An Overview of Recent Results on the Uniqueness of Update Strategies for Database Views

Stephen J. Hegner Department of Computing Science Umeå University Sweden

Statement of the Problem

- Two fundamental services to be provided by a database system:
 - Support for updates: The data which are stored in the system may be altered.
 - The term *update* is used here in a general sense, to denote *insertions* and *deletions*, as well as alterations of existing values.

Support via views: Access to parts of the database, via windows which are known as *views*, is allowed.

• Three reasons for supporting views:

<u>Security</u>: It may not be appropriate for every user of the system to have full access to every part of the database.
 <u>Simplicity</u>: It is easier for a user to perform a given task if only the necessary information is presented.
 <u>Summary</u>: It may be appropriate to provide summary

information which is not explicit in the main database.

Problem: Updates and views mix about as well as oil and water.

A View Example in the Relational Context

Example base schema and instance:

$\mathcal{F}_P = \{Name \to Dept\}$				$\mathcal{F}_{Q}=\{F$	Proj ightarrow	Budget}
Rel P:	Name	Dept	Proj	Rel Q:	Proj	Budget
	Smith	1	А		А	100
	Jones	2	А		С	300
	Jones	2	В		D	300
	Wilson	3	С			

Example view $\Gamma = \pi_{Name, Proj, Budget}(P \bowtie Q)$

$\mathcal{F}_{\Gamma} = \{ Proj o Budget \}$						
Name	Proj	Budget				
Smith	A	100				
Jones	A	100				
Wilson	C	300				

• Note that the underlying mapping for this view is not injective (one-to-one).

Why the Update Problem for Views is Difficult

- On the underlying states, the view mapping is generally surjective (onto) but not injective (one-to-one).
- Thus, a single view state corresponds, in general, to many states of the main schema.
- The problem of identifying the correct main schema update corresponding to a view update is known as the *update* translation problem.

View schema

Extreme Cases of the View Update Problem

Example base schema and instance:

$\mathcal{F}_P = \{Name o Dept\}$			$\mathcal{F}_Q = \{F$	Proj ightarrow	Budget}	
Rel P:	Name	Dept	Proj	Rel Q:	Proj	Budget
	Smith	1	А		А	100
	Jones	2	А		С	300
	Jones	2	В		D	300

Example views:

View
$$\Gamma_a$$
: All of Q
 $\mathcal{F}_{\Gamma_a} = \{ \operatorname{Proj} \rightarrow \operatorname{Budget} \}$
 $\begin{array}{c|c} & & & \\ \hline \mathbf{A} & & 100 \\ & & & & \\ \hline \mathbf{A} & & 100 \\ & & & & \\ \hline \mathbf{D} & & & & \\ \hline \mathbf{D} & & & & \\ \hline \end{array}$

- Any update which respects the FD is allowed.
- Natural translation of view updates keeps relation P constant in all reflections of view updates.

Criteria for Determining Admissibility of Update Translations

In less extreme cases, there are two types of criteria which may be applied to assess translatability of view updates.

- Uniqueness criteria:
 - A view update is supported if it has only one "reasonable" reflection to an update of the base schema.
 - No *ad hoc* changes to the base schema are permitted in the translation.
 - Most work on the support of view updates has focused upon this type of criterion.
- Interface criteria:
 - These criteria focus upon how the view appears to its users. Important examples include the following:
 - The translation of a view update to an update of the base schema must be completely "understandable" within the context of the view itself.
 - Changes to the base schema which are not visible within the view schema are discouraged.
 - How the allowable updates interact as a group is also a point of focus.
 - Relatively little work on the support of view updates has focused upon this type of criterion.

Example 1 — Uniqueness vs. Interface Criteria

Base schema and instance:

Rel P:	Name	Dept	Proj	Constraints:
	Smith	1	А	Name $ ightarrow$ Dept
	Jones	2	А	No nulls allowed.
	Jones	2	В	

View and instance:

$R = \Pi_{(Name,Proj)}(P)$:	Name	Proj	Constraints:
	Smith	А	No FD's
	Jones	Α	No nulls allowed.
	Jones	В	

Proposed view update: Delete (Smith, A) from R

- This update would be allowed under most uniqueness criteria.
 - The unique "reasonable" base update is:

Delete (Smith, 1, A) from P

- This view update might be disallowed under certain interface criteria.
 - The update involves a *hidden trigger*. The fact that Dept = 1 for Smith is removed from the base schema, but this deletion is not visible within the view.
 - The update is *irreversible* without knowledge of the state history of the base schema. Re-insertion of (Smith, A) into the view cannot magically re-create the fact that Smith was in Department 1.

Example 2 — Uniqueness vs. Interface Criteria

Base schema and instance:

Rel P:	Name	Dept	Proj	Constraints:
	Smith	1	A	Name $ ightarrow$ Dept
	Jones	2	Α	Nulls allowed for Proj.
	Jones	2	В	
	Wilson	1	Null	

View and instance:

Name	Proj	Constraints:
Smith	А	No FD's
Jones	А	No nulls allowed.
Jones	В	
	Smith Jones Jones	NameFrojSmithAJonesAJonesB

Proposed view update: Delete (Smith, A) from R

- This view update is realizable by the base update: Modify $(Smith, 1, A) \mapsto (Smith, 1, Null)$
- The hidden trigger and irreversibility problems are not present in this modified view.
- Unfortunately, this view poses other update problems with respect to interface criteria: a *hidden dynamic constraint*.

Example 2a — Uniqueness vs. Interface Criteria

Base schema and instance:

Rel P:	Name	Dept	Proj	Constraints:
	Smith	1	Null	Name $ ightarrow$ Dept
	Jones	2	А	Nulls allowed for Proj.
	Jones	2	В	
	Wilson	1	Null	

View and instance:

$R = \Pi_{(Name, \widetilde{Proi})}(P):$	Name	Proj	Constraints:
$\widetilde{Proj} = Proj$ with nulls	Jones Jones	A B	No FD's No nulls allowed.
disallowed			

Proposed view updates:

Insert (Smith, A) into R Insert (Young, A) into R

- The first is realizable by the following base update: Modify $(Smith, 1, Null) \mapsto (Smith, 1, A)$
- The second is not realizable, even under uniqueness conditions, because no department information is available for Young.
- Note that it is not possible to determine, from the view state alone, whether or not a proposed update is admissible. Further information from the base schema state must be known. This view contains a *hidden dynamic constraint*.

Open vs. Closed Views

Major Goal of this Work

- The overall goal is to develop a systematic theory of update support for *closed* database views.
 - This implies in particular that careful attention be paid to interface criteria.
- The strategy is to build upon the seminal constant-complement approach of Bancilhon and Spyratos.
- ➤ Major enhancements developed here:
 - Uniqueness of translations
 - Meet-based characterization of admissible updates
 - Compatibility of distinct update strategies
- \succ The context:
 - $\frac{\text{Generality: A general theory is sought which is applicable}}{\text{to wide range of data models.}}$
 - Applicability: The theory must have something nontrivial and useful to say about the most common of all data models, the relational model.

Initial Abstraction of the Concept of a View

- To each database schema D is associated a set LDB(V) of *states* of the schema.
- To each database mapping

$$f: \mathbf{D}_1 \to \mathbf{D}_2$$

is associated a function

$$f: \mathsf{LDB}(\mathbf{D}_1) \to \mathsf{LDB}(\mathbf{D}_2)$$

• A *view* of the schema **D** is a pair

 $\Gamma = (V,\gamma)$

in which \mathbf{V} is a database schema (the *view schema*) and

$\gamma\colon D\to V$

is a database mapping whose underling function is surjective.

Closed Update Families

- A *closed update family* for **V** is an equivalence relation *U* on LDB(**V**).
- $(M_1, M_2) \in U$ means that the update $M_1 \longrightarrow M_2$ is admissible on **V**.
- Interpretation of equivalence relation properties:
 - ➡ *Reflexivity* implies that the identity update is always allowed.
 - ⇒ *Symmetry* implies that every update is reversible.
 - ⇒ *Transitivity* implies that updates may be composed.

Fundamental modelling assumption: The set of admissible updates on a view forms a closed update family.

Translators for View Update

• An *update strategy* is a partial function:

 $\rho: \mathsf{LDB}(\mathbf{D}) \times \mathsf{LDB}(\mathbf{V}) \to \mathsf{LDB}(\mathbf{D})$

 ρ : Base States \times View States \rightarrow Base States

(Current Base State, New View State) \mapsto New Base State.

• Not all view updates are allowed; thus ρ is a partial function, in general.

Closed Update Strategies

- Let T = a closed update family for the view schema **V**. U = a closed update family for the base schema **D**.
- In a closed setting, the following conditions are imposed to yield a *closed update strategy* for *T* with respect to *U*.

(upt:1) [The allowable view updates are exactly the pairs in *T*.] $\rho(M,N)\downarrow$ iff $(\gamma(M),N)\in T$.

- (upt:2) [Only base schema updates from *U* are embodied in ρ .] If $\rho(M,N)\downarrow$, then $(M,\rho(M,N)) \in U$ and $\gamma(\rho(M,N)) = N$.
- (upt:3) [Identity updates are reflected as identities.] For every $M \in LDB(\mathbf{D})$, $\rho(M, \gamma(M)) = M$.
- (upt:4) [Every view update is globally reversible.] If $\rho(M, N)\downarrow$, then $\rho(\rho(M, N), \gamma(M)) = M$.
- (upt:5) [View update reflection is transitive.] If $\rho(M, N_1) \downarrow$ and $\rho(\rho(M, N_1), N_2) \downarrow$, then $\rho(M, N_2) = \rho(\rho(M, N_1), N_2)$.

Modelling convention: Typically

 $U = \mathsf{LDB}(\mathbf{D}) \times \mathsf{LDB}(\mathbf{D})$

so that all possible updates are allowed on the base schema.

Illustration of Reversibility and Transitivity

Main schema

Complement-Based Update Strategies

- Context: **D**: base schema $\Gamma_1 = (\mathbf{V}_1, \gamma_1 : \mathbf{D} \to \mathbf{V}_1)$: a view of **D** $\Gamma_2 = (\mathbf{V}_2, \gamma_2 : \mathbf{D} \to \mathbf{V}_2)$: a view of **D**
- The view Γ₂ is a (*subdirect*) *complement* of Γ₁ if the state of **D** may be recovered from the combined states of V₁ and V₂. Formally,

$$\gamma_1 imes \gamma_2 : \mathsf{LDB}(\mathbf{D}) o \mathsf{LDB}(\mathbf{V}_1) imes \mathsf{LDB}(\mathbf{V}_2)$$

 $M \mapsto (\gamma_1(M), \gamma_2(M))$

must be injective.

The terminology that {Γ₁, Γ₂} forms a *lossless decomposition* of **D** is also in common use.

Observation [Bancilhon & Spyratos 81]: Every subdirect complement Γ_2 of Γ_1 defines an update strategy on Γ_1 as follows:

 $\mathsf{UpdStr}\langle\Gamma_1,\Gamma_2\rangle(M_1,N_2) =$

- $\begin{pmatrix} (\gamma_1 \times \gamma_2)^{-1}(N_2, \gamma_2(M_1)) & \text{if } (N_2, \gamma_2(M_1)) \in (\gamma_1 \times \gamma_2)(\mathsf{LDB}(\mathbf{D})) \\ \text{undefined} & \text{otherwise} \end{pmatrix}$
- This is called the update strategy on Γ_1 defined by *constant complement* Γ_2 .

Constant Complement in the Relational Context

Example base schema and instance:

$(E[ABC], \{B \rightarrow C\}):$	А	В	С	
	a_0	b_0	c_0	
	a_1	b_1	c_1	
	a_2	b_1	<i>c</i> ₁	

View to be updated:

View I	T _{AB} =	= (E[/	AB], $\emptyset)$
	А	В	
	a_0	b_0	
	a_1	b_1	
	a_2	b_1	

Complementary view:

- This is a familiar lossless join-based decomposition, based upon the functional dependency $B \rightarrow C$.
- The updates which are allowed to E[AB] under constant complement Π_{BC} are precisely those which hold the values which occur in column B fixed.

Equivalence of Strategies

Theorem [Bancilhon & Spyratos 81]: Every closed update strategy is defined by a constant complement update strategy. □

Fact: There exist subdirect complements which do not define closed update families. □

• To understand the problem, consider the following visualization, in which $\Gamma_1 = (\mathbf{V}_1, \gamma_1)$ is to be updated with constant complement $\Gamma_2 = (\mathbf{V}_2, \gamma_2)$.

- Intuitively, there is an "overlap" of the two views, induced by the mappings γ_1 and γ_2 .
- When updating Γ_1 , the part of the state of V_1 which overlaps V_2 must be held constant, while the rest may be modified at will.
- Formalization of this notion is the key to identifying just those complements which define closed update families.

Failure in the Relational Context

Example base schema and instance:

$(E[ABC], \{A \rightarrow C, B \rightarrow C\}):$	А	В	С	
	a_0	b_0	c_0	
	a_1	b_1	c_1	
	a_2	b_1	<i>c</i> ₁	

View to be updated:

View $\Pi_{AB} = (E[AB], \emptyset)$ A B $a_0 \quad b_0$ $a_1 \quad b_1$ $a_2 \quad b_1$ Complementary view:

- This is still a familiar lossless join-based decomposition, based upon the functional dependency $B \rightarrow C$.
- The decomposition is not *dependency preserving*, since A → C is lost.
- There is no nontrivial constant-complement update strategy for Π_{AB} which holds Π_{BC} fixed.
- It does not suffice to hold column B fixed.

The Congruence of a View

- The *congruence* of a view identifies those pairs of states of the base schema which cannot be distinguished via the view.
- Formally, the *congruence* $Congr(\Gamma)$ of a view $\Gamma = (\mathbf{V}, \gamma)$ of **D** is the equivalence relation defined by

 $(M_1, M_2) \in \operatorname{Congr}(\Gamma)$ iff $\gamma(M_1) = \gamma(M_2)$

- In a set-based context without additional structure, every view is defined, up to isomorphism, by its congruence.
- Thus, there is a natural correspondence:

Equivalence relations Isomorphism classes on states of the base \longleftrightarrow of views of the base schema schema

- Note that a closed update family U on **D** defines a view of **D**, since it is an equivalence relation.
- Given a closed update strategy ρ for $\Gamma = (\mathbf{V}, \gamma)$,

 $\{(M_1, M_2) \in \mathsf{LDB}(\mathbf{D}) \times \mathsf{LDB}(\mathbf{D}) \mid (\exists N \in \mathsf{LDB}(\mathbf{V}))(\rho(M_1, N) = M_2)\}$

is the congruence of a view complementary to Γ which yields ρ with constant-complement update.

Commuting Congruences and Meet Complements

- A pair {Γ₁, Γ₂} of views of **D** is called a *fully commuting pair* if Congr(Γ₁) ∘ Congr(Γ₂) = Congr(Γ₂) ∘ Congr(Γ₁).
- In this case, $Congr(\Gamma_1) \circ Congr(\Gamma_2)$ is an equivalence relation.
- If $\{\Gamma_1, \Gamma_2\}$ is a fully commuting pair, the view whose congruence is $\Gamma_1 \circ \Gamma_2$ is called the *meet* of $\Gamma_1 \circ \Gamma_2$, and is denoted $\Gamma_1 \wedge \Gamma_2 = (\mathbf{V}_{1\gamma_1} \wedge_{\gamma_2} \mathbf{V}_2, \gamma_1 \wedge \gamma_2).$
- In this case, $\Gamma_1 \wedge \Gamma_2$ may also be regarded as a view:

$$\Lambda(\Gamma_1,\Gamma_2) = (\mathbf{V}_2,\lambda\langle\Gamma_1,\Gamma_2\rangle)$$

of Γ_1 .

• $\Gamma_1 \wedge \Gamma_2$ is effectively a greatest lower bound of Γ_1 and Γ_2 .

View Meet in the Relational Context Example base schema and instance: $(E[ABC], \{B \rightarrow C\}): A B C$

• This property fails if the functional dependency $A \rightarrow C$ is added to the main schema.

Meet Complements and Closed Update Strategies

- **Theorem** [Hegner ICDT90, FoIKS02]: The update strategy UpdStr $\langle \Gamma_1, \Gamma_2 \rangle$ is closed iff $\{\Gamma_1, \Gamma_2\}$ forms a fully commuting pair. \Box
- The view update family on Γ_1 defined by the meet complementary pair $\{\Gamma_1, \Gamma_2\}$ is just $Congr(\Gamma_1 \wedge \Gamma_2)$.
 - In other words, the admissible updates on Γ_1 are under constant complement Γ_2 are precisely those which keep the meet $\Gamma_1 \wedge \Gamma_2$ constant.

Bottom Line: For a given view Γ , there is a natural bijective correspondence:

 $\begin{array}{cccc} \text{Closed update strategies} & \longleftrightarrow & \text{Meet complements} \\ \rho & \longmapsto & \tilde{\Gamma}^{\rho} \\ \text{UpdStr} \langle \Gamma, \Gamma' \rangle & \longleftarrow & \Gamma' \end{array}$

The Uniqueness Question

- Generally speaking, distinct complements give rise to distinct update strategies under constant-complement translation.
- In the general sets-and-mappings framework, complements are never unique, except in degenerate cases.
- This is true even for complements with the same meet.
- **Question**: How does one choose the "right" complement to support update translation on a view?
- **Answer**: Usually, this is done on æsthetic grounds, by selecting a most natural complement.
- **Observation**: In many cases, there is an obvious "natural complement" which appears to be the only one which makes sense.
- **Goal**: Develop a formal *theory* which identifies this natural complement as the only reasonable one.

Alternate Update in the Relational Context

Base schema:

Natural Complement:

View $\Pi_{S[A]}$:	A	
	a_1	
	a_3	
	a_4	

View to be updated:

Alternative Complement:

View $\Pi_{R\Delta S[A]}$:	A	
L]	a_0	
	a_2	
	a_3	
	a_4	

• $R\Delta S$ is the *symmetric difference* of *R* and *S*.

$$R\Delta S[\mathsf{A}] = (R[\mathsf{A}] \cup S[\mathsf{A}]) \setminus (R[\mathsf{A}] \cap S[\mathsf{A}])$$

Base schema after $Insert(a_4, R[A])$ with constant complement $\Pi_{R\Delta S[A]}$:

<u>Question</u>: How may $\Pi_{R[A]}$ be favored over $\Pi_{R\Delta S[A]}$ on formal grounds?

Order — the Key to Update Uniqueness

• Database states in common data models often admit a natural order structure.

Example: Relation-by-relation inclusion in the relational model.

- Database morphisms in common data models often preserve this order structure.
 - **Example**: Of the six base operations in the relational algebra (select, project, join, union, intersection, difference), only difference fails to be monotonic under the natural ordering.
- These properties have been used to establish uniqueness of *direct* complements [Hegner94 JCSS].
 - The view $\Pi_{R\Delta S[A]}$ may be ruled out using this theory.
- **Question**: Is is possible to extend these results to subdirect complements?

Short Answer:

- It is not generally true that subdirect complements are unique, even in the presence of order constraints.
- Despite this, it can be shown that the reflections of updates which are order based (*i.e.*, insertions or deletions) are unique within the context of closed update strategies.

Key Features of the Order-Based Framework

- The legal databases of a schema **D** form a partially ordered set (LDB(**D**), ≤_{**D**}).
- The mapping $\gamma : LDB(\mathbf{D}) \to LDB(\mathbf{V})$ of a view $\Gamma = (\mathbf{V}, \gamma)$ is an open poset morphism; *i.e.*,

 $\gamma(M_1) \leq_{\mathbf{V}} \gamma(M_2)$ iff $M_1 \leq_{\mathbf{D}} M_2$.

• For $\{\Gamma_1 = (\mathbf{V}_1, \gamma_1), \Gamma_2 = (\mathbf{V}_2, \gamma_2)\}$ to be a pair of subdirect complements, the decomposition mapping

```
\gamma_1 \times \gamma_2 : \mathsf{LDB}(\mathbf{D}) \to \mathsf{LDB}(\mathbf{V}_1) \times \mathsf{LDB}(\mathbf{V}_2)
```

must be a section (isomorphism into).

• A closed update family for **D** is an *order-compatible* equivalence relation on LDB(**D**).

Closed Update Strategies in the Order-Based Framework

- Let T = an order-compatible closed update family for the view schema **V**.
 - U = an order-compatible closed update family for the base schema **D**.
- In addition to conditions (upt:1) (upt:5) on slide 14, the following conditions are imposed to yield an *order-based closed update strategy* for *T* with respect to *U*.
- (upt:6) [View update reflects order.] If $\rho(M,N)\downarrow$ and $\gamma(M) \leq_{\mathbf{V}} N$, then $M \leq_{\mathbf{D}} \rho(M,N)$.
- (upt:7) [This condition is called *order completeness*.] If $\rho(M_1, N_1) \downarrow$ with $M_1 \leq_{\mathbf{D}} \rho(M_1, N_1)$, then for all $M_2 \in \mathsf{LDB}(\mathbf{D})$ with $M_1 \leq_{\mathbf{D}} M_2 \leq_{\mathbf{D}} \rho(M_1, N_1)$, there is an $N_2 \in \mathsf{LDB}(\mathbf{V})$ with $\rho(M_1, N_2) = M_2$ and $\rho(M_2, \gamma(\rho(M_1, N_1))) = \rho(M_1, N_1)$.
- (upt:8) [This condition is called *order reflection*.] If $M_1, M_2 \in \text{LDB}(\mathbf{D})$ with $M_1 \leq_{\mathbf{D}} M_2$, then for every $N_1, N_2 \in \text{LDB}(\mathbf{V})$ for which $N_1 \leq_{\mathbf{V}} N_2$, $\rho(M_1, N_1)\downarrow$, and $\rho(M_2, N_2)\downarrow$, if must be the case that $\rho(M_1, N_1) \leq_{\mathbf{D}} \rho(M_2, N_2)$.

Illustration of Order Reflection and Completeness Main schema

View schema

The Main Result

- Let **D** be a database schema, and let *U* be an order-compatible closed update family for **D**. A pair $(M_1.M_2) \in U$ is called:
 - (i) a *formal insertion* with respect to U if $M_1 \leq_{\mathbf{D}} M_2$;
 - (ii) a *formal deletion* with respect to U if $M_2 \leq_{\mathbf{D}} M_1$;
 - (iii) an *order-based update* with respect to U if it is realizable as a sequence of formal insertions and deletions.
- The update family *U* is called *order realizable* if every pair in *U* is an order-based update.

Main Theorem: (Set in the order-based framework.)

• Let:

- **D** = database schema.
- $\Gamma = (\mathbf{V}, \gamma) = \text{view of } \mathbf{D}.$
- U = closed update family for **D**.
- T = closed update family for V.
- ρ_1 , ρ_2 = closed update strategies for for *T* with respect to *U*.

• Then:

- For any $M \in LDB(\mathbf{D})$ and $N \in LDB(\mathbf{V})$ with $(\gamma(M), N) \in T$ an order-based update, $\rho_1(M, N) = \rho_2(M, N)$.
- In particular, if *T* is order realizable, then $\rho_1 = \rho_2$. \Box

Alternate Update in the Relational Context

Base schema:

$(E[ABC], \{B \to C\})$				
	А	В	С	
	a_0	b_0	co	
	a_1	b_1	c_1	
	a_2	b_1	c_1	

View to be updated:

View
$$\Pi_{AB} = (E[AB], \emptyset)$$

$$\begin{array}{c|c}
\hline A & B \\
\hline a_0 & b_0 \\
a_1 & b_1 \\
a_2 & b_1
\end{array}$$

- For any b ∈ Dom(B), #_A(b) = number of distinct values of for attribute A associated with b in π_{AB}(M).
- Let $\mathsf{Dom}(C) = \{c_0, c_1, c_2\}$
- $\alpha : \mathsf{Dom}(C) \to \mathsf{Dom}(C); c_i \mapsto c_{(i+1 \mod 3)}.$
- Define $\pi'_{BC}(M) = \{(b,c) \mid (b,c) \in \pi_{BC}(M) \text{ and } \#_A(b) \text{ is odd}\} \cup \{(b,\alpha(c)) \mid (b,c) \in \pi_{BC}(M) \text{ and } \#_A(b) \text{ is even}\}.$
- The updates which are allowed to E[AB] under constant complement Π'_{BC} are exactly the same as those allowed under constant complement Π'_{BC} .
- Consider the update Insert (a_1, b_0) into Π_{AB} .

Constant complement view:

$$\Pi'_{\mathsf{BC}} = (E[\mathsf{BC}], \{\mathsf{B} \to \mathsf{C}\})$$

$$\begin{array}{c|c} & & \\ \hline & & \\ &$$

Base schema after update:

$$(E[ABC], \{B \to C\})$$

$$A \quad B \quad C$$

$$a_0 \quad b_0 \quad c_2$$

$$a_1 \quad b_0 \quad c_2$$

$$a_1 \quad b_1 \quad c_1$$

$$a_2 \quad b_1 \quad c_1$$

Update Uniqueness in a Relational Example

Base schema:

$(E[ABC], \{B \to C\})$				
	А	В	С	
	a_0	b_0	co	
	a_1	b_1	c_1	
	a_2	b_1	c_1	

View to be updated:

- Recall that the "natural" update strategy uses the complement Π_{BC} .
- This implies that the allowable updates T are those which hold the meet view Π_B constant.
- Observe that every admissible update to Π_{AB} is order based.

```
• An update such as

Replace (a_0, b_0) with (a_3, b_0)

may be realized as the sequence:

Insert (a_3, b_0)

Delete (a_0, b_0).
```

- Thus, within the order-based framework, there is only one closed update strategy which supports *T*.
- The bizarre complement Π'_{BC} fails to be order based, and thus the update strategy defined by holding it constant is not within the order-based framework.

Update Uniqueness in a Relational Example II

Base schema:

$(E[ABC], \{B \to CA\})$				
	А	В	С	
	a_0	b_0	c_0	
	a_1	b_1	c_1	
	a_2	b_1	c_1	

View to be updated:

$$\Pi_{\mathsf{A}\mathsf{B}} = (E[\mathsf{A}\mathsf{B}], \{\mathsf{B} \to \mathsf{A}\})$$

$$\begin{array}{c|c} \mathbf{A} & \mathbf{B} \\ \hline a_0 & b_0 \\ a_1 & b_1 \\ a_2 & b_1 \end{array}$$

- The additional functional dependency $B \rightarrow A$ blocks the ability to realize all updates as insertions followed by deletions.
- The natural relational ordering cannot be used to guarantee the uniqueness of update reflections in a closed strategy.
- The following trick can be used to establish uniqueness.
 - Let \leq_A be an arbitrary total order on $\mathsf{Dom}(A)$.
 - Define \leq on ABC-tuples by $(a_0, b_0, c_0) \leq (a_1, b_1, c_1)$ iff $((a_0 \leq_A a_1) \land (b_0 = b_1) \land (c_0 = c_1)).$
 - Define \leq on AB-tuples by $(a_0, b_0) \leq (a_1, b_1)$ iff $((a_0 \leq_A a_1) \land (b_0 = b_1)).$
 - Define \leq on BC-tuples by $(a_0, b_0) \leq (a_1, b_1)$ iff $((b_0 = b_1) \land (c_0 = c_1)).$
 - Extend \leq to relations by $R_1 \leq R_2$ iff $(\forall t_0 \in R_1)(\exists t_1 \in R_2)(t_0 \leq t_1).$
 - Under this new ordering, all updates are order based, and so translation is unique.
- Since this new ordering is strictly stronger than the original, the updates are the same as those which arise from the Π_{BC} as constant complement.

Conclusions and Further Directions

Conclusion:

• Order-based techniques are a promising tool for studying properties of views.

Further directions:

- Unification of distinct closed update strategies.
 ➢ Examples show that this is not possible in general.
- Techniques for the direct construction of closed update strategies, without reference to a complement.
- Complexity issues surrounding closed update strategies.
- *View-centered* schema design.

For further information:

- PDF versions of all of my publications since 1985 may be found on my web site.
- The latest paper on this topic is: "An order-based theory of updates for closed database views," August 2002, 57 pp.
- A preliminary version is available at the web site.