
Transaction Isolation
in Mixed-Level and Mixed-Scope Settings

Stephen J. Hegner
Retired from:

Umeå University, Sweden
http://people.cs.umu.se/hegner

Currently:
DBMS Research of New Hampshire, USA

dbmsnh@gmx.com

Often visiting:
University of Concepción, Chile

Expanded from ADBIS 2019 presentation

0/32

Isolation of Database Transactions

Transactions: A database transaction performs reads and (possibly) writes
on a database.

Examples on banking database: Read account balance,
withdraw amount x from account a,
transfer amount x from account a1 to account a2.

Concurrency: In a modern DBMS, transactions may run concurrently.

T1

T2

T3

time

Isolation: Concurrent transactions must not interfere with one another.

1/32

Lost Update — Result of Limited Isolation

• If two concurrent transactions read and write the same data object, a lost
update may result.

tim
e

Global T1 T2

DB x Operation Local x Operation Local x
10000 Read〈x〉 10000

10000 10000 Read〈x〉 10000

10000 Compound〈x , 10%〉 11000 10000

10000 11000 Withdraw〈x , 2000〉 8000

11000 Write〈x〉 11000 8000

8000 11000 Write〈x〉 8000

• The update of T1 is lost completely; only the update of T2 is retained in
the global DB.
• This behavior can happen in real systems (e.g., PostgreSQL) with

transaction isolation level READ COMMITTED.
• Lost update is only one example of an update anomaly; there are many

others.
2/32

Write Skew — Result of Limited Isolation

• Imperfect isolation may occur even in the case that two transactions
write different objects.
• Think of x and y as (the balances of) bank accounts with the constraint

that x + y ≥ 500.
• The following illustrates write skew.

tim
e

Global T1 T2

DB (x , y) Operation Local (x , y) Operation Local (x , y)
(300, 300) Read〈x〉 (300,−)
(300, 300) Read〈y〉 (300, 300)

(300, 300) If x+y ≥ 600 then
Withdraw〈x , 100〉 (200, 300)

(300, 300) (200, 300) Read〈y〉 (−, 300)
(300, 300) (200, 300) Read〈x〉 (300, 300)

(300, 300) (200, 300) If x+y ≥ 600 then
Withdraw〈y , 100〉 (300, 200)

(200, 300) Write〈x〉 (200, 300) (300, 200)

(200, 200) (200, 300) Write〈y〉 (300, 200)

Consistency: T1 and T2 are each consistent; they respect the integrity
constraint when run individually.

3/32

Levels of Isolation

Schedule: A finite set of transactions, each with start time, end time, and
times for the read and write operations, is a schedule.

Serializable schedule: The behavior of the (possibly concurrent) transactions
must be equivalent to that for some non-concurrent, or serial schedule.
• To obtain a serial schedule, the transactions are “shifted” in time,

but otherwise unchanged.
Gold standard for isolation: Serializable schedule.
Limited concurrency: Serializable schedules may limit concurrency (and

hence performance) substantially.
Reality: DBMSs offer a variety of isolation levels.
Tradeoff: • Higher isolation ⇒ reduced concurrency.

• Lower isolation ⇒ undesirable interaction.
SQL: READ UNCOMMITTED

< READ COMMITTED< REPEATABLE READ< SERIALIZABLE.

4/32

Goals of this Research

• In descriptions of the various isolation levels, it is typically assumed that
all transactions run at the same level.

Reality: Most DBMSs permit the selection of isolation level on a
per-transaction basis.

Goal 1 – mixed-level isolation: Develop a systematic model of the behavior
of transactions when different ones run at different levels of isolation.
Example: T1 runs under REPEATABLE READ while while T2 runs under

READ COMMITTED.
Local scope: READ COMMITTED and REPEATABLE READ are local in scope.

• They are properties of an individual transaction, depending only
upon that transaction and its relationship to concurrent neighbors.

Global scope: SERIALIZABLE is a property of a schedule of transactions.
• It makes no sense to say that an individual transaction is serializable.

Goal 2 – mixed-scope isolation: Develop a model in which SERIALIZABLE
isolation has meaning in a mixed-level setting.

5/32

The Object-Level Model of Transactions

T
tStart〈T 〉 tEnd〈T 〉

rT〈x〉 rT〈y〉 wT〈x〉

tReq
Read〈x〉〈T 〉 tReq

Read〈y〉〈T 〉 tReq
Write〈x〉〈T 〉

tRRWE
Read〈x〉〈T 〉 tRRWE

Read〈y〉〈T 〉 tRRWE
Write〈x〉〈T 〉tRBWE

Read〈x〉〈T 〉

tRBWE
Read〈y〉〈T 〉 tRBWE

Write〈x〉〈T 〉

• Each transaction T has a start time and an end time.
• Read and write operations are at the object level.
• Operations, but not the values, are modelled.

• Each read and each write operation has a request time.
• In a Teff-transaction 〈T, τ〉, each read and write operation also has an

effective time assignment τ , at which the global DBMS is read or written.
• τ = RRWE = read (at) request write (at) end.
• τ = RBWE = read (at) beginning write (at) end (snapshot read).

6/32

The Conflict Graph (DSG)

Context: S = {〈Ti , τi〉 | 1 ≤ i ≤ k} Teff-transactions.

Time compatible: Distinct transactions have no time points in common.

Time points: tStart〈Ti〉, tEnd〈Ti〉, tτi
Read〈Ti 〉

〈x〉, tReq
Read〈Ti 〉

〈x〉, tτi
Write〈Ti 〉

〈x〉,
tReq

Write〈Ti 〉
〈x〉.

Direct Serialization Graph (DSG): Has S as vertices and edges as follows:

〈Ti , τi〉
rw−→ 〈Tj , τj〉: Ti reads some x and Tj is the next writer of x .

〈Ti , τi〉
ww−−→ 〈Tj , τj〉: Ti writes some x and Tj is the next writer of x.

〈Ti , τi〉
wr−→ 〈Tj , τj〉: Ti is the last writer of some x before Tj reads x .

• Effective times are used in all three types of conflict:

7/32

Edge Sense in the DSG

• The sense of an edge is very important in this work.

Forward edge: 〈T1, τ1〉
f :zz−−→ 〈T2, τ2〉 holds iff tEnd〈T1〉 < tEnd〈T2〉.

T1

T2

rT1
〈x〉

wT2
〈x〉f :rw

Backward edge: 〈T1, τ1〉
b:zz−−→ 〈T2, τ2〉 holds iff tEnd〈T2〉 < tEnd〈T1〉.

T1

T2

rT1
〈x〉

wT2
〈x〉

b:rw

Fact: Only rw-edges can be backward; ww- and wr-edges must be forward. 2

8/32

Multiversion Concurrency Control

• Historically, systems which work with just a single version of the database
were widely used in DBMSs.
• This model is called single-version concurrency control (SVCC).

• Nowadays, however, a much more common approach is multiversion
concurrency control (MVCC).
• In MVCC, there may be several versions of each primitive data object.
• Exactly one version for each data object is committed, and belongs to the

global DB – the “true” database which other transactions can see.
• The others are local copies for transactions.
• All updates by transactions (before commit) are to local copies.

GlobalTcTbTa

· · · xxxxxxxx

Versions of x

GlobalTdTc

· · · xxxxxx

Versions of y

GlobalTaTd

· · · xxxxxx
Versions of z

9/32

Modelling Isolation under MVCC via Conflicts

• Common MVCC levels may be characterized by two parameters.
Effective time assignment: RRWE or RBWE.
Admissibility of concurrent edges: Only f :rw, b:rw, f :ww, f :wr possible.

Policy Eff. Time
Assign.

Admissibility of concurrent edge type
f :rw b:rw f :ww f :wr

RC RRWE Permitted Permitted Permitted Permitted
SI RBWE Permitted Permitted Prohibited Impossible

SIW RBWE Permitted Permitted Permitted Impossible
• First assume that all transactions run at the same level of isolation.

Read Committed (RC): RRWE + all edge types allowed.
READ COMMITTED in PostgreSQL.

Snapshot Isolation (SI): RBWE + f :ww prohibited; f :wr impossible.
REPEATABLE READ in PostgreSQL.

Snapshot Isolation with concurrent writes (SIW): RBWE; f :wr impossible.
Question: How can this be extended to a mixed-mode setting?

10/32

Winners and Losers — FCW and FUW

• In a prohibited conflict, only the winner may commit.

T1

T2

wT1
〈x〉

wT2
〈x〉

First committer wins (FCW):
First updater wins (FUW): Use request time; for ww-conflicts only.

• Widely used in practice, including PostgreSQL.
• In mixed mode, the loser transaction may not have a prohibited edge.

Policy Eff. Time
Assign.

Admissibility of concurrent edge type for loser
f :rw b:rw f :ww f :wr

RC RRWE Permitted Permitted Permitted Permitted
SI RBWE Permitted Permitted Prohibited Impossible

SIW RBWE Permitted Permitted Permitted Impossible

11/32

Examples of Mixed-Level Isolation

T1

T2

wT1
〈x〉

wT2
〈x〉

• Under both FCW and FUW, T1 is the winner, T2 the loser.
• (Isolation〈T1〉 = RC), (Isolation〈T2〉 = SI) ⇒ T2 not allowed to commit.
• (Isolation〈T1〉 = SI), (Isolation〈T2〉 = RC) ⇒ both may commit.
• The loser transaction, running under RC, plays by its own set of

rules, which do not prohibit such concurrent writes.
Observation: It is not always that case that running a transaction under SI

will prevent concurrent writes of a data object.
Real world: This is how PostgreSQL (and other systems) implement

mixed-level isolation.
• Note that the write by T2 is not even known when T1 commits.
• Any “fix” would require that the transaction manager override the local

isolation policy of the loser.
12/32

ShareLocks in PostgreSQL

• PostgreSQL implements write-write isolation via the ShareLock.
• Essentially an exclusive (write, X-) lock.

• Whenever a transaction makes a write request, it must hold or be issued
a ShareLock before it may continue.
• If it cannot obtain such a lock, it must wait.
• All such locks are held until the transaction commits or aborts.
• This applies even to transactions running under RC.

T1

T2

wT1
〈x〉

wT2
〈x〉
T2 must wait

� This can also result in deadlock (which the system resolves).

T1

T2

wT1
〈x〉

wT2
〈y〉

wT1
〈y〉 Must wait for T2 to complete.

wT2
〈x〉 Must wait for T1 to complete.

13/32

Relationship to SQL-Defined Isolation

Anomaly table: Recall the anomaly table for the SQL standard.

Isolation Level
Admissibility of anomaly

Dirty Write Dirty Read Fuzzy Read Phantom
READ UNCOMMITTED Prohibited Permitted Permitted Permitted
READ COMMITTED Prohibited Prohibited Permitted Permitted
REPEATABLE READ Prohibited Prohibited Prohibited Permitted

SERIALIZABLE Prohibited Prohibited Prohibited Prohibited

READ UNCOMMITTED: This isolation level permits reading of uncommitted
data, but does not require it (my interpretation).
• Reading uncommitted data is not supported by most MVCC systems.
• READ UNCOMMITTED is often implemented as READ COMMITTED on

MVCC systems.

READ COMMITTED: This definition makes sense in MVCC as well as SVCC.
• RC under MVCC, as defined in this work, is an acceptable match.

14/32

Relationship to SQL-defined isolation — 2

REPEATABLE READ: Examined in detail in [Berenson et al. 1995 SIGMOD].
• Correct semantics depends upon fine details of formalism.

Loose interpretation (for SVCC): tRead〈x〉〈T1〉 < tWrite〈x〉〈T2〉 < tEnd〈T1〉
forbidden.

Equivalent (for MVCC): tτ1
Read〈x〉〈T1〉 < tτ2

Write〈x〉〈T2〉 < tEnd〈T1〉 forbidden
(〈T1, τ1〉 and 〈T2, τ2〉).
D But then readers can block writers and conversely.
• This is why many (including [Berenson et al. 1995 SIGMOD]) argue

that SI is not a compliant implementation of REPEATABLE READ.
Opinion: REPEATABLE READ is poorly defined for use with MVCC, with

SI is the most appropriate equivalent in that case.
D The REPEATABLE READ of the standard also allows phantoms,

which is a bad idea according to [Berenson et al. 1995 SIGMOD].
• The REPEATABLE READ definition should exclude phantoms.
• The local definition of SERIALIZABLE is essentially

REPEATABLE READ without phantoms. (More later)
15/32

Isolation Levels of SQL

Global scope: Recall that serializability is a global property, of a set of
transactions.
• It does not make sense to say that a single transaction is serializable.

Question: How does one integrate serializable, as an isolation level, with
local levels such as RC and SI?

Double-duty strategy: The (apparent) intent of the SQL standard was to
give SERIALIZABLE double duty.
Local duty: Provide so-called DEGREE 3 isolation (REPEATABLE READ+

no phantoms).
Global duty: If all transactions are run under SERIALIZABLE, the result

should be serializable behavior.
D Unfortunately, DEGREE 3 isolation implies serializability only under very

narrow constraints, requiring both SVCC and 2PL (more later). §
Goal: Realize this double-duty strategy in another way, which is compatible

with modern MVCC.
16/32

Definitions of Serializability

• There are two main concepts of serializability in use.
View serializability: The best theoretical definition.

Drawback: Testing is NP-complete.
Conflict serializability: Defined by the absence of cycles in the DSG.

Advantage: Simple algorithm for testing.
Advantage: Easy to extract an equivalent serial execution.

• Just expand the partial order defined by the DSG to a total
order (on the transactions).

Drawback: Slightly less general than view serializability; excludes some
serializable behavior.

• The two agree in the absence of blind writes.
Convention: Conflict serializability is widely used in transaction modelling.

• It will be used in this work.

17/32

Serializable-Generating and Serializable-Preserving Strategies

Serializable Generating (SerGen): An isolation level is SerGen if, whenever
all transactions are run at that level, the result is a serializable schedule.
D SerGen does not apply in a mixed-level setting.

Serializable Preserving (SerPres): An isolation level is SerPres if committing
a transaction at that level does not add any new cycles to the DSG,
regardless of the level at which the previously committed transactions
were run.

Observation: SerPres⇒ SerGen. 2

SERIALIZABLE Policy DBMS SerGen SerPres
SSI PostgreSQL Yes No

SS2PL SQL Server Yes ?
SI Oracle, MySQL/MariaDB No No

None IBM Db2 N/A N/A

Question: Are there useful SerPres strategies?
18/32

RCX and SIX: Examples of SerPres Isolation Levels

Observation: An isolation level which prohibits backward edges is SerPres. 2

DSG: Committed transactions 〈T, τ〉

f :−

b:rw

T ′

T

rT ′〈x〉 wT ′〈x〉

wT〈x〉
f :ww

T

T ′

T ′′

rT〈y〉 wT〈x〉

wT ′〈x〉

wT ′′〈y〉
b:rw

f :ww

19/32

RCX, SIX, SIWX: Examples of SerPres Isolation Levels

New SerPres local isolation levels:
Policy Eff. Time

Assign.
Admissibility of concurrent edge type for loser
f :rw b:rw f :ww f :wr

RCX RRWE Permitted Prohibited Permitted Permitted
SIX RBWE Permitted Prohibited Prohibited Impossible

SIWX RBWE Permitted Prohibited Permitted Impossible

Note: Prohibiting b:rw is all that is needed to achieve SerPres.

Advantage of RCX, SIX, SIWX: They solve the mixed-scope problem.
• They provide a well-defined local isolation level, which may be mixed

with other levels in an understandable way (providing SerPres).
• When all transactions are run under any mix of RCX, SIX, or SIWX,

true conflict-serializable isolation (SerGen) is obtained.

20/32

RCX and SIX in Practice

SERIALIZABLE Policy DBMS SerGen SerPres
SSI PostgreSQL Yes No
SI Oracle, MySQL/MariaDB No No

SS2PL SQL Server Yes ?
SIX Pyrrho, StrongDBMS Yes Yes
RCX ? Yes Yes
SIWX ? Yes Yes

Drawback: SIX involves strictly more false positives than SSI.
• RCX and SIWX are incomparable to SSI in this regard.

Advantage: RCX, SIX, SIWX provide meaningful isolation semantics in a
mixed-level setting, with simple semantics and implementation.

Question: Are RCX, SIX, SIWX “good enough” in practice?
• The answer must come from benchmarking.
• Pyrrho seems to perform quite well.

Bottom line: RCX and SIX deserve further investigation as alternatives for
implementing SQL SERIALIZABLE isolation.

21/32

Implications for Systems Employing SIX for Serialization

ww-conflicts: It is not necessary to exclude ww-conflicts to ensure
serializability.
• SIWX will serve just as well as SIX.

Question: Does it matter in practice?
Answer: Only to the extent that blind writes are present.
• A conflict excluded by SIX but not SIWX:

T1

T2

rT1
〈x〉 wT1

〈x〉

wT2
〈x〉

f :ww

• A conflict excluded by both SIX and SIWX.

T1

T2

rT1
〈x〉 wT1

〈x〉

rT2
〈x〉 wT2

〈x〉
f :ww

b:rw

22/32

Superiority of RCX

Theorem: RCX (as a serialization strategy) involves (strictly) fewer false
positives than does SIWX or SIX. 2

T RRWE RBWE

T ′

rT〈x〉

wT ′〈x〉
T ′′ wT ′′〈x〉 b:rwb:rw

T RBWE RRWE

T ′

rT〈x〉

wT ′〈x〉
b:rw

23/32

Implications for Systems Employing SIX/SIWX for Serialization

RBWE vs. RRWE: SIX or SIWX may be replaced with RCX with strictly
fewer false positives and serializability retained.

In other words: do the following.

• Ignore ww-conflicts.

• Read at (first) request time rather than at the beginning of the
transaction.

• If T reads x and a concurrent transaction T ′ writes x , tag that as
an inadmissible edge iff
(a) tReq

Read〈x〉〈T 〉 < tEnd〈T ′〉 (not tRBWE
Read〈x〉〈T 〉 = tStart〈T 〉 < tEnd〈T ′〉).

(b) tEnd〈T ′〉 < tEnd〈T 〉.

24/32

Optimality for Commit-Order Preservation

Definition: A serialization strategy AugTest is commit-order preserving if for
any schedule S which AugTest approves as serializable, the order in
which the transactions in S commit is an equivalent serial order.

Example: A serialization which is not commit-order preserving.
Constraint: x + y ≥ 500
T1: x ← x + 50;
T2: If x + y ≥ 600 then y ← y − 100;

T1

T2

rT1
〈x〉 wT1

〈x〉

rT2
〈x〉 rT2

〈y〉 wT2
〈y〉

b:rw

Equivalent serial order: 〈T2,T1〉.
Theorem: A serialization strategy is commit-order preserving iff it disallows

all backward edges. 2

Corollary: RCX, SIX, SIWX are all commit-order preserving in any mix. 2

Corollary: RCX is optimal for commit-order preservation. 2
25/32

SSI — Serializable SI

• SSI is used in PostgreSQL to implement true conflict-serializable isolation.
Essential dangerous structure (EDS): 〈T2, τ2〉

-:-−→ 〈T1, τ1〉
b:rw−→ 〈T0, τ0〉.

• T0 commits first.
• T1 ‖ T2. (T0 ‖ T1 automatic since edge is backward.)
• 〈T0, τ0〉 and 〈T2, τ2〉 may be the same.

Theorem: If the DSG contains a cycle, then it also contains an EDS.
Proof sketch:

T0

T1 T2

Ti

..

....

b:rw
‖

-:-
‖

f :-

first to commit T0 T1

b:rw
‖

f :-
‖

Strategy: Check for and disallow EDSs.
Remark: If the base isolation level is SI, then 〈T2, τ2〉

-:rw−→ 〈T1, τ1〉.
• But the base strategy does not depend upon SI.
• RC or SIW may be used just as well.

26/32

EDS and Locality

Local property of a transaction A property of a transaction T is local if it
depends only upon T and those other transactions which run
concurrently with T .

Examples: RC, SI, SIW, RCX, SIWX, and SIX are all defined in terms of
local properties.

Fact: Participation in an EDS is not a local property. 2

Counterexample: In the diagram below, 〈T2, τ2〉
-:-−→ 〈T1, τ1〉

b:rw−→ 〈T0, τ0〉
forms an EDS for {τ0, τ1, τ2} ∈ {RRWE,RBWE}.

T0

T1

T2
w〈x〉

r〈x〉 w〈y〉

r〈y〉

b:rw b:rw

• But T0 commits before T2 begins.

27/32

SSI is not Serializable Preserving

r〈x4〉 w〈x0〉T0

r〈x0〉 w〈x1〉T1

r〈x2〉 w〈x3〉T3

r〈x1〉 w〈x2〉T2

r〈x3〉 w〈x4〉T4

b:rw

b:rw

b:rw

f :rw

f :rw

• 〈T2, τ2〉
b:rw−→ 〈T1, τ1〉

b:rw−→ 〈T0, τ0〉 is the only EDS.
• Commit order is 〈〈T0, τ0〉, 〈T3, τ3〉, 〈T1, τ1〉, 〈T2, τ2〉, 〈T4, τ4〉〉.
• Only when 〈T4, τ4〉 commits does a cycle appear.

� So, if {〈Ti , τi〉 | 0 ≤ i ≤ 3} are run under REPEATABLE READ, and
〈T4, τ4〉 under SERIALIZABLE, a new cycle will be added upon the
commit of 〈T4, τ4〉.
D Commit of 〈T4, τ4〉 is not blocked by SSI in this case.

28/32

SSN — Serializable Safety Net

SSN: Recently [Wang et al., VLDB J. 2017], a new approach to serialization
called Serializable Safety Net (SSN) has been developed.

• It is similar to SSI in idea, but employs a more complex notion of
“dangerous structure” ..

.. for which there nevertheless exist efficient algorithms for
identification.

• It may be applied to essentially any system whose isolation levels
incorporate write-at-end behavior.

Not SerPres: While it is serializable generating, it is unfortunately not
serializable preserving.

29/32

Observations Regarding Serializability and the SQL Standard

Anomaly table: Recall the anomaly table for the SQL standard.

Isolation Level
Admissibility of anomaly

Dirty Write Dirty Read Fuzzy Read Phantom
READ UNCOMMITTED Prohibited Permitted Permitted Permitted
READ COMMITTED Prohibited Prohibited Permitted Permitted
REPEATABLE READ Prohibited Prohibited Prohibited Permitted

SERIALIZABLE Prohibited Prohibited Prohibited Prohibited
Misconception: The standard does not regard the table as a definition of

SERIALIZABLE.
SerGen: It is stated explicitly that SERIALIZABLE must be SerGen.

• So Oracle and MySQL/MariaDB do not satisfy the standard.
Sufficiency of the absence of anomalies: The absence of anomalies is a

sufficient condition for serializability only under very strict conditions.
• SVCC with lock-based implementation of isolation.
• REPEATABLE READ uses “loose interpretation” (essentially SS2PL).
• Local isolation SERIALIZABLE = REPEATABLE READ + no phantoms

(DEGREE 3).
30/32

Remarks Concerning the Terminology ACID

ACID: In the literature, assertions that a DBMS is ACID are often made.
Atomicity: All-or-nothing effect of transactions.
Consistency: Transactions are correct when run individually.
Isolation: As discussed in this talk.
Durability: Committed data are to permanent storage.

� Isolation is a matter of degree, not an absolute all-or-nothing concept.

Question: How much isolation is “enough”?
• Conflict serializable?
• Commit-order-preserving serializable?

• The term ACID must be qualified to have unambiguous meaning.

31/32

Conclusions and Further Directions

Conclusions: Two models have been developed for transaction isolation.
Mixed-level model: for local-scope isolation (RC, SI).

• Provides a firm foundation for understanding what to expect when
different transactions are run at different levels of isolation.

Mixed-scope model: for serializable isolation.
• Extends the global semantics of a serializable schedule by providing

meaningful semantics (serializable preserving) to individual
transactions running with isolation SERIALIZABLE,
• Even when others are running at other levels of isolation.

Further Directions:
• Experimental studies of the efficacy of RCX, SIWX, and SIX.
• Extension of the theoretical model to classical lock-based levels of

isolation (e.g., SS2PL).

32/32

