
Constraint-Preserving Isolation
of Database Transactions

Stephen J. Hegner

Retired from:
Umeå University, Sweden

hegner@cs.umu.se
http://www.cs.umu.se/~hegner

Currently:
Hegner Consulting, LLC
New London, NH, USA

0/26

Database Transactions: Out of Fashion?

• Modern DBMSs support both reads and writes by many users.
• A transaction is a series of reads and/or writes, by a single user, to

achieve a specific task.
• Virtually all classical and relational DBMSs support transactions.
• Some systems à la nouvelle mode (e.g., NoSQL) do not.

Question: Are transactions démodées?
Answer: It depends upon the application.
• Some applications do not always require transactions.
• Operations on the database of a Web-search engine.
• Operations on the database of a social-networking service.

• Many applications still do require transactions to achieve isolation.
• Financial operations.
• Legal and court records.

• An example will help illustrate.
1/26

Serial Execution of Transactions

Serial execution: A set of transactions runs serially if there is no temporal
overlap in their operations.
• In other words, no concurrency.

• Serial execution is considered to define optimal isolation, even though the
result may depend upon the order of execution.

T1 T2 x
Read〈x〉 10000

Cpd〈x , 10%〉 10000

Write〈x〉 11000

Read〈x〉 11000

Wd〈x , 2000〉 11000

Write〈x〉 9000

T1 T2 x
Read〈x〉 10000

Wd〈x , 2000〉 10000

Write〈x〉 8000

Read〈x〉 8000

Cpd〈x , 10%〉 8000

Write〈x〉 8800

• The operations Cpd = compound and Wd = withdraw operate internally
and do not write the database.

2/26

Lost Updates

• If the steps of the transactions are interleaved in certain ways, isolation
may be lost.
• One symptom of poor isolation is lost updates.

T1 T2 x
Read〈x〉 10000

Cpd〈x , 10%〉 10000

Read〈x〉 10000

Wd〈x , 2000〉 10000

Write〈x〉 8000

Write〈x〉 11000

T1 T2 x
Read〈x〉 10000

Wd〈x , 2000〉 10000

Read〈x〉 10000

Cpd〈x , 10%〉 10000

Write〈x〉 11000

Write〈x〉 8000

• In the schedule on the left, the result of T2 is lost.
• In the schedule on the right, the result of T1 is lost.
• This can happen with PostgreSQL using the default isolation level

READ COMMITTED.
Conclusion: Transactions are still important!!!

3/26

Isolation of Transactions

Isolation: Concurrent transactions should not interfere with each other.
Reality: Isolation is a matter of degree.
Tradeoff: • Higher isolation ⇒ reduced concurrency.

• Lower isolation ⇒ undesirable interaction.
Accommodation: DBMSs offer a variety of isolation levels.
Reality: Lower levels of isolation are routinely used in order to achieve

satisfactory performance.
• Often with unexpected and/or disastrous side effects.
• Errors can be subtle and extremely difficult to detect ..
• .. until it is too late.

• Major relational DBMSs (PostgreSQL, Oracle, SQL Server) default
to READ COMMITTED, a very low (often the lowest) level ..
• .. despite the fact that the SQL standard mandates the default

to be the highest level SERIALIZABLE.
4/26

The Model of Operations, Transactions, and Schedules

• Model the database schema as a set of updateable objects.
Object-level model of operations: There are two basic operations:

Read: rT〈x〉 denotes that transaction T reads data object x .
Write: wT〈x〉 denotes that transaction T writes data object x .

• In particular, the specific change which T makes to the value of x during
a write is not modelled.
• A transaction is then modelled as a sequence of such operations:

Examples: T1: rT1
〈x1〉wT1

〈x1〉rT1
〈x2〉wT1

〈x2〉 T2: rT2
〈x1〉rT2

〈x3〉wT2
〈x3〉wT2

〈x2〉
• A schedule for a set of transactions is an intertwining of their operation

sequences which preserves the local order for each transaction.
Examples: S1 : rT1

〈x1〉wT1
〈x1〉rT1

〈x2〉wT1
〈x2〉rT2

〈x1〉rT2
〈x3〉wT2

〈x3〉wT2
〈x2〉

S2 : rT1
〈x1〉wT1

〈x1〉rT2
〈x1〉rT2

〈x3〉wT2
〈x3〉rT1

〈x2〉wT1
〈x2〉wT2

〈x2〉
• S1 is a serial schedule for {T1,T2}, while S2 is a non-serial schedule.

5/26

View Serializability and SS2PL

Serializability: A schedule of transactions is view serializable if its effect is
the same as one in which the transactions are run serially.
• Theoretical gold standard for isolation.

Requirement: The scheduler needs to create serializable schedules, not just
test existing ones for compliance.

SS2PL: Strong-Strict Two-Phase Locking is a lock-based means of ensuring
view-serializable schedules.
• A transaction must hold all acquired locks until it commits (finishes).
• Also guarantees other desirable properties (e.g., recoverability).

False claim: Many textbooks claim that SS2PL is widely used in practice.
Reality: SS2PL is too limiting of concurrency to be of much use.

• A search on a non-indexed attribute would require (read) locking the
whole table, blocking write access by any concurrent transaction.

• Only a few relational DBMSs even offer it.

6/26

Multiversion Concurrency Control

• Historically, systems which work with just a single version of the database
have have been widely used in DBMSs.
• This model is called single-version concurrency control (SVCC).

• Nowadays, however, a much more common approach is multiversion
concurrency control (MVCC).
• In MVCC, there may be several versions of each primitive data object.
• Exactly one version for each data object is committed, and belongs to the

global DB – the “true” database which other transactions can see.
• The others are local copies (for read and write) of transactions.
• The local copies are transferred to the global DB at transaction commit.

GlobalTcTbTa

· · · xxxxxxxx

Versions of x

GlobalTdTc

· · · xxxxxx

Versions of y

GlobalTaTd

· · · xxxxxx
Versions of z

7/26

Snapshot Isolation

Global DB

s1:
DB at time
Start〈T1〉

snapshot

s2:
DB at time
Start〈T2〉

snapshot

T1
executes on
snapshot s1

T2
executes on
snapshot s2

Global DB

merge

merge

• In snapshot isolation (SI), each transaction operates on a snapshot:
• a (private) copy of the database with values taken at the point in

time at which the transactions begins.
First Committer Wins (FCW): Ti is allowed to commit its local writes to the

global DB only if no data object x which it writes has been committed,
since its snapshot was created, to the global DB by another transaction.
• Otherwise, it must abort and start over.

8/26

Advantages of Snapshot Isolation

• SI has some very attractive properties.
High Level of Isolation: Since each transaction operates on a private copy,

isolation is achieved at what appears to be at a relatively high level.
Enhanced concurrency: No locks ⇒ writers do not block readers.

• Readers (almost) never have to wait for writers to finish.
• The attainable level of concurrency is far greater than that of SS2PL.

• For these reasons, SI is widely used in practice.
� Real systems use first updater wins (FUW), and there may be some

blocking when foreign-key constraints are checked, but these are details
which do not distort the main conclusions.

Question: Does SI provide serializable-level isolation?
Answer: That depends upon the definition of serializable.

9/26

Interdependent Data Objects

Fact: SI does not guarantee view-serializable isolation. 2

• An example is defined by a foreign key
constraint.

T1: Delete the Research department (which has
no employees assigned to it)
[modifies Department only].

Employee
EmpID · · · Dept · · ·

DptID · · · · · · · · ·
Department

T2: Assign Alice to the Research department [modifies Employee only].
• Each of T1 and T2 may be run by itself with no violation of integrity

constraints.
• T1 and T2 operate on distinct data objects, yet if run concurrently, a

constraint violation occurs if both commit.

10/26

Write Skew — Constraint Violation under SI

Fact: Built-in constraints are managed internally by all modern DBMSs, so
the previous example, while instructive, is not relevant in a practical
sense.
• On the other hand, constraint enforcement for the following situation

would likely be implemented with triggers and so not handled internally.
Example (write skew): x and y represent the balances of two accounts.

Integrity constraint: x + y ≥ 500AC Initial state: x = 300AC, y = 300AC
T1: Withdraw 100AC from x T2: Withdraw 100AC from y .

• Assume that these transactions run concurrently under SI.
• Each transaction run in isolation satisfies the integrity constraint.
• The final state is (x , y) = (200AC, 200AC), which violates the constraint.
• With serial execution, the second transaction will fail.
• Thus, SI does not guarantee view serializability.

11/26

Constraint-Free Nonserializable SI

• It is also possible to have non-serializability without any constraint
violations.

Example: Two transactions, two data objects.
• T1 : x1←x2 T2 : x2←x1.

If executed serially: x1 = x2 when finished.
If executed concurrently under SI: The values are swapped.

Extension to n variables x0, . . . xn−1 and n transactions T0, . . .Tn−1:
• Ti : xi←x(i+1)modn.

If executed serially: One value is always lost.
If all transactions executed concurrently: Rotation of values.
If any transaction removed: Execution is always serializable.

12/26

The SQL Standard and Serializability

� SI satisfies the conditions set forth in the SQL standard for the
SERIALIZABLE isolation level.
• The standard defines serializability as the absence of three types of

transaction anomalies.
Apparent reason: The architects of the standard could not think of any

nonserializable behavior which could arise in the absence of violations of
those anomalies.

Consequence: Real systems are free to implement the SERIALIZABLE level of
isolation as SI, and several do so.
• Unfortunately, many users mistakenly believe that SERIALIZABLE

isolation in SQL must mean view serializable.
Opinion/Rant: The definition of SERIALIZABLE in the SQL standard is a

poster child for why good theory is a necessary part of even the most
practical endeavors.

13/26

The DSG and Conflict Serializability

DSG: The direct serialization graph (DSG) has transactions as vertices and
three types of edges:
Ti

rw〈x〉−→ Tj : Ti reads x and Tj is the next writer of x .
Ti

ww〈x〉−→ Tj : Ti and Tj are consecutive writers of x .
Ti

wr〈x〉−→ Tj : Tj reads x and Ti is the previous writer of x .
Example: The DSG for

r1〈x〉r1〈y〉 r3〈z〉w3〈z〉r3〈x〉 r2〈z〉 w1〈x〉w1〈y〉 w2〈z〉w2〈y〉 w3〈x〉

T1

T3

T2
ww〈y〉

ww〈x〉
wr〈z〉 ww〈z〉

rw〈x〉

Theorem: Cycle-free DSG ⇔ conflict serializability ⇒ view serializability.2
• Stronger than view serializability but the differences are anomalous.
• Useful for testing because the computational complexity is low.

14/26

Serializable Snapshot Isolation for Two Transactions

Serializable SI (SSI): Augment SI to achieve true view serializability.
Simple case: First consider the case of just two concurrent transactions.
Theorem: If a schedule for SI for two concurrent transactions T1 and T2 is

not view serializable, the DSG must contain a cycle of the following form
for some data objects x1, x2.

T1 T2

rw〈x2〉

rw〈x1〉

Observation: The two simple examples of non-serializable SI (write skew and
swap) have this property.

Strategy: If such a cycle occurs, abort one transaction, allowing the other to
finish.
• Then re-run the aborted transaction.

Question: How can this be extended to more than two transactions?

15/26

Serializable Snapshot Isolation

Serializable SI (SSI): Augment SI to achieve true view serializability.
Observation: With all transactions running under SI, if Ti and Tj are

concurrent and there is an edge Ti −→ Tj in the DSG, then it must be
an rw-edge. 2

Dangerous structure in DSG: Ti
rw−→ Tj

rw−→ Tk (Ti = Tk possible)
occurring in a cycle with {Ti ,Tj} and {Tj ,Tk} concurrent.

Theorem [Fekete et al 2005]: If a schedule for transactions running under SI
is not view serializable, the DSG must contain a dangerous structure. 2

Observation: If Ti = Tk , this reduces to the case of the previous slide.
Optimistic strategy: Serializable SI (SSI):

• It is too expensive to maintain the entire DSG.
• Look for potential dangerous structures (need not be part of a cycle)

and require one transaction to terminate to preserve serializability.
• This requires testing only three transactions at a time.
• But there will be false positives.

16/26

Serializable Snapshot Isolation — Practice and Limitations

Use in PostgreSQL: Since version 9.1 (late 2011), SSI has been used to
implement SERIALIZABLE isolation in PostgreSQL.
• Thus, SERIALIZABLE isolation is finally truly view serializability.
• Ordinary SI is still available as REPEATABLE READ isolation.
• Before version 9.1, both isolation levels were implemented as SI.

Remark: The SSI algorithm works even if some transactions run at the lower
READ COMMITTED level.

Question: Why is there a need for anything more?

Answers:
• SSI results in more false positives (with consequent aborts and

reruns) than does ordinary SI.
• For some transaction mixes, this may be a severe drawback.

17/26

Long-Running and Interactive Transactions

Long-running transaction: Impractical to abort and rerun because of their
length hours or days or more in running time.

Interactive transaction: Human input (in response to transaction output) is
part of the process.
Rich source of examples: Business processes.

Example: Employee request for travel.
• Requires financial resources and time away from the office.
• Approval by management and accounting as interactive process.

• Requires travel resources (transportation, lodging).
• Travel agent involved interactively.

Consequences of abort: All of these interactive sessions would be required to
start over, from scratch.

Conclusion: It is far preferable to avoid such aborts, if at all possible.
Practical aspect: Because the transactions run much more slowly, it is

reasonable to use more time-consuming, sophisticated strategies in order
to avoid the need to abort and rerun.

18/26

Two Types of Reads under SI

Example: Let the database schema have three data objects w , x , and y with
the constraint x + y ≥ 500.
• Transaction T defined by x←x − w .

Integrity context: y is the guard of the transaction; it must be read in
order to verify that the update will satisfy the integrity constraint.

Grounding context: w must be read only to determine the update; it is
not used in the checking the integrity constraint.

The value of y when T commits is critical: If the value of the guard y of T
is changed by another, concurrent transaction, there is a risk that the
constraint will be violated.

Only the snapshot value of w is important for constraint satisfaction: A
change to the value of w by another concurrent transaction will not
affect whether or not the constraint is satisfied.

19/26

The Idea of CPSI

Example: Constraints: x + y ≥ 500; w > 0
T1 : x←x − w
T2 : w←w − x

T1 T2

rw〈w〉

rw〈x〉
There is no conflict since both reads are grounding.

Example: Constraints: x + y ≥ 500; w > 0
T1 : x←x − w
T2 : w←w + |x |; y←y + 1

T1 T2

gw〈y〉, rw〈w〉

rw〈x〉
There is no conflict since the read of x by T2 is grounding.

• The read of y is shown as g〈y〉 for guard.

Example: Constraints: x + y ≥ 500; w > 0
T1 : x←x − w
T2 : y←y − 1

T1 T2

gw〈y〉

gw〈x〉
Both reads are guard (integrity) reads, so there is a potential conflict.

20/26

Value-Level Modelling of Transactions

Object-level modelling: rT〈x〉 and wT〈x〉, but no information on what is read
or written.

Value-level modelling: In addition to identifying which data objects are read
or written, information about the actual values may also be involved.

Examples: Read values may be constrained to lie within a tolerance and
write values guaranteed within a range.
rT〈x〉:Tol〈S〉 Transaction T reads data object x , with the requirement

that any changes to the value must lie within S.
wT〈x〉:Rng〈S〉 Transaction T writes data object x , with the guarantee

that the new value will lie in S.
• For writes, S is taken to be a single value in this work.

• Support for value-level modelling requires more time and resources, but
for interactive transactions, the tradeoff is reasonable.

21/26

Tolerant CPSI for Two Transactions and Two Data Objects

Main idea: For two concurrent transactions T1 and T2, and data object x

rT1
〈x〉:Tol〈Sr 〉 ∧ wT2

〈x〉:Rng〈Sw 〉 ⇒ Sw ⊆ Sr

Example: Constraint: x + y ≥ 500; Initial state: 〈x , y〉 = 〈400, 300〉.

T1 : x←x − 100

rT1
〈y〉:Tol〈[200,∞)〉

wT1
〈x〉:Rng〈{300}〉

T2 : y←y − 50

rT2
〈x〉:Tol〈[250,∞)〉

wT2
〈y〉:Rng〈{250}〉

⊇
⊆

• T1 and T2 are not in conflict under TCPSI.

• They are in conflict under ordinary CPSI (and SSI).

22/26

Tolerant CPSI for >2 Transactions and/or >2 Data Objects

Example: Constraints: x + y + z ≥ 1, x , y , z ≥ 0; Init: 〈x , y , z〉 = 〈1, 1, 1〉.X
2

T1 : x←x − 1

rT1
〈y〉:Tol〈[0,∞)〉

rT1
〈z〉:Tol〈[1,∞)〉

∨

rT1
〈y〉:Tol〈[1,∞)〉

rT1
〈z〉:Tol〈[0,∞)〉

wT1
〈x〉:Rng〈{0}〉

T2 : y←y − 1

rT2
〈x〉:Tol〈[0,∞)〉

rT2
〈z〉:Tol〈[1,∞)〉

∨

rT2
〈x〉:Tol〈[1,∞)〉

rT2
〈z〉:Tol〈[0,∞)〉

wT2
〈y〉:Rng〈{0}〉

T3 : z←z − 1

rT3
〈x〉:Tol〈[0,∞)〉

rT3
〈y〉:Tol〈[1,∞)〉

∨

rT3
〈x〉:Tol〈[1,∞)〉

rT3
〈y〉:Tol〈[0,∞)〉

wT3
〈z〉:Rng〈{0}〉

X

X
1

Problem: Results in complex system of constraints which must be solved.

Solution: Require each transaction to select one of the disjuncts.
23/26

Sketch of Details of Tolerant CPSI

• There are many details which are necessary to address in a successful
deployment of TCPSI.

Calculus of combining tolerances: When several transactions have read
tolerances on the same data object, the tolerances must be integrated.

Dynamic declaration of read tolerances: by transactions during execution.
• A transaction may choose which disjunct to use dynamically.
• It may observe the current read tolerances and write ranges of

concurrent transactions in so doing.
Waiting of blocked transactions: for the necessary tolerances and ranges in

order to continue.
• This may be preferable to abort and restart in some cases.

Grouping data objects for tolerance: Example: rT〈x1〉rT〈x2〉:Tol〈x1x2〉.
• x1x2 is considered as a single data object for declaring tolerances.
• Concurrent transactions must (for now) use the same groupings.

24/26

Conclusions and Further Directions

Conclusions:
CPSI & TCPSI: New levels of transaction isolation.

Full constraints preservation: Both internal and extended constraints
are fully preserved.

≥ SI isolation: Guarantees at least snapshot isolation.
Simple checks: Two-at-a-time verification ⇒ adaptable to dynamic

changes of transaction reads and cooperation between transactions.
Further Directions:
Extend to write tolerances: Several transactions wish to withdraw from the

same account concurrently.
T1 : x←x − 100; T2 : x←x − 50; Initial balance: x = 500.
• A protocol to support such concurrency is under development.

Use within a cooperative model: Rather than aborting transactions which
conflicts occur, they may communicate and cooperate in order to
proceed.
• It is a particularly attractive solution for interactive transactions.

25/26

More Information

Comprehensive slides: Slides (129 of them) entitled Transaction models and
concurrency control from the course Database System Principles at Umeå
University:
http://www8.cs.umu.se/kurser/5DV120/V16/Slides/09_trans_5dv120_h.pdf

• Also used at UdeC in the DB 1 course.

Research paper: Hegner, Stephen J., Constraint-preserving snapshot
isolation, Annals of Mathematics and Artificial Intelligence, (76)2016,
pp. 281–326.
http://www8.cs.umu.se/~hegner/Publications/PDF/amai15.pdf
http://www8.cs.umu.se/~hegner/Publications/PDF/amai15_corr.pdf

Research paper: Hegner, Stephen J., Tolerant constraint-preserving snapshot
isolation: extended concurrency for interactive transactions, submitted for
publication, 2017 (available upon request).

26/26

http://www8.cs.umu.se/kurser/5DV120/V16/Slides/09_trans_5dv120_h.pdf
http://www8.cs.umu.se/~hegner/Publications/PDF/amai15.pdf
http://www8.cs.umu.se/~hegner/Publications/PDF/amai15_corr.pdf

