Complements of Database Views: Uniqueness and Optimality Issues

Stephen J. Hegner Umeå University Department of Computing Science SE-901 87 Umeå, Sweden hegner@cs.umu.se http://www.cs.umu.se/~hegner Context: State-based database schemata: A *database schema* **D** is characterized by a set LDB(**D**) of *legal databases*.

Schemata, Databases, and Schema Morphisms

- Context: State-based database schemata: A *database schema* **D** is characterized by a set LDB(**D**) of *legal databases*.
 - At each point in time, there is exactly one legal database.

Context: State-based database schemata: A *database schema* **D** is characterized by a set LDB(**D**) of *legal databases*.

• At each point in time, there is exactly one legal database.

- Context: State-based database schemata: A *database schema* **D** is characterized by a set LDB(**D**) of *legal databases*.
 - At each point in time, there is exactly one legal database.

• LDB(**D**) = set of databases of **D** which satisfy the integrity constraints Constr(**D**).

- Context: State-based database schemata: A *database schema* **D** is characterized by a set LDB(**D**) of *legal databases*.
 - At each point in time, there is exactly one legal database.

• LDB(**D**) = set of databases of **D** which satisfy the integrity constraints Constr(**D**).

Database morphism: A morphism $f : \mathbf{D}_1 \to \mathbf{D}_2$ is characterized by a function $f : \text{LDB}(\mathbf{D}_1) \to \text{LDB}(\mathbf{D}_2)$.

- Context: State-based database schemata: A *database schema* **D** is characterized by a set LDB(**D**) of *legal databases*.
 - At each point in time, there is exactly one legal database.

- LDB(**D**) = set of databases of **D** which satisfy the integrity constraints Constr(**D**).
- Database morphism: A morphism $f : \mathbf{D}_1 \to \mathbf{D}_2$ is characterized by a function $f : LDB(\mathbf{D}_1) \to LDB(\mathbf{D}_2)$.
 - In the relational model, such functions are typically defined in one of two ways: (Example for R, S ∈ Rels(D₁), T ∈ Rels(D₂))

- Context: State-based database schemata: A *database schema* **D** is characterized by a set LDB(**D**) of *legal databases*.
 - At each point in time, there is exactly one legal database.

- LDB(**D**) = set of databases of **D** which satisfy the integrity constraints Constr(**D**).
- Database morphism: A morphism $f : \mathbf{D}_1 \to \mathbf{D}_2$ is characterized by a function $f : LDB(\mathbf{D}_1) \to LDB(\mathbf{D}_2)$.
 - In the relational model, such functions are typically defined in one of two ways: (Example for R, S ∈ Rels(D₁), T ∈ Rels(D₂)) Relational algebra: T[AC] = π_{AC}(R[AB] * S[BC])

- Context: State-based database schemata: A *database schema* **D** is characterized by a set LDB(**D**) of *legal databases*.
 - At each point in time, there is exactly one legal database.

- LDB(**D**) = set of databases of **D** which satisfy the integrity constraints Constr(**D**).
- Database morphism: A morphism $f : \mathbf{D}_1 \to \mathbf{D}_2$ is characterized by a function $f : LDB(\mathbf{D}_1) \to LDB(\mathbf{D}_2)$.
 - In the relational model, such functions are typically defined in one of two ways: (Example for R, S ∈ Rels(D₁), T ∈ Rels(D₂)) Relational algebra: T[AC] = π_{AC}(R[AB] * S[BC]) Relational calculus: T(x, z) ⇔ (∃y)((R(x, y)∧S(y, z)).

- Context: State-based database schemata: A *database schema* **D** is characterized by a set LDB(**D**) of *legal databases*.
 - At each point in time, there is exactly one legal database.

- LDB(**D**) = set of databases of **D** which satisfy the integrity constraints Constr(**D**).
- Database morphism: A morphism $f : \mathbf{D}_1 \to \mathbf{D}_2$ is characterized by a function $f : LDB(\mathbf{D}_1) \to LDB(\mathbf{D}_2)$.
 - In the relational model, such functions are typically defined in one of two ways: (Example for R, S ∈ Rels(D₁), T ∈ Rels(D₂)) Relational algebra: T[AC] = π_{AC}(R[AB] * S[BC]) Relational calculus: T(x, z) ⇔ (∃y)((R(x, y)∧S(y, z)).
 - However, the results are not limited to the relational model in any way.

• A view $\Gamma = (\mathbf{V}, \gamma)$ of the schema **D** is given by:

- A view $\Gamma = (\mathbf{V}, \gamma)$ of the schema **D** is given by:
 - A schema V;

- A view $\Gamma = (\mathbf{V}, \gamma)$ of the schema **D** is given by:
 - A schema V;
 - A morphism $\gamma: \mathbf{D} \to \mathbf{V}$ for which
 - $\gamma : \mathsf{LDB}(\mathbf{D}) \to \mathsf{LDB}(\mathbf{V})$ is surjective.

- A view $\Gamma = (\mathbf{V}, \gamma)$ of the schema \mathbf{D} is given by:
 - A schema V;
 - A morphism $\gamma : \mathbf{D} \to \mathbf{V}$ for which $\gamma : \text{LDB}(\mathbf{D}) \to \text{LDB}(\mathbf{V})$ is surjective.
- Surjectivity implies that the state of **V** is always determined completely by the state of **D**.

Main Schema **D**

- A view $\Gamma = (\mathbf{V}, \gamma)$ of the schema \mathbf{D} is given by:
 - A schema V;
 - A morphism $\gamma : \mathbf{D} \to \mathbf{V}$ for which $\gamma : \text{LDB}(\mathbf{D}) \to \text{LDB}(\mathbf{V})$ is surjective.
- Surjectivity implies that the state of **V** is always determined completely by the state of **D**.

Congruence: The *congruence* Congr(Γ) is given by $\{(M_1, M_2) \in LDB(\mathbf{D}) \mid \gamma(M_1) = \gamma(M_2)\}.$

View Schema V

- A view $\Gamma = (\mathbf{V}, \gamma)$ of the schema \mathbf{D} is given by:
 - A schema V;
 - A morphism $\gamma : \mathbf{D} \to \mathbf{V}$ for which $\gamma : \text{LDB}(\mathbf{D}) \to \text{LDB}(\mathbf{V})$ is surjective.
- Surjectivity implies that the state of **V** is always determined completely by the state of **D**.

Congruence: The congruence Congr(Γ) is given by $\{(M_1, M_2) \in LDB(\mathbf{D}) \mid \gamma(M_1) = \gamma(M_2)\}.$

Main Schema **D**

View Schema V

• There is a natural bijective correspondence between the states of ${\bf V}$ and the blocks of ${\sf Congr}(\Gamma).$

- A view $\Gamma = (\mathbf{V}, \gamma)$ of the schema \mathbf{D} is given by:
 - A schema V;
 - A morphism $\gamma : \mathbf{D} \to \mathbf{V}$ for which $\gamma : \text{LDB}(\mathbf{D}) \to \text{LDB}(\mathbf{V})$ is surjective.
- Surjectivity implies that the state of **V** is always determined completely by the state of **D**.

Main Schema **D**

Congruence: The *congruence* Congr(Γ) is given by $\{(M_1, M_2) \in LDB(\mathbf{D}) \mid \gamma(M_1) = \gamma(M_2)\}.$

- There is a natural bijective correspondence between the states of ${\bm V}$ and the blocks of ${\sf Congr}(\Gamma).$
- Thus, view construction is fundamentally a *quotient* operation, and not a *subset* operation.

- A view $\Gamma = (\mathbf{V}, \gamma)$ of the schema \mathbf{D} is given by:
 - A schema V;
 - A morphism $\gamma : \mathbf{D} \to \mathbf{V}$ for which $\gamma : \text{LDB}(\mathbf{D}) \to \text{LDB}(\mathbf{V})$ is surjective.
- Surjectivity implies that the state of **V** is always determined completely by the state of **D**.

- View Schema **V**
- Congruence: The *congruence* Congr(Γ) is given by $\{(M_1, M_2) \in LDB(\mathbf{D}) \mid \gamma(M_1) = \gamma(M_2)\}.$
 - There is a natural bijective correspondence between the states of V and the blocks of Congr(Γ).
 - Thus, view construction is fundamentally a *quotient* operation, and not a *subset* operation.
 - For the purposes of this work, views with identical congruences are considered to be *isomorphic*.

• The constraints Constr(V) of V are completely determined by the constraints of Constr(D).

- The constraints Constr(V) of V are completely determined by the constraints of Constr(D).
- $\bullet\,$ In the relational model, simple constraints on D can nevertheless result in complex constraints on V.

- The constraints Constr(V) of V are completely determined by the constraints of Constr(D).
- $\bullet\,$ In the relational model, simple constraints on D can nevertheless result in complex constraints on V.

Example:
$$\mathbf{D} = (R[ABCD], \{A \to D, B \to D, CD \to A\})$$

 $\Gamma = \Pi^{\mathbf{D}}_{ABC} = \text{projection of } R[ABCD] \text{ onto } R[ABC]$
admits no finite basis of first-order constraints.

- The constraints Constr(V) of V are completely determined by the constraints of Constr(D).
- $\bullet\,$ In the relational model, simple constraints on D can nevertheless result in complex constraints on V.

Example:
$$\mathbf{D} = (R[ABCD], \{A \to D, B \to D, CD \to A\})$$

 $\Gamma = \Pi^{\mathbf{D}}_{ABC} = \text{projection of } R[ABCD] \text{ onto } R[ABC]$
admits no finite basis of first-order constraints.

• Constr(V) is not finitely axiomatizable.

- The constraints Constr(V) of V are completely determined by the constraints of Constr(D).
- $\bullet\,$ In the relational model, simple constraints on D can nevertheless result in complex constraints on V.

Example:
$$\mathbf{D} = (R[ABCD], \{A \to D, B \to D, CD \to A\})$$

 $\Gamma = \Pi^{\mathbf{D}}_{ABC} = \text{projection of } R[ABCD] \text{ onto } R[ABC]$
admits no finite basis of first-order constraints.

- Constr(V) is not finitely axiomatizable.
- Example: **D** = $(R[AB], \{A \to B\})$ $\Gamma = (\mathbf{V}, \gamma) = \Pi_{A+B}^{\mathbf{D}}$ with $\gamma : r \mapsto (\pi_A(r), \pi_B(r))$ admits no first-order axiomatization for infinite models.

- The constraints Constr(V) of V are completely determined by the constraints of Constr(D).
- $\bullet\,$ In the relational model, simple constraints on D can nevertheless result in complex constraints on V.

Example:
$$\mathbf{D} = (R[ABCD], \{A \to D, B \to D, CD \to A\})$$

 $\Gamma = \Pi^{\mathbf{D}}_{ABC} = \text{projection of } R[ABCD] \text{ onto } R[ABC]$
admits no finite basis of first-order constraints.

- Constr(V) is not finitely axiomatizable.
- Example: $\mathbf{D} = (R[AB], \{A \to B\})$ $\Gamma = (\mathbf{V}, \gamma) = \Pi_{A+B}^{\mathbf{D}}$ with $\gamma : r \mapsto (\pi_A(r), \pi_B(r))$ admits no first-order axiomatization for infinite models. • Constr(\mathbf{V}) = {Card(R[B]) \leq Card(R[A])}.

Context: A view $\Gamma = (\mathbf{V}, \gamma)$ of the schema **D**.

View Schema ${\boldsymbol{\mathsf{V}}}$

Context: A view $\Gamma = (\mathbf{V}, \gamma)$ of the schema \mathbf{D} .

• Given the state of the main schema and a view update ...

Main Schema D

Context: A view $\Gamma = (\mathbf{V}, \gamma)$ of the schema \mathbf{D} .

- Given the state of the main schema and a view update ...
- there are in general many possible *reflections* of that view update to the main schema.

Main Schema D

Context: A view $\Gamma = (\mathbf{V}, \gamma)$ of the schema \mathbf{D} .

- Given the state of the main schema and a view update ...
- there are in general many possible *reflections* of that view update to the main schema.

Main Schema D

Context: A view $\Gamma = (\mathbf{V}, \gamma)$ of the schema \mathbf{D} .

- Given the state of the main schema and a view update ...
- there are in general many possible *reflections* of that view update to the main schema.

Main Schema D

Context: A view $\Gamma = (\mathbf{V}, \gamma)$ of the schema **D**.

- Given the state of the main schema and a view update ...
- there are in general many possible *reflections* of that view update to the main schema.
- Note that there is always at least one.

View Schema V

Context: A view $\Gamma = (\mathbf{V}, \gamma)$ of the schema \mathbf{D} .

- Given the state of the main schema and a view update ...
- there are in general many possible *reflections* of that view update to the main schema.
- Note that there is always at least one.
- The *view-update problem* is to determine:

View Schema V

Context: A view $\Gamma = (\mathbf{V}, \gamma)$ of the schema **D**.

- Given the state of the main schema and a view update ...
- there are in general many possible *reflections* of that view update to the main schema.
- Note that there is always at least one.
- The *view-update problem* is to determine:
 - which reflections, if any, are suitable; and

View Schema V

Context: A view $\Gamma = (\mathbf{V}, \gamma)$ of the schema \mathbf{D} .

- Given the state of the main schema and a view update ...
- there are in general many possible *reflections* of that view update to the main schema.
- Note that there is always at least one.
- The *view-update problem* is to determine:
 - which reflections, if any, are suitable; and
 - if there is more than one suitable choice, which is best.

View Schema V

Approaches to the View-Update Problem

• Three main classifications of most work on this problem:

Approaches to the View-Update Problem

• Three main classifications of most work on this problem: Direct modelling:

Minimal/least change:

Constant complement:

Approaches to the View-Update Problem

• Three main classifications of most work on this problem:

Direct modelling:

• Look for direct solutions, usually using the relational algebra and null values.

Minimal/least change:

Constant complement:
• Three main classifications of most work on this problem:

Direct modelling:

- Look for direct solutions, usually using the relational algebra and null values.
- "Bag-of-tricks" approaches rather than comprehensive theories.

Minimal/least change:

• Three main classifications of most work on this problem:

Direct modelling:

- Look for direct solutions, usually using the relational algebra and null values.
- "Bag-of-tricks" approaches rather than comprehensive theories.

Minimal/least change:

• A measure of distance between database states is identified.

• Three main classifications of most work on this problem:

Direct modelling:

- Look for direct solutions, usually using the relational algebra and null values.
- "Bag-of-tricks" approaches rather than comprehensive theories.

Minimal/least change:

- A measure of distance between database states is identified.
- For reflected updates, smaller is better (intuitively, fewer changes).

• Three main classifications of most work on this problem:

Direct modelling:

- Look for direct solutions, usually using the relational algebra and null values.
- "Bag-of-tricks" approaches rather than comprehensive theories.

Minimal/least change:

- A measure of distance between database states is identified.
- For reflected updates, smaller is better (intuitively, fewer changes).
- This approach is a favorite in the deductive-database community.

Direct modelling:

- Look for direct solutions, usually using the relational algebra and null values.
- "Bag-of-tricks" approaches rather than comprehensive theories.

Minimal/least change:

- A measure of distance between database states is identified.
- For reflected updates, smaller is better (intuitively, fewer changes).
- This approach is a favorite in the deductive-database community.
- But it has also been applied in the state-based context.

Direct modelling:

- Look for direct solutions, usually using the relational algebra and null values.
- "Bag-of-tricks" approaches rather than comprehensive theories.

Minimal/least change:

- A measure of distance between database states is identified.
- For reflected updates, smaller is better (intuitively, fewer changes).
- This approach is a favorite in the deductive-database community.
- But it has also been applied in the state-based context.

Constant complement:

• In updating view Γ, identify a second view Γ' which recaptures the "rest" of the main schema **D**.

Direct modelling:

- Look for direct solutions, usually using the relational algebra and null values.
- "Bag-of-tricks" approaches rather than comprehensive theories.

Minimal/least change:

- A measure of distance between database states is identified.
- For reflected updates, smaller is better (intuitively, fewer changes).
- This approach is a favorite in the deductive-database community.
- But it has also been applied in the state-based context.

- In updating view Γ, identify a second view Γ' which recaptures the "rest" of the main schema **D**.
- Updates to Γ must keep Γ' constant.

Direct modelling:

- Look for direct solutions, usually using the relational algebra and null values.
- "Bag-of-tricks" approaches rather than comprehensive theories.

Minimal/least change:

- A measure of distance between database states is identified.
- For reflected updates, smaller is better (intuitively, fewer changes).
- This approach is a favorite in the deductive-database community.
- But it has also been applied in the state-based context.

- In updating view Γ, identify a second view Γ' which recaptures the "rest" of the main schema **D**.
- Updates to Γ must keep Γ' constant.
- Support for this approach is the main focus of this presentation.

• Updates $\langle \mathbf{D} \rangle = \text{LDB}(\mathbf{D}) \times \text{LDB}(\mathbf{D})$ for any schema \mathbf{D} .

• Updates $\langle \mathbf{D} \rangle = LDB(\mathbf{D}) \times LDB(\mathbf{D})$ for any schema \mathbf{D} .

Context: Main schema **D**, view $\Gamma = (\mathbf{V}, \gamma)$.

• Updates $\langle \mathbf{D} \rangle = \text{LDB}(\mathbf{D}) \times \text{LDB}(\mathbf{D})$ for any schema \mathbf{D} .

Context: Main schema **D**, view $\Gamma = (\mathbf{V}, \gamma)$.

• Updates $\langle \mathbf{D} \rangle = LDB(\mathbf{D}) \times LDB(\mathbf{D})$ for any schema **D**.

Context: Main schema **D**, view $\Gamma = (\mathbf{V}, \gamma)$.

• A translation (reflection) of $(N_1, N_2) \in \text{Updates}\langle \mathbf{V} \rangle$ with respect to $M_1 \in \text{LDB}(\mathbf{D})$ with $\gamma(M_1) = N_1$ is $\forall \gamma \qquad \forall \gamma$ an $M_2 \in \text{LDB}(\mathbf{D})$ with $\gamma(M_2) = N_2$.

• Everything is specified by:

• Updates $\langle \mathbf{D} \rangle = \text{LDB}(\mathbf{D}) \times \text{LDB}(\mathbf{D})$ for any schema \mathbf{D} .

Context: Main schema **D**, view $\Gamma = (\mathbf{V}, \gamma)$.

- Everything is specified by:
 - the current state M_1 of the main schema; and

• Updates $\langle \mathbf{D} \rangle = \text{LDB}(\mathbf{D}) \times \text{LDB}(\mathbf{D})$ for any schema \mathbf{D} .

Context: Main schema **D**, view $\Gamma = (\mathbf{V}, \gamma)$.

- Everything is specified by:
 - the current state M_1 of the main schema; and
 - the desired new state N_2 of the view schema.

• Updates $\langle \mathbf{D} \rangle = \text{LDB}(\mathbf{D}) \times \text{LDB}(\mathbf{D})$ for any schema \mathbf{D} .

Context: Main schema **D**, view $\Gamma = (\mathbf{V}, \gamma)$.

- Everything is specified by:
 - the current state M_1 of the main schema; and
 - the desired new state N_2 of the view schema.
- N_1 is recaptured as $\gamma(M_1)$.

• Updates $\langle \mathbf{D} \rangle = \text{LDB}(\mathbf{D}) \times \text{LDB}(\mathbf{D})$ for any schema \mathbf{D} .

Context: Main schema **D**, view $\Gamma = (\mathbf{V}, \gamma)$.

• A translation (reflection) of $(N_1, N_2) \in \text{Updates}\langle \mathbf{V} \rangle$ with respect to $M_1 \in \text{LDB}(\mathbf{D})$ with $\gamma(M_1) = N_1$ is an $M_2 \in \text{LDB}(\mathbf{D})$ with $\gamma(M_2) = N_2$.

- Everything is specified by:
 - the current state M_1 of the main schema; and
 - the desired new state N_2 of the view schema.
- N_1 is recaptured as $\gamma(M_1)$.

Update request: Formally, an *update request* from Γ to **D** is a pair $(M_1, N_2) \in \text{LDB}(\mathbf{D}) \times \text{LDB}(\mathbf{V})$.

• Updates $\langle \mathbf{D} \rangle = \text{LDB}(\mathbf{D}) \times \text{LDB}(\mathbf{D})$ for any schema \mathbf{D} .

Context: Main schema **D**, view $\Gamma = (\mathbf{V}, \gamma)$.

• A translation (reflection) of $(N_1, N_2) \in \text{Updates}\langle \mathbf{V} \rangle$ with respect to $M_1 \in \text{LDB}(\mathbf{D})$ with $\gamma(M_1) = N_1$ is an $M_2 \in \text{LDB}(\mathbf{D})$ with $\gamma(M_2) = N_2$.

- Everything is specified by:
 - the current state M_1 of the main schema; and
 - the desired new state N_2 of the view schema.
- N_1 is recaptured as $\gamma(M_1)$.

Update request: Formally, an *update request* from Γ to **D** is a pair $(M_1, N_2) \in \text{LDB}(\mathbf{D}) \times \text{LDB}(\mathbf{V})$.

Realization: A *realization* of (M_1, N_2) along Γ is a translation of $(\gamma(M_1), N_2)$ with respect to M_1 .

• The view $\Gamma' = (\mathbf{V}', \gamma')$ is a complement of $\Gamma = (\mathbf{V}, \gamma)$ if the decomposition morphism $\gamma \times \gamma'$: LDB(\mathbf{D}) \rightarrow LDB(\mathbf{V}) \times LDB(\mathbf{V}') $M \mapsto \langle \gamma(M), \gamma'(M) \rangle$

• The view $\Gamma' = (\mathbf{V}', \gamma')$ is a complement of $\Gamma = (\mathbf{V}, \gamma)$ if the decomposition morphism $\gamma \times \gamma'$: LDB(\mathbf{D}) \rightarrow LDB(\mathbf{V}) \times LDB(\mathbf{V}') $M \mapsto \langle \gamma(M), \gamma'(M) \rangle$

is injective.

Observation: [Bancilhon & Spyratos 1981] If $\Gamma' = (\mathbf{V}', \gamma')$ is a complement of $\Gamma = (\mathbf{V}, \gamma)$, then for any update request (M_1, N_2) from Γ to \mathbf{D} , there is at most one realization which keeps the state of Γ' constant.

• The view $\Gamma' = (\mathbf{V}', \gamma')$ is a complement of $\Gamma = (\mathbf{V}, \gamma)$ if the decomposition morphism $\gamma \times \gamma'$: LDB(**D**) \rightarrow LDB(**V**) \times LDB(**V**) $M \mapsto \langle \gamma(M), \gamma'(M) \rangle$

is injective.

Observation: [Bancilhon & Spyratos 1981] If $\Gamma' = (\mathbf{V}', \gamma')$ is a complement of $\Gamma = (\mathbf{V}, \gamma)$, then for any update request (M_1, N_2) from Γ to \mathbf{D} , there is at most one realization which keeps the state of Γ' constant.

Proof: This realization must be $(M_1, (\gamma \times \gamma')^{-1}((N_1, \gamma_2(M_1))))$. \Box

• The view $\Gamma' = (\mathbf{V}', \gamma')$ is a complement of $\Gamma = (\mathbf{V}, \gamma)$ if the decomposition morphism $\gamma \times \gamma'$: LDB(\mathbf{D}) \rightarrow LDB(\mathbf{V}) \times LDB(\mathbf{V}') $M \mapsto \langle \gamma(M), \gamma'(M) \rangle$

- Observation: [Bancilhon & Spyratos 1981] If $\Gamma' = (\mathbf{V}', \gamma')$ is a complement of $\Gamma = (\mathbf{V}, \gamma)$, then for any update request (M_1, N_2) from Γ to \mathbf{D} , there is at most one realization which keeps the state of Γ' constant.
- Proof: This realization must be $(M_1, (\gamma \times \gamma')^{-1}((N_1, \gamma_2(M_1))))$. \Box
- Familiar example: $\mathbf{E}_0 = (R[ABC], \{B \to C\}).$ $\{B \to C\}$ R[ABC]

• The view $\Gamma' = (\mathbf{V}', \gamma')$ is a complement of $\Gamma = (\mathbf{V}, \gamma)$ if the decomposition morphism $\gamma \times \gamma'$: LDB(\mathbf{D}) \rightarrow LDB(\mathbf{V}) \times LDB(\mathbf{V}') $M \mapsto \langle \gamma(M), \gamma'(M) \rangle$

- Observation: [Bancilhon & Spyratos 1981] If $\Gamma' = (\mathbf{V}', \gamma')$ is a complement of $\Gamma = (\mathbf{V}, \gamma)$, then for any update request (M_1, N_2) from Γ to \mathbf{D} , there is at most one realization which keeps the state of Γ' constant.
- Proof: This realization must be $(M_1, (\gamma \times \gamma')^{-1}((N_1, \gamma_2(M_1))))$. \Box

• The view $\Gamma' = (\mathbf{V}', \gamma')$ is a complement of $\Gamma = (\mathbf{V}, \gamma)$ if the decomposition morphism $\gamma \times \gamma'$: LDB(\mathbf{D}) \rightarrow LDB(\mathbf{V}) \times LDB(\mathbf{V}') $M \mapsto \langle \gamma(M), \gamma'(M) \rangle$

- Observation: [Bancilhon & Spyratos 1981] If $\Gamma' = (\mathbf{V}', \gamma')$ is a complement of $\Gamma = (\mathbf{V}, \gamma)$, then for any update request (M_1, N_2) from Γ to \mathbf{D} , there is at most one realization which keeps the state of Γ' constant.
- Proof: This realization must be $(M_1, (\gamma \times \gamma')^{-1}((N_1, \gamma_2(M_1))))$. \Box
- Familiar example: $\mathbf{E}_0 = (R[ABC], \{B \to C\}).$ View to be updated: $\Pi_{AB}^{\mathbf{E}_0} = (\mathbf{E}_0^{AB}, \pi_{AB}^{\mathbf{E}_0}).$ Natural complement: $\Pi_{BC}^{\mathbf{E}_0} = (\mathbf{E}_0^{BC}, \pi_{BC}^{\mathbf{E}_0}).$

• The view $\Gamma' = (\mathbf{V}', \gamma')$ is a complement of $\Gamma = (\mathbf{V}, \gamma)$ if the decomposition morphism $\gamma \times \gamma'$: LDB(**D**) \rightarrow LDB(**V**) \times LDB(**V**) $M \mapsto \langle \gamma(M), \gamma'(M) \rangle$

- Observation: [Bancilhon & Spyratos 1981] If $\Gamma' = (\mathbf{V}', \gamma')$ is a complement of $\Gamma = (\mathbf{V}, \gamma)$, then for any update request (M_1, N_2) from Γ to \mathbf{D} , there is at most one realization which keeps the state of Γ' constant.
- Proof: This realization must be $(M_1, (\gamma \times \gamma')^{-1}((N_1, \gamma_2(M_1))))$. \Box

Locality: The constant-complement strategy is intuitively appealing because it formalizes the notion of *locality* — the part of the main schema not included in the view to be updated (the complement) is held constant.

- Locality: The constant-complement strategy is intuitively appealing because it formalizes the notion of *locality* the part of the main schema not included in the view to be updated (the complement) is held constant.
 - However, there are at least three invariance issues surrounding the constant-complement approach to the reflection of view update.

- Locality: The constant-complement strategy is intuitively appealing because it formalizes the notion of *locality* the part of the main schema not included in the view to be updated (the complement) is held constant.
 - However, there are at least three invariance issues surrounding the constant-complement approach to the reflection of view update.

Context: Main schema **D**, view $\Gamma = (\mathbf{V}, \gamma)$, complement $\Gamma' = (\mathbf{V}', \gamma')$, with:

- Locality: The constant-complement strategy is intuitively appealing because it formalizes the notion of *locality* the part of the main schema not included in the view to be updated (the complement) is held constant.
 - However, there are at least three invariance issues surrounding the constant-complement approach to the reflection of view update.

Context: Main schema **D**, view $\Gamma = (\mathbf{V}, \gamma)$, complement $\Gamma' = (\mathbf{V}', \gamma')$, with:

• update request $u = (M_1, N_2)$ from Γ to **D**.

- Locality: The constant-complement strategy is intuitively appealing because it formalizes the notion of *locality* the part of the main schema not included in the view to be updated (the complement) is held constant.
 - However, there are at least three invariance issues surrounding the constant-complement approach to the reflection of view update.

Context: Main schema **D**, view $\Gamma = (\mathbf{V}, \gamma)$, complement $\Gamma' = (\mathbf{V}', \gamma')$, with: • update request $u = (M_1, N_2)$ from Γ to **D**.

State invariance: If u is realizable with constant complement Γ' , then every $u' = (M'_1, N_2)$ with $\gamma(M'_1) = \gamma(M_1)$ is also so realizable.

- Locality: The constant-complement strategy is intuitively appealing because it formalizes the notion of *locality* the part of the main schema not included in the view to be updated (the complement) is held constant.
 - However, there are at least three invariance issues surrounding the constant-complement approach to the reflection of view update.

Context: Main schema **D**, view $\Gamma = (\mathbf{V}, \gamma)$, complement $\Gamma' = (\mathbf{V}', \gamma')$, with: • update request $u = (M_1, N_2)$ from Γ to **D**.

State invariance: If u is realizable with constant complement Γ' , then every $u' = (M'_1, N_2)$ with $\gamma(M'_1) = \gamma(M_1)$ is also so realizable.

Reflection invariance: If u is also realizable with respect to constant complement $\Gamma'' = (\mathbf{V}'', \gamma'')$, then the two realizations the same.

- Locality: The constant-complement strategy is intuitively appealing because it formalizes the notion of *locality* the part of the main schema not included in the view to be updated (the complement) is held constant.
 - However, there are at least three invariance issues surrounding the constant-complement approach to the reflection of view update.

Context: Main schema **D**, view $\Gamma = (\mathbf{V}, \gamma)$, complement $\Gamma' = (\mathbf{V}', \gamma')$, with: • update request $u = (M_1, N_2)$ from Γ to **D**.

State invariance: If u is realizable with constant complement Γ' , then every $u' = (M'_1, N_2)$ with $\gamma(M'_1) = \gamma(M_1)$ is also so realizable.

Reflection invariance: If u is also realizable with respect to constant complement $\Gamma'' = (\mathbf{V}'', \gamma'')$, then the two realizations the same.

Update-set invariance: If $\Gamma'' = (\mathbf{V}'', \gamma'')$ is a second complement, then Γ' and Γ'' support the same constant-complement updates.

- Locality: The constant-complement strategy is intuitively appealing because it formalizes the notion of *locality* the part of the main schema not included in the view to be updated (the complement) is held constant.
 - However, there are at least three invariance issues surrounding the constant-complement approach to the reflection of view update.

Context: Main schema **D**, view $\Gamma = (\mathbf{V}, \gamma)$, complement $\Gamma' = (\mathbf{V}', \gamma')$, with: • update request $u = (M_1, N_2)$ from Γ to **D**.

State invariance: If u is realizable with constant complement Γ' , then every $u' = (M'_1, N_2)$ with $\gamma(M'_1) = \gamma(M_1)$ is also so realizable.

Reflection invariance: If u is also realizable with respect to constant complement $\Gamma'' = (\mathbf{V}'', \gamma'')$, then the two realizations the same.

Update-set invariance: If $\Gamma'' = (\mathbf{V}'', \gamma'')$ is a second complement, then Γ' and Γ'' support the same constant-complement updates.

Observation: These three conditions are in general independent of one another.

Recall: $\mathbf{E}_0 = (R[ABC], \{B \to C\}).$ View to be updated: $\Pi_{AB}^{\mathbf{E}_0} = (\mathbf{E}_0^{AB}, \pi_{AB}^{\mathbf{E}_0}).$ Natural complement: $\Pi_{BC}^{\mathbf{E}_0} = (\mathbf{E}_0^{BC}, \pi_{BC}^{\mathbf{E}_0}).$

• The updates to $\Pi_{AB}^{\mathbf{E}_0}$ with constant complement $\Pi_{BC}^{\mathbf{E}_0}$ are precisely those which keep $\Pi_{B}^{\mathbf{E}_0}$ fixed.

Recall: $\mathbf{E}_0 = (R[ABC], \{B \to C\}).$ View to be updated: $\Pi_{AB}^{\mathbf{E}_0} = (\mathbf{E}_0^{AB}, \pi_{AB}^{\mathbf{E}_0}).$ Natural complement: $\Pi_{BC}^{\mathbf{E}_0} = (\mathbf{E}_0^{BC}, \pi_{BC}^{\mathbf{E}_0}).$

- $\{B \to C\}$ R[ABC] $\pi^{\mathbf{E}_{0}}_{AB} \qquad \pi^{\mathbf{E}_{0}}_{BC}$ $R[AB] \qquad R[BC]$
- The updates to $\Pi_{AB}^{\mathbf{E}_0}$ with constant complement $\Pi_{BC}^{\mathbf{E}_0}$ are precisely those which keep $\Pi_{B}^{\mathbf{E}_0}$ fixed.
- This situation exhibits *state invariance*.

Recall: $\mathbf{E}_0 = (R[ABC], \{B \rightarrow C\}).$ View to be updated: $\Pi_{AB}^{\mathbf{E}_0} = (\mathbf{E}_0^{AB}, \pi_{AB}^{\mathbf{E}_0}).$ Natural complement: $\Pi_{BC}^{\mathbf{E}_0} = (\mathbf{E}_0^{BC}, \pi_{BC}^{\mathbf{E}_0}).$

- $\{B \to C, A \to C\}$ R[ABC] $\pi^{\mathbf{E}_0}_{AB} \qquad \pi^{\mathbf{E}_0}_{BC}$ $R[AB] \qquad R[BC]$
- The updates to $\Pi_{AB}^{\mathbf{E}_0}$ with constant complement $\Pi_{BC}^{\mathbf{E}_0}$ are precisely those which keep $\Pi_B^{\mathbf{E}_0}$ fixed.
- This situation exhibits *state invariance*.
- If the FD $A \rightarrow C$ is added, this property no longer holds.

Recall: $\mathbf{E}_0 = (R[ABC], \{B \rightarrow C\}).$ View to be updated: $\Pi_{AB}^{\mathbf{E}_0} = (\mathbf{E}_0^{AB}, \pi_{AB}^{\mathbf{E}_0}).$ Natural complement: $\Pi_{BC}^{\mathbf{E}_0} = (\mathbf{E}_0^{BC}, \pi_{BC}^{\mathbf{E}_0}).$

• The updates to $\Pi_{AB}^{\mathbf{E}_0}$ with constant complement $\Pi_{BC}^{\mathbf{E}_0}$ are precisely those which keep $\Pi_B^{\mathbf{E}_0}$ fixed.

- This situation exhibits *state invariance*.
- If the FD $A \rightarrow C$ is added, this property no longer holds.

Example: $M_1 = \{R(a_1, b_1, c_1), R(a_2, b_2, c_1)\}$ $M'_1 = \{R(a_1, b_1, c_1), R(a_2, b_2, c_2)\}$
Recall: $\mathbf{E}_0 = (R[ABC], \{B \rightarrow C\}).$ View to be updated: $\Pi_{AB}^{\mathbf{E}_0} = (\mathbf{E}_0^{AB}, \pi_{AB}^{\mathbf{E}_0}).$ Natural complement: $\Pi_{BC}^{\mathbf{E}_0} = (\mathbf{E}_0^{BC}, \pi_{BC}^{\mathbf{E}_0}).$

• The updates to $\Pi_{AB}^{\mathbf{E}_0}$ with constant complement $\Pi_{BC}^{\mathbf{E}_0}$ are precisely those which keep $\Pi_B^{\mathbf{E}_0}$ fixed.

- This situation exhibits *state invariance*.
- If the FD $A \rightarrow C$ is added, this property no longer holds.

Example: $M_1 = \{R(a_1, b_1, c_1), R(a_2, b_2, c_1)\}$ $M'_1 = \{R(a_1, b_1, c_1), R(a_2, b_2, c_2)\}$

• The view update $(\{R(a_1, b_1), R(a_2, b_2)\}, \{R(a_1, b_1), R(a_1, b_2)\})$ is realizable if the state of E_0 is M_1 but not if it is M'_1 .

Recall: $\mathbf{E}_0 = (R[ABC], \{B \rightarrow C\}).$ View to be updated: $\Pi_{AB}^{\mathbf{E}_0} = (\mathbf{E}_0^{AB}, \pi_{AB}^{\mathbf{E}_0}).$ Natural complement: $\Pi_{BC}^{\mathbf{E}_0} = (\mathbf{E}_0^{BC}, \pi_{BC}^{\mathbf{E}_0}).$

• The updates to $\Pi_{AB}^{\mathbf{E}_0}$ with constant complement $\Pi_{BC}^{\mathbf{E}_0}$ are precisely those which keep $\Pi_B^{\mathbf{E}_0}$ fixed.

- This situation exhibits *state invariance*.
- If the FD $A \rightarrow C$ is added, this property no longer holds.

Example: $M_1 = \{R(a_1, b_1, c_1), R(a_2, b_2, c_1)\}$ $M'_1 = \{R(a_1, b_1, c_1), R(a_2, b_2, c_2)\}$

- The view update $(\{R(a_1, b_1), R(a_2, b_2)\}, \{R(a_1, b_1), R(a_1, b_2)\})$ is realizable if the state of E_0 is M_1 but not if it is M'_1 .
- With the addition of A → C, a cover of the dependencies no longer embeds in the views, so these dependencies cannot be checked on a view-bv-view basis.

• A visualization of the previous example:

- A visualization of the previous example:
- The goal is to update the view $\Gamma = \Pi_{AB}^{\mathbf{E}_1}$...

- A visualization of the previous example:
- The goal is to update the view $\Gamma = \Pi_{AB}^{E_1}$...
- while holding the view $\Gamma' = \Pi_{BC}^{\mathbf{E}_1}$ constant. $\gamma = \pi_{AB}^{\mathbf{E}_1}$

- A visualization of the previous example:
- The goal is to update the view $\Gamma = \Pi_{AB}^{\mathbf{E}_1}$...
- while holding the view $\Gamma' = \prod_{BC}^{\mathbf{E}_1}$ constant. $\gamma = \pi_{AB}^{\mathbf{E}_1}$ Question: When does the visualization

describe reality?

- A visualization of the previous example:
- The goal is to update the view $\Gamma = \Pi_{AB}^{\mathbf{E}_1}$...
- while holding the view $\Gamma' = \Pi_{BC}^{\mathbf{E}_1}$ constant. $\gamma = \pi_{AB}^{\mathbf{E}_1}$

Question: When does the visualization describe reality?

• When does it suffice to keep the overlap area *R*[*B*] constant?

- A visualization of the previous example:
- The goal is to update the view $\Gamma = \Pi_{AB}^{\mathbf{E}_1}$...
- while holding the view $\Gamma' = \Pi_{BC}^{\mathbf{E}_1}$ constant. $\gamma = \pi_{AB}^{\mathbf{E}_1}$

Question: When does the visualization describe reality?

• When does it suffice to keep the overlap area *R*[*B*] constant?

Answer: The overlap area must define a view Γ'' , (the *meet* of Γ and Γ') with: $\text{Congr}(\Gamma) \subseteq \text{Congr}(\Gamma'')$ and $\text{Congr}(\Gamma') \subseteq \text{Congr}(\Gamma'')$

- A visualization of the previous example:
- The goal is to update the view $\Gamma = \Pi_{AB}^{\mathbf{E}_1}$...
- while holding the view $\Gamma' = \Pi_{BC}^{\mathbf{E}_1}$ constant. $\gamma = \pi_{AB}^{\mathbf{E}_1}$

Question: When does the visualization describe reality?

• When does it suffice to keep the overlap area *R*[*B*] constant?

Answer: The overlap area must define a view Γ'' , (the *meet* of Γ and Γ') with: $\text{Congr}(\Gamma) \subseteq \text{Congr}(\Gamma'')$ and $\text{Congr}(\Gamma') \subseteq \text{Congr}(\Gamma'')$

Solution: This happens precisely when the congruences commute: $Congr(\Gamma) \circ Congr(\Gamma') = Congr(\Gamma') \circ Congr(\Gamma)$

- A visualization of the previous example:
- The goal is to update the view $\Gamma = \Pi_{AB}^{\mathbf{E}_1}$...
- while holding the view $\Gamma' = \Pi_{BC}^{\mathbf{E}_1}$ constant. $\gamma = \pi_{AB}^{\mathbf{E}_1}$

Question: When does the visualization describe reality?

• When does it suffice to keep the overlap area *R*[*B*] constant?

- Answer: The overlap area must define a view Γ'' , (the *meet* of Γ and Γ') with: $Congr(\Gamma) \subseteq Congr(\Gamma'')$ and $Congr(\Gamma') \subseteq Congr(\Gamma'')$
- Solution: This happens precisely when the congruences commute: $Congr(\Gamma) \circ Congr(\Gamma') = Congr(\Gamma') \circ Congr(\Gamma)$
- Theorem: Commuting congruences identifies precisely the conditions under which state invariance holds. \square

- A visualization of the previous example:
- The goal is to update the view $\Gamma = \Pi_{AB}^{\mathbf{E}_1}$...
- while holding the view $\Gamma' = \Pi_{BC}^{\mathbf{E}_1}$ constant. $\gamma = \pi_{AB}^{\mathbf{E}_1}$

Question: When does the visualization describe reality?

• When does it suffice to keep the overlap area *R*[*B*] constant?

- Answer: The overlap area must define a view Γ'' , (the *meet* of Γ and Γ') with: $Congr(\Gamma) \subseteq Congr(\Gamma'')$ and $Congr(\Gamma') \subseteq Congr(\Gamma'')$
- Solution: This happens precisely when the congruences commute: $Congr(\Gamma) \circ Congr(\Gamma') = Congr(\Gamma') \circ Congr(\Gamma)$
- Theorem: Commuting congruences identifies precisely the conditions under which state invariance holds. \Box
 - A complement with commuting congruences is called a *meet complement*.

• In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (*e.g.*, FDs) and the view is simple (*e.g.*, a projection).

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (*e.g.*, FDs) and the view is simple (*e.g.*, a projection).
- In the case of update via meet complement, the constraint which actually need be checked are those which embed from the main schema.

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (*e.g.*, FDs) and the view is simple (*e.g.*, a projection).
- In the case of update via meet complement, the constraint which actually need be checked are those which embed from the main schema.

Example: $\mathbf{E}_1 = (R[ABCDE], \{A \rightarrow D, B \rightarrow D, CD \rightarrow A, A \rightarrow E\}).$

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (*e.g.*, FDs) and the view is simple (*e.g.*, a projection).
- In the case of update via meet complement, the constraint which actually need be checked are those which embed from the main schema.

Example: $\mathbf{E}_1 = (R[ABCDE], \{A \rightarrow D, B \rightarrow D, CD \rightarrow A, A \rightarrow E\}).$ View to be updated: $\Pi_{ABCE}^{\mathbf{E}_1} = (\mathbf{E}_1^{ABCE}, \pi_{ABCE}^{\mathbf{E}_1}).$

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (*e.g.*, FDs) and the view is simple (*e.g.*, a projection).
- In the case of update via meet complement, the constraint which actually need be checked are those which embed from the main schema.

Example: $\mathbf{E}_1 = (R[ABCDE], \{A \rightarrow D, B \rightarrow D, CD \rightarrow A, A \rightarrow E\}).$ View to be updated: $\Pi_{ABCE}^{\mathbf{E}_1} = (\mathbf{E}_1^{ABCE}, \pi_{ABCE}^{\mathbf{E}_1}).$

• Embedded constraints: $\{A \rightarrow E\}$.

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (*e.g.*, FDs) and the view is simple (*e.g.*, a projection).
- In the case of update via meet complement, the constraint which actually need be checked are those which embed from the main schema.

Example: $\mathbf{E}_1 = (R[ABCDE], \{A \to D, B \to D, CD \to A, A \to E\}).$ View to be updated: $\Pi_{ABCE}^{\mathbf{E}_1} = (\mathbf{E}_1^{ABCE}, \pi_{ABCE}^{\mathbf{E}_1}).$

- Embedded constraints: $\{A \rightarrow E\}$.
- The view itself does not admit a finite basis of constraints.

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (*e.g.*, FDs) and the view is simple (*e.g.*, a projection).
- In the case of update via meet complement, the constraint which actually need be checked are those which embed from the main schema.

Example: $\mathbf{E}_1 = (R[ABCDE], \{A \to D, B \to D, CD \to A, A \to E\}).$ View to be updated: $\Pi_{ABCE}^{\mathbf{E}_1} = (\mathbf{E}_1^{ABCE}, \pi_{ABCE}^{\mathbf{E}_1}).$

- Embedded constraints: $\{A \rightarrow E\}$.
- The view itself does not admit a finite basis of constraints. Meet complement: $\Pi_{ABCD}^{\mathbf{E}_1} = (\mathbf{E}_1^{ABCD}, \pi_{ABCD}^{\mathbf{E}_1})$ with meet $\Pi_{ABC}^{\mathbf{E}_1}$.

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (*e.g.*, FDs) and the view is simple (*e.g.*, a projection).
- In the case of update via meet complement, the constraint which actually need be checked are those which embed from the main schema.

Example: $\mathbf{E}_1 = (R[ABCDE], \{A \to D, B \to D, CD \to A, A \to E\}).$ View to be updated: $\Pi_{ABCF}^{\mathbf{E}_1} = (\mathbf{E}_1^{ABCE}, \pi_{ABCF}^{\mathbf{E}_1}).$

- Embedded constraints: $\{A \rightarrow E\}$.
- The view itself does not admit a finite basis of constraints.

Meet complement: $\Pi_{ABCD}^{\mathbf{E}_1} = (\mathbf{E}_1^{ABCD}, \pi_{ABCD}^{\mathbf{E}_1})$ with meet $\Pi_{ABC}^{\mathbf{E}_1}$.

• Embedded constraints: $\{A \rightarrow D, B \rightarrow D, CD \rightarrow A\}$.

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (*e.g.*, FDs) and the view is simple (*e.g.*, a projection).
- In the case of update via meet complement, the constraint which actually need be checked are those which embed from the main schema.

Example: $\mathbf{E}_1 = (R[ABCDE], \{A \to D, B \to D, CD \to A, A \to E\}).$ View to be updated: $\Pi_{ABCE}^{\mathbf{E}_1} = (\mathbf{E}_1^{ABCE}, \pi_{ABCE}^{\mathbf{E}_1}).$

- Embedded constraints: $\{A \rightarrow E\}$.
- The view itself does not admit a finite basis of constraints.
- Meet complement: $\Pi_{ABCD}^{\mathbf{E}_1} = (\mathbf{E}_1^{ABCD}, \pi_{ABCD}^{\mathbf{E}_1})$ with meet $\Pi_{ABC}^{\mathbf{E}_1}$.
 - Embedded constraints: $\{A \rightarrow D, B \rightarrow D, CD \rightarrow A\}$.
 - The updates on $\Pi_{ABCE}^{E_1}$ with $\Pi_{ABCD}^{E_1}$ constant = updates with $\Pi_{ABC}^{E_1}$ constant which satisfy $A \to E$.

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (*e.g.*, FDs) and the view is simple (*e.g.*, a projection).
- In the case of update via meet complement, the constraint which actually need be checked are those which embed from the main schema.

Example: $\mathbf{E}_1 = (R[ABCDE], \{A \to D, B \to D, CD \to A, A \to E\}).$ View to be updated: $\Pi_{ABCE}^{\mathbf{E}_1} = (\mathbf{E}_1^{ABCE}, \pi_{ABCE}^{\mathbf{E}_1}).$

- Embedded constraints: $\{A \rightarrow E\}$.
- The view itself does not admit a finite basis of constraints.

Meet complement: $\Pi_{ABCD}^{\mathbf{E}_1} = (\mathbf{E}_1^{ABCD}, \pi_{ABCD}^{\mathbf{E}_1})$ with meet $\Pi_{ABC}^{\mathbf{E}_1}$.

- Embedded constraints: $\{A \rightarrow D, B \rightarrow D, CD \rightarrow A\}$.
- The updates on $\Pi_{ABCE}^{E_1}$ with $\Pi_{ABCD}^{E_1}$ constant = updates with $\Pi_{ABC}^{E_1}$ constant which satisfy $A \to E$.
 - {A → D, B → D, CD → A} are satisfied by virtue of Π^{E1}_{ABCD} being held constant.

• Recall that *reflection invariance* requires that a constant-complement update be independent of the choice of complement.

- Recall that *reflection invariance* requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

- Recall that *reflection invariance* requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

Example: \mathbf{E}_2 has two relation symbols R[A] and S[A]. R[A] S[A]

- Recall that *reflection invariance* requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

Example: \mathbf{E}_2 has two relation symbols R[A] and S[A].

• The view to be updated is $\Pi_R^{\mathbf{E}_2}$.

- Recall that *reflection invariance* requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

Example: \mathbf{E}_2 has two relation symbols R[A] and S[A].

- The view to be updated is $\Pi_R^{\mathbf{E}_2}$.
- The obvious and natural complement is $\Pi_S^{\mathbf{E}_2}$.

- Recall that *reflection invariance* requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

Example: \mathbf{E}_2 has two relation symbols R[A] and S[A].

- The view to be updated is $\Pi_R^{\mathbf{E}_2}$.
- The obvious and natural complement is $\Pi_S^{\mathbf{E}_2}$.
- Another complement: $\Pi_{R\Delta S}^{\mathbf{E}_2} = (T[A], \pi_{R\Delta S}^{\mathbf{E}_2}).$

- Recall that *reflection invariance* requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

Example: \mathbf{E}_2 has two relation symbols R[A] and S[A].

- The view to be updated is $\Pi_R^{\mathbf{E}_2}$.
- The obvious and natural complement is $\Pi_S^{\mathbf{E}_2}$.
- Another complement: $\Pi_{R\Delta S}^{\mathbf{E}_2} = (T[A], \pi_{R\Delta S}^{\mathbf{E}_2}).$
 - $T[x] \Leftrightarrow (R(x) \land (\neg S(x)) \lor ((\neg R(x)) \land S(x))).$

R[A]	<i>S</i> [<i>A</i>]
$\pi_{R}^{\mathbf{E}_{2}}$	$\left\langle \pi_{RAS}^{\mathbf{E}_{2}}\right\rangle$
· · ·	
R[A]	$R\Delta S[A]$

- Recall that *reflection invariance* requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

Example: \mathbf{E}_2 has two relation symbols R[A] and S[A].

- The view to be updated is $\Pi_R^{\mathbf{E}_2}$.
- The obvious and natural complement is $\Pi_S^{\mathbf{E}_2}$.
- Another complement: $\Pi_{R\Delta S}^{\mathbf{E}_2} = (T[A], \pi_{R\Delta S}^{\mathbf{E}_2}).$
 - $T[x] \Leftrightarrow (R(x) \land (\neg S(x)) \lor ((\neg R(x)) \land S(x))).$

Current state of main schema \mathbf{E}_2 : $M_1 = \{R(\mathbf{a}), S(\mathbf{a}')\}$.

 $\{R(a), S(a')\}$ R[A] S[A] $\pi_{R\Delta S}^{E_2} \qquad \pi_{R\Delta S}^{E_2}$ $R[A] \qquad R\Delta S[A]$ $\{R(a)\} \qquad \{T(a), T(a')\}$

- Recall that *reflection invariance* requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

Example: \mathbf{E}_2 has two relation symbols R[A] and S[A].

- The view to be updated is $\Pi_R^{\mathbf{E}_2}$.
- The obvious and natural complement is $\Pi_S^{\mathbf{E}_2}$.
- Another complement: $\Pi_{R\Delta S}^{\mathbf{E}_2} = (T[A], \pi_{R\Delta S}^{\mathbf{E}_2}).$
 - $T[x] \Leftrightarrow (R(x) \land (\neg S(x)) \lor ((\neg R(x)) \land S(x))).$

Current state of main schema \mathbf{E}_2 : $M_1 = \{R(\mathbf{a}), S(\mathbf{a}')\}$.

View update: $u = (\{R(\mathbf{a})\}, \{R(\mathbf{a}), R(\mathbf{a}')\})$ on $\Pi_R^{\mathbf{E}_2}$. (Insert $R(\mathbf{a}')$).

 $\{R(a), S(a')\}$ R[A] S[A] $\pi_{R}^{E_2}$ $\pi_{R\Delta S}^{E_2}$ $R[A] R\Delta S[A]$ $\{R(a), R(a')\} \{T(a), T(a')\}$

- Recall that *reflection invariance* requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

Example: \mathbf{E}_2 has two relation symbols R[A] and S[A].

- The view to be updated is $\Pi_R^{\mathbf{E}_2}$.
- The obvious and natural complement is $\Pi_S^{\mathbf{E}_2}$.
- Another complement: $\Pi_{R\Delta S}^{\mathbf{E}_2} = (T[A], \pi_{R\Delta S}^{\mathbf{E}_2}).$
- $T[x] \Leftrightarrow (R(x) \land (\neg S(x)) \lor ((\neg R(x)) \land S(x))).$ $\{R(a), R(a')\} \ \{T(a), T(a')\}$ Current state of main schema \mathbf{E}_2 : $M_1 = \{R(a), S(a')\}.$

View update: $u = (\{R(\mathbf{a})\}, \{R(\mathbf{a}), R(\mathbf{a}')\})$ on $\Pi_R^{\mathbf{E}_2}$. (Insert $R(\mathbf{a}')$).

New state of \mathbf{E}_2 : $M_2 = \{R(\mathbf{a}), R(\mathbf{a}')\}$ with constant complement $\Pi_{R\Delta S}^{\mathbf{E}_2}$.

 $\{R(a), R(a'), S(\pi')\}$ R[A] S[A] $\pi \frac{E_2}{R} \qquad \pi \frac{E_2}{R\Delta S}$ $R[A] \qquad R\Delta S[A]$ $R(a')\} \qquad \{T(a), T(a')\}$

 $\{R(\mathbf{a}), R(\mathbf{a}'), S(\mathbf{a}')\}$

R[A] S[A]

 $\pi_S^{\mathbf{E}_2}$

S[A]

 $\pi_R^{\mathbf{E}_2}$

R[A]

A Simple Example of the Nonuniqueness of Complements

- Recall that *reflection invariance* requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

Example: \mathbf{E}_2 has two relation symbols R[A] and S[A].

- The view to be updated is $\Pi_R^{\mathbf{E}_2}$.
- The obvious and natural complement is $\Pi_S^{\mathbf{E}_2}$.
- Another complement: $\Pi_{R\Delta S}^{\mathbf{E}_2} = (T[A], \pi_{R\Delta S}^{\mathbf{E}_2}).$

• $T[x] \Leftrightarrow (R(x) \land (\neg S(x)) \lor ((\neg R(x)) \land S(x))).$ {R(a), R(a')} Current state of main schema \mathbf{E}_2 : $M_1 = \{R(a), S(a')\}.$

View update: $u = (\{R(a)\}, \{R(a), R(a')\})$ on $\Pi_R^{\mathbf{E}_2}$. (Insert R(a')).

New state of \mathbf{E}_2 : $M_2 = \{R(\mathbf{a}), R(\mathbf{a}')\}$ with constant complement $\Pi_{R\Delta S}^{\mathbf{E}_2}$.

 But note that *update-set invariance* is satisfied — both complements support all view updates.

Order-Based Views and Updates

Problem: Characterize "good" complements formally.

Order-Based Views and Updates

Problem: Characterize "good" complements formally.

Order: The states of database schemata often admit a natural order.

Order-Based Views and Updates

Problem: Characterize "good" complements formally.

Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion. Problem: Characterize "good" complements formally.

Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion. Notation: $\sqsubseteq_{\mathbf{D}}$ for this order on LDB(**D**).
Order-Based Views and Updates

- Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion. Notation: $\sqsubseteq_{\mathbf{D}}$ for this order on LDB(\mathbf{D}).
 - The following have natural and obvious definitions:

- Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion. Notation: $\sqsubseteq_{\mathbf{D}}$ for this order on LDB(\mathbf{D}).
 - The following have natural and obvious definitions:
 - order-based schema

- Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion. Notation: $\sqsubseteq_{\mathbf{D}}$ for this order on LDB(\mathbf{D}).
 - The following have natural and obvious definitions:
 - order-based schema
 - In the relational model, morphisms which are defined without using negation (explicitly or implicitly) are order morphisms.

- Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion. Notation: $\sqsubseteq_{\mathbf{D}}$ for this order on LDB(\mathbf{D}).
 - The following have natural and obvious definitions:
 - order-based schema
 - In the relational model, morphisms which are defined without using negation (explicitly or implicitly) are order morphisms.
 - order-preserving database morphism (or order morphism)

- Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion. Notation: $\sqsubseteq_{\mathbf{D}}$ for this order on LDB(\mathbf{D}).
 - The following have natural and obvious definitions:
 - order-based schema
 - In the relational model, morphisms which are defined without using negation (explicitly or implicitly) are order morphisms.
 - order-preserving database morphism (or order morphism)
 - order view

- Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion. Notation: $\sqsubseteq_{\mathbf{D}}$ for this order on LDB(\mathbf{D}).
 - The following have natural and obvious definitions:
 - order-based schema
 - In the relational model, morphisms which are defined without using negation (explicitly or implicitly) are order morphisms.
 - order-preserving database morphism (or order morphism)
 - order view

Insertion: (M_1, M_2) with $M_1 \sqsubseteq_{\mathbf{D}} M_2$.

- Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion. Notation: $\sqsubseteq_{\mathbf{D}}$ for this order on LDB(\mathbf{D}).
 - The following have natural and obvious definitions:
 - order-based schema
 - In the relational model, morphisms which are defined without using negation (explicitly or implicitly) are order morphisms.
 - order-preserving database morphism (or order morphism)
 - order view

Insertion: (M_1, M_2) with $M_1 \sqsubseteq_{\mathbf{D}} M_2$.

Deletion: (M_1, M_2) with $M_2 \sqsubseteq_{\mathbf{D}} M_1$.

- Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion. Notation: $\sqsubseteq_{\mathbf{D}}$ for this order on LDB(\mathbf{D}).
 - The following have natural and obvious definitions:
 - order-based schema
 - In the relational model, morphisms which are defined without using negation (explicitly or implicitly) are order morphisms.
 - order-preserving database morphism (or order morphism)
 - order view
- Insertion: (M_1, M_2) with $M_1 \sqsubseteq_{\mathbf{D}} M_2$.
- Deletion: (M_1, M_2) with $M_2 \sqsubseteq_{\mathbf{D}} M_1$.

Order-based update: An update which is representable as a composition of insertions and deletions.

The Uniqueness Theorem for Order-Based Updates

Order complement: $\Gamma' = (\mathbf{V}', \gamma')$ is an *order complement* of $\Gamma = (\mathbf{V}, \gamma)$ if $\gamma \times \gamma' : \text{LDB}(\mathbf{D}) \to \text{LDB}(\mathbf{V}) \times \text{LDB}(\mathbf{V}')$

is an order isomorphism onto its image.

The Uniqueness Theorem for Order-Based Updates

Order complement: $\Gamma' = (\mathbf{V}', \gamma')$ is an *order complement* of $\Gamma = (\mathbf{V}, \gamma)$ if $\gamma \times \gamma' : \text{LDB}(\mathbf{D}) \to \text{LDB}(\mathbf{V}) \times \text{LDB}(\mathbf{V}')$

is an order isomorphism onto its image.

R[A] S[A]

Example: In the context $\mathbf{E}_2 = (\{R[A], S[A]\}, \emptyset)$:

is an order isomorphism onto its image.

Example: In the context $\mathbf{E}_2 = (\{R[A], S[A]\}, \emptyset)$: • $\Pi_S^{\mathbf{E}_2}$ is an order complement of $\Pi_R^{\mathbf{E}_2}$.

is an order isomorphism onto its image.

Example: In the context $\mathbf{E}_2 = (\{R[A], S[A]\}, \emptyset)$:

• $\Pi_S^{\mathbf{E}_2}$ is an order complement of $\Pi_R^{\mathbf{E}_2}$.

• $\Pi_{R \land S}^{\mathbf{E}_2}$ is not an order complement of $\Pi_{R}^{\mathbf{E}_2}$. R[A]

is an order isomorphism onto its image.

Example: In the context $\mathbf{E}_2 = (\{R[A], S[A]\}, \emptyset)$:

- $\Pi_{R\Delta S}^{\mathbf{E}_2}$ is an order complement of $\Pi_{R}^{\mathbf{E}_2}$. $\Pi_{R\Delta S}^{\mathbf{E}_2}$ is not an order complement of $\Pi_{R}^{\mathbf{E}_2}$. R[A] $R\Delta S[A]$

Theorem: Reflection invariance holds for order-based updates in an order-based context: the realization of an order-based view update is independent of the choice of order complement. \Box

R[A] S[A]

 $\pi_R^{\mathbf{E}_2} \qquad \pi_{R\Delta S}^{\mathbf{E}_2}$

is an order isomorphism onto its image.

Example: In the context $\mathbf{E}_2 = (\{R[A], S[A]\}, \emptyset)$: • $\Pi_S^{\mathbf{E}_2}$ is an order complement of $\Pi_R^{\mathbf{E}_2}$. • $\Pi_{R\Delta S}^{\mathbf{E}_2}$ is not an order complement of $\Pi_R^{\mathbf{E}_2}$.

- R[A] $R\Delta S[A]$

Theorem: Reflection invariance holds for order-based updates in an order-based context: the realization of an order-based view update is independent of the choice of order complement. \Box

Tricks in the relational context to make additional updates order based:

R[A] S[A]

 $\pi_R^{\mathbf{E}_2} \qquad \pi_{R\Delta S}^{\mathbf{E}_2}$

is an order isomorphism onto its image.

Example: In the context $\mathbf{E}_2 = (\{R[A], S[A]\}, \emptyset)$: • $\Pi_S^{\mathbf{E}_2}$ is an order complement of $\Pi_R^{\mathbf{E}_2}$. • $\Pi_{R\Delta S}^{\mathbf{E}_2}$ is not an order complement of $\Pi_R^{\mathbf{E}_2}$.

- R[A] $R\Delta S[A]$

Theorem: Reflection invariance holds for order-based updates in an order-based context: the realization of an order-based view update is independent of the choice of order complement. \Box

Tricks in the relational context to make additional updates order based:

Forget all constraints except the decomposition dependency.

R[A] S[A]

 $\pi_R^{\mathbf{E}_2}$ $\pi_{R\Delta S}^{\mathbf{E}_2}$

is an order isomorphism onto its image.

Example: In the context $\mathbf{E}_2 = (\{R[A], S[A]\}, \emptyset)$: • $\Pi_S^{\mathbf{E}_2}$ is an order complement of $\Pi_R^{\mathbf{E}_2}$. • $\Pi_{R\Delta S}^{\mathbf{E}_2}$ is not an order complement of $\Pi_R^{\mathbf{E}_2}$.

- R[A] $R\Delta S[A]$

Theorem: Reflection invariance holds for order-based updates in an order-based context: the realization of an order-based view update is independent of the choice of order complement. \Box

Tricks in the relational context to make additional updates order based:

- Forget all constraints except the decomposition dependency.
- Extend the schemata using null values.

R[A] S[A]

 $\pi_R^{\mathbf{E}_2} \qquad \pi_{R\Delta S}^{\mathbf{E}_2}$

• The order-based context exhibits *reflection invariance*.

- The order-based context exhibits reflection invariance.
- A simple example shows that it need not exhibit *update-set invariance*.

- The order-based context exhibits reflection invariance.
- A simple example shows that it need not exhibit *update-set invariance*.
- Let $\mathbf{E}_3 = (R[ABCD], \{B \rightarrow D, C \rightarrow D\}).$

$$\{\dot{B} \to D, C \to D\}$$

 $R[ABCD]$

- The order-based context exhibits reflection invariance.
- A simple example shows that it need not exhibit *update-set invariance*.
- Let $\mathbf{E}_3 = (R[ABCD], \{B \rightarrow D, C \rightarrow D\}).$
- The view to be updated is $\Pi_{ABC}^{E_3}$.

- The order-based context exhibits reflection invariance.
- A simple example shows that it need not exhibit *update-set invariance*.
- Let $\mathbf{E}_3 = (R[ABCD], \{B \rightarrow D, C \rightarrow D\}).$
- The view to be updated is $\Pi_{ABC}^{E_3}$.
- Both $\Pi_{BD}^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$ are complements.

 $\{B \rightarrow D, C \rightarrow D\}$ R[ABCD] $\pi_{BD}^{\mathbf{E}_{3}} \qquad \pi_{ABC}^{\mathbf{E}_{3}} \qquad \pi_{CD}^{\mathbf{E}_{3}}$ $R[BD] \quad R[ABC] \quad R[CD]$ $\{B \rightarrow D\} \qquad \{C \rightarrow D\}$

- The order-based context exhibits reflection invariance.
- A simple example shows that it need not exhibit *update-set invariance*.
- Let $\mathbf{E}_3 = (R[ABCD], \{B \rightarrow D, C \rightarrow D\}).$
- The view to be updated is $\Pi_{ABC}^{E_3}$.
- Both $\Pi_{BD}^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$ are complements.
- The schema **E**₃ is completely symmetric in *B* and *C*, so (mathematically) there is no way to prefer one complement to the other.

 $\{ \stackrel{B}{\rightarrow} D, C \rightarrow D \}$ R[ABCD] $\pi_{BD}^{\mathbf{E}_{3}} \pi_{ABC}^{\mathbf{E}_{3}} \pi_{CD}^{\mathbf{E}_{3}}$ R[BD] R[ABC] R[CD] $\{ B \rightarrow D \} \qquad \{ C \rightarrow D \}$

- The order-based context exhibits reflection invariance.
- A simple example shows that it need not exhibit *update-set invariance*.
- Let $\mathbf{E}_3 = (R[ABCD], \{B \rightarrow D, C \rightarrow D\}).$
- The view to be updated is $\Pi_{ABC}^{E_3}$.
- Both $\Pi_{BD}^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$ are complements.
- The schema **E**₃ is completely symmetric in *B* and *C*, so (mathematically) there is no way to prefer one complement to the other.

- The order-based context exhibits *reflection invariance*.
- A simple example shows that it need not exhibit *update-set invariance*.
- Let $\mathbf{E}_3 = (R[ABCD], \{B \rightarrow D, C \rightarrow D\}).$
- The view to be updated is $\Pi_{ABC}^{E_3}$.
- Both $\Pi_{BD}^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$ are complements.
- The schema **E**₃ is completely symmetric in *B* and *C*, so (mathematically) there is no way to prefer one complement to the other.

 $\{B \rightarrow D, C \rightarrow D\}$ R[ABCD] $\pi_{BD}^{E_3} \qquad \pi_{ABC}^{E_3} \qquad \pi_{CD}^{E_3}$ $R[BD] \quad R[ABC] \quad R[CD]$ $\{B \rightarrow D\} \qquad \{C \rightarrow D\}$

- There is no smaller projection which is a complement.
- $\Pi_{BD}^{\mathbf{E}_3}$ constant $\Rightarrow R[AC]$ may change, R[B] may not change.

- The order-based context exhibits *reflection invariance*.
- A simple example shows that it need not exhibit *update-set invariance*.
- Let $\mathbf{E}_3 = (R[ABCD], \{B \rightarrow D, C \rightarrow D\}).$
- The view to be updated is $\Pi_{ABC}^{E_3}$.
- Both $\Pi_{BD}^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$ are complements.
- The schema **E**₃ is completely symmetric in *B* and *C*, so (mathematically) there is no way to prefer one complement to the other.

R[ABCD] $\pi_{BD}^{\mathbf{E}_{3}} \qquad \pi_{ABC}^{\mathbf{E}_{3}} \qquad \pi_{CD}^{\mathbf{E}_{3}}$ $R[BD] \qquad R[ABC] \qquad R[CD]$ $\{B \rightarrow D\} \qquad \{C \rightarrow D\}$

 $\{B \rightarrow D, C \rightarrow D\}$

- There is no smaller projection which is a complement.
- $\Pi_{BD}^{\mathbf{E}_3}$ constant $\Rightarrow R[AC]$ may change, R[B] may not change.
- $\Pi_{CD}^{\mathbf{E}_3}$ constant $\Rightarrow R[AB]$ may change, R[C] may not change.

- The order-based context exhibits *reflection invariance*.
- A simple example shows that it need not exhibit *update-set invariance*.
- Let $\mathbf{E}_3 = (R[ABCD], \{B \rightarrow D, C \rightarrow D\}).$
- The view to be updated is $\Pi_{ABC}^{E_3}$.
- Both $\Pi_{BD}^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$ are complements.
- The schema **E**₃ is completely symmetric in *B* and *C*, so (mathematically) there is no way to prefer one complement to the other.

 $\{B \to D, C \to D\}$ R[ABCD] $\pi_{BD}^{\mathbf{E}_{3}} \qquad \pi_{ABC}^{\mathbf{E}_{3}} \qquad \pi_{CD}^{\mathbf{E}_{3}}$ $R[BD] \quad R[ABC] \quad R[CD]$ $\{B \to D\} \qquad \{C \to D\}$

- There is no smaller projection which is a complement.
- $\Pi_{BD}^{\mathbf{E}_3}$ constant $\Rightarrow R[AC]$ may change, R[B] may not change.
- $\Pi_{CD}^{\mathbf{E}_3}$ constant $\Rightarrow R[AB]$ may change, R[C] may not change.

Reflection invariance: Updates which are possible with both complements must keep both constant R[A] only may change, with the same reflections in each case.

• The examples so far have worked implicitly with *minimal* complements.

• The examples so far have worked implicitly with *minimal* complements. Formal context: Schema **D**; set \mathcal{V} of views of **D**; $\Gamma_1, \Gamma_2 \in \mathcal{V}$.

- The examples so far have worked implicitly with *minimal* complements. Formal context: Schema **D**; set \mathcal{V} of views of **D**; $\Gamma_1, \Gamma_2 \in \mathcal{V}$.
 - $\Gamma_1 \preceq_{\mathbf{D}} \Gamma_2$ iff $Congr(\Gamma_2) \subseteq Congr(\Gamma_1)$.

- The examples so far have worked implicitly with *minimal* complements. Formal context: Schema **D**; set \mathcal{V} of views of **D**; $\Gamma_1, \Gamma_2 \in \mathcal{V}$.
 - $\Gamma_1 \preceq_{\mathbf{D}} \Gamma_2$ iff $Congr(\Gamma_2) \subseteq Congr(\Gamma_1)$.
 - $\Gamma_1 \prec_{\mathbf{D}} \Gamma_2$ iff $\mathsf{Congr}(\Gamma_2) \subsetneq \mathsf{Congr}(\Gamma_1)$ iff $\Gamma_1 \preceq_{\mathbf{D}} \Gamma_2$ and $\Gamma_2 \not\preceq_{\mathbf{D}} \Gamma_1$.

- The examples so far have worked implicitly with *minimal* complements. Formal context: Schema **D**; set \mathcal{V} of views of **D**; $\Gamma_1, \Gamma_2 \in \mathcal{V}$.
 - $\Gamma_1 \preceq_{\mathbf{D}} \Gamma_2$ iff $Congr(\Gamma_2) \subseteq Congr(\Gamma_1)$.
 - $\Gamma_1 \prec_{\mathbf{D}} \Gamma_2$ iff $\mathsf{Congr}(\Gamma_2) \subsetneq \mathsf{Congr}(\Gamma_1)$ iff $\Gamma_1 \preceq_{\mathbf{D}} \Gamma_2$ and $\Gamma_2 \not\preceq_{\mathbf{D}} \Gamma_1$.
 - Γ₂ ∈ V is a *minimal [meet] complement* of Γ₁ relative to V if for no other [*meet*] complement Γ₃ ∈ V it is the case that Γ₃ ≺_D Γ₂.

- The examples so far have worked implicitly with *minimal* complements. Formal context: Schema **D**; set \mathcal{V} of views of **D**; $\Gamma_1, \Gamma_2 \in \mathcal{V}$.
 - $\Gamma_1 \preceq_{\mathbf{D}} \Gamma_2$ iff $Congr(\Gamma_2) \subseteq Congr(\Gamma_1)$.
 - $\Gamma_1 \prec_{\mathbf{D}} \Gamma_2$ iff $\mathsf{Congr}(\Gamma_2) \subsetneq \mathsf{Congr}(\Gamma_1)$ iff $\Gamma_1 \preceq_{\mathbf{D}} \Gamma_2$ and $\Gamma_2 \not\preceq_{\mathbf{D}} \Gamma_1$.
 - Γ₂ ∈ V is a *minimal [meet] complement* of Γ₁ relative to V if for no other [*meet*] complement Γ₃ ∈ V it is the case that Γ₃ ≺_D Γ₂.
 Motivation: The smaller the complement, the greater the number of view updates supported.

- The examples so far have worked implicitly with *minimal* complements. Formal context: Schema **D**; set \mathcal{V} of views of **D**; $\Gamma_1, \Gamma_2 \in \mathcal{V}$.
 - $\Gamma_1 \preceq_{\mathbf{D}} \Gamma_2$ iff $Congr(\Gamma_2) \subseteq Congr(\Gamma_1)$.
 - $\Gamma_1 \prec_{\mathbf{D}} \Gamma_2$ iff $\mathsf{Congr}(\Gamma_2) \subsetneq \mathsf{Congr}(\Gamma_1)$ iff $\Gamma_1 \preceq_{\mathbf{D}} \Gamma_2$ and $\Gamma_2 \not\preceq_{\mathbf{D}} \Gamma_1$.
 - Γ₂ ∈ V is a *minimal [meet] complement* of Γ₁ relative to V if for no other [*meet*] complement Γ₃ ∈ V it is the case that Γ₃ ≺_D Γ₂. Motivation: The smaller the complement, the greater the number of
 - view updates supported.
 - Clearly, minimal is always desirable.

- The examples so far have worked implicitly with *minimal* complements. Formal context: Schema **D**; set \mathcal{V} of views of **D**; $\Gamma_1, \Gamma_2 \in \mathcal{V}$.
 - $\Gamma_1 \preceq_{\mathbf{D}} \Gamma_2$ iff $Congr(\Gamma_2) \subseteq Congr(\Gamma_1)$.
 - $\Gamma_1 \prec_{\mathbf{D}} \Gamma_2$ iff $\mathsf{Congr}(\Gamma_2) \subsetneq \mathsf{Congr}(\Gamma_1)$ iff $\Gamma_1 \preceq_{\mathbf{D}} \Gamma_2$ and $\Gamma_2 \not\preceq_{\mathbf{D}} \Gamma_1$.
 - Γ₂ ∈ V is a *minimal [meet] complement* of Γ₁ relative to V if for no other [*meet*] complement Γ₃ ∈ V it is the case that Γ₃ ≺_D Γ₂.
 - Motivation: The smaller the complement, the greater the number of view updates supported.
 - Clearly, minimal is always desirable.
 - However, minimal cannot guarantee *update-set invariance*, since distinct minimal complements give rise to distinct update sets.

- The examples so far have worked implicitly with *minimal* complements. Formal context: Schema **D**; set \mathcal{V} of views of **D**; $\Gamma_1, \Gamma_2 \in \mathcal{V}$.
 - $\Gamma_1 \preceq_{\mathbf{D}} \Gamma_2$ iff $Congr(\Gamma_2) \subseteq Congr(\Gamma_1)$.
 - $\Gamma_1 \prec_{\mathbf{D}} \Gamma_2$ iff $\mathsf{Congr}(\Gamma_2) \subsetneq \mathsf{Congr}(\Gamma_1)$ iff $\Gamma_1 \preceq_{\mathbf{D}} \Gamma_2$ and $\Gamma_2 \not\preceq_{\mathbf{D}} \Gamma_1$.
 - Γ₂ ∈ V is a *minimal [meet] complement* of Γ₁ relative to V if for no other [*meet*] complement Γ₃ ∈ V it is the case that Γ₃ ≺_D Γ₂.

Motivation: The smaller the complement, the greater the number of view updates supported.

- Clearly, minimal is always desirable.
- However, minimal cannot guarantee *update-set invariance*, since distinct minimal complements give rise to distinct update sets.
- Γ₂ ∈ V is an *optimal [meet] complement* of Γ₁ relative to V if for every other *[meet]* complement Γ₃ ∈ V, it is the case that Γ₂ ≤_D Γ₃.

- The examples so far have worked implicitly with *minimal* complements. Formal context: Schema **D**; set \mathcal{V} of views of **D**; $\Gamma_1, \Gamma_2 \in \mathcal{V}$.
 - $\Gamma_1 \preceq_{\mathbf{D}} \Gamma_2$ iff $Congr(\Gamma_2) \subseteq Congr(\Gamma_1)$.
 - $\Gamma_1 \prec_{\mathbf{D}} \Gamma_2$ iff $\mathsf{Congr}(\Gamma_2) \subsetneq \mathsf{Congr}(\Gamma_1)$ iff $\Gamma_1 \preceq_{\mathbf{D}} \Gamma_2$ and $\Gamma_2 \not\preceq_{\mathbf{D}} \Gamma_1$.
 - Γ₂ ∈ V is a *minimal [meet] complement* of Γ₁ relative to V if for no other [*meet*] complement Γ₃ ∈ V it is the case that Γ₃ ≺_D Γ₂.

Motivation: The smaller the complement, the greater the number of view updates supported.

- Clearly, minimal is always desirable.
- However, minimal cannot guarantee *update-set invariance*, since distinct minimal complements give rise to distinct update sets.
- Γ₂ ∈ V is an *optimal [meet] complement* of Γ₁ relative to V if for every other [meet] complement Γ₃ ∈ V, it is the case that Γ₂ ≤_D Γ₃. Movivation: It is precisely an optimal complement which guarantees update-set independence.
Context: Consider again the running example E_3 .

Context: Consider again the running example E_3 .

• Both $\Pi_D^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$ are minimal complements of $\Pi_{ABC}^{\mathbf{E}_3}$ relative to the projections Π -Views $\langle \mathbf{E}_3 \rangle$.

 $\{B \rightarrow D, C \rightarrow D\}$ R[ABCD] $\pi_{BD}^{E_3} / \pi_{ABC}^{I} / \pi_{CD}^{E_3}$ R[BD] R[ABC] R[CD] $\{B \rightarrow D\} \qquad \{C \rightarrow D\}$

Context: Consider again the running example E_3 .

- Both $\Pi_D^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$ are minimal complements of $\Pi_{ABC}^{\mathbf{E}_3}$ relative to the projections Π -Views $\langle \mathbf{E}_3 \rangle$.
- Thus, neither can be optimal.

 $\{B \to D, C \to D\}$ R[ABCD] $\pi_{BD}^{E_3} \pi_{ABC}^{l} \pi_{CD}^{E_3}$ $\pi_{CD}^{E_3} \pi_{CD}^{E_3} \pi_{CD}^{E_3}$ R[BD] R[ABC] R[CD] $\{B \to D\} \qquad \{C \to D\}$

Context: Consider again the running example E_3 .

- Both $\Pi_D^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$ are minimal complements of $\Pi_{ABC}^{\mathbf{E}_3}$ relative to the projections Π -Views $\langle \mathbf{E}_3 \rangle$.
- Thus, neither can be optimal.
- $\Pi_{BCD}^{\mathbf{E}_3}$ is a complement which is not minimal relative to Π -Views $\langle \mathbf{E}_3 \rangle$.

 $\{B \rightarrow D, C \rightarrow D\}$ R[ABCD] $\pi_{BD}^{E_3} \qquad \pi_{ABC}^{I} \qquad \pi_{CD}^{E_3}$ $R[BD] \quad R[ABC] \quad R[CD]$

 $\{B \to D\}$ $\{C \to D\}$

Context: Consider again the running example E_3 .

- Both $\Pi_D^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$ are minimal complements of $\Pi_{ABC}^{\mathbf{E}_3}$ relative to the projections Π -Views $\langle \mathbf{E}_3 \rangle$.
- Thus, neither can be optimal.
- $\Pi_{BCD}^{\mathbf{E}_3}$ is a complement which is not minimal relative to Π -Views $\langle \mathbf{E}_3 \rangle$.
- But Π^{E₃}_{BCD} is an optimal meet complement amongst projections.

 $\{B \to D, C \to D\}$ R[ABCD] $\pi_{BD}^{\mathbf{E}_{3}} \pi_{ABC}^{\mathbf{E}_{3}} \pi_{CD}^{\mathbf{E}_{3}}$

 $\begin{array}{l} R[BD] \ R[ABC] \ R[CD] \\ \{B \rightarrow D\} \qquad \{C \rightarrow D\} \end{array}$

Context: Consider again the running example E_3 .

- Both $\Pi_D^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$ are minimal complements of $\Pi_{ABC}^{\mathbf{E}_3}$ relative to the projections Π -Views $\langle \mathbf{E}_3 \rangle$.
- Thus, neither can be optimal.
- $\Pi_{BCD}^{\mathbf{E}_3}$ is a complement which is not minimal relative to Π -Views $\langle \mathbf{E}_3 \rangle$.
- But Π^{E₃}_{BCD} is an optimal meet complement amongst projections.
- If state invariance is desired, Π^{E₃}_{BCD} is the best which can be achieved.

 $\{B \rightarrow D, C \rightarrow D\}$ R[ABCD]

 $\begin{array}{c} \pi_{BD}^{\mathbf{E}_{3}} & \pi_{ABC}^{\mathbf{E}_{3}} \\ \pi_{ABC} & \pi_{CD}^{\mathbf{E}_{3}} \\ R[BD] & R[ABC] & R[CD] \\ \{B \rightarrow D\} & \{C \rightarrow D\} \end{array}$

Context: Consider again the running example E_3 .

- Both $\Pi_D^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$ are minimal complements of $\Pi_{ABC}^{\mathbf{E}_3}$ relative to the projections Π -Views $\langle \mathbf{E}_3 \rangle$.
- Thus, neither can be optimal.
- $\Pi_{BCD}^{\mathbf{E}_3}$ is a complement which is not minimal relative to Π -Views $\langle \mathbf{E}_3 \rangle$.
- But Π^{E₃}_{BCD} is an optimal meet complement amongst projections.
- If state invariance is desired, Π^{E₃}_{BCD} is the best which can be achieved.
 - Update-set independence comes as a bonus, but for a smaller set of updates than supported by Π^{E3}_D or Π^{E3}_{CD} as complements.

 $\{B \rightarrow D, C \rightarrow D\}$ R[ABCD]

 $\begin{array}{c} \pi_{BD}^{\mathbf{E}_{3}} & \pi_{ABC}^{\mathbf{E}_{3}} \\ \pi_{ABC} & \pi_{CD}^{\mathbf{E}_{3}} \\ R[BD] & R[ABC] & R[CD] \\ \{B \rightarrow D\} & \{C \rightarrow D\} \end{array}$

Context: Consider again the running example E_3 .

- Both $\Pi_D^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$ are minimal complements of $\Pi_{ABC}^{\mathbf{E}_3}$ relative to the projections Π -Views $\langle \mathbf{E}_3 \rangle$.
- Thus, neither can be optimal.
- $\Pi_{BCD}^{\mathbf{E}_3}$ is a complement which is not minimal relative to Π -Views $\langle \mathbf{E}_3 \rangle$.
- But Π^{E₃}_{BCD} is an optimal meet complement amongst projections.
- If state invariance is desired, Π^{E₃}_{BCD} is the best which can be achieved.
 - Update-set independence comes as a bonus, but for a smaller set of updates than supported by Π^{E3}_{DD} or Π^{E3}_{CD} as complements.
- Clearly, there are tradeoffs.

 $\{B \rightarrow D, C \rightarrow D\}$ R[ABCD]

 $\begin{array}{c} \pi_{BD}^{\mathbf{E}_{3}} & \pi_{ABC}^{\mathbf{E}_{3}} \\ \pi_{ABC} & \pi_{CD}^{\mathbf{E}_{3}} \\ R[BD] & R[ABC] & R[CD] \\ \{B \rightarrow D\} & \{C \rightarrow D\} \end{array}$

• Consider again the running example.

- Consider again the running example.
- The view Π^{E₃}_{BCD} is the optimal meet complement of Π^{E₃}_{ABC} amongst all projections.

- Consider again the running example.
- The view Π^{E₃}_{BCD} is the optimal meet complement of Π^{E₃}_{ABC} amongst all projections.
- However, consider the view $\Pi_{\{BD,CD\}}^{\mathbf{E}_3}$ which consists of two projections BD and CD.

- Consider again the running example.
- The view Π^{E₃}_{BCD} is the optimal meet complement of Π^{E₃}_{ABC} amongst all projections.
- However, consider the view $\Pi^{\mathbf{E}_3}_{\{BD,CD\}}$ which consists of two projections *BD* and *CD*.

• It is a smaller meet complement: $\Pi^{\textbf{E}_3}_{\{BD,CD\}}\prec_{\textbf{E}_3}\Pi^{\textbf{E}_3}_{BCD}.$

- Consider again the running example.
- The view Π^{E₃}_{BCD} is the optimal meet complement of Π^{E₃}_{ABC} amongst all projections.
- However, consider the view $\Pi^{E_3}_{\{BD,CD\}}$ which consists of two projections *BD* and *CD*.

- It is a smaller meet complement: $\Pi_{\{BD,CD\}}^{\mathbf{E}_3} \prec_{\mathbf{E}_3} \Pi_{BCD}^{\mathbf{E}_3}$.
- The association of *B*-values and *C*-values is not preserved by this view.

The Context of $\Partial \square$ -Views

- Consider again the running example.
- The view Π^{E₃}_{BCD} is the optimal meet complement of Π^{E₃}_{ABC} amongst all projections.
- However, consider the view $\Pi^{E_3}_{\{BD,CD\}}$ which consists of two projections *BD* and *CD*.

- It is a smaller meet complement: $\Pi_{\{BD,CD\}}^{\mathbf{E}_3} \prec_{\mathbf{E}_3} \Pi_{BCD}^{\mathbf{E}_3}$.
- The association of *B*-values and *C*-values is not preserved by this view.
- Such a view consisting of multiple projections is called a $\sqrt{\Pi}$ -view.

The Context of $\Partial \square$ -Views

- Consider again the running example.
- The view Π^{E₃}_{BCD} is the optimal meet complement of Π^{E₃}_{ABC} amongst all projections.
- However, consider the view $\Pi^{E_3}_{\{BD,CD\}}$ which consists of two projections *BD* and *CD*.

- It is a smaller meet complement: $\Pi_{\{BD,CD\}}^{\mathbf{E}_3} \prec_{\mathbf{E}_3} \Pi_{BCD}^{\mathbf{E}_3}$.
- The association of *B*-values and *C*-values is not preserved by this view.
- Such a view consisting of multiple projections is called a $\sqrt{\Pi}$ -view.
- They can be used instead of single projections with little or no extra work.

The Context of $\Partial \square$ -Views

 $\{B \rightarrow D, C \rightarrow D\}$

R[ABCD]

 $\pi^{\mathbf{E}_{3}}_{\{BCD\}} \pi^{\mathbf{E}_{3}}_{ABC} \pi^{\mathbf{E}_{3}}_{\{BD,CD\}}$

 $\{ B \to D, \qquad \{ B \to D, \\ C \to D \} \qquad \qquad \{ B \to D, \\ C \to D \}$

R[BCD] R[ABC] R[BD] R[CD]

- Consider again the running example.
- The view Π^{E₃}_{BCD} is the optimal meet complement of Π^{E₃}_{ABC} amongst all projections.
- However, consider the view $\Pi^{E_3}_{\{BD,CD\}}$ which consists of two projections *BD* and *CD*.

- The association of *B*-values and *C*-values is not preserved by this view.
- Such a view consisting of multiple projections is called a $\sqrt{\Pi}$ -view.
- $\bullet\,$ They can be used instead of single projections with little or no extra work.

Notation: $\forall \Pi$ -Views $\langle \mathbf{D} \rangle$ denotes the set of all $\forall \Pi$ views of \mathbf{D} .

• Context: A Universal-relational schema constrained by FDs.

- Context: A Universal-relational schema constrained by FDs.
- A simple example of the nonexistence of optimal projective complements has been given:

- Context: A Universal-relational schema constrained by FDs.
- A simple example of the nonexistence of optimal projective complements has been given:
 - $\mathbf{E}_3 = (R[ABCD], \{B \rightarrow D, C \rightarrow D\}).$

- Context: A Universal-relational schema constrained by FDs.
- A simple example of the nonexistence of optimal projective complements has been given:
 - $\mathbf{E}_{\underline{3}} = (R[ABCD], \{B \rightarrow D, C \rightarrow D\}).$
 - $\Pi_{ABC}^{\mathbf{E}_2}$ has distinct minimal $\bigvee \Pi$ -complements $\Pi_{BD}^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$.

- Context: A Universal-relational schema constrained by FDs.
- A simple example of the nonexistence of optimal projective complements has been given:
 - $\mathbf{E}_{\underline{3}} = (R[ABCD], \{B \rightarrow D, C \rightarrow D\}).$
 - $\Pi_{ABC}^{\mathbf{E}_2}$ has distinct minimal $\bigvee \Pi$ -complements $\Pi_{BD}^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$.
- However, it does have an optimal meet $\bigvee \Pi$ -complement: $\Pi_{\{BC,CD\}}^{\mathbf{E}_3}$.

- Context: A Universal-relational schema constrained by FDs.
- A simple example of the nonexistence of optimal projective complements has been given:
 - $\mathbf{E}_{\underline{3}} = (R[ABCD], \{B \rightarrow D, C \rightarrow D\}).$
 - $\Pi_{ABC}^{\mathbf{E}_2}$ has distinct minimal $\sqrt{\Pi}$ -complements $\Pi_{BD}^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$.
- However, it does have an optimal meet $\bigvee \Pi$ -complement: $\Pi_{\{BC,CD\}}^{\mathbf{E}_3}$.

Question: Are there examples without optimal meet complements?

- Context: A Universal-relational schema constrained by FDs.
- A simple example of the nonexistence of optimal projective complements has been given:
 - $\mathbf{E}_{\underline{3}} = (R[ABCD], \{B \rightarrow D, C \rightarrow D\}).$
 - $\Pi_{ABC}^{\mathbf{E}_2}$ has distinct minimal $\bigvee \Pi$ -complements $\Pi_{BD}^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$.
- However, it does have an optimal meet $\bigvee \Pi$ -complement: $\Pi^{E_3}_{\{BC, CD\}}$.

Question: Are there examples without optimal meet complements?

Yes:
$$\mathbf{E}_4 = (R[ABC], \{A \to BC, B \to AC\}).$$
 $\{A \to BC, B \to AC\}$
 $R[ABC]$

- Context: A Universal-relational schema constrained by FDs.
- A simple example of the nonexistence of optimal projective complements has been given:
 - $\mathbf{E}_{\underline{3}} = (R[ABCD], \{B \rightarrow D, C \rightarrow D\}).$
 - $\Pi_{ABC}^{\mathbf{E}_2}$ has distinct minimal $\nabla \Pi$ -complements $\Pi_{BD}^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$.
- However, it does have an optimal meet $\bigvee \Pi$ -complement: $\Pi^{E_3}_{\{BC,CD\}}$.

Question: Are there examples without optimal meet complements?

$$\mathsf{Yes:} \ \mathbf{E}_4 = (R[ABC], \{A \to BC, B \to AC\}).$$

• The two minimal complements $\Pi_{AB}^{\mathbf{E}_4}$ and $\Pi_{BC}^{\mathbf{E}_4}$ are related by an attribute equivalence $A \leftrightarrow B$ of keys.

$$\{A \rightarrow BC, B \rightarrow AC\}$$

$$R[ABC]$$

$$\downarrow^{I}$$

$$\pi^{E_4}_{AB}$$

$$\downarrow^{I}$$

$$R[AB]$$

$$\{A \leftrightarrow B\}$$

- Context: A Universal-relational schema constrained by FDs.
- A simple example of the nonexistence of optimal projective complements has been given:
 - $\mathbf{E}_{\underline{3}} = (R[ABCD], \{B \rightarrow D, C \rightarrow D\}).$
 - $\Pi_{ABC}^{\mathbf{E}_2}$ has distinct minimal $\nabla \Pi$ -complements $\Pi_{BD}^{\mathbf{E}_3}$ and $\Pi_{CD}^{\mathbf{E}_3}$.
- However, it does have an optimal meet $\bigvee \Pi$ -complement: $\Pi^{E_3}_{\{BC, CD\}}$.

Question: Are there examples without optimal meet complements?

$$\mathsf{Yes:} \ \mathbf{E}_4 = (R[ABC], \{A \to BC, B \to AC\}).$$

- The two minimal complements $\Pi_{AB}^{\mathbf{E}_4}$ and $\Pi_{BC}^{\mathbf{E}_4}$ are related by an attribute equivalence $A \leftrightarrow B$ of keys.
- This is the only way that such non-isomorphic minimal complements can occur.

- Context: Universal relational schema $\mathbf{D} = (R[\mathbf{U}], \mathcal{F}); \mathcal{F} = FDs.$
 - $\Pi^{\mathbf{D}}_{\{\mathbf{W}_2,\mathbf{W}_2,\ldots,\mathbf{W}_m\}}$ a $\forall \Pi$ -view.

Context: • Universal relational schema $\mathbf{D} = (R[\mathbf{U}], \mathcal{F}); \mathcal{F} = FDs.$

• $\Pi^{\mathbf{D}}_{\{\mathbf{W}_2,\mathbf{W}_2,\ldots,\mathbf{W}_m\}}$ a $\forall \Pi$ -view.

Reduced: An FD $\textbf{Y} \rightarrow A \in \mathcal{F}^+$ is reduced if

Context: • Universal relational schema $\mathbf{D} = (R[\mathbf{U}], \mathcal{F}); \mathcal{F} = FDs.$ • $\Pi^{\mathbf{D}}_{\{\mathbf{W}_2, \mathbf{W}_2, \dots, \mathbf{W}_m\}}$ a $\sqrt{\Pi}$ -view.

Reduced: An FD $\mathbf{Y} \rightarrow A \in \mathcal{F}^+$ is *reduced* if

• *A* ∈ **U** (single attribute on RHS)

Context: • Universal relational schema $\mathbf{D} = (R[\mathbf{U}], \mathcal{F}); \mathcal{F} = FDs.$ • $\Pi^{\mathbf{D}}_{\{\mathbf{W}_{2}, \mathbf{W}_{2}, \mathbf{W}_{m}\}}$ a $\sqrt{\Pi}$ -view.

Reduced: An FD $\mathbf{Y} \rightarrow A \in \mathcal{F}^+$ is *reduced* if

- *A* ∈ **U** (single attribute on RHS)
- For any proper subset $\mathbf{Y}' \subsetneq \mathbf{Y}, \ \mathbf{Y}' \to A \notin \mathcal{F}^+$.

Context: • Universal relational schema $\mathbf{D} = (R[\mathbf{U}], \mathcal{F}); \mathcal{F} = FDs.$ • $\Pi^{\mathbf{D}}_{\{\mathbf{W}_2, \mathbf{W}_2, \mathbf{W}_m\}}$ a $\sqrt{\Pi}$ -view.

Reduced: An FD $\mathbf{Y} \rightarrow A \in \mathcal{F}^+$ is *reduced* if

- $A \in \mathbf{U}$ (single attribute on RHS)
- For any proper subset $\mathbf{Y}' \subsetneq \mathbf{Y}, \, \mathbf{Y}' \to A \notin \mathcal{F}^+$.

FD-equivalence: **Y** and **Z** are *FD-equivalent (for* \mathcal{F}), written **Y** \leftrightarrow **Z**, if both **Y** \rightarrow **Z** and **Z** \rightarrow **Y** hold.

Context: • Universal relational schema $\mathbf{D} = (R[\mathbf{U}], \mathcal{F}); \mathcal{F} = FDs.$ • $\Pi^{\mathbf{D}}_{\{\mathbf{W}_2, \mathbf{W}_2, \mathbf{W}_m\}}$ a $\sqrt{\Pi}$ -view.

Reduced: An FD $\mathbf{Y} \rightarrow A \in \mathcal{F}^+$ is *reduced* if

- *A* ∈ **U** (single attribute on RHS)
- For any proper subset $\mathbf{Y}' \subsetneq \mathbf{Y}, \ \mathbf{Y}' \to A \notin \mathcal{F}^+$.

FD-equivalence: **Y** and **Z** are *FD-equivalent (for* \mathcal{F}), written **Y** \leftrightarrow **Z**, if both **Y** \rightarrow **Z** and **Z** \rightarrow **Y** hold.

Definition: $\Pi^{\mathbf{D}}_{\{\mathbf{W}'_1,\mathbf{W}'_2,...\mathbf{W}'_{m'}\}}$, and $\Pi^{\mathbf{D}}_{\{\mathbf{W}''_1,\mathbf{W}''_2,...\mathbf{W}''_{m''}\}}$ are *FD-equivalent* if for every $i \in \{1, 2, ..., m\}$ and every $\mathbf{Y} \subseteq \mathbf{W}_i$ which is reduced for \mathcal{F} , there is a $j \in \{1, 2, ..., m''\}$ and a $\mathbf{Z} \subseteq \mathbf{W}''_j$ with $\mathbf{Y} \leftrightarrow \mathbf{Z}$; and conversely.

Context: • Universal relational schema $\mathbf{D} = (R[\mathbf{U}], \mathcal{F}); \mathcal{F} = FDs.$ • $\Pi^{\mathbf{D}}_{\{\mathbf{W}_2, \mathbf{W}_2, \dots, \mathbf{W}_m\}}$ a $\sqrt{\Pi}$ -view.

Reduced: An FD $\mathbf{Y} \rightarrow A \in \mathcal{F}^+$ is *reduced* if

- *A* ∈ **U** (single attribute on RHS)
- For any proper subset $\mathbf{Y}' \subsetneq \mathbf{Y}, \ \mathbf{Y}' \to A \notin \mathcal{F}^+$.

FD-equivalence: **Y** and **Z** are *FD-equivalent (for* \mathcal{F}), written **Y** \leftrightarrow **Z**, if both **Y** \rightarrow **Z** and **Z** \rightarrow **Y** hold.

Definition: $\Pi^{\mathbf{D}}_{\{\mathbf{W}'_1,\mathbf{W}'_2,...\mathbf{W}'_{m'}\}}$, and $\Pi^{\mathbf{D}}_{\{\mathbf{W}''_1,\mathbf{W}''_2,...\mathbf{W}''_{m''}\}}$ are *FD-equivalent* if for every $i \in \{1, 2, ..., m\}$ and every $\mathbf{Y} \subseteq \mathbf{W}_i$ which is reduced for \mathcal{F} , there is a $j \in \{1, 2, ..., m''\}$ and a $\mathbf{Z} \subseteq \mathbf{W}''_j$ with $\mathbf{Y} \leftrightarrow \mathbf{Z}$; and conversely.

Theorem: Any two meet complements are FD-equivalent. \Box

Context: • Universal relational schema $\mathbf{D} = (R[\mathbf{U}], \mathcal{F}); \mathcal{F} = FDs.$ • $\Pi^{\mathbf{D}}_{\{\mathbf{W}_2, \mathbf{W}_2, \dots, \mathbf{W}_m\}}$ a $\sqrt{\Pi}$ -view.

Reduced: An FD $\mathbf{Y} \rightarrow A \in \mathcal{F}^+$ is *reduced* if

- $A \in \mathbf{U}$ (single attribute on RHS)
- For any proper subset $\mathbf{Y}' \subsetneq \mathbf{Y}, \ \mathbf{Y}' \to A \notin \mathcal{F}^+$.

FD-equivalence: **Y** and **Z** are *FD-equivalent (for* \mathcal{F}), written **Y** \leftrightarrow **Z**, if both **Y** \rightarrow **Z** and **Z** \rightarrow **Y** hold.

Definition: $\Pi^{\mathbf{D}}_{\{\mathbf{W}'_1,\mathbf{W}'_2,...\mathbf{W}'_{m'}\}}$, and $\Pi^{\mathbf{D}}_{\{\mathbf{W}''_1,\mathbf{W}''_2,...\mathbf{W}''_{m''}\}}$ are *FD-equivalent* if for every $i \in \{1, 2, ..., m\}$ and every $\mathbf{Y} \subseteq \mathbf{W}_i$ which is reduced for \mathcal{F} , there is a $j \in \{1, 2, ..., m''\}$ and a $\mathbf{Z} \subseteq \mathbf{W}''_j$ with $\mathbf{Y} \leftrightarrow \mathbf{Z}$; and conversely.

Theorem: Any two meet complements are FD-equivalent. \Box

Corollary If \mathcal{F} does not contain any nontrivial FD-equivalences $(\mathbf{Y} \neq \mathbf{Z})$, then $\Pi^{\mathbf{D}}_{\{\mathbf{W}_1,\mathbf{W}_2,...\mathbf{W}_m\}}$ has a unique optimal meet $\bigvee \Pi$ -complement. \Box

Examples of Equivalent Meet Complements

- Context: $\mathbf{E}_5 = (R[ABCDE], \mathcal{F}_3)$
 - $\mathcal{F}_5 = \{B \to C, C \to D, D \to E\}$
 - $\Pi^{\mathbf{E}_3}_{\{AB, CD\}}$

Examples of Equivalent Meet Complements

Context: • $\mathbf{E}_5 = (R[ABCDE], \mathcal{F}_3)$

- $\mathcal{F}_5 = \{B \to C, C \to D, D \to E\}$
- $\Pi^{\mathbf{E}_3}_{\{AB, CD\}}$
- \mathcal{F}_5 implies no nontrivial FD-equivalences.

Examples of Equivalent Meet Complements

Context: • $\mathbf{E}_5 = (R[ABCDE], \mathcal{F}_3)$

- $\mathcal{F}_5 = \{B \to C, C \to D, D \to E\}$ • $\Pi^{\mathbf{E}_3}_{\{AB, CD\}}$
- \mathcal{F}_5 implies no nontrivial FD-equivalences.
- The view $\Pi_{\{AB, CD\}}^{\mathbf{E}_5}$ has a unique meet $\bigvee \Pi$ -complement: $\Pi_{\{BC, DE\}}^{\mathbf{E}_5}$
Examples of Equivalent Meet Complements

Context: • $\mathbf{E}_5 = (R[ABCDE], \mathcal{F}_3)$

- $\mathcal{F}_5 = \{B \rightarrow C, C \rightarrow D, D \rightarrow E\}$ • $\Pi_{fAB}^{E_3}$
- \mathcal{F}_5 implies no nontrivial FD-equivalences.
- The view $\Pi_{AB, CD}^{E_5}$ has a unique meet $\bigvee \Pi$ -complement: $\Pi_{BC, DF}^{E_5}$
- $\mathbf{E}_6 = (R[AB_{11}B_{12}B_2CD_1D_2E], \mathcal{F}_6)$ Context:
 - $\mathcal{F}_6 = \{B_{11}B_{12} \leftrightarrow B_2, D_1 \leftrightarrow D_2, B_1 \rightarrow C, C \rightarrow D_1, D_1 \rightarrow E\}$ • $\Pi^{\mathbf{E}_6}_{\{AB_{11}B_{12}B_2, CD_1D_2\}}$

Examples of Equivalent Meet Complements

Context: • $\mathbf{E}_5 = (R[ABCDE], \mathcal{F}_3)$

- $\mathcal{F}_5 = \{B \to C, C \to D, D \to E\}$ • $\Pi^{\mathbf{E}_3}_{\{AB, CD\}}$
- \mathcal{F}_5 implies no nontrivial FD-equivalences.
- The view $\Pi^{\textbf{E}_5}_{\{AB,\ CD\}}$ has a unique meet $\bigvee\!\!\Pi\text{-complement:}\ \Pi^{\textbf{E}_5}_{\{BC,\ DE\}}$
- Context: $\mathbf{E}_6 = (R[AB_{11}B_{12}B_2CD_1D_2E], \mathcal{F}_6)$
 - $\mathcal{F}_6 = \{B_{11}B_{12} \leftrightarrow B_2, D_1 \leftrightarrow D_2, B_1 \rightarrow C, C \rightarrow D_1, D_1 \rightarrow E\}$ • $\Pi^{\mathsf{E}_6}_{\{AB_{11}B_{12}B_2, CD_1D_2\}}$
 - \mathcal{F}_6 implies two nontrivial FD-equivalences: $B_{11}B_{12} \leftrightarrow B_2$ and $D_1 \leftrightarrow D_2$.

Examples of Equivalent Meet Complements

Context: • $\mathbf{E}_5 = (R[ABCDE], \mathcal{F}_3)$

- $\mathcal{F}_5 = \{B \rightarrow C, C \rightarrow D, D \rightarrow E\}$ • $\Pi^{\mathbf{E}_3}_{\{AB, CD\}}$
- \mathcal{F}_5 implies no nontrivial FD-equivalences.
- The view $\Pi^{\textbf{E}_5}_{\{AB,\ CD\}}$ has a unique meet $\bigvee\!\!\Pi\text{-complement:}\ \Pi^{\textbf{E}_5}_{\{BC,\ DE\}}$
- Context: $\mathbf{E}_6 = (R[AB_{11}B_{12}B_2CD_1D_2E], \mathcal{F}_6)$
 - $\mathcal{F}_6 = \{B_{11}B_{12} \leftrightarrow B_2, D_1 \leftrightarrow D_2, B_1 \rightarrow C, C \rightarrow D_1, D_1 \rightarrow E\}$ • $\Pi^{\mathsf{E}_6}_{\{AB_{11}B_{12}B_2, CD_1D_2\}}$
 - \mathcal{F}_6 implies two nontrivial FD-equivalences: $B_{11}B_{12} \leftrightarrow B_2$ and $D_1 \leftrightarrow D_2$.
 - The view $\Pi_{\{AB_{11}B_{12}B_2, CD_1D_2\}}^{E_6}$ has four distinct meet complements: $\Pi_{\{B_{11}B_{12}C, D_1E\}}^{E_6}$ $\Pi_{\{B_{11}B_{12}C, D_2E\}}^{E_6}$ $\Pi_{\{B_2C, D_1E\}}^{E_6}$ $\Pi_{\{B_2C, D_2E\}}^{E_6}$

• "Real world" schemata have:

- "Real world" schemata have:
 - Multiple relations

- "Real world" schemata have:
 - Multiple relations
 - Referential integrity constraints (foreign-key dependencies):

- "Real world" schemata have:
 - Multiple relations
 - Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.

- "Real world" schemata have:
 - Multiple relations
 - Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.
 - Apply previous results on a relation-by-relation basis.

- "Real world" schemata have:
 - Multiple relations
 - Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.
 - Apply previous results on a relation-by-relation basis.
- The theory also extends to *fanout-free* unary inclusion dependencies:

- "Real world" schemata have:
 - Multiple relations
 - Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.
 - Apply previous results on a relation-by-relation basis.
- The theory also extends to *fanout-free* unary inclusion dependencies:
 - $(R[A] \subseteq S[B] \land R[A] \subseteq T[C]) \Rightarrow (S[B] \subseteq T[C] \lor T[C] \subseteq S[B]).$

- "Real world" schemata have:
 - Multiple relations
 - Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.
 - Apply previous results on a relation-by-relation basis.
- The theory also extends to *fanout-free* unary inclusion dependencies:
 - $(R[A] \subseteq S[B] \land R[A] \subseteq T[C]) \Rightarrow (S[B] \subseteq T[C] \lor T[C] \subseteq S[B]).$
 - Foreign-key dependencies are always fanout free.

- "Real world" schemata have:
 - Multiple relations
 - Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.
 - Apply previous results on a relation-by-relation basis.
- The theory also extends to *fanout-free* unary inclusion dependencies:
 - $(R[A] \subseteq S[B] \land R[A] \subseteq T[C]) \Rightarrow (S[B] \subseteq T[C] \lor T[C] \subseteq S[B]).$
 - Foreign-key dependencies are always fanout free.
- Each one-way UID must always be embedded into one of the two views.

- "Real world" schemata have:
 - Multiple relations
 - Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.
 - Apply previous results on a relation-by-relation basis.
- The theory also extends to *fanout-free* unary inclusion dependencies:
 - $(R[A] \subseteq S[B] \land R[A] \subseteq T[C]) \Rightarrow (S[B] \subseteq T[C] \lor T[C] \subseteq S[B]).$
 - Foreign-key dependencies are always fanout free.
- Each *one-way UID* must always be embedded into one of the two views. One-way UID: $R[A] \subseteq S[B]$ holds; $S[B] \subseteq R[A]$ does not.

- "Real world" schemata have:
 - Multiple relations
 - Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.
 - Apply previous results on a relation-by-relation basis.
- The theory also extends to *fanout-free* unary inclusion dependencies:
 - $(R[A] \subseteq S[B] \land R[A] \subseteq T[C]) \Rightarrow (S[B] \subseteq T[C] \lor T[C] \subseteq S[B]).$
 - Foreign-key dependencies are always fanout free.
- Each *one-way UID* must always be embedded into one of the two views. One-way UID: $R[A] \subseteq S[B]$ holds; $S[B] \subseteq R[A]$ does not.
- *Two-way* UIDS (*R*[*A*] = *S*[*B*]) define true isomorphism, and must satisfy a condition similar to FD-equivalence.

- "Real world" schemata have:
 - Multiple relations
 - Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.
 - Apply previous results on a relation-by-relation basis.
- The theory also extends to *fanout-free* unary inclusion dependencies:
 - $(R[A] \subseteq S[B] \land R[A] \subseteq T[C]) \Rightarrow (S[B] \subseteq T[C] \lor T[C] \subseteq S[B]).$
 - Foreign-key dependencies are always fanout free.
- Each *one-way UID* must always be embedded into one of the two views. One-way UID: $R[A] \subseteq S[B]$ holds; $S[B] \subseteq R[A]$ does not.
- *Two-way* UIDS (*R*[*A*] = *S*[*B*]) define true isomorphism, and must satisfy a condition similar to FD-equivalence.
- Bottom line: The extension to multirelational settings constrained by both FDs and fanout-free UIDs is complete.

- "Real world" schemata have:
 - Multiple relations
 - Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.
 - Apply previous results on a relation-by-relation basis.
- The theory also extends to *fanout-free* unary inclusion dependencies:
 - $(R[A] \subseteq S[B] \land R[A] \subseteq T[C]) \Rightarrow (S[B] \subseteq T[C] \lor T[C] \subseteq S[B]).$
 - Foreign-key dependencies are always fanout free.
- Each *one-way UID* must always be embedded into one of the two views. One-way UID: $R[A] \subseteq S[B]$ holds; $S[B] \subseteq R[A]$ does not.
- *Two-way* UIDS (*R*[*A*] = *S*[*B*]) define true isomorphism, and must satisfy a condition similar to FD-equivalence.

Bottom line: The extension to multirelational settings constrained by both FDs and fanout-free UIDs is complete.

• Certain useful cases of non-unary IDs can also be handled.

Conclusions and Further Directions

Conclusions:

Conclusions and Further Directions

Conclusions:

• Three distinct forms of invariance have been considered for constant-complement update:

• Three distinct forms of invariance have been considered for constant-complement update:

State invariance: The existence of a reflection does not depend upon the state of the complement.

- Three distinct forms of invariance have been considered for constant-complement update:
 - State invariance: The existence of a reflection does not depend upon the state of the complement.
 - Reflection invariance: The reflection of a view update is identical for all complements which support it.

- Three distinct forms of invariance have been considered for constant-complement update:
 - State invariance: The existence of a reflection does not depend upon the state of the complement.
 - Reflection invariance: The reflection of a view update is identical for all complements which support it.
 - Update-set invariance: There is a single complement which supports all constant-complement updates.

- Three distinct forms of invariance have been considered for constant-complement update:
 - State invariance: The existence of a reflection does not depend upon the state of the complement.
 - Reflection invariance: The reflection of a view update is identical for all complements which support it.
 - Update-set invariance: There is a single complement which supports all constant-complement updates.
- Reasonably broad theories characterizing the first two forms of invariance have been developed.

- Three distinct forms of invariance have been considered for constant-complement update:
 - State invariance: The existence of a reflection does not depend upon the state of the complement.
 - Reflection invariance: The reflection of a view update is identical for all complements which support it.
 - Update-set invariance: There is a single complement which supports all constant-complement updates.
- Reasonably broad theories characterizing the first two forms of invariance have been developed.

Further Directions:

• Pursue a more general theory of optimal meet complements which is not dependent upon specific constraints and the relational model.