
Inferring acceptable arguments with Answer Set Programming

Mauricio Osorio and Claudia Zepeda
Universidad de las Américas - Puebla

CENTIA, Sta. Catarina Mártir
Cholula, Puebla, 72820 México

{josorio,sc098382}@mail.udlap.mx

Juan Carlos Nieves and Ulises Cortés
Universitat Politècnica de Catalunya

Departament de Lleguatges i Sistemes Informàtics
c/Jordi Girona 1-3, E08034, Barcelona, Spain

{jcnieves,ia}@lsi.upc.edu

Abstract

Following the argumentation framework and seman-
tics proposed by Dung, we are interested in the problem
of deciding which set of acceptable arguments support the
decision making in an agent-based platform called CAR-
REL. It is an agent-agency which mediates organ trans-
plants. We present two possible ways to infer the sta-
ble and preferred extensions of an argumentation frame-
work, one in a declarative way using Answer Set Pro-
gramming(ASP) and the other one in a procedure way.

Key words Argumentation, Logic Programming,
Answer Set Programming, Agents.

1. Introduction

Organ transplants are among the most complex
medical procedures performed today. At this time,
most donated organs and tissues come from patients
who are pronounced brain dead as result of disease or
injury but also from non-heart-beating donors, and liv-
ing donors. Behind these medical triumphs, though,
lies a fundamental problem. There are far too few or-
gans available for transplantation: at the time of writ-
ing this paper, ten people die daily due to the shortage
of transplantable organs.

There are two issues that make transplantation man-
agement a very complex issue: (i) scarcity of donors, so
it is important to try to maximize the number of suc-
cessful transplants (ii) improve donor/recipient match-
ing, because of the diversity and multiplicity of genetic
factors involved in the response to the transplant.

In [16], it was proposed an agent-based architecture
called CARREL for carrying out the following tasks in-
volved in managing the vast amount of data to be pro-
cessed: 1) recipient selection (e.g. from patient wait-
ing lists and patient records), 2) organ/tissue alloca-
tion (based on organ and tissue records), 3) ensuring

adherence to legislation, 4) following approved proto-
cols, 5) preparing delivery plans (e.g. using train and
airline schedules).

Actually, in the process of deciding whether an organ
is viable or not, it is involved just the transplant coor-
dination unit which has the potential donor1. However,
it is not rare that doctors disagree in deciding if an or-
gan is viable or not. For instance, organs from a donor
infected with endocarditis are usually discarded, even
though in the literature we can find successful trans-
plantation from donors infected with this disease [5].

We introduced argumentation in the transplantation
process of CARREL with the idea of maximizing the
number of viable organs, we proposed that the trans-
plant coordination units that have a potential recipi-
ent of an organ could take part in the decision of or-
gan’s viability (see [8] for details).

Now, in this paper we are interested in the necessary
process of identifying acceptable arguments that sup-
port decision making around an organ in each trans-
plant coordination unit. Having a medical transplanta-
tion knowledge base, which is in a symbolic form, we
want to generate a set of arguments that supports the
decision concerning the viability of an organ.

One of the most important contributions in fun-
damental argumentation was the theory proposed by
Dung in 1995 [10]. His proposal explores ways to imple-
ment argumentation on computers. Dung defines the
acceptability of an argumentation framework in terms
of sets of arguments called extensions. The extensions
define the semantics of an argumentation framework.
Several proposals have been presented to compute ex-
tensions [6, 9, 3]. Some of these proposals are specific
algorithms, and some others are based in dialectical
proof procedures and model checking.

1 We freely admit that our experience of practice is limited (to
this date) to the Spanish and Catalan organizations, however
they are among the leaders in organ transplantation in the
world.

We propose to use Answer Set Programming
(ASP) to represent the medical transplantation knowl-
edge base and the argumentation framework pro-
posed by Dung; therefore, we define CARREL-ASP,
namely CARREL extended with ASP to perform de-
cision making based on an argumentation frame-
work.

We need to compute acceptable arguments that sup-
port the decision making in a direct way from our ASP
knowledge base. With this aim, we present two ap-
proaches for decision making process in CARREL. The
first one characterizes the stable extensions and the
preferred extensions of any argumentation framework
in a declarative way. The second one presents an effi-
cient algorithm to compute an preferred extension of
any uncontroversial argumentation framework.

The stable extensions were already characterized by
Dung in terms of logic programming using a meta-
interpreter. In this paper, we present an alternative
methodology using a translation of an argument frame-
work (AF) into a logic program (P). In fact, we show
that both characterizations are equivalent (see Theo-
rem 1). Using our second approach, we suggest another
possibility to compute an stable extension of an argu-
mentation framework in a procedure way. Moreover,
this approach takes advantage of well known graph al-
gorithms and rewriting systems.

The advantage of characterizing the stable exten-
sions is that this semantics gives answer to a wide-
ranking of problems. Dung identifies two interesting ar-
gumentation framework families which are resolved by
stable extensions: uncontroversial and limited contro-
versial .

One of the limitations of the stable semantics (sta-
ble extensions) is that it does not exist for some argu-
mentation framework. For instance, an argumentation
framework with paradoxes has not stable extensions;
however, it has at least a preferred extension. There-
fore, it is important for us to characterize the preferred
extensions too. In this paper, we take advantage of the
Answer Set Programming features to specify the prob-
lem of obtaining the preferred extensions of an argu-
mentation framework. This characterization is based
on the notion of minimal generalized answer sets of an
abductive logic program and the fact that a preferred
extension of an argumentation framework is a maxi-
mal (w.r.t. inclusion) admissible set. We show how to
obtain the preferred extensions from the minimal gen-
eralized answer sets of a particular abductive logic pro-
gram.

The rest of the paper is structured as follows: In
§2, we introduce some fundamental definitions of An-
swer Sets and present the Dung’s argumentation frame-

work. In §3, we present a simple scenario in order to
show the utility of argumentation in decision making
in CARREL. In §4, we present our characterizations
of the stable extensions and the preferred extensions of
an argumentation framework. Finally, in §5, we present
our conclusions.

2. Background

In this section, we introduce some fundamental def-
initions of Answer Sets and a short clear description
that gives the main facts or ideas about the Dung’s ar-
gumentation framework. Full details of the Dung’s ar-
gumentation framework can be found in [10].

2.1. Answer Sets

By using Answer Set Programming, it is possible to
describe a computational problem as a logic program
whose answer sets correspond to the solutions of the
given problem. Currently, there are several answer set
solvers that find the answer sets of a program, such as:
DLV2 and SMODELS3.

In this paper, logic programs are understood as
propositional theories. We will use the language of
propositional logic in the usual way, using propositional
symbols: p, q, . . . , propositional connectives ∧,∨,→,⊥
and auxiliary symbols: (,). An atom is a propositional
symbol. A literal is either an atom a (a positive lit-
eral) or the negation of an atom ¬a (a negative literal).
We assume that for any well formed propositional for-
mula f , ¬f is just an abbreviation of f → ⊥ and >
is an abbreviation of ⊥ → ⊥. In particular, f → ⊥ is
called constraint and it is also denoted by← f . The for-
mula F ← G is just another way of writing G → F .
G ↔ F is an abbreviation of (G ← F)∧ (F ← G). Fol-
lowing the traditional notation of logic programming,
we may use : − instead of ←, not instead of ¬ and
a, b instead of a∧ b. We will define as a clause any well
formed formula F . A regular theory or logic program is
just a finite set of clauses, it can be called just the-
ory or program where no ambiguity arises. We want to
stress the fact that in our approach, a program is inter-
preted as a propositional theory. For readers not famil-
iar with this approach, we recommend [15, 13] for fur-
ther reading. We will restrict our discussion to proposi-
tional programs. As usual in answer set programming,
we take for granted that programs with predicate sym-
bols are only an abbreviation of the ground program.
The signature of a program P , denoted by LP , is the

2 http://www.dbai.tuwien.ac.at/proj/dlv/

3 http://www.tcs.hut.fi/Software/smodels/

set of the ground atoms that occur in P . In some defi-
nitions we use Heyting’s intuitionistic logic, which will
be denoted by the subscript I. For a given set of atoms
M and a program P , we will write P `I M to abbre-
viate P `I a for all a ∈ M and P °I M to denote the
fact that P `I M and P is consistent w.r.t. logic I (i.e.
there is no formula A such that P `I A and P `I ¬A).

The stable model semantics was first defined in
terms of the so called Gelfond-Lifschitz reduction [11]
and it is usually studied in the context of syntax de-
pendent transformations on programs. We follow an al-
ternative approach started by Pearce [15] and studied
in more detail by Osorio et.al. [13]. A program is just a
propositional theory and an answer set is an intuition-
istically consistent and complete extension of the the-
ory obtained by adding only negated literals. This defi-
nition has been proved to be a correct characterization
of answer sets. In this paper we will take the charac-
terization and notation presented in [13].

Definition 1 (Answer set of a program) Let P be
any theory and M a set of atoms. M is called an answer
set for P iff P ∪ ¬(LP \M) ∪ ¬¬M °I M ∪ ¬(LP \M)

Definition 2 [2] LetP andP ′ be a pair of programs such
that P ⊆ P ′. We say that P ′ is a conservative exten-
sion of P if the following condition holds: M is an an-
swer set for P iff there is an answer set M ′ for P ′ such
that M = M ′ ∩ LP .

Definition 3 Let P and P ′ be a pair of programs. We
say that P and P ′ are equivalent, denoted by P ≡ P ′, if
they have the same answer sets.

The following definitions are slightly similar to the
definitions given in [1].

Definition 4 (Abductive Logic Program) An ab-
ductive logic program is a pair 〈P, A〉 where P is an arbi-
trary program and A a set of atoms, called abducibles.

Definition 5 Let 〈P, A〉 be an abductive logic program
and ∆ ⊆ A. (1) 〈M, ∆〉 is an extended generalized an-
swer set of 〈P, A〉 iff M is an answer set of P ∪∆. (2) Let
〈M, ∆〉 be an extended generalized answer set of 〈P, A〉
then we say that M is a generalized answer set of 〈P, A〉.
Definition 6 Let 〈M1,∆1〉 and 〈M2,∆2〉 be extended
generalized answer sets of the abductive program 〈P,A〉,
we define 〈M1, ∆1〉 < 〈M2, ∆2〉 iff ∆1 ⊂ ∆2.

Definition 7 (1)〈M, ∆〉 is a minimal extended general-
ized answer set of the abductive program 〈P, A〉 iff 〈M, ∆〉
is an extended generalized answer set of 〈P,A〉 and it is
minimal w.r.t. extended generalized answer set inclusion
order. (2) Let 〈M, ∆〉 be a minimal extended generalized
answer set of the abductive program 〈P, A〉 then we say
that M is a minimal generalized answer set of 〈P, A〉.

2.2. Dung’s argumentation framework

The key Dung’s definition is the concept called Ar-
gumentation framework which is defined as follows (see
[10]):

Definition 8 An argumentation framework is a pair
AF = 〈AR, attacks〉, where AR is a set of arguments,
and attacks is a binary relation on AR, i.e. attacks ⊆
AR×AR.

Following Dung’s reading, we say that A attacks B
(or B is attacked by A) if attacks(A,B) holds. Simi-
larly, we say that a set S of arguments attacks B (or B
is attacked by S) if B is attacked by an argument in S.

Definition 9 A set S of arguments is said to be conflict-
free if there are no arguments A, B in S such that A at-
tacks B.

Definition 10 (1) An argument A ∈ AR is acceptable
with respect to a set S of arguments iff for each argument
B ∈ AR: If B attacks A then B is attacked by S. (2) A
conflict-free set of arguments S is admissible iff each ar-
gument in S is acceptable w.r.t. S

The semantics of an argumentation framework is de-
fined by the notion of preferred extension, which is de-
fined as following:

Definition 11 A preferred extension of an argumenta-
tion framework AF is a maximal (wrt inclusion) admis-
sible set of AF.

Another relevant concept that Dung introduces is
the concept of stable extension.

Definition 12 A conflict-free set of arguments S
is called a stable-extension iff S attacks each argu-
ment which does not belong to S.

Lemma 1 Every stable extension is a preferred exten-
sion, but no vice versa.

Definition 13 Anargumentation frameworkAF is said
to be coherent if each preferred extension of AF is stable.

Corollary 1 Every limited controversial argumen-
tation framework possesses at least one stable exten-
sion.

3. Argumentation for decision making
in CARREL

In order to show the utility of argumentation for de-
cision making in CARREL, we shall present a simple
scenario4 where the decision about whether an organ

4 This scenario is following a case of study presented in [5].

from a donor with endocarditis is viable or not should
be made.

Let us assume that we have two transplant coordi-
nation units, one which is against the viability of the
organ (UCTD) and one which is in favour of the via-
bility of the organ (UCTR).

UCTD argues that the organ is not viable, since the
donor had endocarditis due to streptococcus viridans,
then the recipient could be infected by the same mi-
croorganism.

In contrast, UCTR argues that the organ is viable,
because the organ presents correct function and cor-
rect structure and the infection could be prevented
with post-treatment with penicillin, even if the recipi-
ent is allergic to penicillin, there is the option of post-
treatment with teicoplanin.

Formally, we have an argumentation frame-
work AF = 〈AR, attacks〉, where AR is the following
set of arguments:

nv = “organ is non viable”
v = “organ is viable”
cfs = “organ has correct function and”

correct structure
risv = “recipient could be infected with

streptococcus viridans”
pp = “post− treatment with administer

penicillin”
pt = “post− treatment with administer

teicoplanin”
ap = “recipient is allergic to penicillin”

Figure 1. Argumentation for Decision making: A
simple scenario.

The relationship between the arguments is shown in
Figure 1, where the arrows represent the attacks. If we
consider the preferred extension of AF, the acceptable
arguments are {v, ap, pt, cfs}, then we can conclude
that the organ is viable. Notice that AF is an uncon-
troversial argumentation framework which implies that
the preferred extension is also a stable extension.

4. Characterization of the Dung’s argu-
mentation framework

In this section we present the characterization of
the stable extension in terms of answer sets. Then,
we present a characterization of the admissible argu-
ments in terms of Answer Set Programming. Finally,
we present the characterization of a preferred extension
using Answer Sets. This last characterization takes ad-
vantage of the Answer Set Programming features to
specify the problem of obtaining the preferred exten-
sions given an argumentation framework. The proofs
are omitted due to the lack of space5.

4.1. Characterization of the stable exten-
sion

Given an argumentation framework AF, we com-
pute its stable extensions by mapping AF to a nor-
mal program P and computing its stable models. This
characterization gives the answer to a wide-ranging of
argumentation frameworks that Dung called uncon-
troversial and limited controversial. In particular the
limited controversial argumentation framework always
possesses at least one stable extension (Corollary 1).

Definition 14 LetAF= 〈AR, Attacks〉 be an argumen-
tation framework, A ∈ AR and SA = {B|(B,A) ∈
Attacks}. We define the transformation function Ft of
the argument A as follows:

Ft(A) := A ←
∧

B∈SA

¬B

Notice that if SA = ∅ then Ft(A) := A.

Definition 15 LetAF= 〈AR, Attacks〉 be an argumen-
tation framework. We define its associated argumenta-
tion normal program as follow:

P ′AF := {Ft(A)|A ∈ AR}
Example 1 Let us consider the argumentation frame-
work of Section 3: AF = 〈AR,Attacks〉, where

5 An along version of this paper including the more relevant
proofs is [12].

AR = {v, nv, risv, cfs, pp, pt, ap} and Attacks =
{(v, nv), (nv, v), (risv, v), (cfs, nv), (pp, risv), (pt, risv),
(ap, pp)}.

The resulting program P ′AF after applying the trans-
formation Ft to each argument of AF is:

v ← ¬ nv, ¬ risv. nv ← ¬ v,¬ cfs.
risv ← ¬ pp,¬ pt. pp ← ¬ ap.
ap. pt. cfs.

The answer set of P ′AF is {v, ap, pt, cfs} which is the sta-
ble extension of the framework AF.

Formally, we can express this characterization with
the following theorem.

Theorem 1 Let AF be an argumentation framework
and E be a set of arguments. E is a STABLE extension of
AF iff E is an answer set of P ′AF .

Note: Theorem 1 is less general than Theorem 17
from [10], since Theorem 1 just points out the relation-
ship between stable extensions and answer sets of our
characterization.

4.2. Computing preferred arguments

In this section, we present an algorithm to com-
pute the preferred extensions of an uncontroversial ar-
gumentation framework taking advantage of the char-
acterization presented in Section 4.1.

We start with the definition of the basic transfor-
mation rules. Let ProgL be the set of all the argu-
mentation normal programs with atoms from L where
L corresponds to the set of arguments AR of an ar-
gumentation framework AF . Let P be an argumenta-
tion normal program, and C ∈ P such that C is of the
form a ← l1, . . . , ln; we use body(C) to denote l1, . . . , ln
and we define HEAD(P) = {a|a ← l1, . . . , ln ∈ P}. If
body(C) is empty, C is called unconditional argument
otherwise conditional argument.

Definition 16 A transformation rule is a binary rela-
tion on ProgL. The following transformations rules are
called basic transformations. Let P ∈ ProgL be a pro-
gram.

RED+ : If there is an argument a which does not occur
in HEAP (P) and there is b ← body ∈ P such that
¬a ∈ body. RED+ reduces the program P to P2 :=
(P \ {b ← body}) ∪ {b ← (body \ {¬a})}

RED− : If there is an unconditional argument a ∈ P
and there is b ← body ∈ P such that ¬a ∈ body.
RED− reduces the program P to P2 := (P \ {b ←
body}).

Suc : If there is an unconditional argument a ∈ P and
there is b ← body ∈ P such that a ∈ body. RED−

reduces the program P to P2 := (P \ {b ← body}) ∪
{b ← (body \ {a})}.

Let CS1 be the rewriting system which contains ex-
actly the transformations defined in Definition 16.

In order to illustrate CS1, let us consider
the following simple argumentation framework
AF :=< AR, Attacks >, where AR := {a, b, c} and
Attacks := {(b, a), (c, b)}. Then applying Ft to each ar-
gument of AF, we get the following argumentation
normal program.

a ← ¬b. b ← ¬c. c.

If we apply RED−, we get the program

a ← ¬b. c.

Now if we apply RED+, we get the program

a. c.

We get a program which is a set of unconditional ar-
guments. Notice that {a, c} is the stable extension of
AF.

Now we will define some functions which are rele-
vant to our main algorithm.

Definition 17 Wedefine the functionREDU(P,P1,P2)
as follows:

INPUT An argumentation normal program P
OUTPUT Two argumentation programs P1, P2
P := res CS1(P)
P1 := {a ← body|a ← body ∈ P ∧ body 6= ∅}
P2 := {a|a ∈ P}

res CS1 is the reflexive and transitive closure of the ap-
plication of the transformation rules of CS1.

Notice that the function REDU(P,P1,P2) is linear,
since the transformation rules reduce the size of the
program at each step.

Definition 18 We define the function break-
program(P, P1, P2) as follows

INPUT An argumentation normal program P.
OUTPUT Two argumentation programs P1, P2
G := get DAG(P)
GT := get transpose(G)
DFS(GT , D[],F[])
v := get greatest(F[])
C := get reach vertices(v,G)
P1 := {r|r : −body ∈ P ∧ r ∈ C} P2 := P \ P1

Where get DAG gets the direct associated graph G of P,
get transpose gets the transpose of the graph G, DFS is
the well known Deft-First Search algorithm which gets
two arrays D[] and F[]6. get greatest returns the vertex c
which has the greatest value in F[]. get reach vertices gets
the set of vertexes reachable in G from v.

It is not difficult to see that the function break-
program is a linear function too.

Definition 19 We define the function get solution(P)
as following

INPUT An argumentation normal program P
OUTPUT A set of literals S
G := get DAG(P)
G’ := two coloring graph(G)
return get one color(G’)

Where get DAG gets the direct associated graph of P,
two coloring graph is the well known two coloring graph
algorithm, and get one color returns a set of vertices
which have the same color.

Since the function get solution uses the two coloring
graph which is well known that is linear, the function
get solution is linear too.

Now, we define our algorithm.

Definition 20 We define the function Calc mod(P) as
following:

INPUT An uncontroversial argumentation nor-
mal program P

OUTPUT An preferred extension of P
REDU(P, P’, F)
If P ′ = ∅ return F
break-program(P’, P1, P2)
M := get solution(P1)
If P2 = ∅ return (F ∪M)
return (F ∪ calc mod(P2 ∪M))

Lemma 2 Given an argumentation framework AF
which is uncontroversial and P ′AF its associated ar-
gumentation normal program, then Calc mod(P ′AF)
computes a stable extension of AF.

4.3. Characterization of the admissible ar-
guments

In Definition 10 is indicated when a conflict-free
set of arguments S is admissible given an argumen-
tation framework AF = 〈AR, attacks〉. In this subsec-
tion we are going to present an encoding using ASP,

6 See [7] for details.

denoted by Π(AF), to obtain from the answer sets of
Π(AF) the conflict-free sets of arguments of AR that
are admissible. In this encoding, we use the predicates
argument(ai), argument(aj) and attacked(ai, aj) to
represent that the argument aj is attacked by the ar-
gument ai. We enumerate the possibility space which
specifies that each argument aj may or may not be
admissible. Then, we use the elimination constraints
to force that each admissible argument cannot be at-
tacked by an admissible argument, and an admissible
argument is an acceptable argument. An argument aj

is acceptable, if it is attacked by an argument ai such
that ai is attacked by an admissible argument. Finally,
the sets of arguments ai of the predicate admissible(ai)
for each answer set of program Π(AF) correspond to
the conflict-free sets of AR that are admissible. The
rules of the program Π(AF) with their intuitive mean-
ing are as follows:
1.The domain specifications.

argument(a1) ← argument(am) ← .

attacked(ai, aj) ← attacked(ak, al) ← .

2.For each argument X, either X is admissible or not.
admissible(X) ← ¬ not admissible(X), argument(X).

not admissible(X) ← ¬ admissible(X), argument(X).

3. An admissible argument Y cannot be attacked by
an admissible argument X

← admissible(X), admissible(Y), attacked(X, Y).

4. An admissible argument X cannot be a
not acceptable argument.

← admissible(X), not acceptable(X), argument(X).

5. An argument X is not acceptable if it is at-
tacked by an argument Y such that Y is not at-
tacked by an admissible argument.

not acceptable(X) ← attacked(Y, X),
¬ attacked by pref(Y), argument(X), argument(Y).

attacked by pref(Y) ← argument(Y),

admissible(X), attacked(X, Y).

Now we can give a definition and a lemma to ob-
tain the admissible conflict-free sets of an argumenta-
tion framework.

Definition 21 Let AF = 〈AR, attacks〉 be
an argumentation framework and Adm =
{admissible(X) | X ∈ AR}. Let fadm be a function from
AR onto Adm such that fadm(X) = admissible(X).

We define a straightforward generalization of fadm

over a set S ⊆ AR as follows: fadm(S) = {fadm(s) | s ∈
S}. Furthermore, fadm is an invertible function, then

the inverse function f−1
adm from Adm onto AR is de-

fined as follows if admissible(X) = fadm(X) then
f−1

adm(admissible(X)) = X.

Lemma 3 Let AF = 〈AR, attacks〉 be an argumenta-
tion framework. Let M be an answer set of Π(AF) such
that M ∩Adm 6= ∅ . Then f−1

adm(M ∩Adm) is an admis-
sible conflict-free set of AF .

Example 2 Let AF = 〈AR,Attacks〉 be the argumen-
tation framework of the Example 1. Then, the domain
specifications of the program Π(AF) is defined accord-
ing to AF.

The answer sets of the program Π(AF) are twelve, we
show only some of them after intersecting them with the
set Adm:

{}, {admissible(ap)}, {admissible(cfs)},
{admissible(pt), admissible(ap)}, . . .

Then, the result of applying f−1
adm to the twelve an-

swer sets of the program Π(AF) (after the intersection
with the set Adm) corresponds to the twelve conflict-
free sets of AR that are admissible: {}, {ap}, {cfs},
{pt}, {cfs, pt}, {v, pt}, {cfs, ap}, {pt, ap}, {v, pt, ap},
{v, cfs, pt}, {cfs, pt, ap} and {v, cfs, pt, ap}.

4.4. Characterization of a preferred exten-
sion

In this subsection, we are going to present the char-
acterization of a preferred extension using Answer Sets.

We need a preliminary definition about a bijective
and restricted function defined on a subset of the sig-
nature of a program. This function assigns to each el-
ement of the subset of the signature an element that
does not occur in the signature of the original program.
Moreover, this function will help us to define an abduc-
tive logic program.

Definition 22 Let LP be the signature of a program P .
Let TP be a signature of the same cardinality of LP such
that LP ∩ TP = ∅. Let L•P any fixed bijective function
from LP onto TP .

We shall denote the image of a under L•P as a•,
namely, L•P (a) = a•. We define the straightforward
generalization of L•P over A ⊆ LP as follows: L•P (A) =
{L•P (a) | a ∈ A}. Abusing of the notation, we let A•

represent L•P (A).
The characterization of a preferred extension is in-

troduced as a corollary of Lemma 4: Corollary 2. This
Corollary takes advantage of the correspondence be-
tween the definition of a preferred extension as a max-
imal (w.r.t. inclusion) admissible set of AF (see Defi-
nition 11) and the definition of a maximal answer set.

Moreover, Corollary 2 says that the preferred exten-
sion of an argumentation framework AF is obtained
by getting the minimal generalized answer sets of an
abductive logic program. The abductive logic program
corresponds to a particular translation of the program
Π(AF). Program Π(AF) was defined in the previous
subsection. Hence, we are going to present some defini-
tions about maximal answer sets and the particular ab-
ductive logic program used to obtain the preferred ex-
tension.

Definition 23 Let {Si : i ∈ I} be a collection of subsets
of U such that

⋃
i∈I Si = U and A ⊆ U . We say that Si is

a maximal set w.r.t. A among the collection {Si : i ∈ I}
iff there is no Sj with j 6= i such that (Si∩A) ⊂ (Sj ∩A).

Definition 24 Let P be a consistent program and {Mi :
i ∈ I} be the collection of answer sets of P . Let A ⊆ LP .
We say that Mi is a maximal answer set w.r.t. A iff Mi is
an answer set of P such that Mi is a maximal set w.r.t. A
among the collection of answer sets of P .

The translation of a program w. r. t. a set of atoms
consists in adding a set of constraints to the original
program as follows:

Definition 25 Let P be a program and A ⊆ LP . We de-
fine the translation of program P w.r.t. A as P ∪ ConsA

where ConsA = {← ¬a,¬a• | a ∈ A}.
Lemma 4 Let P and M be a program and an answer
set of P respectively. Let A ⊆ LP . Then M is a max-
imal answer set of P w.r.t A iff M ∪ A• is a mini-
mal generalized answer set of the abductive logic program
〈(P ∪ ConsA), A•〉.
Corollary 2 Let AF = 〈AR, attacks〉 be an argumen-
tation framework and A = fadm(AR). Let P = Π(AF)
be the program obtained from AF and M be an answer set
of P . Then f−1

adm(M ∩ A) is a preferred extension of AF
iff M ∪A• is a minimal generalized answer set of the ab-
ductive logic program 〈(P ∪ ConsA), A•〉.

It is worth mentioning that the preferred exten-
sion of the argumentation framework of the Example 1
when we apply to it Corollary 2 coincides with the re-
sult given in section 3: {v, ap, pt, cfs} 7.

In order to compute the preferred extension of an
argumentation framework AF is possible to use the
characterization of minimal generalized answer sets in
terms of ordered disjunction programs presented in
[14]. In this characterization an abductive program can
be represented using ordered disjunction [4]. Hence, in

7 Similarly, since Example 1 is uncontroversial we could also use
Definition 15 obtaining the same preferred extension.

[14] is defined a translation of an abductive logic pro-
gram into an ordered program. Then by running the
translated program in Psmodels [4], we can obtain the
different inclusion preferred answer sets. Finally, we
can obtain from each preferred answer set the preferred
extensions of the argumentation framework AF .

5. Conclusions

We present two approaches for the support of deci-
sion making process in CARREL. The first character-
izes the stable and preferred semantics of an argumen-
tation framework in a declarative way. The characteri-
zation of preferred semantics is based on the notion of
minimal generalized answer sets of an abductive logic
program. We think that our approach can be useful not
only to characterize the preferred semantics, but also
other problems. The second approach presents an effi-
cient algorithm to compute a preferred extension of an
uncontroversial argumentation framework taking ad-
vantage of the translation of an argument framework
into a logic program.

Acknowledgements

U. Cortés and J. C. Nieves were supported in part
by the Grant FP6-IST-002307 (ASPIC).

References

[1] M. Balduccini and M. Gelfond. Logic Programs with
Consistency-Restoring Rules. In P. Doherty, J. Mc-
Carthy,andM.-A.Williams, editors, International Sym-
posium on Logical Formalization of Commonsense Rea-
soning, AAAI 2003 Spring Symposium Series, March
2003.

[2] C. Baral. Knowledge Representation, reasoning and
declarative problem solving with Answer Sets. Cam-
bridge University Press, Cambridge, 2003.

[3] P. Besnard and S. Doutre. Checking the acceptability of
a set of arguments. In Tenth International Workshop on
Non-Monotonic Reasoning (NMR 2004),, pages 59–64,
June 2004.

[4] G. Brewka, I. Niemelä, and T. Syrjänen. Implement-
ing Ordered Disjunction Using Answer Set Solvers for
Normal Programs. In Proceedings of the 8th European
Workshop Logic in Artificial Inteligence JELIA 2002.
Springer, 2002.

[5] F. Caballero, A. López-Navidad, M. Perea, C. Cabrer,
L. Guirado, and R. Sòla. Successful liver and kidney
transplantation from cadaveric donor with left-sided
bacterial endocarditis. American Journal of Transplan-
tation, 5:781–787, 2005.

[6] C. Cayrol, S. Doutre, and J. Mengin. On Decision Prob-
lems related to the preferred semantics for argumenta-
tion frameworks. Journal of Logic and Computation,
13(3):377–403, 2003.

[7] T. H. Cormen, C. E. Leiserson, R. L. Riverst, and
C. Stein. Introduction to Algorithms. MIT Press, sec-
ond edition, 2001.

[8] U. Cortés, P. Tolchinsky, J. C. Nieves, A. López-
Navidad, and F. Caballero. Arguing the discard of or-
gans for transplantation in CARREL. In CATAI 2005,
pages 93–105, 2005.

[9] Y. Dimopoulos, B. Nebel, and F. Toni. Preferred Argu-
ments are Harder to Compute than Stable Extensions.
In Proc. of the 16th International Joint Conference on
Artificial Intelligence (IJCAI99), pages 36–41, 1999.

[10] P. M. Dung. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artificial Intelligence,
77(2):321–358, 1995.

[11] M. Gelfond and V. Lifschitz. The Stable Model Se-
mantics for Logic Programming. In R. Kowalski and
K. Bowen, editors, 5th Conference on Logic Program-
ming, pages 1070–1080. MIT Press, 1988.

[12] J. C. Nieves, M. Osorio, C. Zepeda, and U. Cortés. The
appropriateness of ASP for argumentation. Techni-
cal report, Departament de Lleguatges i Sistemes In-
formàtics, Universitat Politècnica de Catalunya, 2005.

[13] M. Osorio, J. A. Navarro, and J. Arrazola. Applications
of IntuitionisticLogic inAnswerSetProgramming. The-
ory and Practice of Logic Programming (TPLP), 4:325–
354, May 2004.

[14] M. Osorio, M. Ortiz, and C. Zepeda. Using cr-rules for
evacuation planning. InG.D. I. Luna,O. F.Chaves, and
M. O. Galindo, editors, IX Ibero-american Workshops
on Artificial Inteligence, pages 56–63, 1994.

[15] D. Pearce. Stable Inference as Intuitionistic Validity.
Logic Programming, 38:79–91, 1999.

[16] J. Vázquez-Salceda, U. Cortés, J. Padget, A. López-
Navidad, and F. Caballero. Extending the carrel system
tomediate in theorganandtissueallocationprocesses:A
firstapproach. Artificial Intelligence inMedicine, 3:233–
258, 2003.

