
Extending the Grounded Semantics by
Logic Programming Semantics

Juan Carlos NIEVES a,1, Mauricio OSORIO b and Ulises CORTÉS a

a KEMLg, Software Department, Universitat Politècnica de Catalunya, Spain
b Fundación Universidad de las Américas - Puebla, México

Abstract. We introduce a formal argumentation method based on normal programs
and rewriting systems which is able to define extensions of the grounded semantics
based on specific rewriting rules which perform particular kind of reasoning as in
reasoning by cases. These new argumentation semantics are intermediate argumen-
tation semantics between the grounded and the preferred semantics.

Keywords. Argumentation Theory, Normal Logic Programs, Rewriting Systems.

Introduction

Although several approaches have been proposed for argument theory, Dung’s approach
presented in [7], is a unifying framework which has played an influential role on argu-
mentation research and Artificial Intelligence (AI). Dung’s approach is regarded as an
abstract model where the main concern is to find the set of arguments which are con-
sidered as acceptable. The strategy for inferring the set of acceptable arguments is based
on abstract argumentation semantics. The kernel of Dung’s framework is supported by
four abstract argumentation semantics: stable semantics, preferred semantics, grounded
semantics, and complete semantics. From these semantics, the main semantics for collec-
tive acceptability are the grounded semantics and the preferred semantics [2]. The first
one represents a skeptical approach, since for a given argumentation framework it always
identifies a single extension, called grounded extension. The preferred semantics instead
represents a credulous approach, since for a given argumentation framework it identifies
a set of extensions which are called preferred extensions. It is worth mentioning that the
grounded extension is included in all the preferred extensions. This property supports the
fact that the grounded semantics is most adequate than the preferred semantics for de-
veloping skeptical reasoning [1]. Also we can say that the grounded semantics approach
is one of the most useful argumentation approaches in real argumentation-based systems
[5,9].

Since Dung’s framework was introduced in [7], it was shown that this approach
can be viewed as a special form of logic programming with negation as failure. In fact,

1Correspondence to: Software Department (LSI), Universitat Politècnica de Catalunya. C/Jordi
Girona 1-3, E08034, Barcelona, Spain. E-mail: (J.C. Nieves: jcnieves@lsi.upc.edu), (M. Osorio:
osoriomauri@googlemail.com), (U. Cortés: ia@lsi.upc.edu)

this result was used for introducing a general logic programming method for generating
metainterpreters for argumentation theory.

According to Bench-Capon and Dunne [2], the principal abstract argumentation se-
mantics introduced by Dung exhibit a variety of problems: Emptiness, Non-existence and
Multiplicity [2]. Since the grounded semantics is sceptical semantics which always ex-
ists, the main problem of it is emptiness. The main issue of this paper is to explore some
extension of the grounded semantics. In particular, we present a frame of extensions of
the grounded semantics which are intermediate semantics between the grounded seman-
tics and the preferred semantics. All these semantics have as a common point a suitable
logic program and the only difference between them is the logic programming semantics
which is applied to the logic program. One of the outstanding properties of these seman-
tics is that they are polynomial time computable and they are intermediate argumentation
semantics between the grounded and the preferred semantics. The logic programming
semantics which are considered for extending the grounded semantics are extension of
the well-founded semantics [6].

The rest of the paper is structured as follows: In §1, some concepts of argumentation
theory and logic programming are presented. In §2, a transformation of an argumentation
framework into a normal logic program is presented. In 3, our extensions of the grounded
semantics are presented. In the last section, our conclusions are discussed.

1. Background

In this section, we first define the syntax of a valid logic program, after that we define a
characterization of Well-Founded Semantics (WFS) in terms of rewriting systems and
finally we present some basic concepts of argumentation theory.

1.1. Logic programs: Syntax

A signature L is a finite set of elements that we call atoms. A literal is an atom, a, or
the negation of an atom ¬a. Given a set of atoms {a1, . . . , an}, we write ¬{a1, . . . , an}
to denote the set of literals {¬a1, . . . ,¬an}. A normal clause is of the form: a0 ←
a1, . . . , aj ,¬aj+1, . . . ,¬an, where ai is an atom, 0 ≤ i ≤ n. When n = 0 the normal
clause is an abbreviation of a0 ← >, where > and⊥ are the ever true and ever false
propositions respectively. A normal program is a finite set of normal clauses. Sometimes,
we denote a clause C by a ← B+,¬B−, where B+ contains all the positive body literals
and B− contains all the negative body literals. We also use body(C) to denote B+,¬B−.
When B− = ∅, the clause C is called definite clause. A definite program is a finite set
of definite clauses. We denote by LP the signature of P , i.e. the set of atoms that occurs
in P. Given a signature L, we write ProgL to denote the set of all the programs defined
over L.

A partial interpretation based on a signature L is a disjoint pair of sets 〈I1, I2〉 such
that I1∪I2 ⊆ L. A partial interpretation is total if I1∪I2 = L. Given two interpretations
I = 〈I1, I2〉, J = 〈J1, J2〉, we set I ≤k J if, by definition, Ii ⊆ Ji, i = 1, 2. Clearly ≤k

is a partial order. When we look at interpretations as sets of literals then ≤k corresponds
to ⊆. A general semantics SEM is a function on ProgL which associates with every
program a partial interpretation.

Definition 1 (SEM) For any logic program P , we define HEAD(P) = {a| a ←
B+, ¬B− ∈ P} — the set of all head-atoms of P . We also define SEM(P) =
〈P true, P false〉, where P true := {p| p ← > ∈ P} and P false := {p| p ∈
LP \HEAD(P)}.

1.2. Well-Founded Semantics

We start presenting some basic transformation rules for normal logic programs which
will be considered for characterizing WFS.

Definition 2 (Basic Transformation Rules) [6] A transformation rule is a binary re-
lation on ProgL. The following transformation rules are called basic. Let a program
P ∈ ProgL be given.

RED+: This transformation can be applied to P , if there is an atom a which does not
occur in HEAD(P). RED+ transforms P to the program where all occurrences of
¬a are removed.

RED−: This transformation can be applied to P , if there is a rule a ← > ∈ P . RED−
transforms P to the program where all clauses that contain ¬a in their bodies are
deleted.

Success: Suppose that P includes a fact a ← > and a clause q ← body such that
a ∈ body. Then we replace the clause q ← body by q ← body \ {a}.

Failure: Suppose that P contains a clause q ← body such that a ∈ body and a /∈
HEAD(P). Then we erase the given clause.

Loop: We say that P2 results from P1 by LoopA if, by definition, there is a set A of atoms
such that 1. for each rule a ← body ∈ P1, if a ∈ A, then body ∩ A 6= ∅, 2.
P2 := {a ← body ∈ P1|body ∩A = ∅}, 3. P1 6= P2.

Let CS0 be the rewriting system such that contains the transformation rules: RED+,
RED−, Success, Failure, and Loop. We denote the uniquely determined normal form
of a program P with respect to the system CS by normCS(P). Every system CS induces
a semantics SEMCS as follows: SEMCS(P) := SEM(normCS(P)).

WFS is one of the most acceptable semantics in logic programming. It was intro-
duced in [10] and was characterized in terms of rewriting systems in [3]. This character-
ization is defined as follows:

Lemma 1 [3] CS0 is a confluent rewriting system. It induces a 3-valued semantics that
it is the Well-founded Semantics.

1.3. Argumentation theory

Now, we define some basic concepts of Dung’s argumentation approach. The first one
is an argumentation framework. An argumentation framework captures the relationships
between the arguments (All the definitions of this subsection were taken from the seminal
paper [7]).

Definition 3 An argumentation framework is a pair AF := 〈AR, attacks〉, where AR is
a finite set of arguments, and attacks is a binary relation on AR, i.e. attacks⊆ AR×AR.
We writeAFAR to denote the set of all the argumentation frameworks defined over AR.

We say that a attacks b (or b is attacked by a) if attacks(a, b) holds. Similarly, we
say that a set S of arguments attacks b (or b is attacked by S) if b is attacked by an
argument in S.

Definition 4 • A set S of arguments is said to be conflict-free if there are no argu-
ments A, B in S such that A attacks B.

• An argument A ∈ AR is acceptable with respect to a set S of arguments if and
only if for each argument B ∈ AR: If B attacks A then B is attacked by S

• A conflict-free set of arguments S is admissible if and only if each argument in S
is acceptable w.r.t. S.

The (credulous) semantics of an argumentation framework is defined by the notion
of preferred extensions.

Definition 5 A preferred extension of an argumentation framework AF is a maximal
(w.r.t. inclusion) admissible set of AF .

The grounded semantics is defined in terms of a characteristic function.

Definition 6 The characteristic function, denoted by FAF , of an argumentation frame-
work AF = 〈AR, attacks〉 is defined as follows:

FAF : 2AR → 2AR

FAF (S) = {A| A is acceptable w.r.t. S }

Definition 7 The grounded extension of an argumentation framework AF, denoted by
GEAF , is the least fixed point of FAF

2. Mapping from argumentation frameworks to normal programs

In order to see an argumentation framework as a normal program, we introduce a map-
ping from an argumentation framework to a normal logic program. This mapping was
introduced in [11].

In our mapping, we use the predicate d(X), where the intended meaning of d(X)
is “X is a defeated argument”. Also we will denote by D(A) the set of arguments that
directly attack the argument A2. We define a transformation function w.r.t. an argument
as follows.

Definition 8 Let AF := 〈AR,Attacks〉 be an argumentation framework and A ∈ AR.
We define the transformation function Ψ(A) as follows:

Ψ(A) := (
⋃

B∈D(A)

d(A) ← ¬d(B)) ∪ (
⋃

B∈D(A)

d(A) ←
∧

C∈D(B)

d(C))

The direct generalization of the transformation function Ψ to an argumentation
framework is defined as follows:

2Given AF = 〈AR, Attacks〉 and A ∈ AR. D(A) := {B|(B, A) ∈ Attacks}.

Definition 9 Let AF := 〈AR,Attacks〉 be an argumentation framework. We define its
associated normal program as follows: ΨAF :=

⋃
A∈AR Ψ(A).

3. WFS’ extensions and the grounded semantics

In this section, we present the main results of our paper. In particular, we introduce a set
of extensions of the grounded semantics by using a set of extensions of the well-founded
semantics.

We start by presenting some basic terms. Given an argumentation framework AF :=
〈AR,Attacks〉, we understand f(E) := {d(a)|a ∈ E}, where E ⊆ AR.

In [4], it was showed that ΨAF and WFS characterize the grounded semantics as
follows:

Lemma 2 Let AF := 〈AR, attacks〉 be an argumentation framework and S ⊆ AR. S
is the grounded extension of AF if and only if ∃ D ⊆ AR such that 〈f(D), f(S)〉 is the
well-founded model of ΨAF .

Since WFS is a 3-valued logic semantics, where any atom could be true, false, and
undefined, we will define the concept of a 3-valued extension, where any argument could
be accepted, defeated, and undecided.

Definition 10 (3-valued extension) Given an argumentation framework AF := 〈AR,
attacks〉, and S, D ⊆ AR. A 3-valued extension is a tuple 〈S,D〉, where S ∩ D = ∅
and S is a conflict-free set. We call an argument a acceptable if a ∈ S, an argument b
defeated if b ∈ D, and an argument c undecided if c ∈ AR \ {S ∪D}.

3.1. WFSLLC′ semantics

The first WFS’ extension that we will consider is called WFSLLC′ and is based on the
transformation rule LLC ′ (Local Logic Consequence).

Definition 11 (LLC′) [6] Let a be an atom that occurs negatively in a program P and
also appears in the head of some rule. Let P1 be the program that results from P by
removing ¬a from every clause of P . Let Success∗ denote the reflexive and transitive
closure of the relation Success. Suppose that P1 relates to P2 by Success∗ and a ∈ P2.
In this case, we add a ← > to P .

By considering the transformation rule LLC ′, it is defined the rewriting system CS1

as follows: CS1 := CS0 ∪ {LLC ′}. WFSLLC′ is defined as follows:

Lemma 3 [6] CS1 is a confluent rewriting system. It induces a 3-valued semantics that
we call WFSLLC′ .

Now by considering WFSLLC′ , it is introduced an extension of the grounded se-
mantics.

Definition 12 Let AF := 〈AR, attacks〉 be an argumentation framework and S, D ⊆
AR. 〈S, D〉 is the WFSLLC′-extension of AF if and only if 〈f(D), f(S)〉 is a
WFSLLC′- model of ΨAF .

The main difference between the grounded extension and the WFSLLC′ -extension
is done by the transformation rule LLC′. Based on ΨAF , we can say that LLC ′ first
removes all the attacks of an argument a from AF ; therefore it is reviewed by Success
whether the argument a is defeated. In case that a appears defeated, it will be assumed
that the argument a is defeated. Notice that the only case that a could be defeated after
removed its attacks is that a belongs to a cycle of attacks. Let us consider the following
example.

Example 1 Let AF := 〈AR, attacks〉 be an argumentation framework, where AR :=
{a, b, c} and attacks := {(a, a), (a, b), (b, c), (c, b)}. Hence, ΨAF is:

d(a) ← ¬d(a). d(a) ← d(a). d(c) ← ¬d(b).
d(b) ← ¬d(a). d(b) ← ¬d(c). d(c) ← d(c), d(a).
d(b) ← d(a). d(b) ← d(c).

To infer the AF’s WFSLLC′-extension, we need to get the ΨAF ’s WFSLLC′ model.
Then, we apply CS1 to ΨAF . We can see that the argument a is a controversial argument
since it is attacked by itself. Then the transformation rule LLC ′, first it will remove all
the atoms of the form ¬d(a). This means that, it will remove all the a’s attacks of AF .
After that, it will view if a is defeated. Since a appears defeated, it is assumed that the
argument a is a defeated argument and it is added this assumption (d(a) ← >) to the
program ΨAF

d(a) ← ¬d(a). d(a) ← d(a). d(c) ← ¬d(b).
d(b) ← ¬d(a). d(b) ← ¬d(c). d(c) ← d(c), d(a).
d(b) ← d(a). d(b) ← d(c). d(a) ← >.

If we assume that a is a defeated argument, then RED− will remove all its attacks (the
clauses which will be removed are: d(a) ← ¬d(a) and d(b) ← ¬d(a)) and Success
will remove all its supports to other arguments (the clause d(c) ← d(c), d(a) is reduced
to d(c) ← d(c)).

d(a) ← d(a). d(b) ← ¬d(c). d(c) ← ¬d(b).
d(b) ← d(a). d(b) ← d(c). d(c) ← d(c).
d(a) ← >.

Then applying Success, it is found that the argument b is a defeated argument:

d(a) ← >. d(b) ← ¬d(c). d(c) ← ¬d(b).
d(b) ← >. d(b) ← d(c). d(c) ← d(c).

Therefore applying RED−, it removes all the attacks of the argument b:

d(a) ← >. d(b) ← ¬d(c).
d(b) ← >. d(b) ← d(c). d(c) ← d(c).

Since the attack of the argument b to c is removed, Loop will remove the clause d(c) ←
d(c). Then we get:

d(b) ← >. d(a) ← >. d(b) ← ¬d(c).

Finally, since the argument b was already fixed as a defeated argument, RED+ will
remove the attack of the argument c to b which is represented by the clause: d(b) ←
¬d(c). Then, the normal form of ΨAF is:

d(b) ← >. d(a) ← >.

Therefore, WFSLLC′(ΨAF) := 〈{d(a), d(b)}, {d(c)}〉, this means that 〈{c}, {a, b}〉 is
the AF ’s WFSLLC′- extension. We can conclude that the argument c is an acceptable
argument and a, b are defeated arguments. Notice that AF has an empty grounded ex-
tension, AF has no stable extensions and AF has only one preferred extension which is
{c}. In fact, the set of acceptable arguments of the WFSLLC′- extension corresponds to
the only preferred extension of AF .

3.2. WFSWK semantics

Now, let us consider another extension of WFS which is called WFSWK . This semantics
is based on the transformation rule Weak-Cases which is defined as follows:

Definition 13 (Weak-Cases) Let P be a program and suppose the following condition
holds: C1 ∈ P , C2 ∈ P , C1 is of the form a ← l and C2 is of the form a ← ¬l. Then
the Weak-Cases transformation replaces the clauses C1 and C2 in P by the single clause
a ← >.

Let CS2 be a rewriting system which contains the transformation rules CS0∪{Weak-
Cases }. Then, WFSWK is defined as follows:

Lemma 4 CS2 is a confluent rewriting system. It induces a 3-valued semantics that we
call WFSWK .

Since Weak-Cases is an instance of the transformation rule T-Weak-Cases, which is
defined in [6], this lemma is straightforward from Theorem 7.11 of [6].

Now, by considering WFSWK semantics, it is defined another extension of the
grounded semantics.

Definition 14 Let AF := 〈AR, attacks〉 be an argumentation framework and S, D ⊆
AR. 〈S, D〉 is the WFSWK -extension of AF if and only if 〈f(D), f(S)〉 is a WFSWK-
model of ΨAF .

The main difference between the characterizations of the grounded semantics and
the WFSWK-extension is made by the transformation rule Weak-Cases. It is worth men-
tioning that essentially the transformation rule Weak-Cases deploys a reasoning by cases.
In order to illustrate the WFSWK-extension, let us consider the following example.

Example 2 Let AF := 〈AR, attacks〉 be an argumentation framework, where AR :=
{a, b, c, d} and attacks := {(a, b), (b, a), (a, c), (b, c), (c, d)}. Then, ΨAF is:

d(a) ← ¬d(b). d(a) ← d(a). d(d) ← ¬d(c).
d(b) ← ¬d(a). d(b) ← d(b). d(d) ← d(b), d(a).
d(c) ← ¬d(b). d(c) ← d(b).
d(c) ← ¬d(a). d(c) ← d(a).

In order to infer the WFSWK-extension of AF , it is applied CS2 to ΨAF . First of
all, we can see that the argument a is controversial w.r.t. the argument c because a is
attacking to c (d(c) ← ¬d(a)) and also a is defending to c (d(c) ← d(a)). Therefore,
if a is fixed as an acceptable argument, then c will be a defeated argument. Moreover,
if a is fixed as a defeated argument, then c also will be a defeated argument. Under
this situation, the transformation rule Weak-Cases will assume that the argument c is
defeated, then it will remove the clauses d(c) ← ¬d(a) and d(c) ← d(a) from ΨAF and
the clause d(c) ← > is added to ΨAF . Notice that the argument b is also controversial
w.r.t. c. Then the clauses d(c) ← ¬d(b) and d(c) ← d(b) are removed from ΨAF .

d(a) ← ¬d(b). d(a) ← d(a). d(d) ← ¬d(c).
d(b) ← ¬d(a). d(b) ← d(b). d(d) ← d(b), d(a).
d(c) ← >.

Since the argument c was assumed as to be a defeated argument, the RED− will remove
c’s attacks. Hence, we get:

d(a) ← ¬d(b). d(a) ← d(a). d(d) ← d(b), d(a).
d(b) ← ¬d(a). d(b) ← d(b). d(c) ← >.

Since this program is the formal form of ΨAF , WFSWK(ΨAF) := 〈{d(c)}, {}〉. Hence
〈{}, {c}〉 is the WFSWK-extension of AF . This means that the argument c is defeated.

Notice that the grounded extension of AF is the empty set, there are two stable ex-
tensions which are {a, d} and {b, d}, and there are two preferred extensions which coin-
cide with the stable extensions: {a, d} and {b, d}. It is worth mentioning that usually any
argument which does not belong to a preferred/stable extension is considered defeated.
Then we can see that both preferred/stable extensions of AF coincide that the argument
c is a defeated argument. Therefore we can appreciate that the WFSWK-extension co-
incides with the preferred/stable extensions that the argument c is defeated.

3.3. WFSWK+LCC′ semantics

We have defined two extensions of the grounded semantics based on two extensions of
WFS, where the main support of these extensions is the use of the transformation rules:
Weak − Cases and LLC ′. Now the combination of these transformation rules also
suggests another extension of the grounded semantics.

Let CS3 := CS0∪{LLC ′, Weak-Cases}. Obviously, CS3 also defines an extension
of WFS which is defined as follows:

Lemma 5 CS3 is a confluent rewriting system. It induces a 3-valued semantics that we
call WFSWK+LLC′ .

Then by considering WFSWK+LLC′ , we define an extension of the grounded se-
mantics.

Definition 15 Let AF := 〈AR, attacks〉 be an argumentation framework and S, D ⊆
AR. 〈S, D〉 is the WFSWK+LLC′ - extension of AF if and only if 〈f(D), f(S)〉 is a
WFSWK+LLC′- model of ΨAF .

None of both WFSLLC′ and WFSWK extensions is the same to WFSWK+LLC′-
extension. In order to illustrate this difference let us consider the following example.

Example 3 Let AF := 〈AR, attacks〉 be an argumentation framework, where AR :=
{a, b, c, d, e, f,m, n, p} and attacks := {(a, b), (b, c), (c, a), (a, d), (d, e),
(e, f), (m, e), (n,m), (n, p), (p,m), (p, n)}. It is not difficult to see that WFSLLC′-
extension := 〈{}, {a, b, c, d, e}〉, WFSWK -extension := 〈{}, {m}〉, WFSWK+LLC′-
extension := 〈{}, {a, b, c, d, e, m}〉, and the grounded extension is empty.

This argumentation framework has no stable extensions and has two preferred ex-
tensions: {n} and {p}.

3.4. Formalizing the extensions of the grounded semantics

Once we have defined a direct relationship between abstract argumentation semantics and
logic programming semantics, it is possible to understand the behavior of some abstract
argumentation semantics based on the properties of the logic programming semantics.
For instance, since the grounded semantics is characterized by ΨAF and WFS, we can
infer that the WFSLLC′-extension, the WFSWK-extension and the WFSWK+LLC′-
extension are extensions of the grounded semantics and are polynomial time computable.
This is essentially because the semantics WFSLLC′ , WFSWK and WFSWK+LLC′

are extensions of WFS and are polynomial time computable. This result is formalized
with the following theorem:

Theorem 1 Let AF := 〈AR, attacks〉 be an argumentation framework and E be the
grounded extension of AF. Then

a) 1. If 〈S,D〉 is the WFSLLC′ -extension of AF then E ⊆ S.
2. If 〈S,D〉 is the WFSWK-extension of AF then E ⊆ S.
3. If 〈S,D〉 is the WFSWK+LLC′-extension of AF then E ⊆ S.

b) 1. The WFSLLC′-extension of AF is polynomial time computable.
2. The WFSWK-extension of AF is polynomial time computable.
3. The WFSWK+LLC′-extension of AF is polynomial time computable.

Another property that can be formalized w.r.t. the new argumentation seman-
tics is that they are intermediate logic between the grounded semantics and the pre-
ferred semantics. This is essentially because the semantics WFSLLC′ , WFSWK and
WFSWK+LLC′ are stronger than WFS and weaker than the pstable semantics (the for-
mal definition of pstable semantics is presented in [12]). Remember that the pstable mod-
els of ΨAF correspond to the preferred extensions of AF [4].

In order to show that our new argumentation semantics are intermediate semantics
between the grounded semantics and the preferred semantics, we will show that they are
contained in the preferred semantics.

Theorem 2 Let AF := 〈AR, attacks〉 be an argumentation framework, E be a pre-
ferred extension of AF , and E′ := AR \ E. Then,

1. If 〈S, D〉 is the WFSLLC′-extension of AF then S ⊆ E and D ⊆ E′.
2. If 〈S, D〉 is the WFSWK-extension of AF then S ⊆ E and D ⊆ E′.
3. If 〈S, D〉 is the WFSWK+LLC′-extension of AF then S ⊆ E and D ⊆ E′.

4. Conclusions and Future Work

Our experience in the interaction between argumentation semantics and logic program-
ming semantics suggests that the correct understanding of the behavior of one side helps
to understand the behavior of the other side. For instance, thanks to the deep study that
there is on the well-founded semantics is easy to understand the behavior of any ex-
tension of the grounded semantics which is based on an extension of the well-founded
semantics.

In particular in this paper, we showed that by using extension of the well-founded
semantics, it is possible to define an intermediate reasoning between the grounded se-
mantics and the preferred semantics.

A fundamental step in our future research is to explore the relation between the
extensions of the grounded semantics introduced in this paper and the ideal semantics
[8]. In fact, we can see that at least with the examples of this paper and the new extensions
of the grounded semantics coincide with the ideal semantics.

References

[1] P. Baroni and M. Giacomin. Evaluating argumentation semantics with respect to skepticism adequacy.
In ECSQARU 2005, Barcelona, Spain, July 6-8, 2005, Proceedings, volume 3571 of LNCS, pages 329–
340. Springer, 2005.

[2] T. J. M. Bench-Capon and P. E. Dunne. Argumentation in artificial intelligence. Artificial Intelligence,
171(10-15):619–641, 2007.

[3] S. Brass, U. Zukowski, and B. Freitag. Transformation-based bottom-up computation of the well-
founded model. In NMELP, pages 171–201, 1996.

[4] J. L. Carballido, J. C. Nieves, and M. Osorio. Inferring Preferred Extensions by Pstable Seman-
tics. Iberoamerican Journal of Artificial Intelligence (Inteligencia Artificial) ISSN: 1137-3601, (doi:
10.4114/ia.v13i41.1029), 13(41):38–53, 2009.

[5] C. I. Chesñevar, A. G. Maguitman, and R. P. Loui. Logical models of argument. ACM Comput. Surv.,
32(4):337–383, 2000.

[6] J. Dix, M. Osorio, and C. Zepeda. A general theory of confluent rewriting systems for logic programming
and its applications. Ann. Pure Appl. Logic, 108(1-3):153–188, 2001.

[7] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games. Artificial Intelligence, 77(2):321–358, 1995.

[8] P. M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation. Artificial Intelligence,
171(issues 10-15):642–674, 2007.

[9] A. J. García and G. R. Simari. Defeasible logic programming: An argumentative approach. Theory and
Practice of Logic Programming, 4(1-2):95–138, 2004.

[10] A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic programs.
Journal of the ACM, 38(3):620–650, 1991.

[11] J. C. Nieves, M. Osorio, and U. Cortés. Preferred Extensions as Stable Models. Theory and Practice of
Logic Programming, 8(4):527–543, July 2008.

[12] M. Osorio, J. A. Navarro, J. R. Arrazola, and V. Borja. Logics with Common Weak Completions.
Journal of Logic and Computation, 16(6):867–890, 2006.

