Transaction Isolation
in Mixed-Level and Mixed-Scope Settings

Stephen J. Hegner

Retired from:
Umea University, Sweden
http://people.cs.umu.se/hegner

Currently:
DBMS Research of New Hampshire, USA
dbmsnh@gmx . com

Often visiting:
University of Concepcidn, Chile

Expanded from ADBIS 2019 presentation

Isolation of Database Transactions

Transactions: A database transaction performs reads and (possibly) writes
on a database.

Examples on banking database: Read account balance,
withdraw amount x from account a,
transfer amount x from account a; to account as.

Concurrency: In a modern DBMS, transactions may run concurrently.

T | £ |

| |
T2| ! time

Isolation: Concurrent transactions must not interfere with one another.

1/32

Lost Update — Result of Limited Isolation

e If two concurrent transactions read and write the same data object, a /ost
update may result.

Global Tl T2

DB x Operation | Local x Operation | Local x

10000 Read (x) 10000

10000 10000 Read(x) 10000
= 10000 | Compound(x, 10%) | 11000 10000
® 10000 11000 || Withdraw(x,2000) | 8000

11000 Write(x) 11000 8000

8000 11000 Write(x) 8000

e The update of T is lost completely; only the update of Ts is retained in
the global DB.

e This behavior can happen in real systems (e.g., PostgreSQL) with
transaction isolation level READ COMMITTED.

e Lost update is only one example of an update anomaly; there are many

others.

Write Skew — Result of Limited Isolation

e Imperfect isolation may occur even in the case that two transactions
write different objects.

e Think of x and y as (the balances of) bank accounts with the constraint
that x + y > 500.

e The following illustrates write skew.

GIobaI T T,
B (x,y) Operation [Local (x,y) Operation [Local (x,y)
(300, 00) Read (x) (300,)
_ (300, 300) Read(y) (300, 300)
g (300, 300) {fvﬁmi\,??f then 1 (200, 300)
(300, 00) (200, 300) Read(y) (—, 300)
(300, 300) (200, 300) Read(x) (300, 300)
(300, 300) (200, 300) {fvﬁmiﬁ?yo 5%%’; (300, 200)
(200, 300) Write(x) (200, 300) (300, 200)
(200, 200) (200, 300) Write(y) (300, 200)

Consistency: Ty and Ty are each consistent; they respect the integrity

constraint when run individually.

Levels of Isolation

Schedule: A finite set of transactions, each with start time, end time, and
times for the read and write operations, is a schedule.

Serializable schedule: The behavior of the (possibly concurrent) transactions
must be equivalent to that for some non-concurrent, or serial schedule.
e To obtain a serial schedule, the transactions are “shifted” in time,
but otherwise unchanged.

Gold standard for isolation: Serializable schedule.

Limited concurrency: Serializable schedules may limit concurrency (and
hence performance) substantially.

Reality: DBMSs offer a variety of isolation levels.
Tradeoff: @ Higher isolation = reduced concurrency.
e Lower isolation = undesirable interaction.
SOL: READ-UNCOMMITTED
< READ COMMITTED< REPEATABLE READ< SERIALIZABLE.

Goals of this Research

e In descriptions of the various isolation levels, it is typically assumed that
all transactions run at the same level.
Reality: Most DBMSs permit the selection of isolation level on a
per-transaction basis.
Goal 1 — mixed-level isolation: Develop a systematic model of the behavior
of transactions when different ones run at different levels of isolation.
Example: T7 runs under REPEATABLE READ while while Ty runs under
READ COMMITTED.
Local scope: READ COMMITTED and REPEATABLE READ are /ocal in scope.
e They are properties of an individual transaction, depending only
upon that transaction and its relationship to concurrent neighbors.
Global scope: SERIALIZABLE is a property of a schedule of transactions.
e |t makes no sense to say that an individual transaction is serializable.
Goal 2 — mixed-scope isolation: Develop a model in which SERTALIZABLE
isolation has meaning in a mixed-level setting.

The Object-Level Model of Transactions

rr{x) ry) Wr{x)

| |
1! i
tStart< > Is:jd (x) < T> tRR::d<y) < T> tVRVi?te(x> < T> tEnd< T>
[t5o0E Ve (7) tread(y (1) tread(yy (1) tvite((1)
tRead() (1) tvrite (1)

e Each transaction T has a start time and an end time.

e Read and write operations are at the object level.
e Operations, but not the values, are modelled.

e FEach read and each write operation has a request time.

e In a Teff-transaction (T,), each read and write operation also has an
effective time assignment T, at which the global DBMS is read or written.

e 7 = RRWE = read (at) request write (at) end.

e 7 = RBWE = read (at) beginning write (at) end (snapshot read).

The Conflict Graph (DSG)

Context: S = {(Tj,7) |1 < i< k} Teff-transactions.
Time compatible: Distinct transactions have no time points in common.

Time points: tsen(Ti), tena(T), t;;adm)(X), t§:§d<ri><x>v tJ\jrite(Ti><X>’
Re
tWr?te(T,-) <X> .

Direct Serialization Graph (DSG): Has S as vertices and edges as follows:
(Ti, 71y =% (T;,7;): T; reads some x and T; is the next writer of x.

(Ti, i) il (Tj,1j): T; writes some x and Tj; is the next writer of x.

(Ti, i) RN (Tj,7j): Tjis the last writer of some x before T; reads x.

e FEffective times are used in all three types of conflict:

Edge Sense in the DSG

e The sense of an edge is very important in this work.

Forward edge: (T1,71) fi> (Ta, 12) holds iff tg,q(T1) < tena(T2).
L |
f:rv:/ *Tzi WT3‘<X> :

Backward edge: (T1,71) bizz, (Ta,m2) holds iff tee(T2) < tena(T1).

rT1<X> |
‘ 1

b:rw /’Tli

A

T2= WT3‘<X> |

Fact: Only rw-edges can be backward; ww- and wr-edges must be forward. O

Multiversion Concurrency Control

e Historically, systems which work with just a single version of the database

were widely used in DBMSs.
e This model is called single-version concurrency control (SVCC).

e Nowadays, however, a much more common approach is multiversion
concurrency control (MVCC).

e In MVCC, there may be several versions of each primitive data object.

e Exactly one version for each data object is committed, and belongs to the
global DB — the "true” database which other transactions can see.

e The others are local copies for transactions.

e All updates by transactions (before commit) are to local copies.

Ty T, Global T Ty Global T, T, Global

A QY W

Versions of x Versions of y Versions of z
[YEY

Modelling Isolation under MVCC via Conflicts

e Common MVCC levels may be characterized by two parameters.
Effective time assignment: RRWE or RBWE.

Admissibility of concurrent edges: Only f:rw, b:rw, f:ww, f:wr possible.

Policy Eff. Time Admissibility of concurrent edge type
Assign. fow T brw | fww [fiwr
RC RRWE Permitted | Permitted | Permitted | Permitted
Sl RBWE Permitted | Permitted | Prohibited | Impossible
SIW RBWE Permitted | Permitted | Permitted | Impossible

e First assume that all transactions run at the same level of isolation.

Read Committed (RC): RRWE + all edge types allowed.
READ COMMITTED in PostgreSQL.

RBWE + f:ww prohibited; f:wr impossible.

REPEATABLE READ in PostgreSQL.

RBWE; f:wr impossible.
Question: How can this be extended to a mixed-mode setting?

Snapshot Isolation (SI):

Snapshot Isolation with concurrent writes (SIW):

Winners and Losers — FCW and FUW

e In a prohibited conflict, only the winner may commit.

T}

WT]4‘<X>

To}

’
s
’

WT2‘<>(>

First committer wins (FCW):

First updater wins (FUW): Use request time; for ww-conflicts only.
e Widely used in practice, including PostgreSQL.

e In mixed mode, the /oser transaction may not have a prohibited edge.

Policy Eff. Time Admissibility of concurrent edge type for loser
Assign. Sow T brw | fww [fiwr
RC RRWE Permitted | Permitted | Permitted | Permitted
Sl RBWE Permitted | Permitted | Prohibited | Impossible
SIW RBWE Permitted | Permitted | Permitted | Impossible

Examples of Mixed-Level Isolation

Tl: == 1

\\\\\V\\IT’3<X> |
1

e Under both FCW and FUW, Tj is the winner, Ty the loser.
e (Isolation(T;) = RC), (Isolation(T2) = SI) = T; not allowed to commit.
e (Isolation(T;) = SI), (Isolation(T2) = RC) = both may commit.
e The loser transaction, running under RC, plays by its own set of
rules, which do not prohibit such concurrent writes.
Observation: It is not always that case that running a transaction under Sl
will prevent concurrent writes of a data object.
Real world: This is how PostgreSQL (and other systems) implement
mixed-level isolation.
e Note that the write by T3 is not even known when 77 commits.
e Any “fix" would require that the transaction manager override the local
isolation policy of the loser.

ShareLocks in PostgreSQL

e PostgreSQL implements write-write isolation via the SharelLock.
e Essentially an exclusive (write, X-) lock.
e Whenever a transaction makes a write request, it must hold or be issued
a ShareLock before it may continue.
e If it cannot obtain such a lock, it must wait.
e All such locks are held until the transaction commits or aborts.
e This applies even to transactions running under RC.

T1= WTL\<\X \> I

wo(x)
TI T3
2 | T> must wait | |

N . . .
‘¥ This can also result in deadlock (which the system resolves).

= IMust wait for T to complete.

TI WTZK” WT?<X> I Must wait for T; to complete.

Relationship to SQL-Defined Isolation

Anomaly table: Recall the anomaly table for the SQL standard.

Admissibility of anomaly
Isolation Level Dirty Write { Dirty Read { Fuzzy Read { Phantom
READ UNCOMMITTED | Prohibited Permitted Permitted Permitted
READ COMMITTED Prohibited Prohibited Permitted Permitted
REPEATABLE READ Prohibited Prohibited Prohibited Permitted
SERIALIZABLE Prohibited | Prohibited Prohibited | Prohibited

READ UNCOMMITTED: This isolation level permits reading of uncommitted
data, but does not require it (my interpretation).
e Reading uncommitted data is not supported by most MVCC systems.

e READ UNCOMMITTED is often implemented as READ COMMITTED on
MVCC systems.

READ COMMITTED: This definition makes sense in MVCC as well as SVCC.
e RC under MVCC, as defined in this work, is an acceptable match.

Relationship to SQL-defined isolation — 2

REPEATABLE READ: Examined in detail in [Berenson et al. 1995 SIGMOD].
e Correct semantics depends upon fine details of formalism.
Loose interpretation (for SVCC): trpgi{T1) < twirern (T2) < tena{T1)
forbidden.
Equivalent (for MVCC): tolyin(T1) < twiero (T2) < tena(T1) forbidden
(<T1,T1> and <T2,T2>)
I_= But then readers can block writers and conversely.

e This is why many (including [Berenson et al. 1995 SIGMOD]) argue
that Sl is not a compliant implementation of REPEATABLE READ.
Opinion: REPEATABLE READ is poorly defined for use with MVCC, with

Sl is the most appropriate equivalent in that case.
IT= The REPEATABLE READ of the standard also allows phantoms,
~ which is a bad idea according to [Berenson et al. 1995 SIGMOD].
e The REPEATABLE READ definition should exclude phantoms.
e The local definition of SERIALIZABLE is essentially

REPEATABLE READ without Ehantoms. SMore Iater:

Isolation Levels of SQL

Global scope: Recall that serializability is a global property, of a set of
transactions.
e It does not make sense to say that a single transaction is serializable.
Question: How does one integrate serializable, as an isolation level, with
local levels such as RC and SI?
Double-duty strategy: The (apparent) intent of the SQL standard was to
give SERTALIZABLE double duty.
Local duty: Provide so-called DEGREE 3 isolation (REPEATABLE READ+
no phantoms).
Global duty: If all transactions are run under SERIALIZABLE, the result
should be serializable behavior.
I > Unfortunately, DEGREE 3 isolation implies serializability only under very
narrow constraints, requiring both SVCC and 2PL (more later). ©

Goal: Realize this double-duty strategy in another way, which is compatible
with modern MVCC.

Definitions of Serializability

e There are two main concepts of serializability in use.

View serializability: The best theoretical definition.
Drawback: Testing is NP-complete.

Conflict serializability: Defined by the absence of cycles in the DSG.
Advantage: Simple algorithm for testing.

Advantage: Easy to extract an equivalent serial execution.
e Just expand the partial order defined by the DSG to a total
order (on the transactions).

Drawback: Slightly less general than view serializability; excludes some
serializable behavior.

e The two agree in the absence of blind writes.
Convention: Conflict serializability is widely used in transaction modelling.

e |t will be used in this work.

Serializable-Generating and Serializable-Preserving Strategies

Serializable Generating (SerGen): An isolation level is SerGen if, whenever
all transactions are run at that level, the result is a serializable schedule.
= SerGen does not apply in a mixed-level setting.
Serializable Preserving (SerPres): An isolation level is SerPres if committing
a transaction at that level does not add any new cycles to the DSG,

regardless of the level at which the previously committed transactions
were run.

Observation: SerPres = SerGen. O

‘ SERIALIZABLE Policy ‘ DBMS ‘ SerGen ‘ SerPres ‘
SSI PostgreSQL Yes No
SS2PL SQL Server Yes ?
Sl Oracle, MySQL /MariaDB No No
None IBM Db2 N/A N/A

Question: Are there useful SerPres strategies?

RCX and SIX: Examples of SerPres Isolation Levels

Observation: An isolation level which prohibits backward edges is SerPres. O

fim
, r(x) w(x)
TI ! S I frww
~-~"-~,WT‘<X>
TI \ I
rdy wr{x
TI T<k\> _____L<> I
/ W /‘<X>_,_—‘v" © fiww
TI . I “shirw

3
——
s
11
S

19/32

RCX, SIX, SIWX: Examples of SerPres Isolation Levels

New SerPres local isolation levels:

Policy Eff. Time Admissibility of concurrent edge type for loser
Assign. firw birw ‘ frww ‘ fiwr
RCX RRWE Permitted | Prohibited || Permitted | Permitted
SIX RBWE Permitted | Prohibited || Prohibited | Impossible
SIWX RBWE Permitted | Prohibited || Permitted | Impossible

Note: Prohibiting b:rw is all that is needed to achieve SerPres.

Advantage of RCX, SIX, SIWX: They solve the mixed-scope problem.

e They provide a well-defined local isolation level, which may be mixed
with other levels in an understandable way (providing SerPres).

e When all transactions are run under any mix of RCX, SIX, or SIWX,
true conflict-serializable isolation (SerGen) is obtained.

RCX and SIX in Practice

| SERIALIZABLE Policy | DBMS | SerGen [SerPres |
SSI PostgreSQL Yes No
Sl Oracle, MySQL/MariaDB No No
SS2PL SQL Server Yes ?
SIX Pyrrho, StrongDBMS Yes Yes
RCX ? Yes Yes
SIWX ? Yes Yes

Drawback: SIX involves strictly more false positives than SSI.

e RCX and SIWX are incomparable to SSI in this regard.
Advantage: RCX, SIX, SIWX provide meaningful isolation semantics in a

mixed-level setting, with simple semantics and implementation.

Question: Are RCX, SIX, SIWX “good enough” in practice?

e The answer must come from benchmarking.

e Pyrrho seems to perform quite well.
Bottom line: RCX and SIX deserve further investigation as alternatives for

implementing SQL SERIALIZABLE isolation.

Implications for Systems Employing SIX for Serialization

ww-conflicts: It is not necessary to exclude ww-conflicts to ensure
serializability.
e SIWX will serve just as well as SIX.

Question: Does it matter in practice?
Answer: Only to the extent that blind writes are present.

e A conflict excluded by SIX but not SIWX:

S N
e
e A conflict excluded by both SIX and SIWX.
e e
7 (’:rW\r?;(X\)‘ ;‘"“~~‘WT2‘<X> |

Superiority of RCX

Theorem: RCX (as a serialization strategy) involves (strictly) fewer false
positives than does SIWX or SIX. O

T} rTiX> | RRWE RBWE
" "”_—b:rvv b:rw\‘* ,
T,,I Wr ;<X7 I T,I Wr;<X> I
TI DiTW /r,TSX> I RBWE RRWE
WT"<Xr‘ |

Implications for Systems Employing SIX/SIWX for Serialization

RBWE vs. RRWE: SIX or SIWX may be replaced with RCX with strictly
fewer false positives and serializability retained.

In other words: do the following.
e Ignore ww-conflicts.

e Read at (first) request time rather than at the beginning of the
transaction.

e If T reads x and a concurrent transaction T’ writes x, tag that as
an inadmissible edge iff

(3) thems (T) < teag(T') (not tholE (T) = toran(T) < teaa(T')).
(b) tena(T") < tena(T).

Optimality for Commit-Order Preservation

Definition: A serialization strategy AugTest is commit-order preserving if for
any schedule S which AugTest approves as serializable, the order in
which the transactions in S commit is an equivalent serial order.

Example: A serialization which is not commit-order preserving.

Constraint: x4+ y > 500

Ti: X ¢ x + 50;
To: If x+ y > 600 then y < y — 100;
T, | rT1;<X> WT1.<X> |
'l b:rw,zd
LX) rrly) wrly)
TAI 1 1 1 I

Equivalent serial order: (Ta, T1).

Theorem: A serialization strategy is commit-order preserving iff it disallows
all backward edges. O

Corollary: RCX, SIX, SIWX are all commit-order preserving in any mix. O

Corollary: RCX is optimal for commit-order preservation. O

SSI — Serializable SI

e SSlis used in PostgreSQL to implement true conflict-serializable isolation.

Essential dangerous structure (EDS): (To,70) — (T1,71) by (To, 70).
e Ty commits first.
e Ti| Ta. (To || T1 automatic since edge is backward.)
e (Ty,79) and (T2, 7o) may be the same.
Theorem: If the DSG contains a cycle, then it also contains an EDS.
Proof sketch:

Strategy: Check for and disallow EDSs.

Remark: If the base isolation level is SI, then (T2, 72) — (T1,71).
e But the base strategy does not depend upon SI.
e RC or SIW may be used just as well.

26/32

EDS and Locality

Local property of a transaction A property of a transaction T is local if it
depends only upon T and those other transactions which run
concurrently with T.

Examples: RC, SI, SIW, RCX, SIWX, and SIX are all defined in terms of
local properties.

Fact: Participation in an EDS is not a local property. O

Counterexample: In the diagram below, (Ty, 7)) —— (T, 71) b (To,T0)
forms an EDS for {1y, 71,7} € {RRWE,RBWE}.
w(x r
7ol - T }
\‘b:rw
T I ; ! I
T wly) |

e But Ty commits before To begins.

SSI is not Serializable Preserving

..................... LW
I v
T,I r{xy) w(x0) | |r<x‘;> w(xy) |
o] na s |
birwr : 2
e T“I r(>l<2> W<X5>I T r{x) W<TX >{
! ' birwe
h N 1 VA ¥
r{xo) W<X1>I

N |

b:rw

o (To.m) 2™ (Ty,7) ™ (Ty,) is the only EDS.

e Commit order is ((To,70), (T3, 73), (T1,71), (T2, 72), (T4, Ta)).

e Only when (T4, 74) commits does a cycle appear.

2 So, if {(Ti,7i) | 0 < i< 3} are run under REPEATABLE READ, and
(T4, 74) under SERTALIZABLE, a new cycle will be added upon the
commit of (Ty, 74).

I = Commit of (Ty4,74) is not blocked by SSI in this case.

SSN — Serializable Safety Net

SSN: Recently [Wang et al., VLDB J. 2017], a new approach to serialization
called Serializable Safety Net (SSN) has been developed.

e It is similar to SSl in idea, but employs a more complex notion of
“dangerous structure” ..
.. for which there nevertheless exist efficient algorithms for
identification.

e It may be applied to essentially any system whose isolation levels
incorporate write-at-end behavior.

Not SerPres: While it is serializable generating, it is unfortunately not
serializable preserving.

Observations Regarding Serializability and the SQL Standard

Anomaly table: Recall the anomaly table for the SQL standard.
Admissibility of anomaly

Isolation Level Dirty Write [Dirty Read | Fuzzy Read | Phantom
READ UNCOMMITTED | Prohibited Permitted Permitted Permitted
READ COMMITTED Prohibited Prohibited Permitted Permitted
REPEATABLE READ Prohibited Prohibited Prohibited Permitted

SERIALIZABLE Prohibited Prohibited Prohibited Prohibited
Misconception: The standard does not regard the table as a definition of
SERIALIZABLE.

SerGen: It is stated explicitly that SERTALIZABLE must be SerGen.
e So Oracle and MySQL/MariaDB do not satisfy the standard.
Sufficiency of the absence of anomalies: The absence of anomalies is a
sufficient condition for serializability only under very strict conditions.
e SVCC with lock-based implementation of isolation.
e REPEATABLE READ uses “loose interpretation” (essentially SS2PL).

e Local isolation SERIALIZABLE = REPEATABLE READ + no phantoms
(DEGREE 3).

Remarks Concerning the Terminology ACID

ACID: In the literature, assertions that a DBMS is AC/D are often made.
Atomicity: All-or-nothing effect of transactions.
Consistency: Transactions are correct when run individually.
Isolation: As discussed in this talk.

Durability: Committed data are to permanent storage.

& o .
¥ Isolation is a matter of degree, not an absolute all-or-nothing concept.

Question: How much isolation is “enough”?
e Conflict serializable?

o Commit-order-preserving serializable?

e The term ACID must be qualified to have unambiguous meaning.

Conclusions and Further Directions

Conclusions: Two models have been developed for transaction isolation.

Mixed-level model: for local-scope isolation (RC, SI).
e Provides a firm foundation for understanding what to expect when
different transactions are run at different levels of isolation.
Mixed-scope model: for serializable isolation.

e Extends the global semantics of a serializable schedule by providing
meaningful semantics (serializable preserving) to individual
transactions running with isolation SERIALIZABLE,

e Even when others are running at other levels of isolation.
Further Directions:
e Experimental studies of the efficacy of RCX, SIWX, and SIX.

e Extension of the theoretical model to classical lock-based levels of
isolation (e.g., SS2PL).

