the clause is an abbreviation of @ «— T2, where T is =L
(tratar de que el superindice de la nota no aparente ser
un exponente que eleva la base al cuadrado). Some-
times, we denote a clause C by a «+ BT, =B~, where
BT contains all the positive body atoms and B~ con-
tains all the negative body atoms. We also use body(C')
to denote BT U -B~. A normal program P is a fi-
nite set of normal clauses, formally a normal program
is a conjunction of its normal clauses. We denote by
HEAD(P) the set {ala «— Bt, =B~ € P}. A signa-
ture £ is a finite set of elements that we call atoms.
We denote by Lp the signature of P, i.e. the set of
atoms that occur in P. Given a signature £, we write
Prog, to denote the set of all programs defined over
L. We point out that whenever we consider logic pro-
grams, our negation — corresponds to the default nega-
tion not used in Logic Programming.

2.2. Semantics

Let P be a normal program. An interpretation I is a
mapping from Lp to {0, 1}, where the generalization of
I to connectives is as follows: I(aAb) = min{I(a),I(b)},
I(aVvb) =max{I(a),I(b)}, I(a « b) = 0 if and only if
I(b)=1and I(a) =0, I(-a) =1—1(a), I(L) =0. An

2 orsimply a.

interpretation M is called a model of P if and only if
for each clause ¢ € P, M(c) = 1. Finally, M is a min-
imal model of P if it does not exist a model M’ of P
such that M’ C M.

Our novel argumentation semantics is based on
rewriting systems, so we define some transformation
rules for logic programs.

Definition 1 (Basic Transformation Rules) [9] A
transformation rule is a binary relation on Prog,. The
following transformation rules are called basic. Let a pro-
gram P € Progr be given.

RED™: Thistransformation can be applied to P, if there
is an atom a which does not occur in HEAD(P).
RED™ transforms P to the program where all oc-
currences of —a are removed.

RED ™ : Thistransformation can be applied to P, if there
isarulea «— T € P. RED™ transforms P to the pro-
gram where all clauses that contain —a in their bod-
ies are deleted.

Success: Suppose that P includes a fact a «— T and a
clause ¢ «— body such that a € body. Then we re-
place the clause ¢ «— body by q — body \ {a}.

Failure: Suppose that P contains a clause ¢ «— body
such that a € body and a ¢ HEAD(P). Then, we
erase the given clause.

Loop: We say that P results from Py by Loopa if, by
definition, there is a set A of atoms such that

1. for each rule a < body € Py, ifa € A, then
body N A # 0,

2. Py:={a« body € Py : body N A =},
3. P 4P

Essentially, any basic transformation rule reduces a
normal program P based on the syntactic information
that there is in P. In this paper, we denote by CSj
the set of transformation rules of Definition 1. When,
we apply a set of transformation rules e.g., C'Sp, to
a normal program P, there is a reduced program P’
where none of the transformation rules can be applied
to P’. Usually, P’ is called the uniquely determined
normal form of the program P w.r.t. a set of transfor-
mation rules e.g., C'Sy. We shall denote the uniquely
determined normal form of a program P w.r.t. C'Sy by
normes, (P).

In order to illustrate the basic transformation rules,
let us consider the following example.

Example 1 Let P be the following normal program:

d(c) « d(a).

Now, let us apply C'Sy to P. Since d(a) ¢ HEAD(P),
then, we can apply RED™ to P. Thus we get:

d(b) < T. d(c) « —d(b).

d(c) « d(a).

Notice that now we can apply RED™ to the new program,
thus we get:

) — T. d(c) « d(a).

Finally, we can apply Failure to the new program, thus
we get:

d(b) « T.
This last program is called the normal form of P w.r.t.

CSy, because none of the transformation rules from C'Sy
can be applied.

2.3. Background: Argumentation

The fundamental Dung’s definition is the concept
called argumentation framework which is defined as fol-
lows:

Definition 2 [11] An argumentation framework is a
pair AF = (AR, attacks), where AR is a finite set of ar-

guments, and attacks is a binary relation on AR, i.e. at-
tacks C AR x AR.

a >b >C

Figure 1. A single argumentation framework

Any argumentation framework could be re-
garded as a directed graph. For instance, if
AF = {{a,b,c}, {(a,b),(b,c)}), then AF is rep-
resented as in Figure 1. We say that a attacks b
(or b is attacked by a) if attacks(a,b) holds. Sim-
ilarly, we say that a set S of arguments attacks b
(or b is attacked by S) if b is attacked by an ar-
gument in S. For instance in Figure 1, {a} attacks
b.

Definition 3 [11] A set S of arguments is said to be
conflict-free if there are no arguments A, B in S such that
A attacks B.

For instance, the sets {a}, {b}, and {a,c} are
conflict-free sets w.r.t. Figure 1.

Definition 4 [11] (1) An argument A € AR is accept-
able with respect to a set S of arguments iff for each argu-
ment B € AR: If B attacks A then B is attacked by S. (2)
A conflict-free set of arguments S'is admissible iff each ar-
gument in S is acceptable w.r.t. S.

One of the semantics of the Dung’s approach which
has played an influential role on argumentation re-
search is the preferred semantics. This semantics is de-
fined as follows:

Definition 5 [11] A preferred extension of an argumen-
tation framework AF is a mazimal (w.r.t. inclusion) ad-
miassible set of AF.

The admissible sets of Figure 1 are {a} and {a,c},
then the only preferred extension is {a,c}. Dung sug-
gested other argumentation semantics, however we do
not present them here, because they are not the moti-
vation of this paper.

Dung [11] defined some important concepts w.r.t.
the relationship between arguments when they are tak-
ing part of a sequence of attacks.

e An argument B indirectly attacks A if there exists
a finite sequence Ay, ..., A2,4+1 such that 1) A =
Ap and B = Agy41, and 2) for each i, 0 < i < 2n,
A;4+1 attacks A;.

e An argument B indirectly defends A if there exists
a finite sequence Ay, ..., Aa, such that 1) A = Ay
and B = Aj, and 2) for each i, 0 <i < 2n, A;11
attacks A;.

e An argument B is said to be controversial w.r.t. A
if B indirectly attacks A and indirectly defeats A.

e An argument is controversial if it is controversial
w.r.t. some argument A.

Based on these concepts, Dung defined a family of
argumentation frameworks.

Definition 6 [11] An argumentation framework is lim-
ited controversial if there exists no infinite sequence of
arguments Ag, ..., Apn,... such that A;y; is controver-
stal w.r.t. A;.

We will consider special kind of arguments for defin-
ing our new semantics. These arguments are called
acyclic arguments, defined as follows:

Definition 7 [1/] Let AF = (AR, Attacks) be an argu-
mentation framework and A € AR. A is an acyclic ar-
gument if there is not a sequence of attacks Ao, ..., Ay
such that 1) A = Ay and A = A,,, and 2) for each i,
0<i<n-—1, A attacks A;.

3. Looking for a new argumentation-
based semantics

As we commented in the introduction, it has been
found that there are some problems in the behaviour
of the prefered semantics [20, 3, 6]. Hance, we need to

find some new abstract argumentation semantics, how-
ever the new argumentation semantics most it follows
preferred semantics’ philosophy, since preferred seman-
tics has been shown its utility. Then, one of the greatest
steps is to find some fundamental principles for argu-
mentation semantics. The intension of this short sec-
tion is to do a short road map of the basic principles
which any preferred semantics’ extension should always
satisfy.

There are two main principles which are well ac-
cepted [20, 2]: Conflict-free. This principle suggests
that any set of acceptable arguments (extension) is be
a conflict-free set. Reinstatement. In the case of an
argumentation framework consisting of a defeat chain
(see Figure 1) it is widely acceptable that the initial
node, which has no defeaters e.g., argument a, and all
the other nodes in odd position, whose defeaters are de-
feated by an undefeated node e.g., argument ¢, should
be regarded as undefeated, while nodes in even posi-
tion e.g., argument b, should be regarded as defeated.

To be close to preferred semantics’ philosophy, it is
relevant to identify families of argumentation frame-
works where the preferred semantics’ behavior is well
accepted. For instance, an interesting family of argu-
mentation frameworks is the limited controversial argu-
mentation framework. The limited controversial frame-
works have the property of begin coherent. This means
that the stable and preferred semantics coincide. And
also, any limited controversial framework has at least
a nonempty complete extension [11]. This suggests a
principle that we called Coherent: For any limited
controversial argumentation framework, a new argu-
mentation semantics should coincide with the preferred
semantics.

Admissibility is the basic notion of acceptability for
Dung’s approach. It relies upon the notion of defence
and is such that if an argument does not belong to an
admissible set, then its attacks cannot be used to de-
fend any argument of the admissible set. This restric-
tion close to the preferred semantics looks only for sets
of arguments which are defended by themselves. So, it
is clear that any preferred semantics’ extension shall re-
lax the admissible sets’ definition. However that relax-
ation most include the admissible sets. We called this
restrictions Preserving admissibility.

4. Preferred™ semantics

In this section, we present an interesting extension of
the preferred semantics which is based on a proper rep-
resentation of an argumentation framework, in terms of
normal programs, and minimal models.

The representation of an argumentation framework
that we are going to consider was first introduced in
[14] and it is based on normal programs. We use the
predicate d(X), the intended meaning of d(X) is “X is
defeated”.

To build our representation, we consider the set of
arguments which attack a particular argument.

Definition 8 Let AF = (AR, Attacks) be an argumen-
tation framework. The direct defeaters of A € AR is the
set D(A) := {B|(B, A) € Attacks}.

The representation of any argument, in terms of nor-
mal clauses, is defined as follows:

Definition 9 [14] Let AF = (AR, Attacks) be an argu-
mentation framework and A € AR. We define the trans-
formation function ®(A) as follows:

IfID(A)| = 1 and A is an acyclic argument

P(A) :=d(A) «— —d(B) where B € D(A)

otherwise
P(A) = (/\ d(A) «— ~d(B))A(/\ d(A) — /\ d(C))
BED(A) BED(A) CceD(B)

So, the representation of an argumentation frame-
work is defined as follows.

Definition 10 [14] Let AF = (AR, Attacks) be an ar-

gumentation framework. We define its associated normal
program as follows:

Pari= [\ @A)
A€AR
In order to illustrate the definitions, let us consider
the following example.

Example 2 Let AF := (AR,attacks) be an argu-
mentation framework, where AR := {a,b,c,d} and
attacks = {(a,b),(b,a),(a,c),(b,c),(c,d)} (see Fig-
ure 2). Then, ® op is :

d(a) < —d(b) d(a) « d(a).
d(b) «— —d(a) d(b) < d(b).
d(c) « —d(b) d(c) < d(b).
d(c) « —d(a d(c) « d(a).

In order to define our new semantics, we define the
function s(F).

Definition 11 Let AF = (AR, Attacks) be an argumen-
tation framework. Given a set of arguments E C AR,
s(E) is defined as follows: s(E) := {d(a)|la € AR\ E}

a\—)d
o

Figure 2. An argumentation framework with a
two-length cycle.

Essentially, we understand that if E is a set of ac-
ceptable arguments then s(E) will be the set of de-
feated arguments. In other words, s(F) expresses the
complement of the set E w.r.t. AR. Now, we define our
concept of admissible set.

Definition 12 Let AF = (AR, Attacks) be an argumen-
tation framework and E C AR. We say that E is a
admissible™ set of AF if and only if s(E) is model of
normes, (Par).

In order to illustrate the definition, let us consider
the program ¢4 from Example 2. We can see that
normes,(Par) = ®ar, because we can not apply any
transformation R € C'Sy to ® 4. So, we can consider
® 4r’s models in order to find the admissible set of
AF. ® 4 has two modes: {d(a),d(c)} and {d(b),d(c)}.
Then, the admissible™ sets of AF are: {a,d} and {c, d}.
An important property of our admissible™ sets is that
they are conflict-free sets.

Proposition 1 Let AF = (AR, Attacks) be an argu-
mentation framework and E C AR. E is an admissible™
set of AF then E is a conflict-free set of arguments

Now, by considering the mapping ®, we define our
extension of the preferred semantics. The definition of
our new semantics is defined in terms of minimal mod-
els as follows.

Definition 13 Let AF = (AR, attacks) be an argu-
mentation framework, E C AR. E is a preferred® ez-
tension of AF if and only if s(E) is a minimal model of
normes, (Par).

As, we saw the argumentation framework of Exam-
ple 2 has two models, in that case both models are mini-
mal, then both models correspond to the preferred™ ez-
tensions which are : {a,d} and {¢, d}. Particulary, in
Example 2 both preferred semantics and preferred™ se-
mantics coincide. In fact, the preferred™ semantics and
preferred semantics coincide for any limited controver-
sial argumentation framework.

Proposition 2 Let AF := (AR, attacks) be a limited
controversial argumentation framework. Then, each pre-
ferred extension is a preferred™ extension and vice versa.

With the following theorem, we formalize that the
preferred™ semantics is an extension of the preferred
semantics.

Theorem 1 Let AF := (AR, attacks) be an argumen-
tation framework. If E is a preferred extension of AF,
then there is a preferredt extension ET such that E C
E*.

Now, let us consider another example where the
preferred ™ semantics takes relevance.

Example 3 Let AF = (AR, attacks) be an argumen-
tation framework, where AR := {a,b,c,d,e} and at-
tacks := {(a,c),(c,b),(b,a),(a,d), (b, d),(c,d),(d,e)}
(see Figure 3). Structurally the only difference be-
tween the argumentation framework of Example 2 and
AF isthat one has a two-length cycle and the another one
has a tree-length cycle. As we mentioned before, the pre-
ferred extensions of Example 2 are: {d(a),d(c)} and
{d(b),d(c)}. Notice that the intersection of both pre-
ferred extensions is {c}. This means that we can al-
ways consider the argument ¢ as acceptable. Now, by
applying the preferred semantics to AF, the only pre-
ferred extension is : {}. This means that length-cycle
affects to the preferred semantics, because we can ex-
pect to get at least the argument e as an accepted ar-
gument. In fact, this is a widely discussed example
[20, 3]. Now, let us consider the preferred™ seman-
tics. The only preferred™ extension is: {e}.

s

Figure 3. An argumentation framework with a
three-length cycle.

5. Computing the preferred™ semantics

In this section, we present a technique to infer
preferredt extensions. Since, the preferred™ semantics
is an extension of the preferred semantics, this tech-
nique is also a new form to infer preferred extensions.

5.1. A Graph-Based Representation

In this subsection, we describe the way in which
a normal program ®4r can be described through a
graph-based representation. The idea consists on build-
ing a subgraph isomorphism instance (G, G), where G’
is a complete graph that represents a possible model of
® 4, and G represents the program @ 4.

We start by presenting the definitions of graph, sub-
graph and isomorphism. These definitions are oriented
to work with undirected labeled graphs. After that, the
proposed reduction/representation is presented.

Definition 14 An undirected graph is a 6-tuple G =
(V,E,Ly,Lg,«,), where:

o V = {uli =1,...,m}, is the finite set of vertices,
V#£03

o EC {{v,v;}:v,v, €V}

o Ly, is aset of vertex labels

o Lg, isaset of edge labels

e o« : V — Ly, is a function assigning labels to the
vertices

e 3: FE — Lg, is a function assigning labels to the
edges

In our approach, we use vertices labels to store the
information of a program. This is the main reason of
why we work with undirected labeled graphs.

Definition 15 Let G be a graph, where G =
(V,E,Ly,Lg,a,3). A subgraph G° of G, de-
noted by G5 C G, G5 = (V5 E% Ly, L3, o, %) is a
graph such that VS CV,E° C E,a® C a and 3° C .
Definition 16 Given two graphs G' and G, G’ is iso-
morphic to G, denoted by G' = G, if there exists [:
V' - Vandg: E' — E as bijections, where:

o Vo' e V' o/ (v') = a(f(v'))

o V{vj,vj} € B, B'({vj, vj}) = Blg({vi, vj}))

In other words, an isomorphism between G’ and G

exists if the topology and labeling of both graphs is ex-
actly the same.

Definition 17 Let G’ and G be two graphs. G’ is a sub-
graph isomorphic to G if there exists G C G such
that G' = G¥.

Now, we describe the process that transforms a nor-
mal program ® 4 into its graph-based representation.
This process is performed in three steps:

3 In this document, subindex i is a unique value associated to
each vertex and it is only used to identify each vertex.

1. First, we get the normal form of the program
® 4, denoted by ®%, this means that &%, =
normes, (Par);

2. Second, ®% is transformed into its conjunctive
normal form, represented by ®, p;

3. And finally, ', is represented through a
graph.

Clearly, the first two steps are easy to perform. In
this section, we are interested on describing a process
to transform @, into its graph-based representation
and finding ® 4p’s models through the subgraph iso-
morphism problem. In the rest of this subsection, we
describe the process to transforming ®’, » to its graph-
based representation.

Let C = {C1,...,Cyr} be aset of clauses, n = |/, |,
where C, € C represents a conjuntive normal clause
from @', . Each C, is denoted by Cy, = {u1,...,us, },
sy = |Cy|, where u; € Cy is either ~d(A) or d(A4),
A € AR (for the sake of simplicity, we refer to u; as an
atom).

It is important to remark that a set of clauses C =
{C,...,C,} is satisfiable iff: VC, € C:3u e Cyu
is true. The next definition presents the way in which
a set C' of clauses can be represented by a graph. Let
f(z,u) be a function that maps an atom v from C, to
a vertex in the graph.

Definition 18 A graph-based representation of
a set C = {Ci,...,C,} of clauses is the graph

G=(V,E,Ly,Lg,«a,3), where:

o V= U Vi If f(z,u) maps each atom u from
vC, el
each clause Cy to a verter v, then V, = {v

flz,u) =v,Vu € Cy}.
o {v;,v;} € Eif holds:
a)vi,v; € V and,
b) ifv; € Vy, thenv; ¢ V; and,
c)if fz,u) = v, fly,w) = v; and u, w are the
same atom, then u # —w or ~u # w.

e Ly ={1,2,3,...,m}, |Lg| = 1 (all the edges have
the same label)

e a:V — Ly, where: a(v;) =z if f(z,u) = v;
e 3:FE— Lg

Note that each atom in each clause C, € C is
mapped to one vertex in G. Also, each clause C, de-
rives a set of vertices V,, where each vertex v € V,, has
the label x and V' is conformed from the union of the
sets V;. On the other hand, there are not edges be-
longing to E that come from the same V, and, there
are not edges between vertices that represent the same
atom (u) and one of them is negated.

It is interesting to remark that we assign the same
label to each member of a set of vertices V... With this
proposal, our objective is to reduce the number of oper-
ations to perform in the association process (at the mo-
ment of finding the subgraph isomorphic), because if a
vertex v in V, has already been considered in the map-
ping process, then none of the remaining vertices in V.
will be considered again.

Based on Definition 18, we introduce the following
lemma.

Lemma 1 Let % be a normal program and C repre-
sents its conjuntive normal clause. A graph-based repre-
sentation of @ - is a graph G such that vertices in G rep-
resents the literals of each clause C, € C and edges in
G represent the valid associations between atoms that be-
long to different clauses C,, € C.

By considering Lemma 1, we will show how a normal
program ® 4 can be reduced to an instance (G, G') of
the subgraph isomorphism problem.

First, we define graph G as in Definition 18 and G/ =
(V',E'| LY, L%, o/, 3'), where: V' ={v] :i=1,...,n}

n is the number of clauses), B’ = {{vl,v:} : i # j

2’ S:tL Ly =1 a’sz S‘);/ — L’{{wﬁerje a(v?i}z"
Vv Vv, g E, Vv i

and §': E' — L.

Note that G’ is a complete graph with n vertices, be-
cause we need to find a subgraph where there should
exist an edge between each pair of vertices and a ver-
tex representing one atom for each clause (this is the
reason of why G’ has n vertices). Therefore, G’ repre-
sents a possible model of ®/, . Then, we build an in-
stance (G, G) of the subgraph isomorphism problem
where we want to find if 35 : S C G and S = G'. If
(G',G) is a yes-instance of the subgraph isomorphism
problem, then S satisfies C through the atoms repre-
sented by the vertices in G'.

Example 4 Let ® 4 be the normal program from Fx-
ample 2. Then, its corresponding ®', is: d(a) V d(b),
d(c) Vv d(b),d(c) Vd(a),d(d) Vd(c),d(c)V —d(b), d(c) V
—d(a).

So, the corresponding C' of ' pis C = {C,...,C6}
where: C1 = {d(a),d(d)}, C2 = {d(c),d(b)}, C3 =
{d(e).d(@)}, C1 = {d(d), ()}, C5 = {d(e), ~d(B)},
Cs = {d(c),—d(a)}. Based on the above mentioned, the
corresponding function f(x,u) ofC' is defined as follow:

f(1,d(a)) = v1. f(4,d(d)) = v7
f(1,d(b)) = vs. f(4,d(c)) = vs
f(2,d(c)) = vs. f(5,d(c)) = vy
f(27 d(b)) = V4. 15, ﬁd(b)) = V10
f(37 d(c)) = Us. f(6, d(C)) =l
f(3,d(a)) = vs f(6,—d(a)) = vi2

LA v,
(1 1) C
(6 AV
G \ e
(6 2
e oy
o ; : e
(s 3!

C

- - .

Figure 4. The Graph-Based Representation of
the normal program @ 4 -, example 2

Bearing in mind the above mentioned, we define a graph

G=(V,E,Ly,Lg, o, f3), where:

oV ={Vi,....V6}, Vi = {v1,v2}, Vo = {uv3,v4},
Vs = {vs,v6}, Vi = {v7,vs}, V5 = {vg,v10} and
Ve = {011,1)12}

o E={{vy,v3}, {v1,vs}, {v1,05}, {v1,v3}, {v1, 06},
{01707}, {111,118}, {01709}, {111,1)10}, {111,1)11},
{va,v3}, {va,va}, {va,vs}, {va,ve}, {v2,vr},
{'0271)8}; {112,119}, {027011}, {027012}, {03705},
{vs,ve}, {vs,vr}, {vs,vs}, {vs,v9}, {v3,v10},
{vs,vi1}, {vs,vi2}, {va,vs}, {va,v6}, {va,v7},
{va,vs}, {va,v9}, {va,v11}, {va,v12}, {vs,vr},
{'05708}; {05709}, {U5,U10}, {U5,U11}, {115,1)12},
{ve,v7}, {ve,vs}, {ve,v9}, {vs,v10}, {ve,v11},
{vr,vo}, {vr,v10}, {vr,vi1}, {vr,vi2}, {vs,ve},
{vs,v10}, {vs,v11}, {vs,vi2}, {ve,v11}, {vo,v12},
{vi0,v11}, {v10,v12}}

o Ly ={1,2,3,4,5,6)

e a:V — Ly

e 3:FE— Lg
Note that there is not edge between vy and vi2 because
f(1,d(a)) = v1 and f(6,-d(a)) = vi2 have the same
atom d(a), but one of them is negated. A similar argu-

mentation is applicable to vg apd V12, V2 and vyg, V4 and
v19. Figure 4 shows the graph G of example 4.

G G €] G €] G
(VIv2) <--> (VIv3) (V4,v2) <--> (V7,v3) (VB.v6) <--> (VO,v11)
(v2,v3) <--> (V3,v5) (v4,vB) <--> (V7,v9) (V6,v1) <--> (vI1,v1)
(v3,v1) <--> (v5,v1) (VB V1) <-> (VO,v1) (v6,v2) <--> (V11,v3)
(v3.v4) <--> (V5,v7) (VB v2) <-> (V9,v3) (v6,v3) <--> (v11,vD)
(VA1) <--> (v7.v1) (VB v3) <--> (VO,vB) (V6,v4) <--> (VI1,Vv7)

Figure 5. SI-COBRA output example

Finally, it 1s necessary to define a graph G’ for build-
ing an instance (G',G). Since |C| = 6, then G' =
(V',E',Ly,, L'y, o/,), where:

o V={vy,...,06}
E' = {{vi,vj} i # 5}
LY, ={1,2,3,4,5,6}
L = {1}
o ={d(v1) =1,a (v2) =2, (v3) =3, (v4) =
4,d/(vs) =5, (vg) = 6}

o §:E =L

In the next subsection, we expose the way in which
an instance (G’, G) can be solved using the SI-COBRA
algorithm.

5.2. Computing the preferred™ semantics
with SI-COBRA

As we mentioned earlier, with SI-COBRA we have
the option of finding only a valid mapping (and stop
the process) or, find all possible mappings (if there are
more than one). So, given an argumentation framework
AF and by considering the graph-representation of the
program ® 4. We can solve three different queries: 1.-
find an admissible™ set of AF, this means to find a
model of the program normes,(®ar) (see Definition
12); 2.- find all the admissible™ sets of AF; and 3.-
find a preferred™ extension which contains a particu-
lar argument, this means to find a particular minimal
model of normecs,(Par) (see Definition 13).

As an example, let us consider the input graphs G’
and G from Example 4. After running an implementa-
tion of the SI-COBRA algorithm with this input, we
get 24 different matches between vertices and edges
from G’ and G. Figure 5 shows a SI-COBRA’s output
format example, where mappings are depicted based
on edges and their corresponding vertices.

Based on function f(u,) (see Definition 18), we can
retrieve the association between vertices and atomss
of G and @7, respectively. In our example, the liter-
als that represent a solution are: 1.- {d(a),d(c),d(d)},
this means that {b} is an admissiblet set of AF;
however {b} is not a preferred™ extension because

{d(a),d(c),d(d)} is not a minimal model of ® op; 2.-
{d(a),d(c)}, this means that {b,d} is an admissible
set of AF, in fact it is a preferred™ extension because
{d(a),d(c)} is a minimal models of ® 4.

Although, SI-COBRA does not compute directly the
preferred™ extensions, because SI-COBRA only com-
pute models of ® 4r. There are two ways that allow
us to find it: analyze all results or, use an algorithm
that generates the preferred™ extensions in a recursive
way. If we analyze all results, we need to find a model
with the smaller number of atoms. On the other hand,
it is possible to use the following algorithm to find the
preferredt semantics [1]:

1. Let ®* be the input normal program and U the
set of atoms over ®*

2. Compute a model of ®*, called M
3. If there are not models, then ®* is inconsistent

4. Compute &** = &*U—~(U\M)U{~(u1),. .., (us)},
where uq,...,u, are elements of M

5. Compute a model of ®**, called M’

6. If there are not models of ®**, then M is minimal.
Finish
7. In other case, M := M', ®* := &** Return to 4

Finally, if we require that an atom (or set of atoms)
appears as part of our results, then we can do it in
the following way. First, consider that M is a model
of ®*, where an atom | € M and C = C4,...,C, is
the set of clauses associated to ®*. Then, if we de-
fine ¢’ = C Uy, where Cy = {1}, then all possi-
ble models of ®* include [as a part of their solutions.
Since SI-COBRA finds all possible solutions, then we
will also find M with C”. With this argument, we show
the way in which we can find models where it is neces-
sary to consider a specific literal.

6. Conclusions

We presented a novel argumentation seman-
tics called preferred™ semantics which is charac-
terized by normal programs and minimal models.
Preferred™ semantics semantics follows preferred™t se-
mantics’ philosophy that is one of the most successful
Dung’s semantics. As, Preferred™ semantics is char-
acterized by minimal models there is a wide variety
of techniques in order to infer preferred™ exten-
sions. In this paper, we explore the use of a novel
graph algorithm called SI-COBRA which has success-
fully been applied in theoretical and practical domains,
in order to infer preferred™ extensions. Since, the pre-
ferred semantics was characterized by minimal model

in [14] this technique is also a novel technique to in-
fer the preferred semantics.

Although the preferred™ semantics is defined for
Dung’s argumentation framework, it is also applied to
value-based argumentation frameworks [4]. This is be-
cause, according to [14], the decision problem of the
preferred extensions of a value-based argumentation
framework is polynomial time reducible to the deci-
sion problem of the preferred extensions of an argu-
mentation framework.

Acknowledgements

J.C. Nieves thanks to CONACyT for his Doctor-
ate Grant. J.C. Nieves and U. Cortés were partially
supported by the grant FP6-IST-002307 (ASPIC). The
views expressed in this paper are not necessarily those
of ASPIC consortium.

References

[1] O. Arieliy M. Denecker, B. V. Nuffelen, and
M. Bruynooghe. Database repair by signed for-
mulae. In FolIKS, volume 2942 of LNCS, pages 14-30.
Springer, 2004.

[2] P. Baroni and M. Giacomin. Evaluating argumenta-
tion semantics with respect to skepticism adequacy.
In ECSQARU 2005, Barcelona, Spain, July 6-8, 2005,
Proceedings, volume 3571 of LNCS, pages 329-340.
Springer, 2005.

[3] P. Baroni, M. Giacomin, and G. Guida. SCC-
recursiveness: a general schema for argumentation se-
mantics. Artificial Intelligence, 168:162-210, October
2005.

[4] T. Bench-Capon. Value-based argumentation frame-
works. In Proceedings of Non Monotonic Reasoning,
pages 444-453, 2002.

[5] A. Bondarenko, P. M. Dung, R. A. Kowalski, and
F.Toni. An abstract, argumentation-theoretic approach
to default reasoning. Artificial Intelligence, 93:63-101,
1997.

[6] M. Caminada. Contamination in formal argumentation
systems. In BNAIC 2005 - Proceedings of the Seven-
teenth Belgium-Netherlands Conference on Artificial In-
telligence, Brussels, Belgium, October 17-18, pages 59—
65, 2005.

[7] C. L. Chesfievar, A. G. Maguitman, and R. P. Loui.
Logical models of argument. ACM Comput. Surv.,
32(4):337-383, 2000.

[8] Y. Dimopoulos and A. Torres. Graph theoretical struc-
tures in logic programs and default theories. Theor.
Comput. Sci., 170(1-2):209-244, 1996.

[9] J. Dix, M. Osorio, and C. Zepeda. A general theory of
confluent rewriting systems for logic programming and
its applications. Ann. Pure Appl. Logic, 108(1-3):153—
188, 2001.

[10] S.DLV. . http://www.dbai.tuwien.ac.at/proj/dlv/.

[11] P. M. Dung. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artificial Intelligence,
77(2):321-358, 1995.

[12] P. E. Dunne and T. J. M. Bench-Capon. Complexity in
value-based argument systems. In JELIA, volume 3229
of LNCS, pages 360-371. Springer, 2004.

[13] J.C.Nieves. Ph. D. Proposal : Supporting decision mak-
ing in organ transplanting using argumentation theory.
Universitat Politécnica de Catalunya, Software Depart-
ment, 2006.

[14] J. C. Nieves, M. Osorio, and U. Cortés. Modeling ar-
gumentation based semantics using non-monotonic rea-
soning. Technical report, Universitat Politecnica de
Catalunya, Software Department, 2005.

[15] J. C. Nieves, M. Osorio, C. Zepeda, and U. Cortés. In-
ferring acceptable arguments with answer set program-
ming. In Sixth Mexican International Conference on
Computer Science (ENC 2005), pages 198-205. IEEE
Computer Science Press, September 2005.

[16] I. Olmos and J. A. Gonzalez. Web site usage patterns
discovery using a graph based representation. IX Ibero-
American WorkShop on Machine Learning for Scientific
Data Analysis, pages 345354, 2004.

[17] 1. Olmos, J. A. Gonzdlez, and M. Osorio. ~Mining
common patterns on graphs. International Confer-
ence on Computational Intelligence and Security, vol 1,
LNAI3802:41-48, 2005.

[18] I. Olmos, J. A. Gonzdlez, and M. Osorio. Inexact graph
matching: A case of study. To appear in Proceedings of
the 19th International FLAIRS Conference, 2006.

[19] J. L. Pollock. Cognitive Carpentry: a blueprint for how
to build a person. The MIT Press, May 4, 1995.

[20] H. Prakken and G. A. W. Vreeswijk. Logics for defea-
sible argumentation. In D. Gabbay and F. Giinthner,
editors, Handbook of Philosophical Logic, volume 4,
pages 219-318. Kluwer Academic Publishers, Dor-
drecht/Boston/London, second edition, 2002.

[21] 1. Rahwad, S. D. Ramchurn, N. R. Jennings, P. Mcbur-
ney, S. Parsons, and L. Sonenberg. Argumentation-
based negotiation. The Knowledge Engineering Review,
18(4):343-375, 2004.

[22] P. Tolchinsky, U. Cortés, J. C. Nieves, A. Ldpez-
Navidad, and F. Caballero. Using arguing agents to
increase the human organ pool for transplantation. In
Proc. of the Third Workshop on Agents Applied in Health
Care (IJCAI 2005), 2005.

