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Abstract
Resource allocation in clouds is mostly done as-

suming hard requirements, time-sensitive applications
either receive the requested resources or fail. Given the
dynamic nature of workloads, guaranteeing on-demand
allocations requires large spare capacity. Hence, one
cannot have a system that is both reliable and efficient.

To mitigate this issue, we introduce service-level
awareness in clouds, assuming applications contain
some optional code that can be dynamically deac-
tivated as needed. We propose a resource manager
that allocates resources to multiple service-level-aware
applications in a fair manner. To show the practi-
cal applicability, we implemented service-level-aware
versions of RUBiS and RUBBoS, two popular cloud
benchmarks, together with our resource manager. Ex-
periments show that service-level awareness helps in
withstanding flash-crowds or failures, opening up more
flexibility in cloud resource management.

1. Introduction

Cloud computing radically changed the manage-
ment of data-centers [5]. In the past, machines used
to have one specific purpose. The need for a new
functionality, such as a new web application, implied
the purchase of a new Physical Machine (PM). This
tendency resulted in poor resource utilization and en-
ergy waste. This issue was further aggravated by the
growing number of cores per PM, driven by the end
of frequency scaling, which increased the amount of
unused hardware per node. However, thanks to ad-
vances in cloud computing technologies, applications
are now wrapped inside Virtual Machines (VMs) and
consolidated onto fewer PMs [20].

As a result, resource management becomes a key
issue. Specifically, it is crucial to decide how the
available capacity is distributed among applications to

ensure that on-demand resource requests are satisfied
given the available hardware. In this area, there has
been a tremendous amount of work, mostly assuming
that applications are time-sensitive – lengthy responses
may lead to dissatisfied users – and their resource
requirements are not flexible – the application is either
given the needed amount of resources or fails. Com-
bined with the fact that most cloud applications have
dynamic resource requirements [23], this imposes a
fundamental limitation to cloud computing, which de-
crease its flexibility: To guarantee on-demand resource
allocations, the data-center needs large spare capacity,
leading to inefficient resource utilization.

For increased resource management flexibility, we
propose introducing Service-Level (SL) awareness in
clouds. SL aware applications are characterized by a
dynamic parameter, the service-level, that monotoni-
cally affects both the end-user experience, as well as
the computing capacity required by the application. For
example, online shops offer end-users recommenda-
tions of similar products they might be interested in.
No doubt, recommender engines greatly increase user
experience. However, due to their sophistication, they
are highly demanding on computing resources [18]. By
selectively activating or deactivating the corresponding
code, proportionally to the service-level, resource con-
sumption can be controlled and data-center overload
can be avoided at the expense of end-user experience.

SL awareness opens up the possibility to deal
predictably and efficiently with unexpected events.
Unexpected peaks — also called flash crowds —
may increase the volume of requests by up to 5
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times [3]. Similarly, unexpected failures reduce the
capacity of the data-center until they are repaired. Also,
unexpected performance degradations may arise due to
interference among co-located applications [20]. These
phenomena are well-known and software is readily
written to cope with them, using techniques such as
replication and dynamic load balancing, as long as
resource provisioning is sufficient [2, 15]. However,
given the short duration of such unexpected events, it
is often economically unfeasible to provision enough
capacity for them. On the contrary, using SL aware-
ness, the infrastructure can simply ask applications to
temporarily reduce their requirements. Consequently,
end-user experience is reduced, since the optional code
is not executed. However, delivering partial content in
a timely manner is better than overloading the data-
center and rendering hosted applications unresponsive.

In this article we build the necessary software
infrastructure to support SL-aware cloud applications.
We focus on the resources of a single PM, leaving
multiple-PM extensions for future work. We assume
that the application developer followed the guidelines
to produce SL-aware application presented in Sec-
tion 2. We propose a Resource Manager (RM) that
coordinates the resource allocation among applications
competing for the same resources (Section 3). The
highlight of our contribution is that the design is
backed up by theoretical results from game theory.
Our system provides specific guarantees on desirable
properties such as convergence and fairness among the
applications, which translates to withstanding capacity
shortages predictably. We evaluate our approach, in
Section 4, using two well-known cloud benchmark
applications, RUBiS [24] and RUBBoS [4], that are
extended with SL-aware recommender engines. To
foster further research and pursue repeatability we have
made all source code publicly available1.

2. Application model

In this section we describe the application model
that we expect developers to follow. We assume
that every application i is composed of time-sensitive
requests, which have to be executed before a soft
deadline expires: Exceeding it should be minimized,
to avoid user dissatisfaction. As an example, such
applications can be made Service-Level (SL)-aware,
by marking a part of the request as optional. Being
able to run optional computations is desirable, as
they would improve end-user experience, however,
deactivating them is preferred to missing a deadline.
Let the probability of executing optional computations
between time2 k and k+ 1 be equal to the SL of the

application sk
i . Consequently, the capacity required by

the application is proportional to sk
i .

Every application is requested to regularly update
the Resource Manager (RM) about its performance.
More precisely, a matching value respecting three
properties should be computed. First, the matching
value should be close to zero when the assigned
resources are perfectly matched with the current SL
of the application. Second, if the matching value
is positive, the resources assigned to the application
are abundant and the application can compute at a
higher SL, or the amount of assigned resources can
be reduced. Third, and dual, if the matching value is
negative, either more resources have to be provided or
the application should reduce its SL to avoid missing
deadlines.

For the application model described above, we
chose to compute our matching value f k

i as follows:

f k
i = 1− tk

i /t̄i (1)

where t̄i is the desired deadline and tk
i is the maximum

response-time of requests served from k−1 to k. The
matching value f k

i is the only value that the application
has to communicate to the RM. It is easy to prove that
our choice respects the properties described above.

Our framework can exploit the adaptivity of appli-
cations that change their SL to offer an overall better
performance. Each adaptive application i may change
the SL it runs at, as a function gi of the current
performance, called the update rule. At time j the
application i updates its service level according to

s j+1
i = gi(s

j
i , f j

i ) (2)
that can be different for each application. This internal
feedback loop belongs to the application and the RM is
not informed about its behavior, nor about its execution
interval (the distance between j and j+1). Examples
of how to design such loop can be found in [17]. As
a result, both the SL s j

i and the update rule gi are
private to the application, i.e., the RM is not informed
about them. This assumption allows the RM to run in
linear time with respect to the number of applications,
resulting in a lower overhead compared to a complex
optimization approach where the RM also selects the
SLs of the applications. Moreover, this allows appli-
cations to customize their definition of the SLs and
their update rule. Two proposals for update rules are
described in [17]. Note that our framework allows
application to be non-cooperative, i.e, SL-unaware, as

1GitHub repository: https://github.com/cristiklein/cloudish
2Throughout, time is assumed discrete and denoted with k or j, while
i always represents the application.

https://github.com/cristiklein/cloudish


most existing applications are. If no matching value is
communicated, the RM simply assumes it to be zero.

To clarify the above concepts, we sketch an e-
commerce website as an example of an SL-aware
application. We consider the visualization of a prod-
uct’s page as one request. The optional code of such
a request consists in retrieving recommendations of
similar products. For each request, besides retrieving
the product information, the application runs the rec-
ommender engine with a probability s j

i . Increasing s j
i

increases the amount of served recommendations, thus
increasing end-user experience, but also the capacity
requirements of the application. To avoid saturation,
the application is made self-adaptive by controlling the
parameter s j

i so as to keep the maximum response-time
around a configured deadline.

One of the main differences between this work and
similar research in the context of embedded systems [7,
19] is that we do not assume anything about the
application’s behavior, thus, the RM does not have
access to the SL update rules. In fact, our framework
is completely general with respect to the choice of gi.

3. Resource management

The role of the RM is to select the capacity of
the Physical Machine (PM) that each application is
allowed to use. In many works cited in Section 5,
cloud resource allocation is done based on monitored
resource usage. However, this approach cannot be used
to support SL-aware applications. For example, when
an application’s CPU usage is low, without additional
information, the RM cannot distinguish whether the
application is abundantly provisioned and runs at max-
imum SL, or insufficiently provisioned but runs at
low SL to compensate. Therefore, our RM does not
directly monitor the resource usage of the applications
but uses information on the applications’ performance
that are conveyed through the matching value defined
in Eq. (1)3 without needing to know the SLs of the
applications.

Let us now describe the RM’s behavior. We denote
with ck

i ∈ [0,1] the capacity assigned at time k to
the i-th application relative to the total capacity C of
the PM. At initialization, the RM sets the capacities
to c0

i = 1/n where n is the number of applications.
Subsequently, at the beginning of each control interval,
it first retrieves measurements for all the matching
values f k

i — as defined in Eq. (1) — then updates
each capacity according to

ck+1
i = ck

i − εrm

(
f k
i − ck

i ·∑
p

f k
p

)
(3)

where εrm is a design constant. Given that initially
∑i c0

i = 1, one can prove through induction that:

∑
i

ck
i = 1 (4)

i.e., the RM enforces that the total allocated capacity
does not exceed the available one. Since the matching
values of the applications are closer to zero when the
resources they receive match their SLs, the new alloca-
tion favors the applications that are more distant from
their target performance values — whose matching
values are more negative. The new resource allocation
reflects the relative distance between the applications’
performance. Finally, the computed relative capacities
ck

i are multiplied by the total capacity C, to obtain
the absolute values Ck

i . The RM itself needs to make
sure that it gets enough resources to function correctly,
either by reserving some capacity for itself, or by run-
ning with a higher priority than the applications. The
RM’s complexity is linear with respect to the number
of applications, which allows its implementation to
have low overhead.

Let us summarize the convergence analysis of the
designed system; detailed proof can be found in [7,
Section IV]. Using game-theory and treating applica-
tions as players bidding for resources, it can be shown
that the RM allocations converge to a stationary
point, that is characterized by the following property:
Applications are either performing sufficiently well,
which means that their matching values are close to
zero, or are poorly performing but already operate at
minimum service level. It was also proven that if a
stationary point where all the matching values of the
running applications are driven to zero exists, this point
is reached. Moreover, the RM ensures fairness among
applications. Whenever the applications have similar
definition for their matching values, the framework
theoretically guarantees that, in case of overload, the
resources assigned to the applications converge to
equal values. In other words, applications contribute
equally to dealing with the overload.

4. Experimental evaluation

Experimental setup. Our testbed is a single PM
equipped with two AMD OpteronTM 6272 processors4

and 56 GB of memory, which hosts several Virtual
Machines (VMs). We used Xen 4.1.2 as a hypervisor
and Ubuntu 12.04.2 LTS 64-bits with Linux kernel

3As long as the matching value respects the three introduced proper-
ties, its formulation can be changed.

42100 MHz, 16 cores per processor, no hyper-threading
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Figure 1: Resource manager and two applications.

version 3.2.0, both for the privileged Dom0 and the
unprivileged DomU VMs. Every unprivileged VM is
configured with 4 GB of memory and a variable
number of virtual CPUs. The number of virtual CPUs
is determined as a function of the cap parameter
— a cap of 400 means that the VM has exclusive
access to 4 cores of the PM, while with cap = 50
the VM has access to a single core of the PM, but
only for half of the time. We deployed our SL-aware
versions of RUBiS and RUBBoS, each inside a single
VM among DomU, and the RM inside Dom0. Each
application’s VM contains the self-adaptive version of
the application and all tiers belonging to it — Apache
web server, PHP interpreter, MySQL server. Since we
focus on CPU allocations, we ensured that the database
could be fully cached in memory.

Experimental methodology. To simulate the
users’ behavior, we dynamically select a think-time
and a number of users. Each user runs an infinite
loop, which waits for a random time and then issues
a request. The random waiting time is chosen from
an exponential distribution, whose rate is given by the
think-time parameter. Since we are interested in study-
ing how well the framework controls CPU resources,
we made sure that network or disk did not influence
our results. Therefore, we ran our workload generator
inside Dom0 on a dedicated core. Furthermore, we dis-
abled logging and made sure that each VM had enough
memory to keep the whole database in-memory. In-
deed, disk activity measured during the experiments
was negligible. The RUBiS and RUBBoS applications
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Figure 2: Resource manager and four applications.

are made SL-aware as described in [17], with desired
deadlines of 1 and 0.5 seconds, respectively.

The platform is limited to 4 cores of the PM,
on which we deploy both the SL-aware RUBiS and
RUBBoS. Their caps are selected by the RM, as
described in Eq. (3), based on the matching values they
send, computed according to Eq. (1). The RM’s control
period is set to 5 seconds and εrm is 0.2. During the
experiments, we vary the number of users accessing
the two services at time 200, 400, 600 and 800, and
observe the behavior of the RM and applications.

Results. Figure 1, displaying the results, is struc-
tured as follows. Four metrics are plotted as a function
of time for each of the two applications: the cap
chosen by the RM, the matching value, the SL and
the maximum user-perceived latency. The vertical bars
represent time intervals during which the number of
users is kept constant, with values listed on top. At time
instant 0, the experiment starts in its default configura-
tion: Each application is allocated half of the platform
and both SLs are 0.5. Since the load on RUBBoS is
low, it increases the SL to maximum. Similarly, the
adaptive RUBiS will try to increase the SL, however,
it has insufficient resources to do so immediately. The
RM detects this conditions, through the transmitted
matching value, and rebalances the platform, so as
to reduce RUBBoS’s cap and increase RUBiS’s cap.
Thanks to this, the system reaches a configuration in
which both applications may run at maximum SL. At
time instant 200, we increase the number of RUBBoS
users. RUBBoS reacts to avoid overload and reduces



the SL. Furthermore, the RM increases its cap and
decreases RUBiS’s cap. RUBiS reduces its SL to deal
with the new resource allocation. Thus, the system ap-
proaches a stationary point, in which the performance
requirements of both applications are satisfied. Indeed,
both RUBiS and RUBBoS users experience maximum
latencies around the configured desired deadline of
each application (1 second and 0.5 seconds). Similarly,
new stationary points are reached after the changes in
number of users occurring at 400, 600 and 800.

To further test the fairness of the system, we con-
ducted an experiment with 4 SL-aware applications, 2
RUBiS and 2 RUBBoS VMs, and a platform consisting
of 8 cores. As can be seen in all intervals of Fig. 2,
applications that do not run at full SL are assigned
equal caps, whose value we call fair cap. In other
words, despite targeting different desired deadlines and
executing different code, applications that reduce their
SL to deal with the infrastructure’s overload contribute
with an equal amount of resources to overload reduc-
tion. This is easily observed for application 1, 2, 3
and 4 in the 4th interval, whose caps settle around
200 or applications 2, 3, 4 in the 5th interval, whose
caps settle around 230. Some applications may be able
to run at full SL with fewer resources than the fair
cap. For these applications, their cap is reduced to
the minimum value which allows them to run at full
SL. Thus, such applications contribute with even more
resources to overload reduction, without sacrificing
their SL. For example, application 1 in the 5th interval
runs at full SL with a cap around 98, which is smaller
than the fair cap of 230.

Note that in both Figs. 1 and 2, latencies may
temporarily increase above the desired deadline. This
is expected, since applications continuously try to max-
imize their service-level, hence, latencies may shortly
overshoot. To conclude, we experimentally showed that
the RM behaves as theoretically designed, avoiding
overload while respecting fairness among applications.

5. Related work

Managing resources in clouds is a challenging task.
Resource management schemes are either applica-
tion or infrastructure-centric. Performing application-
centric resource allocation (e.g. [6, 8, 26]) means
deciding the right amount of resources to allocate
avoiding under- or over-provisioning. However, appli-
cations are not cooperative and cannot reduce their
requirements if resources are congested. In this way,
the limitations of the underlying infrastructure are
neglected, taking only the application’s point-of-view.

Application-centric allocation can be combined

with game theory. For example, Ardagna et al. [1]
studies resource allocation in which users bid for
resources and the provider sets the price to maximize
his revenue. A solution which converges to a Nash
equilibrium is proposed. Sharma et al. [25] proposes
Kingfisher, a system that tries to minimize the cloud
tenant’s deployment cost while reacting to workload
changes. However, none of these works take into
account the capacity limitations of the cloud provider.

Although some works deal with performance dif-
ferentiation for multiple classes of clients [21], to our
knowledge, the only cloud application that comes close
to being SL aware is Harmony [9]. It adjusts the
consistency-level of a distributed database as a function
of the incoming end-user requests, so as to minimize
resource consumption. This is a specific example of
SL awareness in cloud applications, and the adaptation
strategy is not reflected in the resource allocation.

Infrastructure-centric resource allocation strategies
like [12, 27] mostly regard applications as non-
cooperative “black-boxes”, with hard resource require-
ments. Among the different contributions to the area,
we most closely relate to those dealing with over-
subscription (also called over-booking) [28]. In [11,
22] the RM is assumed to know the minimum ap-
plication requirements a priori, which is not a valid
assumption in a cloud environment. In [16], application
requirements are modeled as random variables and
statistical analysis is applied to avoid data-center over-
load. In [14] the approach is extended with correlation
coefficients between the requirements and portfolio
theory is used to increase over-subscription, while
controlling the overload risk. However, in both of
these works no remedy is given to overload conditions,
besides having to pay a penalty to the user. A possible
solution is presented in [29] by allowing the provider
to suspend the least “important” VMs. However, this
solution may be unacceptable when the VMs are
hosting interactive, Internet-facing applications.

SL-awareness can be an alternative or a comple-
ment to other techniques. For example, out-scaling
is often proposed as a solution to temporary lack of
capacity [13] — requesting VMs from a public cloud
provider, such as Amazon EC2 or Rackspace, effec-
tively creating a hybrid cloud. SL awareness can be
an initial, temporary solution, during the time interval
when out-scaling is set up, or an alternative, whenever
out-scaling is not an option such as budget constraints
or privacy concerns. In fact, with out-scaling, besides
the cost for renting the VMs, the owner would also
have to pay the cost of transferring her data onto
the public cloud and back into the data-center after
the unexpected condition expired. Also, the owner



may deal with sensitive data, such as company know-
how, credit card transactions, user profiles, that are
not transferable outside the private data-center. Finally,
cloud providers themselves have limited capacity and
even Amazon EC2 — one of the largest computing
inventories — can run out of capacity [10].

To the best of our knowledge, this is the first
work that deals with SL-aware cloud applications, inte-
grating them with resource allocation. Existing papers
either do not study how such applications change their
SL and interact with the infrastructure or how the
infrastructure coordinates multiple such applications.

6. Conclusion

In this paper we discussed a proposal for resource
allocation to service-level aware cloud applications.
We proposed a game-theoretic resource manager to
coordinate the demands of multiple applications in a
predictable and fair way. These applications can reduce
the burden they inflict on the cloud infrastructure,
therefore cooperating to the better management of the
available resources, in particular to avoid data-center
overload. We implemented the framework and tested
it with real-life experiments, demonstrating that we
allocate resources fairly to the running applications.
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