
The Tractability Frontier for NFA Minimization⋆

Henrik Björklund and Wim Martens

TU Dortmund
henrik.bjoerklund@udo.edu

wim.martens@udo.edu

Abstract. We essentially show that minimizing finite automata is NP-
hard as soon as one deviates from the class of deterministic finite au-
tomata. More specifically, we show that minimization is NP-hard for all
finite automata classes that subsume the class that is unambiguous, al-
lows at most one state q with a non-deterministic transition for at most
one alphabet symbol a, and is allowed to visit state q at most once in a
run. Furthermore, this result holds even for automata that only accept
finite languages.

1 Introduction

The regular languages are immensely important, not only in theoretical com-
puter science, but also in practical applications. When using regular languages
in practice, the developer is often faced with a trade-off between the descriptive
complexity and the complexity of optimization. Concretely, it has been known
for a long time that there are regular languages for which non-deterministic fi-
nite automata (NFAs) can provide an exponentially more succinct description
than deterministic finite automata (DFAs) [13]. On the other hand, many deci-
sion problems that are solvable in polynomial time for DFAs, i.e., equivalence,
inclusion, and universality, are computationally hard for NFAs.

The choice of a representation mechanism can therefore be crucial. If the
set of regular languages used in an application is relatively constant, member-
ship tests are the main language operations, and economy of space is an issue,
NFAs are probably the right choice. If, on the other hand, the languages change
frequently, and inclusion or equivalence tests are frequent, DFAs may be more
attractive.

Since both NFAs and DFAs have their disadvantages, a lot of effort has been
spent on trying to find intermediate models, i.e., finite automata that have some
limited form of non-determinism. A rather successful intermediate model is the
class of unambiguous finite automata (UFAs).1 While in general still being ex-
ponentially more succinct than an equivalent DFA for the same language, static
analysis questions such as inclusion and equivalence can be solved in PTIME for
UFAs [17]. However, UFAs do not allow for tractable state minimization [11].

⋆ This work was supported by the DFG Grant SCHW678/3-1.
1 An automaton is unambiguous if it has at most one accepting run for each word.

Therefore, the question whether there are good intermediate models between
DFAs and NFAs needs to be revisited for state minimization. The main result
of this paper is that, probably, no such good models exist. Even the tiniest bit
of non-determinism makes the minimization problem NP-hard.

Every undergraduate computer science curriculum teaches its students how
to minimize a DFA in polynomial time. In contrast, minimizing unrestricted
NFAs is PSPACE-complete [18]. The minimization problem for automata with
varying degrees of non-determinism was studied in a seminal paper by Jiang and
Ravikumar in 1993 [11]. Among other results, they thoroughly investigated the
minimization problem for UFAs. They showed the following.

– Given a UFA, finding the minimal equivalent UFA is NP-complete.
– Given a DFA, finding the minimal equivalent UFA is NP-complete.
– Given a DFA, finding the minimal equivalent NFA is PSPACE-complete.

Minimization problems have even been studied for automata with unary alpha-
bets; see, e.g., [10, 5].

Recently, Malcher [12] improved on the results of Jiang and Ravikumar in
the sense that he showed that finite automata with quite a small amount of
non-determinism are hard to minimize. More precisely, he showed the following:

(a) Minimization is NP-complete for automata that can non-deterministically
choose between a fixed number of initial states, but are otherwise determin-
istic.

(b) Minimization is NP-complete for non-deterministic automata with a con-
stant number of computations for each string.2

Whereas Malcher made significant progress in showing that minimization is hard
for non-deterministic automata, he was not yet able to answer the entire ques-
tion. Therefore, he asks whether there are relaxations of the deterministic au-
tomata model at all for which minimization is tractable as an important open
problem. In this respect, he mentions the class of automata with at most two
computations for each string and the two classes (a) and (b) above with the added
restriction of unambiguousness as important remaining cases. In the present pa-
per, we settle these open questions and provide a uniform NP-hardness proof for
all classes of automata mentioned above.

In brief, we define a class δNFA of automata that are unambiguous, have at
most two computations per string, and have at most one state q with two out-
going a-transitions, for at most one symbol a. Then, we show that minimization
is NP-hard for all classes of finite automata that include δNFAs, and show that
these hardness results can also be adapted to the setting of unambiguous au-
tomata that can non-deterministically choose between two start states, but are
deterministic everywhere else. This solves the open cases mentioned by Malcher.
On the other hand, there are relaxations of the deterministic automaton model
that allow tractable minimization. We show that, if we add to the definition of

2 Actually, he showed this for automata with constant branching, which is slightly
different from the number of computations; see Section 2.1.

δNFAs that each word should have at most one rejecting computation, mini-
mization becomes tractable again. However, the minimal automata in this class
are the DFAs, so this class is not likely to be very useful in practice.

Other related work. An overview of state and transition complexity of
NFAs can be found in [15]. Known results about the trade-off between amount of
non-determinism and descriptional complexity are surveyed in [2]. The problems
of producing small NFAs from regular expressions has been considered in [9,
16]. There has also been some work on approximating minimal NFAs [3, 4, 6],
basically showing that approximation is very hard. The work of Hromkovic et
al. [8] about measuring non-determinism in finite automata will be relevant to us
in Section 2. Since the minimization problem for NFAs is hard, the bisimulation
minimization problem has also been considered; see, e.g., [14, 1].

Due to space restrictions, some proofs and parts of proofs have been omitted,
and will appear in the full version of the paper.

2 Preliminaries

By Σ we always denote a finite alphabet. A (non-deterministic) finite automaton
(NFA) over Σ is a tuple A = (States(A), Alpha(A), Rules(A), init(A), Final(A)),
where States(A) is its finite set of states, Alpha(A) = Σ, init(A) ∈ States(A)
is its initial state, Final(A) ⊆ States(A) is its set of final states, and Rules(A)

is a set of transition rules of the form q1

a
→ q2, where q1, q2 ∈ States(A) and

a ∈ Σ. The size of an automaton is |States(A)|, i.e., its number of states. A
finite automaton is deterministic if, for each q1 ∈ States(A) and a ∈ Alpha(A),

there is at most one q2 ∈ States(A) such that q1

a
→ q2 ∈ Rules(A). By DFA we

denote the class of deterministic finite automata.
A run, or computation, r of A on a word w = a1 · · · an ∈ Σ∗ is a string

q1 · · · qn ∈ States(A)∗ such that init(A)
a1→ q1 ∈ Rules(A) and, for each i =

1, . . . , n − 1, qi

ai+1

→ qi+1 ∈ Rules(A). The run is accepting if qn ∈ Final(A). The
language of A is the set of words w such that there exists an accepting run of A

on w. A finite automaton A is unambiguous if, for each string w, there exists at
most one accepting run of A on w.

Let N1 and N2 be two classes of NFAs. We say that N1 ⊆ N2 if each au-
tomaton in N1 also belongs to N2. For example, DFA ⊆ NFA.

2.1 Notions of Non-Determinism

We recall some standard measures of non-determinism in a finite automaton.
For a state q and an alphabet symbol a, the degree of non-determinism of a
pair (q, a), denoted by degree(q, a) is the number k of different states q1, . . . , qk

such that, for all 1 ≤ i ≤ k, q
a
→ qi ∈ Rules(A). We say that A has degree

of non-determinism k, denoted by degree(A) = k, if degree(q, a) ≤ k for every
(q, a) ∈ States(A) × Alpha(A), and there is at least one pair (q, a) such that
degree(q, a) = k.

The branching of an automaton is intuitively defined as the maximum prod-
uct of the degrees of non-determinism over states in a possible run. Formally, the
branching of A on a word w = a1 · · · an is branchA(w) = max{Πn

i=1degree(qi−1,

ai) | q1 · · · qn is a run of A on a1 · · · an, and init(A) = q0}. The branching of A,
denoted branch(A), is max{branchA(w) | w ∈ L(A)} if this quantity is defined,
and otherwise ∞.

Hromkovic et al. [8] define three measures non-determinism for a finite au-
tomaton A: advice(A), computations(A), and ambig(A). These measures are de-
fined as follows: advice(A) is the maximum number of non-deterministic choices
during any computation of A, computations(A) is the maximum number of dif-
ferent computations of A on any word,3 and ambig(A) is the maximum number
of different accepting computation of A on any word. For the formal definitions
of these concepts, we refer to [8].

2.2 A Notion of Very Little Non-Determinism

Next we define the notion of a δNFA. The intuition is that such an automaton
should allow only a very small amount of non-determinism.

Definition 1. A δNFA is an NFA A with the following properties

– A is unambiguous;
– branch(A) ≤ 2; and
– there is at most one pair (q, a) such that degree(q, a) = 2.

For δNFAs, we have that degree(A) ≤ 2, advice(A) ≤ 1, computations(A) ≤ 2,
and ambig(A) = 1. Notice that any one of degree(A) = 1, advice(A) = 0, or
computations(A) = 1 implies that A is deterministic. Also, ambig(A) = 1 is the
minimum value possible for any automaton that accepts at least one string.

2.3 The Minimization Problem

We define the minimization problem in two flavors. For two classes of finite au-
tomata N1 and N2 the N1 → N2 minimization problem is the following problem.
Given a finite automaton A in N1 and an integer k, does there exist a finite au-
tomaton B in N2 of size at most k such that L(A) = L(B)? For a class N of
finite automata, the minimization problem for N is then simply the N → N
minimization problem.

Suppose that the N1 → N2 minimization problem is hard for a complexity
class C, and let N3 be a class of automata such that N1 ⊆ N3. Then the
N3 → N2 minimization problem is also trivially hard for C. However, assuming
that N1 → N2 is hard for C and that N2 ⊆ N3, there is, as far as we know,
no general argument that also makes the N1 → N3 minimization problem hard
for C, as finding a small N3 automaton might be easier than finding a small N2

3 Hromkovic et al. wrote leaf(A) instead of computations(A).

automaton in general.4 Therefore, we will prove directly that minimization is
NP-hard for all classes of automata between δNFAs and NFAs.

2.4 Are δNFAs the Closest Possible to Determinism?

Before we give more intuition about this question, we first note that there are in
fact two incomparable notions of determinism for finite automata: determinism
and reverse determinism.5 Both classes can be efficiently minimized by the same
algorithm, modulo a simple pre- and post-processing step for reverse determin-
istic automata. We view these two classes as the two possible “optima” in the
spectrum of determinism, as they arise very naturally from the fact that one can
either read strings from left to right or from right to left. From now on, we only
consider the proximity of δNFAs to (left-to-right deterministic) DFAs.

We believe that one can always think of more and more exotic notions of
non-determinism that come closer and closer to DFAs.6 We provide an example
here. Define the class C to be the class of δNFAs with the additional condition
that, for each word w, there can be at most one rejecting computation of A

on w. (Thus, for each w, there can be at most two runs — one accepting and
one rejecting.) This notion of non-determinism lies strictly between DFAs and
δNFAs (DFA ⊆ C ⊆ δNFA).

Consider the minimization problem for C and let A be an arbitrary automa-
ton in C. We will argue that the minimal C-automaton for L(A) is a DFA.
Suppose that A is not a DFA. Let q and a be the unique state and label so
that degree(q, a) = 2. Let q1 and q2 be the two states such that q

a
→ q1 and

q
a
→ q2 are in Rules(A). Let w be an arbitrary string that leads A to state q. By

definition of C, A must accept every string of the form waw′, where w′ is an ar-
bitrary word in Alpha(A)∗. (If waw′ would be rejected, then there would be two
rejecting runs, one over q1 and one over q2.) Therefore, we can make A strictly
smaller by merging the two states q1, q2 to q3, removing all outgoing transitions
from q3, making q3 a final state, and adding loop transitions from q3 to itself for
each alphabet symbol. Moreover, by this operation, A becomes deterministic.
Hence, every automaton A in C that is not a DFA can be rewritten as a smaller
DFA. This means that, in the class C, the minimal automata are the DFAs. In
particular, this also puts the minimization problem for C into PTIME.

From the above it is clear that δNFAs are certainly not the closest possible
to determinism that one can get. Rather, it is the closest class to DFAs we were
able to find that takes advantage of the succinctness of nondeterminism in a
nontrivial way.

Our NP-hardness result for the minimization of δNFAs therefore puts the
tractability frontier precisely between δNFAs and the above mentioned class C;
two classes that are extremely close to one another.

4 This is also why, e.g., Malcher explicitly proves NP-hardness for minimizing various
classes of automata that are included in one another (Lemmas 3 and 11 in [12]).

5 The latter is the class for which the inverted transitions are deterministic.
6 One could, for instance, take the class of DFAs and add a single NFA.

3 Minimizing Non-Deterministic Automata is Hard

The main result of this section is the following

Theorem 2. Let N be a class of finite automata. If δNFA ⊆ N then DFA → N
minimization is NP-hard.

Corollary 3. For each class N of finite automata such that δNFA ⊆ N , the
minimization problem for N is NP-hard.

We start by formally defining the decision problems that are of interest to us,
and then sketch an intuitive overview of our proof. Given an undirected graph
G = (V, E) such that V is its set of vertices and E ⊆ V × V is its set of edges,
we say that a set of vertices V C ⊆ V is a vertex cover of G if, for every edge
(v1, v2) ∈ E, V C contains v1, v2, or both.

If B and C are finite collections of finite sets, we say that B is a set basis for
C if, for each c ∈ C, there is a subcollection Bc of B whose union is c. We say
that B is a normal set basis for C if, for each c ∈ C, there is a pairwise disjoint
subcollection Bc of B whose union is c. We say that B is a separable normal set
basis for C if B is a normal set basis for C and B can be written as a disjoint
union B1 ⊎ B2 such that, for each c ∈ C, the subcollection Bc of B contains at
most one element from B1 and at most one from B2.

The following decision problems are considered in this paper. Vertex Cover
asks, given a pair (G, k) where G is a graph and k is an integer, whether there
exists a vertex cover of G of size at most k. Set Basis, Normal Set Basis, and
Separable Normal Set Basis ask, given a pair (C, s) where C is a finite collection
of finite sets and s is an integer, whether there exists a set basis, resp., normal
set basis, resp., separable normal set basis for C containing at most s sets.

The proof of Theorem 2 proceeds in several steps. First, we provide a slightly
modified version of a known reduction from Vertex Cover to Normal Set Basis
(Lemma 4 in [11]), showing that the latter problem is NP-hard. Second, we
proceed to show that the set I of instances of Normal Set Basis obtained through
this reduction has a number of interesting properties (Lemma 5). In particular,
we show that if such an instance has a set basis of a certain size s, then it also
has a normal set basis of size s. Third, we show that the the Normal Set Basis
problem, for instances in I reduces to minimization for δNFAs (Lemma 6).

The statement of Theorem 2 says that given a DFA, finding the minimal
equivalent automaton in class N is NP-hard, for any class of finite automata
that contains the δNFAs. As argued in Section 2.3, using a DFA instead of a
δNFA as input of the problem strengthens the statement. Also, showing that
DFA → δNFA is NP-hard doesn’t immediately imply that DFA → N is hard
for every N that contains all δNFAs. To show that this is actually the case,
we prove that for the languages obtained in our reduction, the minimal NFAs
are precisely one state smaller than the minimal δNFAs (Lemma 6). For these
languages, the minimization problem for δNFAs and for NFAs is essentially the
same problem.

We revisit a slightly modified reduction which is due to Jiang and Raviku-
mar [11], as our further results rely on a construction in their proof.

c4
ij

xi

yi

yj xjci cj

c5
ij

c2
ij

c1
ij

c3
ij

aij

bij

dij

eij

Fig. 1. The constructed sets ci, cj , c
1

ij , . . . , c
5

ij in the proof of Lemma 4.

Lemma 4 (Jiang and Ravikumar [11]). Normal Set Basis is NP-complete.

Proof (Sketch). Obviously, Normal Set Basis is in NP. Indeed, given an input
(C, s) for Normal Set Basis, the NP algorithm simply guesses a collection B

containing at most s sets, guesses the subcollections Bc for each c ∈ C, and
verifies whether the sets Bc satisfy the necessary conditions.

We give a reduction from Vertex Cover to Normal Set Basis but omit the
correctness proof. Given an input (G, k) of Vertex Cover, where G = (V, E) is
a graph and k is an integer, we construct in LOGSPACE an input (C, s) of
Normal Set Basis, where C is a finite collection of finite sets and s is an integer.
In particular, (C, s) is constructed such that G has a vertex cover of size at most
k if and only if C has a normal set basis containing at most s sets.

For a technical reason which will become clear in later proofs, we assume
without loss of generality that k < |E| − 3. Notice that, under this restriction,
Vertex Cover is still NP-complete under LOGSPACE reductions. Indeed, if k ≥
|E| − 3, Vertex Cover can be solved in LOGSPACE by testing all possibilities
of the at most 3 vertices which are not in the vertex cover, and verifying that
there does not exist an edge between 2 of these 3 vertices.

Formally, let V = {v1, . . . , vn}. For each i = 1, . . . , n, define ci to be the set
{xi, yi} which intuitively corresponds to the node vi. Let (vi, vj) be in E with
i < j. To each such edge we associate five sets as follows:

c1
ij := {xi, aij , bij}, c4

ij := {xj, aij , eij}, and
c2
ij := {yj , bij , dij}, c5

ij := {aij, bij , dij , eij}.
c3
ij := {yi, dij , eij},

Figure 1 contains a graphical representation of the constructed sets ci, cj , c
1
ij , . . . ,

c5
ij for some (vi, vj) ∈ E. Then, define

C := {ci | 1 ≤ i ≤ n} ∪ {ct
ij | (vi, vj) ∈ E, i < j, and 1 ≤ t ≤ 5}

and s := n + 4|E| + k. Notice that the collection C contains n + 5|E| sets.
Obviously, C and s can be constructed from G and k in LOGSPACE.

We show that the reduction is also correct, that is, that G has a vertex cover
of size at most k if and only if C has a (separable) normal set basis containing
at most s sets.

(⇒): Let G have a vertex cover V C of size k. We need to show that C has a
normal set basis B containing at most s = n + 4|E| + k sets.

To this end, we define a collection B of sets as follows. For every vi ∈ V ,

– if vi ∈ V C, we include both {xi} and {yi} in B;
– otherwise, we include ci = {xi, yi} in B.

The number of sets included in B so far is 2k + (n− k) = k + n. Let e = (vi, vj)
(where i < j) be an arbitrary edge in G. Since V C is a vertex cover, either vi or
vj (or both) is in V C. When vi is in V C, we additionally include the sets

r1
ij := {aij, bij}, r2

ij := {dij , eij},
r3
ij := {yj, bij , dij}, and r4

ij := {xj , aij , eij}

in B. When vi is not in V C, we additionally include the sets

r5
ij := {aij , eij}, r6

ij := {bij, dij},
r7
ij := {xi, aij , bij}, and r8

ij := {yi, dij , eij}

in B. This completes the definition of B. Notice that, when vi ∈ V C, c1
ij , c3

ij ,

and c5
ij can be expressed as a disjoint union of members of B as

c1
ij = {xi} ⊎ r1

ij , c3
ij = {yi} ⊎ r2

ij , c5
ij = r1

ij ⊎ r2
ij

and that c2
ij = r3

ij and c4
ij = r4

ij are members of B. Analogously, when vi 6∈ V C,

c2
ij , c4

ij , and c5
ij can be expressed as a disjoint union of members of B as

c2
ij = {yj} ⊎ r6

ij , c4
ij = {xj} ⊎ r5

ij , c5
ij = r5

ij ⊎ r6
ij

and c1
ij = r7

ij and c3
ij = r8

ij are members of B. Since the total number of sets
included in B for each edge is four, B contains (k +n)+4|E| = s sets. From the
above argument it is also obvious that B is a normal set basis for C.

Notice that B is in fact a separable normal set basis for C. Indeed, we can
partition B into the sets

B1 = {{xi}, {xj, yj} | vi ∈ V C, vj 6∈ V C}

∪ {r2
ij , r

3
ij | (vi, vj) ∈ E, i < j, vi ∈ V C}

∪ {r6
ij , r

7
ij | (vi, vj) ∈ E, i < j, vi 6∈ V C}

and

B2 = {{yi} | vi ∈ V C}

∪ {r1
ij , r

4
ij | (vi, vj) ∈ E, i < j, vi ∈ V C}

∪ {r5
ij , r

8
ij | (vi, vj) ∈ E, i < j, vi 6∈ V C},

which satisfy the necessary condition.
(⇐): Suppose that C has a normal set basis B containing at most s =

n + 4|E| + k sets. We can assume without loss of generality that no proper
subcollection of B is a normal set basis. We show that G has a vertex cover V C

of size at most k. Define V C = {vi | both {xi} and {yi} are in B}. Let k′ be the
number of elements in V C. The number of sets in B consisting of only xi and/or
yi is at least n + k′. This can be seen from the fact that B must have the subset
ci for all i such that vi 6∈ V C. Thus, there are n− k′ such sets in addition to 2k′

singleton sets corresponding to i’s such that vi ∈ V C. Let E′ ⊆ E be the set of
edges covered by V C, that is, E′ = {(vi, vj) | vi or vj is in V C}. The following
observation can easily be shown (by checking all possibilities):

Observation: For any e ∈ E′ at least four sets of B (excluding sets ci, cj ,

{xi}, {yi}, {xj}, or {xj}) are necessary to be a normal set basis for the five sets
ct
ij , t = 1, . . . , 5. Further, at least five sets (excluding sets ci, cj , {xi}, {yi}, {xj},

or {xj}) are required to be a normal set basis for them if e 6∈ E′. Notice that,
for e 6∈ E′, {xi} and {yi}, or {xj} and {yj} are never both in B, by definition
of E′.

Now the total number of sets needed to cover C is at least n + k′ + 4|E′| +
5(|E| − |E′|), which we know is at most s = n + 4|E| + k. Hence, we obtain
that n + k′ + 5|E| − |E′| ≤ n + 4|E|+ k, which implies that k′ + |E| − |E′| ≤ k.
We conclude the proof by showing that there is a vertex cover V C′ of size
|E| − |E′|+ k′. Add one of the end vertices of each edge e ∈ E −E′ to V C. This
vertex cover is of size |E| − |E′| + k′ ≤ k. �

The next lemma now follows from the proof of Lemma 4. It defines a set of
inputs I for which Normal Set Basis is NP-complete and further shows that for
any (C, s) ∈ I, the collection C has a set basis of size s if and only if C also has
a separable normal set basis of size s. Of course, the latter property does not
hold for the set of all possible inputs for the normal set basis problem.

Lemma 5. There exists a set of inputs I for Normal Set Basis, such that

(1) Normal Set Basis is NP-complete for inputs in I;
(2) for each (C, s) in I, C contains every set at most once and s < |C| − 3;
(3) for each (C, s) ∈ I, the following are equivalent:

(a) C has a set basis containing s sets.
(b) C has a separable normal set basis containing s sets.

(4) for each (C, s) in I, each solution B for (C, s) writes at least two sets of C

as a union of at least two sets in B.

Proof. The set I is obtained by applying the reduction in Lemma 4 to inputs
(G, k) of Vertex Cover such that k ≤ |E| − 3. This immediately shows (1) and
(2). We continue by proving the other cases.
(3) The direction from (b) to (a) is trivial. For the other direction the full proof
of Lemma 4 actually shows that if G has a vertex cover of size k, then C has a
separable normal set basis containing s sets. Conversely, if C has a normal set
basis containing at most s sets, then G has a vertex cover of size k. This implies
that C also has a separable normal set basis containing s sets.

Hence, we still need to prove that, if C has a set basis of at most s sets,
then C also has a normal set basis containing at most s sets. Let (C, s) be an
instance in I, i.e., there is an n ∈ N and E ⊆ {(i, j) | 1 ≤ i < j ≤ n} such that
C = {ci | 1 ≤ i ≤ n} ∪ {cr

ij | (i, j) ∈ E ∧ 1 ≤ r ≤ 5}, and suppose C has a set
basis B = {b1, . . . , bs} of size s. We construct a normal set basis for C of size s.

To this end, we will show a sequence of assumptions that we can make about
B without loss of generality. These assumptions, put together, will imply that
B is a normal set basis for C, and thus show that if there is a set basis of size
s, then there is also a normal set basis of size s.

Suppose that there is an i such that B contains both {xi} and {xi, yi}. Then
we can replace {xi, yi} with {yi} and still have a set basis for C, since ci is the
only set in C of which {xi, yi} is a subset. This gives us our first assumption.

Assumption 1. For every i ∈ {1, . . . , n}, set basis B either contains {xi, yi} or
{xi} and {yi}, but never both {xi, yi} and {xi} (or, symmetrically, {xi, yi} and
{yi}).

Suppose there are 1 ≤ i < j ≤ n and 1 ≤ r ≤ 4 such that cr
ij cannot be

formed as a disjoint union of sets from B. Without loss of generality, we may
assume that r = 1, i.e., cr

ij = c1
ij = {xi, aij , bij}, since all other cases follow by

symmetry. Since there are no disjoint sets from B whose union is c1
ij , there must

be two different sets b1 and b2 in B that are subsets of cij and contain precisely
two elements each. At least one of these subsets must contain xi. Assume w.l.o.g.
that this set is b1. No subset of size two of c1

ij that contains xi is a subset of any

set of C other than c1
ij . This means that we can replace b1 with b1− b2 in B and

still have a set basis of size at most s, and gives us our second assumption.

Assumption 2. For any i, j and any r ∈ {1, . . . , 4}, the set cr
ij can be formed

as a union of disjoint sets from B.

If B satisfies Assumptions 1 and 2, but is not normal, there are 1 ≤ i < j ≤ n

such that c5
ij cannot be formed as a disjoint union of sets from B. Let Bij be

a subset of B such that the union of the sets in Bij is c5
ij . We can assume that

Bij is inclusion free, i.e., there are no two sets in Bij such that one is a subset
of the other, since if there are b1, b2 ∈ Bij with b1 ⊂ b2, we can replace b2 with
b2 − b1.

Assumption 3. The collection Bij is inclusion free.

If Bij has four members, then we can replace Bij with the four singletons
and still have a set basis of size s.

Assumption 4. The collection Bij has at most three members.

Suppose there is a set b in Bij such that b is not a subset of any set in C

other than c5
ij . Then we can replace b with b − (

⋃
b′∈Bij−{b} b′) in B and still

have a set basis of size at most s.

Assumption 5. Each member of Bij is a subset of some set from C other that
c5
ij . In particular, this means that each member of Bij has at most two elements.

If we take three different subsets of c5
ij with at most two elements, that are

also subsets of other sets from C than c5
ij , then at least two of them are disjoint;

see Figure 1. Let these two disjoint sets be b1 and b2. If b1 and b2 both contain
two elements, we can replace Bij with {b1, b2}.

Assumption 6. There are at most two sets in Bij with two elements. Further-
more, these two sets must overlap. This means that Bij must have exactly three
members, two with two elements and one singleton. Without loss of general-
ity, we may assume that Bij = {{aij , bij}, {bij, dij}, {eij}}. (All other cases are
symmetrical.) We may also assume that neither {aij} nor {bij} belong to B. (If
{aij} belongs to B then we can replace {aij , bij} by {bij} in Bij , and if {bij}
belongs to B we can replace {bij , dij} by {dij}in Bij .)

If Bij satisfies Assumption 6, in order to form c1
ij either {xi}, {xi, aij},

{xi, bij}, or {xi, aij , bij} must be a member of B. If it is not {xi}, we can replace
it with {xi}, since none of the other sets is a subset of any other set in C than
c1
ij . But if {xi} ∈ B we can also assume that {yi} ∈ B. To form c3

ij , B must,

apart from {yi} and {eij}, contain some subset of c3
ij that contains dij . Since we

have both {yi} and {eij} in B, we may replace this subset with {dij}. Once we
have {dij} in B, we can replace {bij, dij} by {bij} in B.

Assumption 7. There are disjoint members of B whose union is c5
ij .

Together, Assumptions 1,2, and 7 imply that B is in fact a normal set basis
for C. Since each assumption was made without loss of generality, we have shown
that from any set basis for C of size s we can form a normal set basis for C of
size at most s.
(4) We simply observe that a normal set basis writing at most one set of C as a
union of at least two sets must contain at least |C| sets, and hence cannot be a
solution for (C, s), since s < |C|. �

The proof of the following lemma is partly inspired by the proof of Theorem
3.1 of [11], but we significantly strengthen it for our purposes.

Lemma 6. There exists a set of regular languages L such that

(1) DFA → δNFA minimization is NP-complete for DFAs accepting L and
(2) for each L ∈ L, the size of the minimal NFA for L is equal to the size of the

minimal δNFA for L, minus 1.

Proof. The NP upper bound is immediate, as equivalence testing for unambigu-
ous finite automata is in PTIME [17]. We can guess a δNFA of sufficiently small
size and test in PTIME whether it is equivalent to the given DFA.

For the lower bound, we reduce from Separable Normal Set Basis. To this
end, let (C, s) be an input of Separable Normal Set Basis. Hence, C is a collection
of n sets and s is an integer. According to Lemma 5, we can assume without
loss of generality that (C, s) ∈ I, that is, C has a separable normal set basis
containing s sets if and only if C has a normal set basis of size s. Moreover, we
can assume that s < n − 3.

We construct in LOGSPACE a DFA A and an integer ℓ such that the fol-
lowing are equivalent:

– C has a separable normal set basis of size at most s.
– There exists a δNFA Nδ for L(A) of size at most ℓ.
– There exists an NFA N for L(A) of size at most ℓ − 1.

The DFA A accepts the language {acb | c ∈ C and b ∈ c}, which is a finite
language of strings of length three.

Formally, let C = {c1, . . . , cn} and ci = {bi,1, . . . , bi,ni
}. Then, A is de-

fined over Alpha(A) = {a} ∪
⋃

1≤i≤n{ci, bi,1, . . . , bi,ni
}. The state set of A is

States(A) = {q0, q
′
0, q1, . . . , qn, qf}, and the initial and final state sets of A are

q0 and qf , respectively. The transitions Rules(A) are formally defined as follows:

– q0

a
→ q′0;

– for every i = 1, . . . , n, q′0
ci→ qi; and

– for every i = 1, . . . , n and j = 1, . . . , ni, qi

bi,j

→ qf .

Finally, define ℓ := s + 4.

Obviously, A and ℓ can be constructed from C and s using logarithmic space.
Observe that due to Lemma 5, C contains every set at most once, and hence
does not contain ci = cj with i 6= j. Hence, A is a minimal DFA for L(A).

We now show that,

(a) if C has a separable normal set basis containing at most s sets, then there
exists a δNFA Nδ for L(A) of size at most ℓ and an NFA N for L(A) of size
at most ℓ − 1;

(b) if there exists a δNFA Nδ for L(A) of size at most ℓ then C has a separable
normal set basis containing at most s sets; and

(c) if there exists an NFA N for L(A) of size at most ℓ−1 then C has a separable
normal set basis containing at most s sets.

(a) Assume that C has a separable normal set basis containing s sets. We con-
struct a δNFA Nδ for L(A) of size ℓ = s + 4.

Let B = {r1, . . . , rs} be the separable normal set basis for C containing s

sets. Also, let B1 and B2 be disjoint subcollections of B such that each element
of C is either an element of B1, an element of B2, or a disjoint union of an
element of B1 and an element of B2.

To describe Nδ, we first fix the representation of each set c in C as a disjoint
union of at most one set in B1 and at most one set in B2. Say that each basic
member of B in this representation belongs to c.

We define the state set of Nδ as States(Nδ) = {q0, q1, q2, qf}∪{ri ∈ B1}∪{ri ∈
B2}. The transition rules of Nδ are defined as follows. First, Rules(Nδ) contains

the non-deterministic transitions q0

a
→ q1 and q0

a
→ q2. Furthermore, for every

i = 1, . . . , n, j = 1, . . . , s, and m = 1, 2, Rules(Nδ) contains the rule

– qm
ci→ rj , if rj ∈ Bm and rj belongs to ci; and

– rj
b
→ qf , if b ∈ rj .

Notice that the size of Nδ is |B| + 4 = s + 4 = ℓ. By construction, we have that
L(Nδ) = L(A).

We argue that Nδ is a δNFA. First, we argue that the transitions q0

a
→ q1

and q0

a
→ q2 are the only non-deterministic transitions. By construction, all

transitions going to qf are deterministic. It is also easy to see that all outgoing
transitions from q1 are deterministic because, if we assume that Nδ contains
transitions of the form q1

ci→ rj and q1

ci→ rj′ with j 6= j′, this would mean
that both rj and rj′ belong to ci, which contradicts the definition of B1. The
argument for q2 is analogous.

Next, we show that Nδ is unambiguous. Towards a contradiction, assume
that the string acib has two accepting runs. The only way in which this can
happen is that one run visits state q1 and the other run visits state q2. Let rj1

(respectively, rj2) be the state such that q1

ci→ rj1 (respectively, q2

ci→ rj2) are
transitions in Nδ. By construction of Nδ, we have that j1 6= j2. But this means
that both rj1 and rj2 belong to ci, and their intersection contains the element b,
which contradicts the disjointness condition of the normal set basis B.

Finally, the NFA N for L(A) is obtained by merging the two states q1 and
q2 from Nδ. Obviously, the size of N is ℓ − 1.
(b) Assume that L(A) can be accepted by a δNFA Nδ of size at most ℓ. We
can assume that Nδ is minimal. We need to show that there exists a separable
normal set basis for C containing at most s = ℓ − 4 sets.

Recall that we assumed that s < n − 3. Hence, we have that ℓ = s + 4 <

n + 1 = |A| − 1. As we observed that A is a minimal DFA for L(A), it must be
the case that Nδ has at least one non-deterministic transition.

Notice that, as Nδ is minimal and accepts only strings of length three, we
can assume that Nδ has a unique final state. Let q0 and qf be the initial and
final state of Nδ, respectively. Furthermore, we can partition Nδ’s states into
four sets Q0, Q1, Q2, and Q3 such that, for each 0 ≤ i ≤ 3, Qi is precisely the
set of states that Nδ can be in after having read a string of length i. For each

state q ∈ Q2, define a set Bq = {b | q
b
→ qf ∈ Rules(Nδ)}.

Next, we show that the collection B = {Bq | q ∈ Q2} is a normal set
basis for C. By definition of L(A), we have that every c ∈ C is the union of

Bc := {Bq | ∃p ∈ Q1 : p
c
→ q ∈ Rules(Mi)}. It remains to show that Bc is also a

disjoint subcollection of B. When Bc contains only one set, there is nothing to
prove. Towards a contradiction, assume that Bc contains two different sets Bq1

and Bq2
such that a ∈ Bq1

∩ Bq2
. By definition of B, this would mean that the

string acb has two accepting runs: qq1qf and qq2qf with q1 6= q2. But as Nδ is
unambiguous, this is impossible. Hence, Bc is a disjoint subcollection of B.

Finally, we want to prove that B contains at most ℓ − 4 sets. Notice that B

contains at most ℓ−4 sets if and only if Q1 contains at least two states. Towards
a contradiction, assume that Q1 is a singleton q. By Lemma 5, we know that
there are at least two sets c1, c2 such that Bc1

and Bc2
contain two sets. In

other words, there are at least two alphabet symbols c1 and c2 that have non-
deterministic outgoing transitions from q, which contradicts that Nδ is a δNFA.
Hence, B is a normal set basis for C of size at most ℓ− 4. As (C, s) ∈ I, we have
that C has a separable normal set basis of size s = ℓ − 4 by Lemma 5.
(c) Let N be an NFA for L(A) of size at most ℓ − 1. We can assume that N

is minimal. We will show that there exists a set basis for C containing at most
s = ℓ − 4 sets.

Recall that we assumed that s < n − 3. Hence, we have that ℓ = s + 4 <

n + 1 = |A| − 1. As we observed that A is a minimal DFA for L(A), it must be
the case that N has at least one non-deterministic transition.

Notice that, as N is minimal and accepts only strings of length three, we can
assume that N has a unique final state. Let q0 and qf be the initial and final
state of N , respectively. Furthermore, we can partition N ’s states into four sets
Q0, Q1, Q2, and Q3 such that, for each 0 ≤ i ≤ 3, Qi is precisely the set of
states that N can be in after having read a string of length i. For each state

q ∈ Q2, define a set Bq = {b | q
b
→ qf ∈ Rules(Nδ)}. Next, we show that the

collection B = {Bq | q ∈ Q2} is a set basis for C. By definition of L(A), we have

that every c ∈ C is the union of Bc := {Bq | ∃p ∈ Q1 : p
c
→ q ∈ Rules(Mi)}. As

Q0, Q1, and Q3 contain at least one state, we also have that B contains at most
ℓ − 1 − 3 = s sets.

From Lemma 5, it now follows that C also has a separable normal set basis
containing at most s sets. �

We are now ready to finish the proof of Theorem 2.

Proof of Theorem 2. Let N be a class of finite automata. If δNFA ⊆ N then
DFA → N minimization is NP-hard.

Proof. In this Section we provided a reduction from Vertex Cover to DFA →
δNFA minimization, and showed that, for the regular languages we consider, the
minimal NFA is 1 state smaller than the minimal δNFA.

Let N be a class of finite automata such that δNFA ⊆ N ⊆ NFA. As was
shown in the proof of Lemma 6, any decision algorithm for DFA → N minimiza-
tion can approximate the DFA → δNFA minimization problem within a term 1
(as the minimal NFA is only one state smaller than the minimal δNFA).

As can be seen from the other proofs in Section 3, this approximation algo-
rithm for DFA → δNFA minimization can easily be adapted to an approximation
algorithm for Vertex Cover within a term 1. As we know that it is NP-hard to
approximate Vertex Cover within a constant term, we can conclude that DFA
→ N minimization is also NP-hard. �

Until now, our results focused on classes of finite automata that can accept
all regular languages. Our proof shows that this is not even necessary, as the

NP-hard instances we construct only accept strings of length tree. Therefore, we
also have the following Corollary.

Corollary 7. Let δNFAfinite be the class of δNFAs that accept only finite lan-
guages. Let N be class of finite automata. If δNFAfinite ⊆ N then the DFA → N
minimization problem is NP-hard.

4 Succinctness and Uniqueness

As mentioned in the introduction, when a developer selects a description mech-
anism for regular languages, she faces a trade-off between succinctness and com-
plexity of minimization. The following proposition shows that in the case of
δNFAs, the succinctness bought at the price of NP-completeness is limited.

Proposition 8. For every δNFA of size n, there is an equivalent DFA of size
O(n2).

Proof. For every finite automaton that can choose non-deterministically between
two different start states but is otherwise deterministic (a 2-MDFA), there is an
equivalent DFA with at most quadratically many states [7].

Let A be a δNFA, and let (q, a) be the only pair in States(A)×Alpha(A) such
that degree(q, a) = 2. Let q1 and q2 be the two states reachable from q when
reading an a. If we remove all states from A that are reachable neither from q1

nor from q2, and make q1 and q2 initial states, we obtain a 2-MDFA A′. We can
compute the smallest DFA A′′ equivalent to A′ in quadratic time. Now, all we
need to do is to add A′′ to A and replace the two rules going from q to q1 and q2,
respectively, by a single rule that reads an a and goes to the initial state of A′′.
The size of the new, deterministic, automaton is |States(A)| + |States(A′′)| =
O(|States(A)|2). �

On the other hand, if we were to remove the branch(A) ≤ 2 condition in the
definition of δNFAs, then there would be an exponential gain in succinctness.
This is witnessed by the standard family of languages (a+ b)∗a(a+ b)n for n ≥ 0
that shows that NFAs are exponentially more succinct than DFAs in general.
The canonical NFA for this language is unambiguous and has only one pair (q, a)
for which degree(q, a) = 2.

Proposition 9. The minimal δNFA for a regular language is not unique.

Proof. Consider the language L defined by the regular expression

r = (a + b)aaa + b(a + b)(a + b)b.

Figure 2 depicts two δNFAs, A and B, that both accept L. We argue that eight
is the minimal number of states for any δNFA that accepts L. First, it is clear
that any such automaton has to remember how many letters it has read so far.
Second, the automaton has to have at least two states that can be reached after

reading one letter, one that accepts the string bbb and one that does not. Third,
there must also be at least two states reachable after reading two letters, one
that accepts the string bb and one that doesn’t. Fourth, there must be at least
two states that can be reached after reading three letters, one that accepts the
string b and one that does not. Together with the fact that there has to be one
initial state and at least one final state, this shows that any δNFA for L needs
at least eight states. �

A

B

b

a

a, b

a

a

a, b

a

b

a

b

a, b

a, b

a

a, b

a

b

a

Fig. 2. Two minimal δNFAs, that both accept the language L from the proof of Propo-
sition 9.

5 Automata with Multiple Initial States

Throughout the paper, to simplify definitions, we have assumed that finite au-
tomata have a unique start state. As we mentioned in the Introduction, the
minimization problem for finite automata that can non-deterministically choose
between multiple initial states, but are otherwise deterministic, has also been
studied [7, 12].

Proposition 10. Minimization is NP-hard for unambiguous finite automata
that have at most two initial states but are otherwise deterministic.

Proof. We simply have to reconsider the proof of Lemma 6, change L(A) so that
it accepts the cb suffixes of its current language, consider the δNFA we construct
without its start state, and make the two successors of the start state initial
states (and analogously for the NFA considered in the proof). The rest of the
proof carries through virtually unchanged. �

Together with Theorem 2 this answers all the open questions mentioned by
Malcher [12].

References

1. P. Abdulla, J. Deneux, L. Kaati, and M. Nilsson. Minimization of non-deterministic
automata with large alphabets. In CIAA, pages 31–42, 2006.

2. J. Goldstine, M. Kappes, C Kintala, H. Leung, A. Malcher, and D. Wotschke. De-
scriptional complexity of machines with limited resources. J. Univ. Comp. Science,
8(2):193–234, 2002.

3. G. Gramlich and G. Schnitger. Minimizing NFAs and regular expressions. JCSS,
73(6):908–923, 2007.

4. H. Gruber and M. Holzer. Finding lower bounds for nondeterministic state com-
plexity is hard. In DLT, pages 363–374, 2006.

5. H. Gruber and M. Holzer. Computational complexity of NFA minimization for
finite and unary languages. In LATA, pages 261–272, 2007.

6. H. Gruber and M. Holzer. Inapproximability of nondeterministic state and transi-
tion complexity assuming P 6= NP. In DLT, pages 205–216, 2007.

7. M. Holzer, K. Salomaa, and S. Yu. On the state complexity of k-entry deterministic
finite automata. J. Automata, Languages, and Combinatorics, 6(4):453–466, 2001.

8. J. Hromkovic, J. Karhumäki, H. Klauck, G. Schnitger, and S. Seibert. Measures
of nondeterminism in finite automata. In ICALP, pages 199–210, 2000.

9. J. Hromkovic and G. Schnitger. Comparing the size of NFAs with and without
epsilon-transitions. TCS, 380(2):100–114, 2007.

10. T. Jiang, E. McDowell, and B. Ravikumar. The structure and complexity of min-
imal NFAs over unary alphabet. Int. J. Found. Comp. Science, 2:163–182, 1991.

11. T. Jiang and B. Ravikumar. Minimal NFA problems are hard. Siam J. Comp.,
22(6):1117–1141, 1993.

12. A. Malcher. Minimizing finite automata is computationally hard. TCS, 327(3):375–
390, 2004.

13. A. Meyer and M.J. Fischer. Economy of descriptions by automata, grammars, and
formal systems. In FOCS, pages 188–191. IEEE, 1971.

14. R Paige and R. Tarjan. Three parition refinement algorithms. Siam J. Comp.,
16:973–989, 1987.

15. K. Salomaa. Descriptional complexity of nondeterministic finite automata. In
DLT, pages 31–35, 2007.

16. G. Schnitger. Regular expressions and NFAs without epsilon-transitions. In
STACS, pages 432–443, 2006.

17. R. E. Stearns and H. B. Hunt III. On the equivalence and containment problems
for unambiguous regular expressions, regular grammars and finite automata. Siam

J. Comp., 14(3):598–611, 1985.
18. L. Stockmeyer and A. Meyer. Word problems requiring exponential time: Prelim-

inary report. In STOC, pages 1–9. ACM, 1973.

