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Context: State-based database schemata: A database schema D is
characterized by a set LDB(D) of /egal databases.

e At each point in time, there is exactly one legal database.

Prototypical example: Relational schemata D = (Rels(D), Constr(D)).
e LDB(D) = set of databases of D which satisfy the integrity
constraints Constr(D).

Database morphism: A morphism f : D; — D5 is characterized by a
function f : LDB(D;) — LDB(D>).

e In the relational model, such functions are typically defined in one of two
ways: (Example for R, S € Rels(D1), T € Rels(D2))
Relational algebra: T[AC] = mac(R[AB] * S[BC])
Relational calculus: T(x,z) < (3y)((R(x,y)AS(y, z)).

e However, the results are not limited to the relational model in any way.
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Main Schema D
o A view I =(V,~) of the schema D is given by:

e A schema V; e o
e A morphism v : D — V for which @
v : LDB(D) — LDB(V) is surjective.
e Surjectivity implies that the state of V is always

determined completely by the state of D. > <

Congruence: The congruence Congr(I) is given by

{(M1, My) € LDB(D) | v(M1) = v(My)}. View Schema V

e There is a natural bijective correspondence between the states of V and
the blocks of Congr(T).

e Thus, view construction is fundamentally a quotient operation, and not a
subset operation.

e For the purposes of this work, views with identical congruences are
considered to be isomorphic.
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Implied Constraints on the View

e The constraints Constr(V) of V are completely determined by the
constraints of Constr(D).

e In the relational model, simple constraints on D can nevertheless result in
complex constraints on V.

Example: D = (R[ABCD],{A— D,B — D,CD — A})
M= I_IA'?BC = projection of R[ABCD] onto R[ABC]
admits no finite basis of first-order constraints.
e Constr(V) is not finitely axiomatizable.

Example: D = (R[AB],{A— B})

r=(V,y) = I_I,I:4)+B with v : r = (ma(r), mg(r))
admits no first-order axiomatization for infinite models.
e Constr(V) = {Card(R[B]) < Card(R[A])}.
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The View-Update Problem

Main Schema D
Context: A view [ = (V,~) of the schema D. o
o O.

e Given the state of the main schema and a view
update ...

e there are in general many possible reflections of
that view update to the main schema.

e Note that there is always at least one. View Schema V

e The view-update problem is to determine:
e which reflections, if any, are suitable; and
e if there is more than one suitable choice,
which is best.
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Approaches to the View-Update Problem

e Three main classifications of most work on this problem:
Direct modelling:

e Look for direct solutions, usually using the relational algebra and
null values.

e "“Bag-of-tricks” approaches rather than comprehensive theories.
Minimal/least change:
e A measure of distance between database states is identified.
e For reflected updates, smaller is better (intuitively, fewer changes).
e This approach is a favorite in the deductive-database community.
e But it has also been applied in the state-based context.
Constant complement:
e In updating view I, identify a second view I’ which recaptures the
“rest” of the main schema D.
e Updates to [ must keep I’ constant.
e Support for this approach is the main focus of this presentation.
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A Concise Formulation of View Update

e Updates(D) = LDB(D) x LDB(D) for any schema D.
Context: Main schema D, view I' = (V, 7).
e A translation (reflection) of (Ny, N2) € Updates(V) My —— M,

with respect to M; € LDB(D) with v(My) = Ny is 1 1
an My € LDB(D) with v(Ms) = No. Ny — N

e Everything is specified by:
e the current state My of the main schema; and
e the desired new state Ny of the view schema.
e N is recaptured as y(M;).
Update request: Formally, an update request from I to D is a pair
(M1, N») € LDB(D) x LDB(V).

Realization: A realization of (My, N») along I is a translation of (y(My), N>)
with respect to M.
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e The view ' = (V’,+/) is a complement of [ = (V,~) if the
decomposition morphism ~ x~" : LDB(D) — LDB(V) x LDB(V’)
M = (y(M),~(M))
is injective.
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Solution: This happens precisely when the congruences commute:
Congr(I") o Congr(I"") = Congr(I") o Congr(IN)

Theorem: Commuting congruences identifies precisely the conditions under
which state invariance holds. O

e A complement with commuting congruences is called a meet complement.
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e The view itself does not admit a finite basis of constraints.

. ME._ _ (gABCD _Ei : E
Meet complement: M3~y = (E{"%", magcp) With meet 15 .

e Embedded constraints: {A — D,B — D, CD — A}.

e The updates on I'If\lBCE with I'IE\lﬁ,CD constant = updates with I'If‘lBC
constant which satisfy A — E.
e {A— D,B— D,CD — A} are satisfied by virtue of N5, being

held constant.
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e Recall that reflection invariance requires that a constant-complement
update be independent of the choice of complement.

e |t is easy to show how such invariance may fail.

{R(2), R(), ST}
Example: E; has two relation symbols R[A] and S[A]. R[A] S[A]
e The view to be updated is I'IER2. E/ \E2
e The obvious and natural complement is I'IE2. "R "RAS
e Another complement: FIRAS = (TI[A], 7TRA5) R[A] RASI[A]

o T[x] & (ROA=SCIVI(=R()IAS(X))) (Ra), RGaY} {T(a), T(a)]
Current state of main schema E: My = {R(a), S(a')}.

View update: u = ({R(a)},{R(a),R(a’)}) on I_IER2. (Insert R(a)).
New state of Ex: Mo = {R(a), R(a’)} with constant complement M2, .

12/2.



A Simple Example of the Nonuniqueness of Complements

e Recall that reflection invariance requires that a constant-complement
update be independent of the choice of complement.

e |t is easy to show how such invariance may fail.

{R(2), R(), ST}
Example: E; has two relation symbols R[A] and S[A]. R[A] S[A]
e The view to be updated is I'IER2. E/ \E2
e The obvious and natural complement is I'IE2. TR s
e Another complement: FIRAS = (TI[A], 7TRA5) R[A] S[A]

o TI & (ROOASCMEREDNASC).  (riapir) 1007
Current state of main schema E: My = {R(a), S(a')}.

View update: u = ({R(a)},{R(a),R(a’)}) on I_IER2. (Insert R(a)).

New state of Ex: My = {R(a), R(a’)} with constant complement I'IERZAS.

e But note that update-set invariance is satisfied — both complements
support all view updates.
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Order-Based Views and Updates

Problem: Characterize “good” complements formally.

Order: The states of database schemata often admit a natural order.
Example: In the relational model, relation-by-relation inclusion.
Notation: Cp for this order on LDB(D).

e The following have natural and obvious definitions:
e order-based schema
e In the relational model, morphisms which are defined without
using negation (explicitly or implicitly) are order morphisms.
e order-preserving database morphism (or order morphism)
e order view

Insertion: (M, Mp) with My Cp Ms.
Deletion: (Ml, MQ) with Mb Cp M;.

Order-based update: An update which is representable as a composition of

insertions and deletions.
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e The schema E3 is completely symmetric BD A*BC D
in B and C, so (mathematically) there is RIBD] RIABC] R[CD]
no way to prefer one complement to the
other. {8 — D} {C— D}
e There is no smaller projection which is a complement.
. Flg’b constant = R[AC] may change, R[B] may not change.
o I'I'E:"D constant = R[AB] may change, R[C] may not change.
Reflection invariance: Updates which are possible with both complements
must keep both constant R[A] only may change, with the same

reflections in each case.
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e The examples so far have worked implicitly with minimal complements.
Formal context: Schema D: set V of views of D; M, eV
e [ <p Iy iff Congr(I'2) C Congr(l'1).
F1 <D F2 iff Congr(rz) g Congr(rl) iff Fl =D F2 and r2 ﬁD Fl.
2 € Vis a minimal [meet] complement of 'y relative to V if for no other
[meet] complement '3 € V it is the case that '3 <p .
Motivation: The smaller the complement, the greater the number of
view updates supported.
e Clearly, minimal is always desirable.
e However, minimal cannot guarantee update-set invariance, since
distinct minimal complements give rise to distinct update sets.

[ € Vis an optimal [meet] complement of 'y relative to V if for every
other [meet] complement '3 € V), it is the case that ' <p 3.
Movivation: It is precisely an optimal complement which guarantees
update-set independence.
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o If s.tate invariance is desired, g,y is the best 7TEaD’\/ .
which can be achieved. h
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e Update-set independence comes as a bonus, [BCD] [ABC]
but f ller set of updates th B=0,
ut for a smaller set of updates than C - D}

supported by I'IEB3D or I'IE3D as complements.
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which consists of two projections B {B— D,
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e The association of B-values and C-values is not preserved by this view.

e Such a view consisting of multiple projections is called a \/N-view.

e They can be used instead of single projections with little or no extra work.

Notation: \/MM-Views(D) denotes the set of all \/ views of D.
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e Context: A Universal-relational schema constrained by FDs.

e A simple example of the nonexistence of optimal projective complements
has been given:
o E3 = (R[ABCD],{B — D, C — D}).
° I_IE\QBC has distinct minimal \/ll-complements I—IF;D and |‘|E_3D_

e However, it does have an optimal meet \/M-complement: ﬂfEC’CD}.

Question: Are there examples without optimal meet complements?
{A— BC,B — AC}

Yes: B4 = (R[ABC], {A — BC, B — AC}). R[ABC]

e The two minimal complements I_IE“}B and
E4 . |

I'IBC. are related by an attribute - E, E.

equivalence A <+ B of keys. A Tag N'BC

e This is the only way that such \

non-isomorphic minimal complements can
occur.

R[AC] R[AB] R[BC]
{A— CH{A+ BH{C — D}

19/2.
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Context: e Universal relational schema D = (R[U], F); F = FDs.

D .
* H{W21W27---Wm} a \fM-view.

Reduced: An FDY — A € F' is reduced if
e A c U (single attribute on RHS)
e For any proper subset Y/ CY, Y — Ag Ft.

FD-equivalence: Y and Z are FD-equivalent (for F), written Y <+ Z, if both
Y -Z and Z — Y hold.

. ... D D : . .
Definition: H{WQ,WQ,---W:H,}’ and ”{w;’,wg,...w;;,,} are FD-equivalent if for
every i € {1,2,...,m} and every Y C W, which is reduced for F, there

isaje{l,2,....,m"}anda Z C WJ’-’ with Y <> Z; and conversely.
Theorem: Any two meet complements are FD-equivalent. O
Corollary If F does not contain any nontrivial FD-equivalences (Y # Z),

then I'IJ?Wl Wo,. W} has a unique optimal meet \/M-complement. O
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Context: e Egs = (R[ABCDE], F3)
e /5={B—>C,C—D,D—E}

E
° ”{3\37 cD}

e F5 implies no nontrivial FD-equivalences.

e The view ﬂfi\& D} has a unique meet \/Nl-complement: I_Iffgq DE}

Context: e Eg= (R[ABH B1»B; CD1D2E],JT6)

° .FGZ{BllBlQ(—}BQ,DlHD2,51—>C,C—>D1,D1—>E}
Ee

°
{AB11B12B,, CD:1 D>}

e Fg implies two nontrivial FD-equivalences: By1Bi2 <> By and D1 <> D».
e The view NEs
£ {AB11B12B>,

6

M Mnes
{BuB12C, D1E} {BuB12C, D>E}

CD1D>} has four distinct meet complements:

Es Ee
n{Bzc, D1 E} n{BzC D>E}
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Extension to “Real-World” Situations

“Real world” schemata have:

e Multiple relations

e Referential integrity constraints (foreign-key dependencies):
The extension to multirelational schemata with FDs is trivial.

e Apply previous results on a relation-by-relation basis.

The theory also extends to fanout-free unary inclusion dependencies:
e (R[A] C S[BJAR[A] C T[C]) = (S[B] € T[C]vT[C] C S[B]).
e Foreign-key dependencies are always fanout free.

Each one-way UID must always be embedded into one of the two views.
One-way UID: R[A] C S[B] holds; S[B] C R[A] does not.

o Two-way UIDS (R[A] = S[B]) define true isomorphism, and must satisfy
a condition similar to FD-equivalence.

Bottom line: The extension to multirelational settings constrained by both
FDs and fanout-free UIDs is complete.

e Certain useful cases of non-unary IDs can also be handled.
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Conclusions:

e Three distinct forms of invariance have been considered for
constant-complement update:

State invariance: The existence of a reflection does not depend upon
the state of the complement.

Reflection invariance: The reflection of a view update is identical for all
complements which support it.

Update-set invariance: There is a single complement which supports all
constant-complement updates.

e Reasonably broad theories characterizing the first two forms of invariance
have been developed.

Further Directions:

e Pursue a more general theory of optimal meet complements which is not
dependent upon specific constraints and the relational model.



