Complements of Database Views: Uniqueness and Optimality Issues

Stephen J. Hegner
Umeå University
Department of Computing Science
SE-901 87 Umeå, Sweden
hegner@cs.umu.se
http://www.cs.umu.se/~hegner

Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema \mathbf{D} is characterized by a set $\operatorname{LDB}(\mathbf{D})$ of legal databases.

Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema \mathbf{D} is characterized by a set $\operatorname{LDB}(\mathbf{D})$ of legal databases.

- At each point in time, there is exactly one legal database.

Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema \mathbf{D} is characterized by a set $\operatorname{LDB}(\mathbf{D})$ of legal databases.

- At each point in time, there is exactly one legal database.

Prototypical example: Relational schemata $\mathbf{D}=(\operatorname{Rels}(\mathbf{D})$, Constr($\mathbf{D}))$.

Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema \mathbf{D} is characterized by a set $\operatorname{LDB}(\mathbf{D})$ of legal databases.

- At each point in time, there is exactly one legal database.

Prototypical example: Relational schemata $\mathbf{D}=(\operatorname{Rels}(\mathbf{D}), \operatorname{Constr}(\mathbf{D}))$.

- $\operatorname{LDB}(\mathbf{D})=$ set of databases of \mathbf{D} which satisfy the integrity constraints Constr(D).

Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema \mathbf{D} is characterized by a set $\operatorname{LDB}(\mathbf{D})$ of legal databases.

- At each point in time, there is exactly one legal database.

Prototypical example: Relational schemata $\mathbf{D}=(\operatorname{Rels}(\mathbf{D})$, Constr($\mathbf{D}))$.

- $\operatorname{LDB}(\mathbf{D})=$ set of databases of \mathbf{D} which satisfy the integrity constraints Constr(D).

Database morphism: A morphism $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ is characterized by a function $f: \operatorname{LDB}\left(\mathbf{D}_{1}\right) \rightarrow \operatorname{LDB}\left(\mathbf{D}_{2}\right)$.

Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema \mathbf{D} is characterized by a set $\operatorname{LDB}(\mathbf{D})$ of legal databases.

- At each point in time, there is exactly one legal database.

Prototypical example: Relational schemata $\mathbf{D}=(\operatorname{Rels}(\mathbf{D}), C o n s t r(\mathbf{D}))$.

- $\operatorname{LDB}(\mathbf{D})=$ set of databases of \mathbf{D} which satisfy the integrity constraints Constr(D).
Database morphism: A morphism $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ is characterized by a function $f: \operatorname{LDB}\left(\mathbf{D}_{1}\right) \rightarrow \operatorname{LDB}\left(\mathbf{D}_{2}\right)$.
- In the relational model, such functions are typically defined in one of two ways: (Example for $R, S \in \operatorname{Rels}\left(\mathbf{D}_{1}\right), T \in \operatorname{Rels}\left(\mathbf{D}_{2}\right)$)

Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema \mathbf{D} is characterized by a set $\operatorname{LDB}(\mathbf{D})$ of legal databases.

- At each point in time, there is exactly one legal database.

Prototypical example: Relational schemata $\mathbf{D}=(\operatorname{Rels}(\mathbf{D}), C o n s t r(\mathbf{D}))$.

- $\operatorname{LDB}(\mathbf{D})=$ set of databases of \mathbf{D} which satisfy the integrity constraints Constr(D).

Database morphism: A morphism $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ is characterized by a function $f: \operatorname{LDB}\left(\mathbf{D}_{1}\right) \rightarrow \operatorname{LDB}\left(\mathbf{D}_{2}\right)$.

- In the relational model, such functions are typically defined in one of two ways: (Example for $R, S \in \operatorname{Rels}\left(\mathbf{D}_{1}\right), T \in \operatorname{Rels}\left(\mathbf{D}_{2}\right)$) Relational algebra: $T[A C]=\pi_{A C}(R[A B] * S[B C])$

Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema \mathbf{D} is characterized by a set $\operatorname{LDB}(\mathbf{D})$ of legal databases.

- At each point in time, there is exactly one legal database.

Prototypical example: Relational schemata $\mathbf{D}=(\operatorname{Rels}(\mathbf{D}), C o n s t r(\mathbf{D}))$.

- $\operatorname{LDB}(\mathbf{D})=$ set of databases of \mathbf{D} which satisfy the integrity constraints Constr(D).
Database morphism: A morphism $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ is characterized by a function $f: \operatorname{LDB}\left(\mathbf{D}_{1}\right) \rightarrow \operatorname{LDB}\left(\mathbf{D}_{2}\right)$.
- In the relational model, such functions are typically defined in one of two ways: (Example for $R, S \in \operatorname{Rels}\left(\mathbf{D}_{1}\right), T \in \operatorname{Rels}\left(\mathbf{D}_{2}\right)$)
Relational algebra: $T[A C]=\pi_{A C}(R[A B] * S[B C])$
Relational calculus: $T(x, z) \Leftrightarrow(\exists y)((R(x, y) \wedge S(y, z))$.

Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema \mathbf{D} is characterized by a set $\operatorname{LDB}(\mathbf{D})$ of legal databases.

- At each point in time, there is exactly one legal database.

Prototypical example: Relational schemata $\mathbf{D}=(\operatorname{Rels}(\mathbf{D})$, Constr($\mathbf{D}))$.

- $\operatorname{LDB}(\mathbf{D})=$ set of databases of \mathbf{D} which satisfy the integrity constraints Constr(D).
Database morphism: A morphism $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ is characterized by a function $f: \operatorname{LDB}\left(\mathbf{D}_{1}\right) \rightarrow \operatorname{LDB}\left(\mathbf{D}_{2}\right)$.
- In the relational model, such functions are typically defined in one of two ways: (Example for $R, S \in \operatorname{Rels}\left(\mathbf{D}_{1}\right), T \in \operatorname{Rels}\left(\mathbf{D}_{2}\right)$)
Relational algebra: $T[A C]=\pi_{A C}(R[A B] * S[B C])$
Relational calculus: $T(x, z) \Leftrightarrow(\exists y)((R(x, y) \wedge S(y, z))$.
- However, the results are not limited to the relational model in any way.

Database Views

- A view $\Gamma=(\mathbf{V}, \gamma)$ of the schema \mathbf{D} is given by:

Database Views

- A view $\Gamma=(\mathbf{V}, \gamma)$ of the schema \mathbf{D} is given by:
- A schema V;

Database Views

- A view $\Gamma=(\mathbf{V}, \gamma)$ of the schema \mathbf{D} is given by:
- A schema V;
- A morphism $\gamma: \mathbf{D} \rightarrow \mathbf{V}$ for which
$\gamma: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V})$ is surjective.

Database Views

- A view $\Gamma=(\mathbf{V}, \gamma)$ of the schema \mathbf{D} is given by:
- A schema V;
- A morphism $\gamma: \mathbf{D} \rightarrow \mathbf{V}$ for which $\gamma: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V})$ is surjective.
- Surjectivity implies that the state of \mathbf{V} is always determined completely by the state of \mathbf{D}.

Main Schema D

View Schema V

Database Views

- A view $\Gamma=(\mathbf{V}, \gamma)$ of the schema \mathbf{D} is given by:
- A schema V;
- A morphism $\gamma: \mathbf{D} \rightarrow \mathbf{V}$ for which $\gamma: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V})$ is surjective.
- Surjectivity implies that the state of \mathbf{V} is always determined completely by the state of \mathbf{D}.

Congruence: The congruence Congr (Γ) is given by $\left\{\left(M_{1}, M_{2}\right) \in \operatorname{LDB}(\mathbf{D}) \mid \gamma\left(M_{1}\right)=\gamma\left(M_{2}\right)\right\}$.

Main Schema D

View Schema V

Database Views

- A view $\Gamma=(\mathbf{V}, \gamma)$ of the schema \mathbf{D} is given by:
- A schema V;
- A morphism $\gamma: \mathbf{D} \rightarrow \mathbf{V}$ for which $\gamma: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V})$ is surjective.
- Surjectivity implies that the state of \mathbf{V} is always determined completely by the state of \mathbf{D}.

Congruence: The congruence Congr (Γ) is given by $\left\{\left(M_{1}, M_{2}\right) \in \operatorname{LDB}(\mathbf{D}) \mid \gamma\left(M_{1}\right)=\gamma\left(M_{2}\right)\right\}$.

Main Schema D

View Schema V

- There is a natural bijective correspondence between the states of \mathbf{V} and the blocks of Congr(Г).

Database Views

- A view $\Gamma=(\mathbf{V}, \gamma)$ of the schema \mathbf{D} is given by:
- A schema V;
- A morphism $\gamma: \mathbf{D} \rightarrow \mathbf{V}$ for which $\gamma: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V})$ is surjective.
- Surjectivity implies that the state of \mathbf{V} is always determined completely by the state of \mathbf{D}.

Congruence: The congruence Congr (Γ) is given by $\left\{\left(M_{1}, M_{2}\right) \in \operatorname{LDB}(\mathbf{D}) \mid \gamma\left(M_{1}\right)=\gamma\left(M_{2}\right)\right\}$.

Main Schema D

View Schema V

- There is a natural bijective correspondence between the states of \mathbf{V} and the blocks of Congr(Г).
- Thus, view construction is fundamentally a quotient operation, and not a subset operation.

Database Views

- A view $\Gamma=(\mathbf{V}, \gamma)$ of the schema \mathbf{D} is given by:
- A schema V;
- A morphism $\gamma: \mathbf{D} \rightarrow \mathbf{V}$ for which $\gamma: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V})$ is surjective.
- Surjectivity implies that the state of \mathbf{V} is always determined completely by the state of \mathbf{D}.

Congruence: The congruence Congr (Γ) is given by $\left\{\left(M_{1}, M_{2}\right) \in \operatorname{LDB}(\mathbf{D}) \mid \gamma\left(M_{1}\right)=\gamma\left(M_{2}\right)\right\}$.

Main Schema D

View Schema V

- There is a natural bijective correspondence between the states of \mathbf{V} and the blocks of Congr(Г).
- Thus, view construction is fundamentally a quotient operation, and not a subset operation.
- For the purposes of this work, views with identical congruences are considered to be isomorphic.

Implied Constraints on the View

- The constraints Constr($\mathbf{V})$ of \mathbf{V} are completely determined by the constraints of Constr(\mathbf{D}).

Implied Constraints on the View

- The constraints Constr($\mathbf{V})$ of \mathbf{V} are completely determined by the constraints of Constr(D).
- In the relational model, simple constraints on D can nevertheless result in complex constraints on \mathbf{V}.

Implied Constraints on the View

- The constraints Constr($\mathbf{V})$ of \mathbf{V} are completely determined by the constraints of Constr(\mathbf{D}).
- In the relational model, simple constraints on \mathbf{D} can nevertheless result in complex constraints on \mathbf{V}.
Example:

$$
\begin{aligned}
& \mathbf{D}=(R[A B C D],\{A \rightarrow D, B \rightarrow D, C D \rightarrow A\}) \\
& \Gamma=\Pi_{A B C}^{\mathrm{D}}=\text { projection of } R[A B C D] \text { onto } R[A B C]
\end{aligned}
$$ admits no finite basis of first-order constraints.

Implied Constraints on the View

- The constraints Constr($\mathbf{V})$ of \mathbf{V} are completely determined by the constraints of Constr(\mathbf{D}).
- In the relational model, simple constraints on \mathbf{D} can nevertheless result in complex constraints on \mathbf{V}.
Example:

$$
\begin{aligned}
& \mathbf{D}=(R[A B C D],\{A \rightarrow D, B \rightarrow D, C D \rightarrow A\}) \\
& \Gamma=\Pi_{A B C}^{\mathrm{D}}=\text { projection of } R[A B C D] \text { onto } R[A B C]
\end{aligned}
$$ admits no finite basis of first-order constraints.

- Constr($\mathbf{V})$ is not finitely axiomatizable.

Implied Constraints on the View

- The constraints Constr($\mathbf{V})$ of \mathbf{V} are completely determined by the constraints of Constr(D).
- In the relational model, simple constraints on \mathbf{D} can nevertheless result in complex constraints on \mathbf{V}.
Example:

$$
\begin{aligned}
& \mathbf{D}=(R[A B C D],\{A \rightarrow D, B \rightarrow D, C D \rightarrow A\}) \\
& \Gamma=\Pi_{A B C}^{\mathrm{D}}=\text { projection of } R[A B C D] \text { onto } R[A B C]
\end{aligned}
$$ admits no finite basis of first-order constraints.

- Constr($\mathbf{V})$ is not finitely axiomatizable.

Example:

$$
\begin{array}{ll}
\mathbf{D} & =(R[A B],\{A \rightarrow B\}) \\
\Gamma=(\mathbf{V}, \gamma) & =\Pi_{A+B}^{\mathrm{D}} \text { with } \gamma: r \mapsto\left(\pi_{A}(r), \pi_{B}(r)\right)
\end{array}
$$

admits no first-order axiomatization for infinite models.

Implied Constraints on the View

- The constraints Constr($\mathbf{V})$ of \mathbf{V} are completely determined by the constraints of Constr(D).
- In the relational model, simple constraints on \mathbf{D} can nevertheless result in complex constraints on \mathbf{V}.
Example: $\quad \mathbf{D}=(R[A B C D],\{A \rightarrow D, B \rightarrow D, C D \rightarrow A\})$

$$
\Gamma=\Pi_{A B C}^{\mathrm{D}}=\text { projection of } R[A B C D] \text { onto } R[A B C]
$$

admits no finite basis of first-order constraints.

- Constr($\mathbf{V})$ is not finitely axiomatizable.

Example:

$$
\begin{array}{ll}
\mathbf{D} & =(R[A B],\{A \rightarrow B\}) \\
\Gamma=(\mathbf{V}, \gamma) & =\Pi_{A+B}^{\mathrm{D}} \text { with } \gamma: r \mapsto\left(\pi_{A}(r), \pi_{B}(r)\right)
\end{array}
$$

admits no first-order axiomatization for infinite models.

- Constr $(\mathbf{V})=\{\operatorname{Card}(R[B]) \leq \operatorname{Card}(R[A])\}$.

The View-Update Problem

Context: A view $\Gamma=(\mathbf{V}, \gamma)$ of the schema \mathbf{D}.

Main Schema D

The View-Update Problem

Context: A view $\Gamma=(\mathbf{V}, \gamma)$ of the schema \mathbf{D}.

- Given the state of the main schema and a view update ...

Main Schema D

View Schema V

The View-Update Problem

Context: A view $\Gamma=(\mathbf{V}, \gamma)$ of the schema \mathbf{D}.

- Given the state of the main schema and a view update ...
- there are in general many possible reflections of that view update to the main schema.

Main Schema D

View Schema V

The View-Update Problem

Context: A view $\Gamma=(\mathbf{V}, \gamma)$ of the schema \mathbf{D}.

- Given the state of the main schema and a view update ...
- there are in general many possible reflections of that view update to the main schema.

Main Schema D

View Schema V

The View-Update Problem

Context: A view $\Gamma=(\mathbf{V}, \gamma)$ of the schema \mathbf{D}.

- Given the state of the main schema and a view update ...
- there are in general many possible reflections of that view update to the main schema.

Main Schema D

View Schema V

The View-Update Problem

Context: A view $\Gamma=(\mathbf{V}, \gamma)$ of the schema \mathbf{D}.

- Given the state of the main schema and a view update ...
- there are in general many possible reflections of that view update to the main schema.
- Note that there is always at least one.

The View-Update Problem

Context: A view $\Gamma=(\mathbf{V}, \gamma)$ of the schema \mathbf{D}.

- Given the state of the main schema and a view update ...
- there are in general many possible reflections of that view update to the main schema.
- Note that there is always at least one.

Main Schema D

View Schema V

- The view-update problem is to determine:

The View-Update Problem

Context: A view $\Gamma=(\mathbf{V}, \gamma)$ of the schema \mathbf{D}.

- Given the state of the main schema and a view update ...
- there are in general many possible reflections of that view update to the main schema.
- Note that there is always at least one.

Main Schema D

View Schema V

- The view-update problem is to determine:
- which reflections, if any, are suitable; and

The View-Update Problem

Context: A view $\Gamma=(\mathbf{V}, \gamma)$ of the schema \mathbf{D}.

- Given the state of the main schema and a view update ...
- there are in general many possible reflections of that view update to the main schema.
- Note that there is always at least one.

Main Schema D

View Schema V

- The view-update problem is to determine:
- which reflections, if any, are suitable; and
- if there is more than one suitable choice, which is best.

Approaches to the View-Update Problem

- Three main classifications of most work on this problem:

Approaches to the View-Update Problem

- Three main classifications of most work on this problem: Direct modelling:

Minimal/least change:

Constant complement:

Approaches to the View-Update Problem

- Three main classifications of most work on this problem:

Direct modelling:

- Look for direct solutions, usually using the relational algebra and null values.

Minimal/least change:

Constant complement:

Approaches to the View-Update Problem

- Three main classifications of most work on this problem:

Direct modelling:

- Look for direct solutions, usually using the relational algebra and null values.
- "Bag-of-tricks" approaches rather than comprehensive theories.

Minimal/least change:

Constant complement:

Approaches to the View-Update Problem

- Three main classifications of most work on this problem:

Direct modelling:

- Look for direct solutions, usually using the relational algebra and null values.
- "Bag-of-tricks" approaches rather than comprehensive theories.

Minimal/least change:

- A measure of distance between database states is identified.

Constant complement:

Approaches to the View-Update Problem

- Three main classifications of most work on this problem:

Direct modelling:

- Look for direct solutions, usually using the relational algebra and null values.
- "Bag-of-tricks" approaches rather than comprehensive theories.

Minimal/least change:

- A measure of distance between database states is identified.
- For reflected updates, smaller is better (intuitively, fewer changes).

Constant complement:

Approaches to the View-Update Problem

- Three main classifications of most work on this problem:

Direct modelling:

- Look for direct solutions, usually using the relational algebra and null values.
- "Bag-of-tricks" approaches rather than comprehensive theories.

Minimal/least change:

- A measure of distance between database states is identified.
- For reflected updates, smaller is better (intuitively, fewer changes).
- This approach is a favorite in the deductive-database community.

Constant complement:

Approaches to the View-Update Problem

- Three main classifications of most work on this problem:

Direct modelling:

- Look for direct solutions, usually using the relational algebra and null values.
- "Bag-of-tricks" approaches rather than comprehensive theories.

Minimal/least change:

- A measure of distance between database states is identified.
- For reflected updates, smaller is better (intuitively, fewer changes).
- This approach is a favorite in the deductive-database community.
- But it has also been applied in the state-based context.

Constant complement:

Approaches to the View-Update Problem

- Three main classifications of most work on this problem:

Direct modelling:

- Look for direct solutions, usually using the relational algebra and null values.
- "Bag-of-tricks" approaches rather than comprehensive theories.

Minimal/least change:

- A measure of distance between database states is identified.
- For reflected updates, smaller is better (intuitively, fewer changes).
- This approach is a favorite in the deductive-database community.
- But it has also been applied in the state-based context.

Constant complement:

- In updating view Γ, identify a second view Γ^{\prime} which recaptures the "rest" of the main schema D.

Approaches to the View-Update Problem

- Three main classifications of most work on this problem:

Direct modelling:

- Look for direct solutions, usually using the relational algebra and null values.
- "Bag-of-tricks" approaches rather than comprehensive theories.

Minimal/least change:

- A measure of distance between database states is identified.
- For reflected updates, smaller is better (intuitively, fewer changes).
- This approach is a favorite in the deductive-database community.
- But it has also been applied in the state-based context.

Constant complement:

- In updating view Γ, identify a second view Γ^{\prime} which recaptures the "rest" of the main schema D.
- Updates to Γ must keep Γ^{\prime} constant.

Approaches to the View-Update Problem

- Three main classifications of most work on this problem:

Direct modelling:

- Look for direct solutions, usually using the relational algebra and null values.
- "Bag-of-tricks" approaches rather than comprehensive theories.

Minimal/least change:

- A measure of distance between database states is identified.
- For reflected updates, smaller is better (intuitively, fewer changes).
- This approach is a favorite in the deductive-database community.
- But it has also been applied in the state-based context.

Constant complement:

- In updating view Γ, identify a second view Γ^{\prime} which recaptures the "rest" of the main schema D.
- Updates to Γ must keep Γ^{\prime} constant.
- Support for this approach is the main focus of this presentation.

A Concise Formulation of View Update

- Updates $\langle\mathbf{D}\rangle=\operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D})$ for any schema \mathbf{D}.

A Concise Formulation of View Update

- Updates $\langle\mathbf{D}\rangle=\operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D})$ for any schema \mathbf{D}.

Context: Main schema \mathbf{D}, view $\Gamma=(\mathbf{V}, \gamma)$.

A Concise Formulation of View Update

- Updates $\langle\mathbf{D}\rangle=\operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D})$ for any schema \mathbf{D}.

Context: Main schema \mathbf{D}, view $\Gamma=(\mathbf{V}, \gamma)$.

- A translation (reflection) of $\left(N_{1}, N_{2}\right) \in$ Updates $\langle\mathbf{V}\rangle$ with respect to $M_{1} \in \operatorname{LDB}(\mathbf{D})$ with $\gamma\left(M_{1}\right)=N_{1}$ is an $M_{2} \in \operatorname{LDB}(\mathbf{D})$ with $\gamma\left(M_{2}\right)=N_{2}$.

A Concise Formulation of View Update

- Updates $\langle\mathbf{D}\rangle=\operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D})$ for any schema \mathbf{D}.

Context: Main schema \mathbf{D}, view $\Gamma=(\mathbf{V}, \gamma)$.

- A translation (reflection) of $\left(N_{1}, N_{2}\right) \in$ Updates $\langle\mathbf{V}\rangle$ with respect to $M_{1} \in \operatorname{LDB}(\mathbf{D})$ with $\gamma\left(M_{1}\right)=N_{1}$ is an $M_{2} \in \operatorname{LDB}(\mathbf{D})$ with $\gamma\left(M_{2}\right)=N_{2}$.

- Everything is specified by:

A Concise Formulation of View Update

- Updates $\langle\mathbf{D}\rangle=\operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D})$ for any schema \mathbf{D}.

Context: Main schema D, view 「 $=(\mathbf{V}, \gamma)$.

- A translation (reflection) of $\left(N_{1}, N_{2}\right) \in$ Updates $\langle\mathbf{V}\rangle$ with respect to $M_{1} \in \operatorname{LDB}(\mathbf{D})$ with $\gamma\left(M_{1}\right)=N_{1}$ is an $M_{2} \in \operatorname{LDB}(\mathbf{D})$ with $\gamma\left(M_{2}\right)=N_{2}$.

- Everything is specified by:
- the current state M_{1} of the main schema; and

A Concise Formulation of View Update

- Updates $\langle\mathbf{D}\rangle=\operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D})$ for any schema \mathbf{D}.

Context: Main schema \mathbf{D}, view $\Gamma=(\mathbf{V}, \gamma)$.

- A translation (reflection) of $\left(N_{1}, N_{2}\right) \in$ Updates $\langle\mathbf{V}\rangle$ with respect to $M_{1} \in \operatorname{LDB}(\mathbf{D})$ with $\gamma\left(M_{1}\right)=N_{1}$ is an $M_{2} \in \operatorname{LDB}(\mathbf{D})$ with $\gamma\left(M_{2}\right)=N_{2}$.

- Everything is specified by:
- the current state M_{1} of the main schema; and
- the desired new state N_{2} of the view schema.

A Concise Formulation of View Update

- Updates $\langle\mathbf{D}\rangle=\operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D})$ for any schema \mathbf{D}.

Context: Main schema \mathbf{D}, view $\Gamma=(\mathbf{V}, \gamma)$.

- A translation (reflection) of $\left(N_{1}, N_{2}\right) \in$ Updates $\langle\mathbf{V}\rangle$ with respect to $M_{1} \in \operatorname{LDB}(\mathbf{D})$ with $\gamma\left(M_{1}\right)=N_{1}$ is an $M_{2} \in \operatorname{LDB}(\mathbf{D})$ with $\gamma\left(M_{2}\right)=N_{2}$.

- Everything is specified by:
- the current state M_{1} of the main schema; and
- the desired new state N_{2} of the view schema.
- N_{1} is recaptured as $\gamma\left(M_{1}\right)$.

A Concise Formulation of View Update

- Updates $\langle\mathbf{D}\rangle=\operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D})$ for any schema \mathbf{D}.

Context: Main schema \mathbf{D}, view $\Gamma=(\mathbf{V}, \gamma)$.

- A translation (reflection) of $\left(N_{1}, N_{2}\right) \in$ Updates $\langle\mathbf{V}\rangle$ with respect to $M_{1} \in \operatorname{LDB}(\mathbf{D})$ with $\gamma\left(M_{1}\right)=N_{1}$ is an $M_{2} \in \operatorname{LDB}(\mathbf{D})$ with $\gamma\left(M_{2}\right)=N_{2}$.

- Everything is specified by:
- the current state M_{1} of the main schema; and
- the desired new state N_{2} of the view schema.
- N_{1} is recaptured as $\gamma\left(M_{1}\right)$.

Update request: Formally, an update request from Γ to \mathbf{D} is a pair $\left(M_{1}, N_{2}\right) \in \operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{V})$.

A Concise Formulation of View Update

- Updates $\langle\mathbf{D}\rangle=\operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D})$ for any schema \mathbf{D}.

Context: Main schema \mathbf{D}, view $\Gamma=(\mathbf{V}, \gamma)$.

- A translation (reflection) of $\left(N_{1}, N_{2}\right) \in$ Updates $\langle\mathbf{V}\rangle$ with respect to $M_{1} \in \operatorname{LDB}(\mathbf{D})$ with $\gamma\left(M_{1}\right)=N_{1}$ is an $M_{2} \in \operatorname{LDB}(\mathbf{D})$ with $\gamma\left(M_{2}\right)=N_{2}$.

- Everything is specified by:
- the current state M_{1} of the main schema; and
- the desired new state N_{2} of the view schema.
- N_{1} is recaptured as $\gamma\left(M_{1}\right)$.

Update request: Formally, an update request from Γ to \mathbf{D} is a pair $\left(M_{1}, N_{2}\right) \in \operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{V})$.
Realization: A realization of $\left(M_{1}, N_{2}\right)$ along Γ is a translation of $\left(\gamma\left(M_{1}\right), N_{2}\right)$ with respect to M_{1}.

View Complements and the Constant-Complement Approach

- The view $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is a complement of $\Gamma=(\mathbf{V}, \gamma)$ if the decomposition morphism $\gamma \times \gamma^{\prime}: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V}) \times \operatorname{LDB}\left(\mathbf{V}^{\prime}\right)$
$M \mapsto\left\langle\gamma(M), \gamma^{\prime}(M)\right\rangle$ is injective.

View Complements and the Constant-Complement Approach

- The view $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is a complement of $\Gamma=(\mathbf{V}, \gamma)$ if the decomposition morphism $\gamma \times \gamma^{\prime}: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V}) \times \operatorname{LDB}\left(\mathbf{V}^{\prime}\right)$
$M \mapsto\left\langle\gamma(M), \gamma^{\prime}(M)\right\rangle$ is injective.
Observation: [Bancilhon \& Spyratos 1981] If $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is a complement of $\Gamma=(\mathbf{V}, \gamma)$, then for any update request $\left(M_{1}, N_{2}\right)$ from Γ to \mathbf{D}, there is at most one realization which keeps the state of Γ^{\prime} constant.

View Complements and the Constant-Complement Approach

- The view $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is a complement of $\Gamma=(\mathbf{V}, \gamma)$ if the decomposition morphism $\gamma \times \gamma^{\prime}: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V}) \times \operatorname{LDB}\left(\mathbf{V}^{\prime}\right)$
$M \mapsto\left\langle\gamma(M), \gamma^{\prime}(M)\right\rangle$ is injective.
Observation: [Bancilhon \& Spyratos 1981] If $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is a complement of $\Gamma=(\mathbf{V}, \gamma)$, then for any update request $\left(M_{1}, N_{2}\right)$ from Γ to \mathbf{D}, there is at most one realization which keeps the state of Γ^{\prime} constant.
Proof: This realization must be $\left(M_{1},\left(\gamma \times \gamma^{\prime}\right)^{-1}\left(\left(N_{1}, \gamma_{2}\left(M_{1}\right)\right)\right)\right)$. \square

View Complements and the Constant-Complement Approach

- The view $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is a complement of $\Gamma=(\mathbf{V}, \gamma)$ if the decomposition morphism $\gamma \times \gamma^{\prime}: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V}) \times \operatorname{LDB}\left(\mathbf{V}^{\prime}\right)$
$M \mapsto\left\langle\gamma(M), \gamma^{\prime}(M)\right\rangle$ is injective.
Observation: [Bancilhon \& Spyratos 1981] If $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is a complement of $\Gamma=(\mathbf{V}, \gamma)$, then for any update request $\left(M_{1}, N_{2}\right)$ from Γ to \mathbf{D}, there is at most one realization which keeps the state of Γ^{\prime} constant.
Proof: This realization must be $\left(M_{1},\left(\gamma \times \gamma^{\prime}\right)^{-1}\left(\left(N_{1}, \gamma_{2}\left(M_{1}\right)\right)\right)\right)$. \square

Familiar example: $\mathbf{E}_{0}=(R[A B C],\{B \rightarrow C\})$.
$\{B \rightarrow C\}$
$R[A B C]$

View Complements and the Constant-Complement Approach

- The view $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is a complement of $\Gamma=(\mathbf{V}, \gamma)$ if the decomposition morphism $\gamma \times \gamma^{\prime}: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V}) \times \operatorname{LDB}\left(\mathbf{V}^{\prime}\right)$
$M \mapsto\left\langle\gamma(M), \gamma^{\prime}(M)\right\rangle$ is injective.
Observation: [Bancilhon \& Spyratos 1981] If $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is a complement of $\Gamma=(\mathbf{V}, \gamma)$, then for any update request $\left(M_{1}, N_{2}\right)$ from Γ to \mathbf{D}, there is at most one realization which keeps the state of Γ^{\prime} constant.
Proof: This realization must be $\left(M_{1},\left(\gamma \times \gamma^{\prime}\right)^{-1}\left(\left(N_{1}, \gamma_{2}\left(M_{1}\right)\right)\right)\right)$. \square

Familiar example: $\mathbf{E}_{0}=(R[A B C],\{B \rightarrow C\})$. View to be updated: $\Pi_{A B}^{\mathrm{E}_{0}}=\left(\mathbf{E}_{0}^{A B}, \pi_{A B}^{\mathrm{E}_{0}}\right)$.
$\{B \rightarrow C\}$
$R[A B C]$

$R[A B]$

View Complements and the Constant-Complement Approach

- The view $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is a complement of $\Gamma=(\mathbf{V}, \gamma)$ if the decomposition morphism $\gamma \times \gamma^{\prime}: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V}) \times \operatorname{LDB}\left(\mathbf{V}^{\prime}\right)$
$M \mapsto\left\langle\gamma(M), \gamma^{\prime}(M)\right\rangle$ is injective.
Observation: [Bancilhon \& Spyratos 1981] If $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is a complement of $\Gamma=(\mathbf{V}, \gamma)$, then for any update request $\left(M_{1}, N_{2}\right)$ from Γ to \mathbf{D}, there is at most one realization which keeps the state of Γ^{\prime} constant.
Proof: This realization must be $\left(M_{1},\left(\gamma \times \gamma^{\prime}\right)^{-1}\left(\left(N_{1}, \gamma_{2}\left(M_{1}\right)\right)\right)\right)$. \square

Familiar example: $\mathbf{E}_{0}=(R[A B C],\{B \rightarrow C\})$. View to be updated: $\Pi_{A B}^{\mathrm{E}_{0}}=\left(\mathbf{E}_{0}^{A B}, \pi_{A B}^{\mathrm{E}_{0}}\right)$.
Natural complement: $\Pi_{B C}^{\mathrm{E}_{0}}=\left(\mathbf{E}_{0}^{B C}, \pi_{B C}^{\mathrm{E}_{0}}\right)$.
$\{B \rightarrow C\}$
$R[A B C]$

$R[A B] \quad R[B C]$

View Complements and the Constant-Complement Approach

- The view $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is a complement of $\Gamma=(\mathbf{V}, \gamma)$ if the decomposition amorphism $\gamma \times \gamma^{\prime}: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V}) \times \operatorname{LDB}\left(\mathbf{V}^{\prime}\right)$
$M \mapsto\left\langle\gamma(M), \gamma^{\prime}(M)\right\rangle$ is infective.

Observation: [Bancilhon \& Spyratos 1981] If $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is a complement of $\Gamma=(\mathbf{V}, \gamma)$, then for any update request $\left(M_{1}, N_{2}\right)$ from Γ to \mathbf{D}, there is at most one realization which keeps the state of Γ^{\prime} constant.

Proof: This realization must be $\left(M_{1},\left(\gamma \times \gamma^{\prime}\right)^{-1}\left(\left(N_{1}, \gamma_{2}\left(M_{1}\right)\right)\right)\right)$. \square

Familiar example: $\mathbf{E}_{0}=(R[A B C],\{B \rightarrow C\})$. View to be updated: $\Pi_{A B}^{\mathbf{E}_{0}}=\left(\mathbf{E}_{0}^{A B}, \pi_{A B}^{\mathbf{E}_{0}}\right)$.
Natural complement: $\Pi_{B C}^{\mathrm{E}_{0}}=\left(\mathbf{E}_{0}^{B C}, \pi_{B C}^{\mathrm{E}_{0}}\right)$.

- The updates to $\Pi_{A B}^{\mathrm{E}_{0}}$ with constant complement $\Pi_{B C}^{\mathrm{E}_{0}}$ are precisely those which keep $\Pi_{B}^{\mathrm{E}_{0}}$ fixed.
$\{B \rightarrow C\}$
$R[A B C]$

$R[A B] \quad R[B C]$

Three Uniqueness Issues for Constant Complement

Locality: The constant-complement strategy is intuitively appealing because it formalizes the notion of locality - the part of the main schema not included in the view to be updated (the complement) is held constant.

Three Uniqueness Issues for Constant Complement

Locality: The constant-complement strategy is intuitively appealing because it formalizes the notion of locality - the part of the main schema not included in the view to be updated (the complement) is held constant.

- However, there are at least three invariance issues surrounding the constant-complement approach to the reflection of view update.

Three Uniqueness Issues for Constant Complement

Locality: The constant-complement strategy is intuitively appealing because it formalizes the notion of locality - the part of the main schema not included in the view to be updated (the complement) is held constant.

- However, there are at least three invariance issues surrounding the constant-complement approach to the reflection of view update.
Context: Main schema D, view $\Gamma=(\mathbf{V}, \gamma)$, complement $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$, with:

Three Uniqueness Issues for Constant Complement

Locality: The constant-complement strategy is intuitively appealing because it formalizes the notion of locality - the part of the main schema not included in the view to be updated (the complement) is held constant.

- However, there are at least three invariance issues surrounding the constant-complement approach to the reflection of view update.
Context: Main schema \mathbf{D}, view $\Gamma=(\mathbf{V}, \gamma)$, complement $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$, with:
- update request $u=\left(M_{1}, N_{2}\right)$ from 「 to \mathbf{D}.

Three Uniqueness Issues for Constant Complement

Locality: The constant-complement strategy is intuitively appealing because it formalizes the notion of locality - the part of the main schema not included in the view to be updated (the complement) is held constant.

- However, there are at least three invariance issues surrounding the constant-complement approach to the reflection of view update.
Context: Main schema \mathbf{D}, view $\Gamma=(\mathbf{V}, \gamma)$, complement $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$, with:
- update request $u=\left(M_{1}, N_{2}\right)$ from 「 to \mathbf{D}.

State invariance: If u is realizable with constant complement Γ^{\prime}, then every $u^{\prime}=\left(M_{1}^{\prime}, N_{2}\right)$ with $\gamma\left(M_{1}^{\prime}\right)=\gamma\left(M_{1}\right)$ is also so realizable.

Three Uniqueness Issues for Constant Complement

Locality: The constant-complement strategy is intuitively appealing because it formalizes the notion of locality - the part of the main schema not included in the view to be updated (the complement) is held constant.

- However, there are at least three invariance issues surrounding the constant-complement approach to the reflection of view update.
Context: Main schema D, view $\Gamma=(\mathbf{V}, \gamma)$, complement $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$, with:
- update request $u=\left(M_{1}, N_{2}\right)$ from 「 to \mathbf{D}.

State invariance: If u is realizable with constant complement Γ^{\prime}, then every $u^{\prime}=\left(M_{1}^{\prime}, N_{2}\right)$ with $\gamma\left(M_{1}^{\prime}\right)=\gamma\left(M_{1}\right)$ is also so realizable.
Reflection invariance: If u is also realizable with respect to constant complement $\Gamma^{\prime \prime}=\left(\mathbf{V}^{\prime \prime}, \gamma^{\prime \prime}\right)$, then the two realizations the same.

Three Uniqueness Issues for Constant Complement

Locality: The constant-complement strategy is intuitively appealing because it formalizes the notion of locality - the part of the main schema not included in the view to be updated (the complement) is held constant.

- However, there are at least three invariance issues surrounding the constant-complement approach to the reflection of view update.
Context: Main schema D, view $\Gamma=(\mathbf{V}, \gamma)$, complement $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$, with:
- update request $u=\left(M_{1}, N_{2}\right)$ from 「 to \mathbf{D}.

State invariance: If u is realizable with constant complement Γ^{\prime}, then every $u^{\prime}=\left(M_{1}^{\prime}, N_{2}\right)$ with $\gamma\left(M_{1}^{\prime}\right)=\gamma\left(M_{1}\right)$ is also so realizable.
Reflection invariance: If u is also realizable with respect to constant complement $\Gamma^{\prime \prime}=\left(\mathbf{V}^{\prime \prime}, \gamma^{\prime \prime}\right)$, then the two realizations the same.
Update-set invariance: If $\Gamma^{\prime \prime}=\left(\mathbf{V}^{\prime \prime}, \gamma^{\prime \prime}\right)$ is a second complement, then Γ^{\prime} and $\Gamma^{\prime \prime}$ support the same constant-complement updates.

Three Uniqueness Issues for Constant Complement

Locality: The constant-complement strategy is intuitively appealing because it formalizes the notion of locality - the part of the main schema not included in the view to be updated (the complement) is held constant.

- However, there are at least three invariance issues surrounding the constant-complement approach to the reflection of view update.
Context: Main schema D, view $\Gamma=(\mathbf{V}, \gamma)$, complement $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$, with:
- update request $u=\left(M_{1}, N_{2}\right)$ from 「 to \mathbf{D}.

State invariance: If u is realizable with constant complement Γ^{\prime}, then every $u^{\prime}=\left(M_{1}^{\prime}, N_{2}\right)$ with $\gamma\left(M_{1}^{\prime}\right)=\gamma\left(M_{1}\right)$ is also so realizable.
Reflection invariance: If u is also realizable with respect to constant complement $\Gamma^{\prime \prime}=\left(\mathbf{V}^{\prime \prime}, \gamma^{\prime \prime}\right)$, then the two realizations the same.
Update-set invariance: If $\Gamma^{\prime \prime}=\left(\mathbf{V}^{\prime \prime}, \gamma^{\prime \prime}\right)$ is a second complement, then Γ^{\prime} and $\Gamma^{\prime \prime}$ support the same constant-complement updates.
Observation: These three conditions are in general independent of one another.

Dependency Preservation \Rightarrow State Invariance

Recall: $\mathbf{E}_{0}=(R[A B C],\{B \rightarrow C\})$. View to be updated: $\Pi_{A B}^{\mathrm{E}_{0}}=\left(\mathbf{E}_{0}^{A B}, \pi_{A B}^{\mathrm{E}_{0}}\right)$.
Natural complement: $\Pi_{B C}^{\mathrm{E}_{0}}=\left(\mathbf{E}_{0}^{B C}, \pi_{B C}^{\mathrm{E}_{0}}\right)$.

- The updates to $\Pi_{A B}^{\mathrm{E}_{0}}$ with constant complement $\Pi_{B C}^{\mathrm{E}_{0}}$ are precisely those which keep $\Pi_{B}^{\mathrm{E}_{0}}$ fixed.
$\{B \rightarrow C\}$
$R[A B C]$
$R[A B]$

Dependency Preservation \Rightarrow State Invariance

Recall: $\mathbf{E}_{0}=(R[A B C],\{B \rightarrow C\})$.
View to be updated: $\Pi_{A B}^{\mathrm{E}_{0}}=\left(\mathbf{E}_{0}^{A B}, \pi_{A B}^{\mathrm{E}_{0}}\right)$.
Natural complement: $\Pi_{B C}^{\mathrm{E}_{0}}=\left(\mathbf{E}_{0}^{B C}, \pi_{B C}^{\mathrm{E}_{0}}\right)$.

- The updates to $\Pi_{A B}^{\mathrm{E}_{0}}$ with constant complement $\Pi_{B C}^{\mathrm{E}_{0}}$ are precisely those which keep $\Pi_{B}^{\mathrm{E}_{0}}$ fixed.
$\{B \rightarrow C\}$
$R[A B C]$
$\pi_{A B}^{\mathrm{E}_{0}} / \pi_{B C}^{\mathrm{E}_{0}}$
$R[A B]$
- This situation exhibits state invariance.

Dependency Preservation \Rightarrow State Invariance

Recall: $\mathbf{E}_{0}=(R[A B C],\{B \rightarrow C\})$.
View to be updated: $\Pi_{A B}^{\mathrm{E}_{0}}=\left(\mathbf{E}_{0}^{A B}, \pi_{A B}^{\mathrm{E}_{0}}\right)$.
Natural complement: $\Pi_{B C}^{\mathrm{E}_{0}}=\left(\mathbf{E}_{0}^{B C}, \pi_{B C}^{\mathrm{E}_{0}}\right)$.

- The updates to $\Pi_{A B}^{\mathrm{E}_{0}}$ with constant complement $\Pi_{B C}^{\mathrm{E}_{0}}$ are precisely those which keep $\Pi_{B}^{\mathrm{E}_{0}}$ fixed.

$$
\begin{gathered}
\{B \rightarrow C, A \rightarrow C\} \\
R[A B C] \\
\pi_{A B}^{\mathrm{E}_{0}} / \pi_{B C}^{\mathrm{E}_{0}} \\
R[A B] \\
R[B C]
\end{gathered}
$$

- This situation exhibits state invariance.
- If the FD $A \rightarrow C$ is added, this property no longer holds.

Dependency Preservation \Rightarrow State Invariance

Recall: $\mathbf{E}_{0}=(R[A B C],\{B \rightarrow C\})$.
View to be updated: $\Pi_{A B}^{\mathrm{E}_{0}}=\left(\mathbf{E}_{0}^{A B}, \pi_{A B}^{\mathrm{E}_{0}}\right)$.
Natural complement: $\Pi_{B C}^{\mathrm{E}_{0}}=\left(\mathbf{E}_{0}^{B C}, \pi_{B C}^{\mathrm{E}_{0}}\right)$.

- The updates to $\Pi_{A B}^{\mathrm{E}_{0}}$ with constant complement $\Pi_{B C}^{\mathrm{E}_{0}}$ are precisely those which keep $\Pi_{B}^{\mathrm{E}_{0}}$ fixed.

$$
\begin{gathered}
\{B \rightarrow C, A \rightarrow C\} \\
R[A B C] \\
\pi_{A B}^{\mathrm{E}_{0}} / \pi_{B C}^{\mathrm{E}_{0}} \\
R[A B]
\end{gathered}
$$

- This situation exhibits state invariance.
- If the FD $A \rightarrow C$ is added, this property no longer holds.

Example: $M_{1}=\left\{R\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}\right), R\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{1}\right)\right\}$

$$
M_{1}^{\prime}=\left\{R\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}\right), R\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}\right)\right\}
$$

Dependency Preservation \Rightarrow State Invariance

Recall: $\mathbf{E}_{0}=(R[A B C],\{B \rightarrow C\})$.
View to be updated: $\Pi_{A B}^{\mathrm{E}_{0}}=\left(\mathbf{E}_{0}^{A B}, \pi_{A B}^{\mathrm{E}_{0}}\right)$.
Natural complement: $\Pi_{B C}^{\mathrm{E}_{0}}=\left(\mathbf{E}_{0}^{B C}, \pi_{B C}^{\mathrm{E}_{0}}\right)$.

- The updates to $\Pi_{A B}^{\mathrm{E}_{0}}$ with constant complement $\Pi_{B C}^{\mathrm{E}_{0}}$ are precisely those which keep $\Pi_{B}^{\mathrm{E}_{0}}$ fixed.

$$
\begin{gathered}
\{B \rightarrow C, A \rightarrow C\} \\
R[A B C]
\end{gathered}
$$

$\pi_{A B}^{\mathrm{E}_{0}}$
$R[A B]$
$\overbrace{B C}^{\mathrm{E}_{0}}$
$R[B C]$

- This situation exhibits state invariance.
- If the FD $A \rightarrow C$ is added, this property no longer holds.

Example: $M_{1}=\left\{R\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}\right), R\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{1}\right)\right\}$

$$
M_{1}^{\prime}=\left\{R\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}\right), R\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}\right)\right\}
$$

- The view update $\left(\left\{R\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right), R\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right)\right\},\left\{R\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right), R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)\right\}\right)$ is realizable if the state of \mathbf{E}_{0} is M_{1} but not if it is M_{1}^{\prime}.

Dependency Preservation \Rightarrow State Invariance

Recall: $\mathbf{E}_{0}=(R[A B C],\{B \rightarrow C\})$.
View to be updated: $\Pi_{A B}^{\mathrm{E}_{0}}=\left(\mathbf{E}_{0}^{A B}, \pi_{A B}^{\mathrm{E}_{0}}\right)$.
Natural complement: $\Pi_{B C}^{\mathrm{E}_{0}}=\left(\mathbf{E}_{0}^{B C}, \pi_{B C}^{\mathrm{E}_{0}}\right)$.

- The updates to $\Pi_{A B}^{\mathrm{E}_{0}}$ with constant complement $\Pi_{B C}^{\mathrm{E}_{0}}$ are precisely those which keep $\Pi_{B}^{\mathrm{E}_{0}}$ fixed.

$$
\begin{gathered}
\{B \rightarrow C, A \rightarrow C\} \\
R[A B C]
\end{gathered}
$$

$\pi_{A B}^{\mathbf{E}_{0}} / \overbrace{B C}^{\pi_{B C}^{\mathbf{E}_{0}}}$

- This situation exhibits state invariance.
- If the FD $A \rightarrow C$ is added, this property no longer holds.

Example: $\quad M_{1}=\left\{R\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}\right), R\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{1}\right)\right\}$

$$
M_{1}^{\prime}=\left\{R\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}\right), R\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}\right)\right\}
$$

- The view update $\left(\left\{R\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right), R\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right)\right\},\left\{R\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right), R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)\right\}\right)$ is realizable if the state of \mathbf{E}_{0} is M_{1} but not if it is M_{1}^{\prime}.
- With the addition of $A \rightarrow C$, a cover of the dependencies no longer embeds in the views, so these dependencies cannot be checked on a view-by-view basis.

Meets - the Generalization of Dependency Preservation

- A visualization of the previous example: $R[A B C]$
$B \rightarrow C$

Meets - the Generalization of Dependency Preservation

- A visualization of the previous example:
- The goal is to update the view $\Gamma=\Pi_{A B}^{\mathrm{E}_{1}} \cdots$

Meets - the Generalization of Dependency Preservation

- A visualization of the previous example:
- The goal is to update the view $\Gamma=\Pi_{A B}^{\mathrm{E}_{1}} \cdots$
- while holding the view $\Gamma^{\prime}=\Pi_{B C}^{\mathrm{E}_{1}}$ constant.

Meets - the Generalization of Dependency Preservation

- A visualization of the previous example:
- The goal is to update the view $\Gamma=\Pi_{A B}^{\mathrm{E}_{1}} \cdots$
- while holding the view $\Gamma^{\prime}=\Pi_{B C}^{\mathrm{E}_{1}}$ constant. Question: When does the visualization describe reality?

Meets - the Generalization of Dependency Preservation

- A visualization of the previous example:
- The goal is to update the view $\Gamma=\Pi_{A B}^{\mathrm{E}_{1}} \cdots$
- while holding the view $\Gamma^{\prime}=\Pi_{B C}^{\mathrm{E}_{1}}$ constant. Question: When does the visualization describe reality?
- When does it suffice to keep the overlap area $R[B]$ constant?

Meets - the Generalization of Dependency Preservation

- A visualization of the previous example:
- The goal is to update the view $\Gamma=\Pi_{A B}^{\mathrm{E}_{1}} \cdots$
- while holding the view $\Gamma^{\prime}=\Pi_{B C}^{\mathrm{E}_{1}}$ constant. Question: When does the visualization describe reality?
- When does it suffice to keep the overlap area $R[B]$ constant?

Answer: The overlap area must define a view $\Gamma^{\prime \prime}$, (the meet of Γ and Γ^{\prime}) with: $\operatorname{Congr}(\Gamma) \subseteq \operatorname{Congr}\left(\Gamma^{\prime \prime}\right)$ and $\operatorname{Congr}\left(\Gamma^{\prime}\right) \subseteq \operatorname{Congr}\left(\Gamma^{\prime \prime}\right)$

Meets - the Generalization of Dependency Preservation

- A visualization of the previous example:
- The goal is to update the view $\Gamma=\Pi_{A B}^{\mathrm{E}_{1}} \cdots$
- while holding the view $\Gamma^{\prime}=\Pi_{B C}^{\mathrm{E}_{1}}$ constant. Question: When does the visualization describe reality?
- When does it suffice to keep the overlap area $R[B]$ constant?

Answer: The overlap area must define a view $\Gamma^{\prime \prime}$, (the meet of Γ and Γ^{\prime}) with: $\operatorname{Congr}(\Gamma) \subseteq \operatorname{Congr}\left(\Gamma^{\prime \prime}\right)$ and $\operatorname{Congr}\left(\Gamma^{\prime}\right) \subseteq \operatorname{Congr}\left(\Gamma^{\prime \prime}\right)$
Solution: This happens precisely when the congruences commute: $\operatorname{Congr}(\Gamma) \circ \operatorname{Congr}\left(\Gamma^{\prime}\right)=\operatorname{Congr}\left(\Gamma^{\prime}\right) \circ \operatorname{Congr}(\Gamma)$

Meets - the Generalization of Dependency Preservation

- A visualization of the previous example:
- The goal is to update the view $\Gamma=\Pi_{A B}^{\mathrm{E}_{1}} \cdots$
- while holding the view $\Gamma^{\prime}=\Pi_{B C}^{\mathrm{E}_{1}}$ constant. Question: When does the visualization describe reality?
- When does it suffice to keep the overlap area $R[B]$ constant?

Answer: The overlap area must define a view $\Gamma^{\prime \prime}$, (the meet of Γ and Γ^{\prime}) with: $\operatorname{Congr}(\Gamma) \subseteq \operatorname{Congr}\left(\Gamma^{\prime \prime}\right)$ and $\operatorname{Congr}\left(\Gamma^{\prime}\right) \subseteq \operatorname{Congr}\left(\Gamma^{\prime \prime}\right)$
Solution: This happens precisely when the congruences commute: $\operatorname{Congr}(\Gamma) \circ \operatorname{Congr}\left(\Gamma^{\prime}\right)=\operatorname{Congr}\left(\Gamma^{\prime}\right) \circ \operatorname{Congr}(\Gamma)$
Theorem: Commuting congruences identifies precisely the conditions under which state invariance holds. \square

Meets - the Generalization of Dependency Preservation

- A visualization of the previous example:
- The goal is to update the view $\Gamma=\Pi_{A B}^{\mathrm{E}_{1}} \cdots$
- while holding the view $\Gamma^{\prime}=\Pi_{B C}^{\mathrm{E}_{1}}$ constant. Question: When does the visualization describe reality?
- When does it suffice to keep the overlap area $R[B]$ constant?

Answer: The overlap area must define a view $\Gamma^{\prime \prime}$, (the meet of Γ and Γ^{\prime}) with: $\operatorname{Congr}(\Gamma) \subseteq \operatorname{Congr}\left(\Gamma^{\prime \prime}\right)$ and $\operatorname{Congr}\left(\Gamma^{\prime}\right) \subseteq \operatorname{Congr}\left(\Gamma^{\prime \prime}\right)$
Solution: This happens precisely when the congruences commute: $\operatorname{Congr}(\Gamma) \circ$ Congr $\left(\Gamma^{\prime}\right)=\operatorname{Congr}\left(\Gamma^{\prime}\right) \circ \operatorname{Congr}(\Gamma)$
Theorem: Commuting congruences identifies precisely the conditions under which state invariance holds. \square

- A complement with commuting congruences is called a meet complement.

Constraints and Meet Complements

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (e.g., FDs) and the view is simple (e.g., a projection).

Constraints and Meet Complements

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (e.g., FDs) and the view is simple (e.g., a projection).
- In the case of update via meet complement, the constraint which actually need be checked are those which embed from the main schema.

Constraints and Meet Complements

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (e.g., FDs) and the view is simple (e.g., a projection).
- In the case of update via meet complement, the constraint which actually need be checked are those which embed from the main schema.
Example: $\mathbf{E}_{1}=(R[A B C D E],\{A \rightarrow D, B \rightarrow D, C D \rightarrow A, A \rightarrow E\})$.

Constraints and Meet Complements

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (e.g., FDs) and the view is simple (e.g., a projection).
- In the case of update via meet complement, the constraint which actually need be checked are those which embed from the main schema.
Example: $\mathbf{E}_{1}=(R[A B C D E],\{A \rightarrow D, B \rightarrow D, C D \rightarrow A, A \rightarrow E\})$.
View to be updated: $\Pi_{A B C E}^{\mathrm{E}_{1}}=\left(\mathbf{E}_{1}^{A B C E}, \pi_{A B C E}^{\mathrm{E}_{1}}\right)$.

Constraints and Meet Complements

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (e.g., FDs) and the view is simple (e.g., a projection).
- In the case of update via meet complement, the constraint which actually need be checked are those which embed from the main schema.
Example: $\mathbf{E}_{1}=(R[A B C D E],\{A \rightarrow D, B \rightarrow D, C D \rightarrow A, A \rightarrow E\})$.
View to be updated: $\Pi_{A B C E}^{\mathrm{E}_{1}}=\left(\mathbf{E}_{1}^{A B C E}, \pi_{A B C E}^{\mathrm{E}_{1}}\right)$.
- Embedded constraints: $\{A \rightarrow E\}$.

Constraints and Meet Complements

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (e.g., FDs) and the view is simple (e.g., a projection).
- In the case of update via meet complement, the constraint which actually need be checked are those which embed from the main schema.
Example: $\mathbf{E}_{1}=(R[A B C D E],\{A \rightarrow D, B \rightarrow D, C D \rightarrow A, A \rightarrow E\})$.
View to be updated: $\Pi_{A B C E}^{\mathrm{E}_{1}}=\left(\mathbf{E}_{1}^{A B C E}, \pi_{A B C E}^{\mathrm{E}_{1}}\right)$.
- Embedded constraints: $\{A \rightarrow E\}$.
- The view itself does not admit a finite basis of constraints.

Constraints and Meet Complements

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (e.g., FDs) and the view is simple (e.g., a projection).
- In the case of update via meet complement, the constraint which actually need be checked are those which embed from the main schema.
Example: $\mathbf{E}_{1}=(R[A B C D E],\{A \rightarrow D, B \rightarrow D, C D \rightarrow A, A \rightarrow E\})$. View to be updated: $\Pi_{A B C E}^{\mathrm{E}_{1}}=\left(\mathbf{E}_{1}^{A B C E}, \pi_{A B C E}^{\mathrm{E}_{1}}\right)$.
- Embedded constraints: $\{A \rightarrow E\}$.
- The view itself does not admit a finite basis of constraints.

Meet complement: $\Pi_{A B C D}^{\mathrm{E}_{1}}=\left(\mathbf{E}_{1}^{A B C D}, \pi_{A B C D}^{\mathrm{E}_{1}}\right)$ with meet $\Pi_{A B C}^{\mathrm{E}_{1}}$.

Constraints and Meet Complements

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (e.g., FDs) and the view is simple (e.g., a projection).
- In the case of update via meet complement, the constraint which actually need be checked are those which embed from the main schema.
Example: $\mathbf{E}_{1}=(R[A B C D E],\{A \rightarrow D, B \rightarrow D, C D \rightarrow A, A \rightarrow E\})$. View to be updated: $\Pi_{A B C E}^{\mathrm{E}_{1}}=\left(\mathbf{E}_{1}^{A B C E}, \pi_{A B C E}^{\mathbf{E}_{1}}\right)$.
- Embedded constraints: $\{A \rightarrow E\}$.
- The view itself does not admit a finite basis of constraints.

Meet complement: $\Pi_{A B C D}^{\mathrm{E}_{1}}=\left(\mathbf{E}_{1}^{A B C D}, \pi_{A B C D}^{\mathrm{E}_{1}}\right)$ with meet $\Pi_{A B C}^{\mathrm{E}_{1}}$.

- Embedded constraints: $\{A \rightarrow D, B \rightarrow D, C D \rightarrow A\}$.

Constraints and Meet Complements

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (e.g., FDs) and the view is simple (e.g., a projection).
- In the case of update via meet complement, the constraint which actually need be checked are those which embed from the main schema.
Example: $\mathbf{E}_{1}=(R[A B C D E],\{A \rightarrow D, B \rightarrow D, C D \rightarrow A, A \rightarrow E\})$. View to be updated: $\Pi_{A B C E}^{\mathrm{E}_{1}}=\left(\mathbf{E}_{1}^{A B C E}, \pi_{A B C E}^{\mathbf{E}_{1}}\right)$.
- Embedded constraints: $\{A \rightarrow E\}$.
- The view itself does not admit a finite basis of constraints.

Meet complement: $\Pi_{A B C D}^{\mathrm{E}_{1}}=\left(\mathbf{E}_{1}^{A B C D}, \pi_{A B C D}^{\mathrm{E}_{1}}\right)$ with meet $\Pi_{A B C}^{\mathrm{E}_{1}}$.

- Embedded constraints: $\{A \rightarrow D, B \rightarrow D, C D \rightarrow A\}$.
- The updates on $\Pi_{A B C E}^{\mathrm{E}_{1}}$ with $\Pi_{A B C D}^{\mathrm{E}_{1}}$ constant $=$ updates with $\Pi_{A B C}^{\mathrm{E}_{1}}$ constant which satisfy $A \rightarrow E$.

Constraints and Meet Complements

- In general, the constraints on a view may be very complex, if if the constraints on the main schema are simple (e.g., FDs) and the view is simple (e.g., a projection).
- In the case of update via meet complement, the constraint which actually need be checked are those which embed from the main schema.
Example: $\mathbf{E}_{1}=(R[A B C D E],\{A \rightarrow D, B \rightarrow D, C D \rightarrow A, A \rightarrow E\})$. View to be updated: $\Pi_{A B C E}^{\mathrm{E}_{1}}=\left(\mathbf{E}_{1}^{A B C E}, \pi_{A B C E}^{\mathrm{E}_{1}}\right)$.
- Embedded constraints: $\{A \rightarrow E\}$.
- The view itself does not admit a finite basis of constraints.

Meet complement: $\Pi_{A B C D}^{\mathrm{E}_{1}}=\left(\mathbf{E}_{1}^{A B C D}, \pi_{A B C D}^{\mathrm{E}_{1}}\right)$ with meet $\Pi_{A B C}^{\mathrm{E}_{1}}$.

- Embedded constraints: $\{A \rightarrow D, B \rightarrow D, C D \rightarrow A\}$.
- The updates on $\Pi_{A B C E}^{\mathrm{E}_{1}}$ with $\Pi_{A B C D}^{\mathrm{E}_{1}}$ constant $=$ updates with $\Pi_{A B C}^{\mathrm{E}_{1}}$ constant which satisfy $A \rightarrow E$.
- $\{A \rightarrow D, B \rightarrow D, C D \rightarrow A\}$ are satisfied by virtue of $\Pi_{A B C D}^{\mathrm{E}_{1}}$ being held constant.

A Simple Example of the Nonuniqueness of Complements

- Recall that reflection invariance requires that a constant-complement update be independent of the choice of complement.

A Simple Example of the Nonuniqueness of Complements

- Recall that reflection invariance requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

A Simple Example of the Nonuniqueness of Complements

- Recall that reflection invariance requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

Example: \mathbf{E}_{2} has two relation symbols $R[A]$ and $S[A]$.

A Simple Example of the Nonuniqueness of Complements

- Recall that reflection invariance requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

Example: \mathbf{E}_{2} has two relation symbols $R[A]$ and $S[A]$.

- The view to be updated is $\Pi_{R}^{\mathrm{E}_{2}}$.

A Simple Example of the Nonuniqueness of Complements

- Recall that reflection invariance requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

Example: \mathbf{E}_{2} has two relation symbols $R[A]$ and $S[A]$.

- The view to be updated is $\Pi_{R}^{\mathrm{E}_{2}}$.
- The obvious and natural complement is $\Pi_{S}^{\mathrm{E}_{2}}$.
$\pi_{R}^{\mathrm{E}_{2}} / \overbrace{S[A]}^{\mathrm{E}_{S}}$

A Simple Example of the Nonuniqueness of Complements

- Recall that reflection invariance requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

Example: \mathbf{E}_{2} has two relation symbols $R[A]$ and $S[A]$.

- The view to be updated is $\Pi_{R}^{\mathrm{E}_{2}}$.
- The obvious and natural complement is $\Pi_{S}^{\mathrm{E}_{2}}$.
- Another complement: $\Pi_{R \Delta S}^{\mathrm{E}_{2}}=\left(T[A], \pi_{R \Delta S}^{\mathrm{E}_{2}}\right)$.

A Simple Example of the Nonuniqueness of Complements

- Recall that reflection invariance requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

Example: \mathbf{E}_{2} has two relation symbols $R[A]$ and $S[A]$.

- The view to be updated is $\Pi_{R}^{\mathrm{E}_{2}}$.
- The obvious and natural complement is $\Pi_{S}^{\mathrm{E}_{2}}$.
- Another complement: $\Pi_{R \Delta S}^{\mathrm{E}_{2}}=\left(T[A], \pi_{R \Delta S}^{\mathrm{E}_{2}}\right)$.

- $T[x] \Leftrightarrow(R(x) \wedge(\neg S(x)) \vee((\neg R(x)) \wedge S(x)))$.

A Simple Example of the Nonuniqueness of Complements

- Recall that reflection invariance requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

Example: \mathbf{E}_{2} has two relation symbols $R[A]$ and $S[A]$.
$\left\{R(\mathrm{a}), S\left(\mathrm{a}^{\prime}\right)\right\}$
$R[A] S[A]$

- The view to be updated is $\Pi_{R}^{\mathrm{E}_{2}}$.
- The obvious and natural complement is $\Pi_{S}^{\mathrm{E}_{2}}$.
- Another complement: $\Pi_{R \Delta S}^{\mathrm{E}_{2}}=\left(T[A], \pi_{R \Delta S}^{\mathrm{E}_{2}}\right)$.
- $T[x] \Leftrightarrow(R(x) \wedge(\neg S(x)) \vee((\neg R(x)) \wedge S(x)))$.

$R[A] \quad R \Delta S[A]$
$\{R(\mathrm{a})\} \quad\left\{T(\mathrm{a}), T\left(\mathrm{a}^{\prime}\right)\right\}$
Current state of main schema $\mathbf{E}_{2}: M_{1}=\left\{R(\mathrm{a}), S\left(\mathrm{a}^{\prime}\right)\right\}$.

A Simple Example of the Nonuniqueness of Complements

- Recall that reflection invariance requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

Example: \mathbf{E}_{2} has two relation symbols $R[A]$ and $S[A]$.

- The view to be updated is $\Pi_{R}^{\mathrm{E}_{2}}$.
- The obvious and natural complement is $\Pi_{S}^{\mathrm{E}_{2}}$.
- Another complement: $\Pi_{R \Delta S}^{\mathrm{E}_{2}}=\left(T[A], \pi_{R \Delta S}^{\mathrm{E}_{2}}\right)$.

- $T[x] \Leftrightarrow(R(x) \wedge(\neg S(x)) \vee((\neg R(x)) \wedge S(x))) . \quad\left\{R(\mathrm{a}), R\left(\mathrm{a}^{\prime}\right)\right\} \quad\left\{T(\mathrm{a}), T\left(\mathrm{a}^{\prime}\right)\right\}$

Current state of main schema $\mathbf{E}_{2}: M_{1}=\left\{R(\mathrm{a}), S\left(\mathrm{a}^{\prime}\right)\right\}$.
View update: $\boldsymbol{u}=\left(\{R(\mathrm{a})\},\left\{R(\mathrm{a}), R\left(\mathrm{a}^{\prime}\right)\right\}\right)$ on $\Pi_{R}^{\mathbf{E}_{2}}$. (Insert $\left.R\left(\mathrm{a}^{\prime}\right)\right)$.

A Simple Example of the Nonuniqueness of Complements

- Recall that reflection invariance requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

$$
\left\{R(\mathrm{a}), R\left(\mathrm{a}^{\prime}\right), S\left(\mathrm{a}^{\prime}\right)\right\}
$$

Example: \mathbf{E}_{2} has two relation symbols $R[A]$ and $S[A]$.

- The view to be updated is $\Pi_{R}^{\mathrm{E}_{2}}$.
- The obvious and natural complement is $\Pi_{S}^{\mathrm{E}_{2}}$.
- Another complement: $\Pi_{R \Delta S}^{\mathrm{E}_{2}}=\left(T[A], \pi_{R \Delta S}^{\mathrm{E}_{2}}\right)$.

- $T[x] \Leftrightarrow(R(x) \wedge(\neg S(x)) \vee((\neg R(x)) \wedge S(x))) . \quad\left\{R(\mathrm{a}), R\left(\mathrm{a}^{\prime}\right)\right\} \quad\left\{T(\mathrm{a}), T\left(\mathrm{a}^{\prime}\right)\right\}$

Current state of main schema $\mathbf{E}_{2}: M_{1}=\left\{R(\mathrm{a}), S\left(\mathrm{a}^{\prime}\right)\right\}$.
View update: $\boldsymbol{u}=\left(\{R(\mathrm{a})\},\left\{R(\mathrm{a}), R\left(\mathrm{a}^{\prime}\right)\right\}\right)$ on $\Pi_{R}^{\mathbf{E}_{2}}$. (Insert $\left.R\left(\mathrm{a}^{\prime}\right)\right)$.
New state of $\mathbf{E}_{2}: M_{2}=\left\{R(\mathrm{a}), R\left(\mathrm{a}^{\prime}\right)\right\}$ with constant complement $\Pi_{R \Delta S}^{\mathrm{E}_{2}}$.

A Simple Example of the Nonuniqueness of Complements

- Recall that reflection invariance requires that a constant-complement update be independent of the choice of complement.
- It is easy to show how such invariance may fail.

$$
\left\{R(\mathrm{a}), R\left(\mathrm{a}^{\prime}\right), S\left(\mathrm{a}^{\prime}\right)\right\}
$$

Example: \mathbf{E}_{2} has two relation symbols $R[A]$ and $S[A]$.

- The view to be updated is $\Pi_{R}^{\mathrm{E}_{2}}$.
- The obvious and natural complement is $\Pi_{S}^{\mathrm{E}_{2}}$.
- Another complement: $\Pi_{R \Delta S}^{\mathrm{E}_{2}}=\left(T[A], \pi_{R \Delta S}^{\mathrm{E}_{2}}\right)$.
- $T[x] \Leftrightarrow(R(x) \wedge(\neg S(x)) \vee((\neg R(x)) \wedge S(x))) . \quad\left\{R(\mathrm{a}), R\left(\mathrm{a}^{\prime}\right)\right\}$

Current state of main schema $\mathbf{E}_{2}: M_{1}=\left\{R(\mathrm{a}), S\left(\mathrm{a}^{\prime}\right)\right\}$.
View update: $\boldsymbol{u}=\left(\{R(\mathrm{a})\},\left\{R(\mathrm{a}), R\left(\mathrm{a}^{\prime}\right)\right\}\right)$ on $\Pi_{R}^{\mathbf{E}_{2}}$. (Insert $\left.R\left(\mathrm{a}^{\prime}\right)\right)$.
New state of $\mathbf{E}_{2}: M_{2}=\left\{R(\mathrm{a}), R\left(\mathrm{a}^{\prime}\right)\right\}$ with constant complement $\Pi_{R \Delta S}^{\mathrm{E}_{2}}$.

- But note that update-set invariance is satisfied - both complements support all view updates.

Order-Based Views and Updates

Problem: Characterize "good" complements formally.

Order-Based Views and Updates

Problem: Characterize "good" complements formally.
Order: The states of database schemata often admit a natural order.

Order-Based Views and Updates

Problem: Characterize "good" complements formally.
Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion.

Order-Based Views and Updates

Problem: Characterize "good" complements formally.
Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion. Notation: $\sqsubseteq_{\mathbf{D}}$ for this order on $\operatorname{LDB}(\mathbf{D})$.

Order-Based Views and Updates

Problem: Characterize "good" complements formally.
Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion. Notation: $\sqsubseteq_{\mathbf{D}}$ for this order on $\operatorname{LDB}(\mathbf{D})$.

- The following have natural and obvious definitions:

Order-Based Views and Updates

Problem: Characterize "good" complements formally.
Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion. Notation: $\sqsubseteq_{\mathbf{D}}$ for this order on $\operatorname{LDB}(\mathbf{D})$.

- The following have natural and obvious definitions:
- order-based schema

Order-Based Views and Updates

Problem: Characterize "good" complements formally.
Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion. Notation: $\sqsubseteq_{\mathbf{D}}$ for this order on $\operatorname{LDB}(\mathbf{D})$.

- The following have natural and obvious definitions:
- order-based schema
- In the relational model, morphisms which are defined without using negation (explicitly or implicitly) are order morphisms.

Order-Based Views and Updates

Problem: Characterize "good" complements formally.
Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion. Notation: $\sqsubseteq_{\mathbf{D}}$ for this order on $\operatorname{LDB}(\mathbf{D})$.

- The following have natural and obvious definitions:
- order-based schema
- In the relational model, morphisms which are defined without using negation (explicitly or implicitly) are order morphisms.
- order-preserving database morphism (or order morphism)

Order-Based Views and Updates

Problem: Characterize "good" complements formally.
Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion. Notation: $\sqsubseteq_{\mathbf{D}}$ for this order on $\operatorname{LDB}(\mathbf{D})$.

- The following have natural and obvious definitions:
- order-based schema
- In the relational model, morphisms which are defined without using negation (explicitly or implicitly) are order morphisms.
- order-preserving database morphism (or order morphism)
- order view

Order-Based Views and Updates

Problem: Characterize "good" complements formally.
Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion.
Notation: $\sqsubseteq_{\mathbf{D}}$ for this order on $\operatorname{LDB}(\mathbf{D})$.

- The following have natural and obvious definitions:
- order-based schema
- In the relational model, morphisms which are defined without using negation (explicitly or implicitly) are order morphisms.
- order-preserving database morphism (or order morphism)
- order view

Insertion: $\left(M_{1}, M_{2}\right)$ with $M_{1} \sqsubseteq_{\mathbf{D}} M_{2}$.

Order-Based Views and Updates

Problem: Characterize "good" complements formally.
Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion.
Notation: $\sqsubseteq_{\mathbf{D}}$ for this order on $\operatorname{LDB}(\mathbf{D})$.

- The following have natural and obvious definitions:
- order-based schema
- In the relational model, morphisms which are defined without using negation (explicitly or implicitly) are order morphisms.
- order-preserving database morphism (or order morphism)
- order view

Insertion: $\left(M_{1}, M_{2}\right)$ with $M_{1} \sqsubseteq_{\mathbf{D}} M_{2}$.
Deletion: $\left(M_{1}, M_{2}\right)$ with $M_{2} \sqsubseteq_{\text {D }} M_{1}$.

Order-Based Views and Updates

Problem: Characterize "good" complements formally.
Order: The states of database schemata often admit a natural order. Example: In the relational model, relation-by-relation inclusion. Notation: $\sqsubseteq_{\mathbf{D}}$ for this order on $\operatorname{LDB}(\mathbf{D})$.

- The following have natural and obvious definitions:
- order-based schema
- In the relational model, morphisms which are defined without using negation (explicitly or implicitly) are order morphisms.
- order-preserving database morphism (or order morphism)
- order view

Insertion: $\left(M_{1}, M_{2}\right)$ with $M_{1} \sqsubseteq_{\mathbf{D}} M_{2}$.
Deletion: $\left(M_{1}, M_{2}\right)$ with $M_{2} \sqsubseteq_{\text {D }} M_{1}$.
Order-based update: An update which is representable as a composition of insertions and deletions.

The Uniqueness Theorem for Order-Based Updates

Order complement: $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is an order complement of $\Gamma=(\mathbf{V}, \gamma)$ if $\gamma \times \gamma^{\prime}: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V}) \times \operatorname{LDB}\left(\mathbf{V}^{\prime}\right)$
is an order isomorphism onto its image.

The Uniqueness Theorem for Order-Based Updates

Order complement: $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is an order complement of $\Gamma=(\mathbf{V}, \gamma)$ if $\gamma \times \gamma^{\prime}: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V}) \times \operatorname{LDB}\left(\mathbf{V}^{\prime}\right)$ is an order isomorphism onto its image.

$$
R[A] S[A]
$$

Example: In the context $\mathbf{E}_{2}=(\{R[A], S[A]\}, \emptyset)$:

The Uniqueness Theorem for Order-Based Updates

Order complement: $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is an order complement of $\Gamma=(\mathbf{V}, \gamma)$ if $\gamma \times \gamma^{\prime}: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V}) \times \operatorname{LDB}\left(\mathbf{V}^{\prime}\right)$ is an order isomorphism onto its image.

$$
R[A] S[A]
$$

Example: In the context $\mathbf{E}_{2}=(\{R[A], S[A]\}, \emptyset)$:

- $\Pi_{S}^{\mathrm{E}_{2}}$ is an order complement of $\Pi_{R}^{\mathrm{E}_{2}}$.

The Uniqueness Theorem for Order-Based Updates

Order complement: $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is an order complement of $\Gamma=(\mathbf{V}, \gamma)$ if $\gamma \times \gamma^{\prime}: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V}) \times \operatorname{LDB}\left(\mathbf{V}^{\prime}\right)$ is an order isomorphism onto its image.

$$
R[A] S[A]
$$

Example: In the context $\mathbf{E}_{2}=(\{R[A], S[A]\}, \emptyset)$:

- $\Pi_{S}^{\mathrm{E}_{2}}$ is an order complement of $\Pi_{R}^{\mathrm{E}_{2}}$.
- $\Pi_{R \Delta S}^{\mathrm{E}_{2}}$ is not an order complement of $\Pi_{R}^{\mathrm{E}_{2}}$.

The Uniqueness Theorem for Order-Based Updates

Order complement: $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is an order complement of $\Gamma=(\mathbf{V}, \gamma)$ if $\gamma \times \gamma^{\prime}: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V}) \times \operatorname{LDB}\left(\mathbf{V}^{\prime}\right)$ is an order isomorphism onto its image.

$$
R[A] S[A]
$$

Example: In the context $\mathbf{E}_{2}=(\{R[A], S[A]\}, \emptyset)$:

- $\Pi_{S}^{\mathrm{E}_{2}}$ is an order complement of $\Pi_{R}^{\mathrm{E}_{2}}$.
- $\Pi_{R \Delta S}^{\mathrm{E}_{2}}$ is not an order complement of $\Pi_{R}^{\mathrm{E}_{2}}$.

Theorem: Reflection invariance holds for order-based updates in an order-based context: the realization of an order-based view update is independent of the choice of order complement.

The Uniqueness Theorem for Order-Based Updates

Order complement: $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is an order complement of $\Gamma=(\mathbf{V}, \gamma)$ if

$$
\gamma \times \gamma^{\prime}: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V}) \times \operatorname{LDB}\left(\mathbf{V}^{\prime}\right)
$$ is an order isomorphism onto its image.

$$
R[A] S[A]
$$

Example: In the context $\mathbf{E}_{2}=(\{R[A], S[A]\}, \emptyset)$:

- $\Pi_{S}^{\mathrm{E}_{2}}$ is an order complement of $\Pi_{R}^{\mathrm{E}_{2}}$.
- $\Pi_{R \Delta S}^{\mathrm{E}_{2}}$ is not an order complement of $\Pi_{R}^{\mathrm{E}_{2}}$.

$R[A] \quad R \Delta S[A]$
Theorem: Reflection invariance holds for order-based updates in an order-based context: the realization of an order-based view update is independent of the choice of order complement.

Tricks in the relational context to make additional updates order based:

The Uniqueness Theorem for Order-Based Updates

Order complement: $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is an order complement of $\Gamma=(\mathbf{V}, \gamma)$ if

$$
\gamma \times \gamma^{\prime}: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V}) \times \operatorname{LDB}\left(\mathbf{V}^{\prime}\right)
$$ is an order isomorphism onto its image.

$$
R[A] S[A]
$$

Example: In the context $\mathbf{E}_{2}=(\{R[A], S[A]\}, \emptyset)$:

- $\Pi_{S}^{\mathrm{E}_{2}}$ is an order complement of $\Pi_{R}^{\mathrm{E}_{2}}$.
- $\Pi_{R \Delta S}^{\mathrm{E}_{2}}$ is not an order complement of $\Pi_{R}^{\mathrm{E}_{2}}$.

$R[A] \quad R \Delta S[A]$
Theorem: Reflection invariance holds for order-based updates in an order-based context: the realization of an order-based view update is independent of the choice of order complement.

Tricks in the relational context to make additional updates order based:

- Forget all constraints except the decomposition dependency.

The Uniqueness Theorem for Order-Based Updates

Order complement: $\Gamma^{\prime}=\left(\mathbf{V}^{\prime}, \gamma^{\prime}\right)$ is an order complement of $\Gamma=(\mathbf{V}, \gamma)$ if

$$
\gamma \times \gamma^{\prime}: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V}) \times \operatorname{LDB}\left(\mathbf{V}^{\prime}\right)
$$ is an order isomorphism onto its image.

$$
R[A] S[A]
$$

Example: In the context $\mathbf{E}_{2}=(\{R[A], S[A]\}, \emptyset)$:

- $\Pi_{S}^{\mathrm{E}_{2}}$ is an order complement of $\Pi_{R}^{\mathrm{E}_{2}}$.
- $\Pi_{R \Delta S}^{\mathrm{E}_{2}}$ is not an order complement of $\Pi_{R}^{\mathrm{E}_{2}}$.

$R[A] \quad R \Delta S[A]$
Theorem: Reflection invariance holds for order-based updates in an order-based context: the realization of an order-based view update is independent of the choice of order complement.

Tricks in the relational context to make additional updates order based:

- Forget all constraints except the decomposition dependency.
- Extend the schemata using null values.

An Example of the Nonuniqueness of Order Complements

- The order-based context exhibits reflection invariance.

An Example of the Nonuniqueness of Order Complements

- The order-based context exhibits reflection invariance.
- A simple example shows that it need not exhibit update-set invariance.

An Example of the Nonuniqueness of Order Complements

- The order-based context exhibits reflection invariance.
- A simple example shows that it need not exhibit update-set invariance.
- Let $\mathbf{E}_{3}=(R[A B C D],\{B \rightarrow D, C \rightarrow D\})$.

$$
\begin{gathered}
\{B \rightarrow D, C \rightarrow D\} \\
R[A B C D]
\end{gathered}
$$

An Example of the Nonuniqueness of Order Complements

- The order-based context exhibits reflection invariance.
- A simple example shows that it need not exhibit update-set invariance.
- Let $\mathbf{E}_{3}=(R[A B C D],\{B \rightarrow D, C \rightarrow D\})$. $\{B \rightarrow D, C \rightarrow D\}$
- The view to be updated is $\Pi_{A B C}^{\mathrm{E}_{3}}$.

An Example of the Nonuniqueness of Order Complements

- The order-based context exhibits reflection invariance.
- A simple example shows that it need not exhibit update-set invariance.
- Let $\mathbf{E}_{3}=(R[A B C D],\{B \rightarrow D, C \rightarrow D\})$. $\{B \rightarrow D, C \rightarrow D\}$
- The view to be updated is $\Pi_{A B C}^{\mathrm{E}_{3}}$.
- Both $\Pi_{B D}^{\mathrm{E}_{3}}$ and $\Pi_{C D}^{\mathrm{E}_{3}}$ are complements.

An Example of the Nonuniqueness of Order Complements

- The order-based context exhibits reflection invariance.
- A simple example shows that it need not exhibit update-set invariance.
- Let $\mathbf{E}_{3}=(R[A B C D],\{B \rightarrow D, C \rightarrow D\})$.

An Example of the Nonuniqueness of Order Complements

- The order-based context exhibits reflection invariance.
- A simple example shows that it need not exhibit update-set invariance.
- Let $\mathbf{E}_{3}=(R[A B C D],\{B \rightarrow D, C \rightarrow D\})$.

- There is no smaller projection which is a complement.

An Example of the Nonuniqueness of Order Complements

- The order-based context exhibits reflection invariance.
- A simple example shows that it need not exhibit update-set invariance.
- Let $\mathbf{E}_{3}=(R[A B C D],\{B \rightarrow D, C \rightarrow D\})$.

$$
\{B \rightarrow D, C \rightarrow D\}
$$

$R[A B C D]$

$$
R[B D] \quad R[A B C] \quad R[C D]
$$

$$
\{B \rightarrow D\} \quad\{C \rightarrow D\}
$$

- The view to be updated is $\Pi_{A B C}^{\mathrm{E}_{3}}$.
- Both $\Pi_{B D}^{\mathrm{E}_{3}}$ and $\Pi_{C D}^{\mathrm{E}_{3}}$ are complements.
- The schema \mathbf{E}_{3} is completely symmetric in B and C, so (mathematically) there is no way to prefer one complement to the other.
- There is no smaller projection which is a complement.
- $\Pi_{B D}^{\mathrm{E}_{3}}$ constant $\Rightarrow R[A C]$ may change, $R[B]$ may not change.

An Example of the Nonuniqueness of Order Complements

- The order-based context exhibits reflection invariance.
- A simple example shows that it need not exhibit update-set invariance.
- Let $\mathbf{E}_{3}=(R[A B C D],\{B \rightarrow D, C \rightarrow D\})$.
- The view to be updated is $\Pi_{A B C}^{\mathrm{E}_{3}}$.
- Both $\Pi_{B D}^{\mathrm{E}_{3}}$ and $\Pi_{C D}^{\mathrm{E}_{3}}$ are complements.
- The schema \mathbf{E}_{3} is completely symmetric in B and C, so (mathematically) there is no way to prefer one complement to the other.

$$
\{B \rightarrow D, C \rightarrow D\}
$$

$R[A B C D]$

$R[B D] \quad R[A B C] \quad R[C D]$
$\{B \rightarrow D\} \quad\{C \rightarrow D\}$

- There is no smaller projection which is a complement.
- $\Pi_{B D}^{\mathrm{E}_{3}}$ constant $\Rightarrow R[A C]$ may change, $R[B]$ may not change.
- $\Pi_{C D}^{\mathrm{E}_{3}}$ constant $\Rightarrow R[A B]$ may change, $R[C]$ may not change.

An Example of the Nonuniqueness of Order Complements

- The order-based context exhibits reflection invariance.
- A simple example shows that it need not exhibit update-set invariance.
- Let $\mathbf{E}_{3}=(R[A B C D],\{B \rightarrow D, C \rightarrow D\})$.
- The view to be updated is $\Pi_{A B C}^{\mathrm{E}_{3}}$.
- Both $\Pi_{B D}^{\mathrm{E}_{3}}$ and $\Pi_{C D}^{\mathrm{E}_{3}}$ are complements.
- The schema \mathbf{E}_{3} is completely symmetric in B and C, so (mathematically) there is no way to prefer one complement to the other.

$$
\{B \rightarrow D, C \rightarrow D\}
$$

$R[A B C D]$

- There is no smaller projection which is a complement.
- $\Pi_{B D}^{\mathrm{E}_{3}}$ constant $\Rightarrow R[A C]$ may change, $R[B]$ may not change.
- $\Pi_{C D}^{\mathrm{E}_{3}}$ constant $\Rightarrow R[A B]$ may change, $R[C]$ may not change.

Reflection invariance: Updates which are possible with both complements must keep both constant $R[A]$ only may change, with the same reflections in each case.

Minimal and Optimal Complements

- The examples so far have worked implicitly with minimal complements.

Minimal and Optimal Complements

- The examples so far have worked implicitly with minimal complements. Formal context: Schema $\mathbf{D} ; \quad$ set \mathcal{V} of views of $\mathbf{D} ; \quad \Gamma_{1}, \Gamma_{2} \in \mathcal{V}$.

Minimal and Optimal Complements

- The examples so far have worked implicitly with minimal complements. Formal context: Schema D; set \mathcal{V} of views of $\mathbf{D} ; \quad \Gamma_{1}, \Gamma_{2} \in \mathcal{V}$.
- $\Gamma_{1} \preceq_{\mathbf{D}} \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subseteq \operatorname{Congr}\left(\Gamma_{1}\right)$.

Minimal and Optimal Complements

- The examples so far have worked implicitly with minimal complements. Formal context: Schema $\mathbf{D} ; \quad$ set \mathcal{V} of views of $\mathbf{D} ; \quad \Gamma_{1}, \Gamma_{2} \in \mathcal{V}$.
- $\Gamma_{1} \preceq_{\mathbf{D}} \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subseteq \operatorname{Congr}\left(\Gamma_{1}\right)$.
- $\Gamma_{1} \prec_{\mathbf{D}} \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subsetneq \operatorname{Congr}\left(\Gamma_{1}\right)$ iff $\Gamma_{1} \preceq_{\mathbf{D}} \Gamma_{2}$ and $\Gamma_{2} \not_{\mathbf{D}} \Gamma_{1}$.

Minimal and Optimal Complements

- The examples so far have worked implicitly with minimal complements. Formal context: Schema $\mathbf{D} ; \quad$ set \mathcal{V} of views of $\mathbf{D} ; \quad \Gamma_{1}, \Gamma_{2} \in \mathcal{V}$.
- $\Gamma_{1} \preceq_{\mathbf{D}} \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subseteq \operatorname{Congr}\left(\Gamma_{1}\right)$.
- $\Gamma_{1} \prec_{\mathbf{D}} \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subsetneq \operatorname{Congr}\left(\Gamma_{1}\right)$ iff $\Gamma_{1} \preceq_{\mathbf{D}} \Gamma_{2}$ and $\Gamma_{2} \not_{\mathbf{D}} \Gamma_{1}$.
- $\Gamma_{2} \in \mathcal{V}$ is a minimal [meet] complement of Γ_{1} relative to \mathcal{V} if for no other [meet] complement $\Gamma_{3} \in \mathcal{V}$ it is the case that $\Gamma_{3} \prec_{D} \Gamma_{2}$.

Minimal and Optimal Complements

- The examples so far have worked implicitly with minimal complements. Formal context: Schema $\mathbf{D} ; \quad$ set \mathcal{V} of views of $\mathbf{D} ; \quad \Gamma_{1}, \Gamma_{2} \in \mathcal{V}$.
- $\Gamma_{1} \preceq_{\mathbf{D}} \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subseteq \operatorname{Congr}\left(\Gamma_{1}\right)$.
- $\Gamma_{1} \prec_{\mathbf{D}} \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subsetneq \operatorname{Congr}\left(\Gamma_{1}\right)$ iff $\Gamma_{1} \preceq_{\mathbf{D}} \Gamma_{2}$ and $\Gamma_{2} \AA_{\mathbf{D}} \Gamma_{1}$.
- $\Gamma_{2} \in \mathcal{V}$ is a minimal [meet] complement of Γ_{1} relative to \mathcal{V} if for no other [meet] complement $\Gamma_{3} \in \mathcal{V}$ it is the case that $\Gamma_{3} \prec_{D} \Gamma_{2}$.
Motivation: The smaller the complement, the greater the number of view updates supported.

Minimal and Optimal Complements

- The examples so far have worked implicitly with minimal complements. Formal context: Schema $\mathbf{D} ; \quad$ set \mathcal{V} of views of $\mathbf{D} ; \quad \Gamma_{1}, \Gamma_{2} \in \mathcal{V}$.
- $\Gamma_{1} \preceq_{\mathbf{D}} \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subseteq \operatorname{Congr}\left(\Gamma_{1}\right)$.
- $\Gamma_{1} \prec_{\mathbf{D}} \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subsetneq \operatorname{Congr}\left(\Gamma_{1}\right)$ iff $\Gamma_{1} \preceq_{\mathbf{D}} \Gamma_{2}$ and $\Gamma_{2} \AA_{\mathbf{D}} \Gamma_{1}$.
- $\Gamma_{2} \in \mathcal{V}$ is a minimal [meet] complement of Γ_{1} relative to \mathcal{V} if for no other [meet] complement $\Gamma_{3} \in \mathcal{V}$ it is the case that $\Gamma_{3} \prec_{D} \Gamma_{2}$.
Motivation: The smaller the complement, the greater the number of view updates supported.
- Clearly, minimal is always desirable.

Minimal and Optimal Complements

- The examples so far have worked implicitly with minimal complements. Formal context: Schema $\mathbf{D} ; \quad$ set \mathcal{V} of views of $\mathbf{D} ; \quad \Gamma_{1}, \Gamma_{2} \in \mathcal{V}$.
- $\Gamma_{1} \preceq_{\mathbf{D}} \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subseteq \operatorname{Congr}\left(\Gamma_{1}\right)$.
- $\Gamma_{1} \prec_{\mathbf{D}} \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subsetneq \operatorname{Congr}\left(\Gamma_{1}\right)$ iff $\Gamma_{1} \preceq_{\mathbf{D}} \Gamma_{2}$ and $\Gamma_{2} \AA_{\mathbf{D}} \Gamma_{1}$.
- $\Gamma_{2} \in \mathcal{V}$ is a minimal [meet] complement of Γ_{1} relative to \mathcal{V} if for no other [meet] complement $\Gamma_{3} \in \mathcal{V}$ it is the case that $\Gamma_{3} \prec_{D} \Gamma_{2}$.
Motivation: The smaller the complement, the greater the number of view updates supported.
- Clearly, minimal is always desirable.
- However, minimal cannot guarantee update-set invariance, since distinct minimal complements give rise to distinct update sets.

Minimal and Optimal Complements

- The examples so far have worked implicitly with minimal complements. Formal context: Schema $\mathbf{D} ; \quad$ set \mathcal{V} of views of $\mathbf{D} ; \quad \Gamma_{1}, \Gamma_{2} \in \mathcal{V}$.
- $\Gamma_{1} \preceq_{\mathbf{D}} \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subseteq \operatorname{Congr}\left(\Gamma_{1}\right)$.
- $\Gamma_{1} \prec_{\mathbf{D}} \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subsetneq \operatorname{Congr}\left(\Gamma_{1}\right)$ iff $\Gamma_{1} \preceq_{\mathbf{D}} \Gamma_{2}$ and $\Gamma_{2} \preceq_{\mathbf{D}} \Gamma_{1}$.
- $\Gamma_{2} \in \mathcal{V}$ is a minimal [meet] complement of Γ_{1} relative to \mathcal{V} if for no other [meet] complement $\Gamma_{3} \in \mathcal{V}$ it is the case that $\Gamma_{3} \prec_{\boldsymbol{D}} \Gamma_{2}$.
Motivation: The smaller the complement, the greater the number of view updates supported.
- Clearly, minimal is always desirable.
- However, minimal cannot guarantee update-set invariance, since distinct minimal complements give rise to distinct update sets.
- $\Gamma_{2} \in \mathcal{V}$ is an optimal [meet] complement of Γ_{1} relative to \mathcal{V} if for every other [meet] complement $\Gamma_{3} \in \mathcal{V}$, it is the case that $\Gamma_{2} \preceq_{D} \Gamma_{3}$.

Minimal and Optimal Complements

- The examples so far have worked implicitly with minimal complements. Formal context: Schema $\mathbf{D} ; \quad$ set \mathcal{V} of views of $\mathbf{D} ; \quad \Gamma_{1}, \Gamma_{2} \in \mathcal{V}$.
- $\Gamma_{1} \preceq_{\mathbf{D}} \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subseteq \operatorname{Congr}\left(\Gamma_{1}\right)$.
- $\Gamma_{1} \prec_{\mathbf{D}} \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subsetneq \operatorname{Congr}\left(\Gamma_{1}\right)$ iff $\Gamma_{1} \preceq_{\mathbf{D}} \Gamma_{2}$ and $\Gamma_{2} Ł_{\mathbf{D}} \Gamma_{1}$.
- $\Gamma_{2} \in \mathcal{V}$ is a minimal [meet] complement of Γ_{1} relative to \mathcal{V} if for no other [meet] complement $\Gamma_{3} \in \mathcal{V}$ it is the case that $\Gamma_{3} \prec_{\boldsymbol{D}} \Gamma_{2}$.
Motivation: The smaller the complement, the greater the number of view updates supported.
- Clearly, minimal is always desirable.
- However, minimal cannot guarantee update-set invariance, since distinct minimal complements give rise to distinct update sets.
- $\Gamma_{2} \in \mathcal{V}$ is an optimal [meet] complement of Γ_{1} relative to \mathcal{V} if for every other [meet] complement $\Gamma_{3} \in \mathcal{V}$, it is the case that $\Gamma_{2} \preceq_{D} \Gamma_{3}$.
Movivation: It is precisely an optimal complement which guarantees update-set independence.

Examples of Minimal and Optimal Complements

Context: Consider again the running example \mathbf{E}_{3}.

Examples of Minimal and Optimal Complements

Context: Consider again the running example \mathbf{E}_{3}.

- Both $\Pi_{D}^{\mathrm{E}_{3}}$ and $\Pi_{C D}^{\mathrm{E}_{3}}$ are minimal complements of $\Pi_{A B C}^{\mathrm{E}_{3}}$ relative to the projections Π-Views $\left\langle\mathbf{E}_{3}\right\rangle$.
$\{B \rightarrow D, C \rightarrow D\}$
$R[A B C D]$
$\pi_{B D}^{\mathrm{E}_{3}} / \pi_{A B C}^{\mathrm{E}_{3}} \pi_{C D}^{\mathrm{E}_{3}}$
$R[B D] R[A B C] R[C D]$
$\{B \rightarrow D\} \quad\{C \rightarrow D\}$

Examples of Minimal and Optimal Complements

Context: Consider again the running example \mathbf{E}_{3}.

- Both $\Pi_{D}^{\mathrm{E}_{3}}$ and $\Pi_{C D}^{\mathrm{E}_{3}}$ are minimal complements of $\Pi_{A B C}^{\mathbf{E}_{3}}$ relative to the projections Π-Views $\left\langle\mathbf{E}_{3}\right\rangle$.
- Thus, neither can be optimal.

Examples of Minimal and Optimal Complements

Context: Consider again the running example \mathbf{E}_{3}.

- Both $\Pi_{D}^{\mathrm{E}_{3}}$ and $\Pi_{C D}^{\mathrm{E}_{3}}$ are minimal complements of $\Pi_{A B C}^{\mathrm{E}_{3}}$ relative to the projections Π-Views $\left\langle\mathbf{E}_{3}\right\rangle$.
- Thus, neither can be optimal.
- $\Pi_{B C D}^{\mathrm{E}_{3}}$ is a complement which is not minimal relative to Π-Views $\left\langle\mathbf{E}_{3}\right\rangle$.
$\{B \rightarrow D, C \rightarrow D\}$
$R[A B C D]$
$\pi_{B D}^{\mathrm{E}_{3}} \pi_{A B C}^{\mathrm{E}_{3}^{\prime}} \pi_{C D}^{\mathrm{E}_{3}}$
$R[B D] R[A B C]$
$\{B \rightarrow D\} \quad R[C D]$

$$
\{B \rightarrow D, C \rightarrow D\}
$$

$$
R[A B C D]
$$

$R[B C D]$
$R[A B C]$
$\{B \rightarrow D$,
$C \rightarrow D\}$

Examples of Minimal and Optimal Complements

Context: Consider again the running example \mathbf{E}_{3}.

- Both $\Pi_{D}^{\mathrm{E}_{3}}$ and $\Pi_{C D}^{\mathrm{E}_{3}}$ are minimal complements of $\Pi_{A B C}^{\mathrm{E}_{3}}$ relative to the projections Π-Views $\left\langle\mathbf{E}_{3}\right\rangle$.
- Thus, neither can be optimal.
- $\Pi_{B C D}^{\mathrm{E}_{3}}$ is a complement which is not minimal relative to Π-Views $\left\langle\mathbf{E}_{3}\right\rangle$.
- But $\Pi_{B C D}^{\mathrm{E}_{3}}$ is an optimal meet complement amongst projections.

$R[A B C D]$
$\{B \rightarrow D, C \rightarrow D\}$
$R[A B C D]$

$R[A B C]$
$C \rightarrow D\}$

Examples of Minimal and Optimal Complements

Context: Consider again the running example \mathbf{E}_{3}.

- Both $\Pi_{D}^{\mathrm{E}_{3}}$ and $\Pi_{C D}^{\mathrm{E}_{3}}$ are minimal complements of $\Pi_{A B C}^{\mathrm{E}_{3}}$ relative to the projections Π-Views $\left\langle\mathbf{E}_{3}\right\rangle$.
- Thus, neither can be optimal.
- $\Pi_{B C D}^{\mathrm{E}_{3}}$ is a complement which is not minimal relative to Π-Views $\left\langle\mathbf{E}_{3}\right\rangle$.
- But $\Pi_{B C D}^{\mathrm{E}_{3}}$ is an optimal meet complement amongst projections.
- If state invariance is desired, $\Pi_{B C D}^{\mathrm{E}_{3}}$ is the best which can be achieved.

$$
\{B \rightarrow D, C \rightarrow D\}
$$

$$
R[A B C D]
$$

$R[B D] R[A B C] R[C D]$
$\{B \rightarrow D\} \quad\{C \rightarrow D\}$
$\{B \rightarrow D, C \rightarrow D\}$ $R[A B C D]$

$R[B C D] \quad R[A B C]$
$\{B \rightarrow D$,
$C \rightarrow D\}$

Examples of Minimal and Optimal Complements

Context: Consider again the running example \mathbf{E}_{3}.

- Both $\Pi_{D}^{\mathrm{E}_{3}}$ and $\Pi_{C D}^{\mathrm{E}_{3}}$ are minimal complements of $\Pi_{A B C}^{\mathrm{E}_{3}}$ relative to the projections Π-Views $\left\langle\mathbf{E}_{3}\right\rangle$.
- Thus, neither can be optimal.
- $\Pi_{B C D}^{\mathrm{E}_{3}}$ is a complement which is not minimal relative to Π-Views $\left\langle\mathbf{E}_{3}\right\rangle$.
- But $\Pi_{B C D}^{\mathrm{E}_{3}}$ is an optimal meet complement amongst projections.
- If state invariance is desired, $\Pi_{B C D}^{\mathrm{E}_{3}}$ is the best which can be achieved.
- Update-set independence comes as a bonus, but for a smaller set of updates than supported by $\Pi_{B D}^{\mathrm{E}_{3}}$ or $\Pi_{C D}^{\mathrm{E}_{3}}$ as complements.

$$
\{B \rightarrow D, C \rightarrow D\}
$$

$$
R[A B C D]
$$

$R[B D] R[A B C] R[C D]$
$\{B \rightarrow D\} \quad\{C \rightarrow D\}$
$\{B \rightarrow D, C \rightarrow D\}$ $R[A B C D]$

$R[B C D] \quad R[A B C]$
$\{B \rightarrow D$,
$C \rightarrow D\}$

Examples of Minimal and Optimal Complements

Context: Consider again the running example \mathbf{E}_{3}.

- Both $\Pi_{D}^{\mathrm{E}_{3}}$ and $\Pi_{C D}^{\mathrm{E}_{3}}$ are minimal complements of $\Pi_{A B C}^{\mathrm{E}_{3}}$ relative to the projections Π-Views $\left\langle\mathbf{E}_{3}\right\rangle$.
- Thus, neither can be optimal.
- $\Pi_{B C D}^{\mathrm{E}_{3}}$ is a complement which is not minimal relative to Π-Views $\left\langle\mathbf{E}_{3}\right\rangle$.
- But $\Pi_{B C D}^{\mathrm{E}_{3}}$ is an optimal meet complement amongst projections.
- If state invariance is desired, $\Pi_{B C D}^{\mathrm{E}_{3}}$ is the best which can be achieved.
- Update-set independence comes as a bonus, but for a smaller set of updates than supported by $\Pi_{B D}^{\mathrm{E}_{3}}$ or $\Pi_{C D}^{\mathrm{E}_{3}}$ as complements.

$$
\{B \rightarrow D, C \rightarrow D\}
$$

$$
R[A B C D]
$$

$R[B D] R[A B C] R[C D]$
$\{B \rightarrow D\} \quad\{C \rightarrow D\}$
$\{B \rightarrow D, C \rightarrow D\}$ $R[A B C D]$

$R[B C D] \quad R[A B C]$
$\{B \rightarrow D$,
$C \rightarrow D\}$

- Clearly, there are tradeoffs.

The Context of $\bigvee 7$-Views

- Consider again the running example.
$\{B \rightarrow D, C \rightarrow D\}$ $R[A B C D]$
\downarrow
$\pi_{A B C}^{E_{3}}$
\downarrow
$R[A B C]$

The Context of $\bigvee \square$-Views

- Consider again the running example.
- The view $\Pi_{B C D}^{\mathrm{E}_{3}}$ is the optimal meet complement of $\Pi_{A B C}^{\mathrm{E}_{3}}$ amongst all projections.

$$
\begin{gathered}
\quad\{B \rightarrow D, C \rightarrow D\} \\
R[A B C D] \\
\pi_{\{B C D\}}^{\mathrm{E}_{3}} / \begin{array}{c}
\mid \\
\pi_{A B C}^{\mathrm{E}_{3}} \\
\downarrow \\
R[B C D] \\
R[A B C]
\end{array} \\
\{B \rightarrow D, \\
C \rightarrow D\}
\end{gathered}
$$

The Context of $\bigvee \square$-Views

- Consider again the running example.
- The view $\Pi_{B C D}^{\mathrm{E}_{3}}$ is the optimal meet complement of $\Pi_{A B C}^{\mathrm{E}_{3}}$ amongst all projections.
- However, consider the view $\Pi_{\{B D, C D\}}^{\mathrm{E}_{3}}$ which consists of two projections $B D$ and $C D$.

$$
\{B \rightarrow D, C \rightarrow D\}
$$

$$
R[A B C D]
$$

$R[B C D] R[A B C] R[B D] R[C D]$
$\{B \rightarrow D$, $\{B \rightarrow D$,
$C \rightarrow D\}$

The Context of $\bigvee \square$-Views

- Consider again the running example.
- The view $\Pi_{B C D}^{\mathrm{E}_{3}}$ is the optimal meet complement of $\Pi_{A B C}^{\mathrm{E}_{3}}$ amongst all projections.
- However, consider the view $\Pi_{\{B D, C D\}}^{\mathrm{E}_{3}}$ which consists of two projections $B D$ and $C D$.

$$
\{B \rightarrow D, C \rightarrow D\}
$$

$$
R[A B C D]
$$

- It is a smaller meet complement: $\Pi_{\{B D, C D\}}^{\mathrm{E}_{3}} \prec_{\mathrm{E}_{3}} \Pi_{B C D}^{\mathrm{E}_{3}}$.

The Context of $\bigvee \square$-Views

- Consider again the running example.
- The view $\Pi_{B C D}^{\mathrm{E}_{3}}$ is the optimal meet complement of $\Pi_{A B C}^{\mathrm{E}_{3}}$ amongst all projections.
- However, consider the view $\Pi_{\{B D, C D\}}^{\mathrm{E}_{3}}$ which consists of two projections $B D$ and $C D$.

$$
\{B \rightarrow D, C \rightarrow D\}
$$

$$
R[A B C D]
$$

- It is a smaller meet complement: $\Pi_{\{B D, C D\}}^{\mathrm{E}_{3}} \prec_{\mathrm{E}_{3}} \Pi_{B C D}^{\mathrm{E}_{3}}$.
- The association of B-values and C-values is not preserved by this view.

The Context of $\bigvee 7$-Views

- Consider again the running example.
- The view $\Pi_{B C D}^{\mathrm{E}_{3}}$ is the optimal meet complement of $\Pi_{A B C}^{\mathrm{E}_{3}}$ amongst all projections.
- However, consider the view $\Pi_{\{B D, C D\}}^{\mathrm{E}_{3}}$ which consists of two projections $B D$ and $C D$.

$$
\{B \rightarrow D, C \rightarrow D\}
$$

$$
R[A B C D]
$$

- It is a smaller meet complement: $\Pi_{\{B D, C D\}}^{\mathrm{E}_{3}} \prec_{\mathrm{E}_{3}} \Pi_{B C D}^{\mathrm{E}_{3}}$.
- The association of B-values and C-values is not preserved by this view.
- Such a view consisting of multiple projections is called a $\bigvee \Pi$-view.

The Context of $\bigvee 7$-Views

- Consider again the running example.

$$
\{B \rightarrow D, C \rightarrow D\}
$$

- The view $\Pi_{B C D}^{\mathrm{E}_{3}}$ is the optimal meet

$$
R[A B C D]
$$ complement of $\Pi_{A B C}^{\mathrm{E}_{3}}$ amongst all projections.

- However, consider the view $\Pi_{\{B D, C D\}}^{\mathrm{E}_{3}}$ which consists of two projections $B D$ and $C D$.

- It is a smaller meet complement: $\Pi_{\{B D, C D\}}^{\mathrm{E}_{3}} \prec_{\mathrm{E}_{3}} \Pi_{B C D}^{\mathrm{E}_{3}}$.
- The association of B-values and C-values is not preserved by this view.
- Such a view consisting of multiple projections is called a $\bigvee \Pi$-view.
- They can be used instead of single projections with little or no extra work.

The Context of $\bigvee \Pi$-Views

- Consider again the running example.
- The view $\Pi_{B C D}^{\mathrm{E}_{3}}$ is the optimal meet complement of $\Pi_{A B C}^{\mathrm{E}_{3}}$ amongst all projections.
- However, consider the view $\Pi_{\{B D, C D\}}^{\mathrm{E}_{3}}$ which consists of two projections $B D$ and $C D$.

$$
\{B \rightarrow D, C \rightarrow D\}
$$

$$
R[A B C D]
$$

- It is a smaller meet complement: $\Pi_{\{B D, C D\}}^{\mathrm{E}_{3}} \prec_{\mathrm{E}_{3}} \Pi_{B C D}^{\mathrm{E}_{3}}$.
- The association of B-values and C-values is not preserved by this view.
- Such a view consisting of multiple projections is called a $\bigvee \Pi$-view.
- They can be used instead of single projections with little or no extra work.

Notation: $\bigvee \Pi$-Views $\langle\mathbf{D}\rangle$ denotes the set of all $\bigvee \Pi$ views of \mathbf{D}.

- Context: A Universal-relational schema constrained by FDs.

Nonuniqueness of Meet Complements in the FD context

- Context: A Universal-relational schema constrained by FDs.
- A simple example of the nonexistence of optimal projective complements has been given:

Nonuniqueness of Meet Complements in the FD context

- Context: A Universal-relational schema constrained by FDs.
- A simple example of the nonexistence of optimal projective complements has been given:
- $\mathbf{E}_{3}=(R[A B C D],\{B \rightarrow D, C \rightarrow D\})$.

Nonuniqueness of Meet Complements in the FD context

- Context: A Universal-relational schema constrained by FDs.
- A simple example of the nonexistence of optimal projective complements has been given:
- $\mathbf{E}_{3}=(R[A B C D],\{B \rightarrow D, C \rightarrow D\})$.
- $\Pi_{A B C}^{\mathrm{E}_{2}}$ has distinct minimal $\bigvee \Pi$-complements $\Pi_{B D}^{\mathrm{E}_{3}}$ and $\Pi_{C D}^{\mathrm{E}_{3}}$.

Nonuniqueness of Meet Complements in the FD context

- Context: A Universal-relational schema constrained by FDs.
- A simple example of the nonexistence of optimal projective complements has been given:
- $\mathbf{E}_{3}=(R[A B C D],\{B \rightarrow D, C \rightarrow D\})$.
- $\Pi_{A B C}^{\mathrm{E}_{2}}$ has distinct minimal \bigvee-complements $\Pi_{B D}^{\mathrm{E}_{3}}$ and $\Pi_{C D}^{\mathrm{E}_{3}}$.
- However, it does have an optimal meet $\bigvee\left\lceil\right.$-complement: $\Pi_{\{B C, C D\}}^{\mathrm{E}_{3}}$.

Nonuniqueness of Meet Complements in the FD context

- Context: A Universal-relational schema constrained by FDs.
- A simple example of the nonexistence of optimal projective complements has been given:
- $\mathbf{E}_{3}=(R[A B C D],\{B \rightarrow D, C \rightarrow D\})$.
- $\Pi_{A B C}^{\mathrm{E}_{2}}$ has distinct minimal $\bigvee \Pi$-complements $\Pi_{B D}^{\mathrm{E}_{3}}$ and $\Pi_{C D}^{\mathrm{E}_{3}}$.
- However, it does have an optimal meet $\bigvee \Pi$-complement: $\Pi_{\{B C, C D\}}^{\mathrm{E}_{3}}$.

Question: Are there examples without optimal meet complements?

Nonuniqueness of Meet Complements in the FD context

- Context: A Universal-relational schema constrained by FDs.
- A simple example of the nonexistence of optimal projective complements has been given:
- $\mathbf{E}_{3}=(R[A B C D],\{B \rightarrow D, C \rightarrow D\})$.
- $\Pi_{A B C}^{\mathrm{E}_{2}}$ has distinct minimal $\bigvee \Pi$-complements $\Pi_{B D}^{\mathrm{E}_{3}}$ and $\Pi_{C D}^{\mathrm{E}_{3}}$.
- However, it does have an optimal meet $\bigvee \Pi$-complement: $\Pi_{\{B C, C D\}}^{\mathrm{E}_{3}}$.

Question: Are there examples without optimal meet complements?
Yes: $\mathbf{E}_{4}=(R[A B C],\{A \rightarrow B C, B \rightarrow A C\})$.

$$
\begin{gathered}
\{A \rightarrow B C, B \rightarrow A C\} \\
R[A B C]
\end{gathered}
$$

Nonuniqueness of Meet Complements in the FD context

- Context: A Universal-relational schema constrained by FDs.
- A simple example of the nonexistence of optimal projective complements has been given:
- $\mathbf{E}_{3}=(R[A B C D],\{B \rightarrow D, C \rightarrow D\})$.
- $\Pi_{A B C}^{\mathrm{E}_{2}}$ has distinct minimal $\bigvee \Pi$-complements $\Pi_{B D}^{\mathrm{E}_{3}}$ and $\Pi_{C D}^{\mathrm{E}_{3}}$.
- However, it does have an optimal meet $\bigvee \Pi$-complement: $\Pi_{\{B C, C D\}}^{\mathrm{E}_{3}}$.

Question: Are there examples without optimal meet complements?

Yes: $\mathbf{E}_{4}=(R[A B C],\{A \rightarrow B C, B \rightarrow A C\})$.

- The two minimal complements $\Pi_{A B}^{\mathrm{E}_{4}}$ and $\Pi_{B C}^{\mathrm{E}_{4}}$ are related by an attribute equivalence $A \leftrightarrow B$ of keys.

$$
\{A \rightarrow B C, B \rightarrow A C\}
$$ $R[A B C]$

$\{A \leftrightarrow B\}$

Nonuniqueness of Meet Complements in the FD context

- Context: A Universal-relational schema constrained by FDs.
- A simple example of the nonexistence of optimal projective complements has been given:
- $\mathbf{E}_{3}=(R[A B C D],\{B \rightarrow D, C \rightarrow D\})$.
- $\Pi_{A B C}^{\mathrm{E}_{2}}$ has distinct minimal $\bigvee \Pi$-complements $\Pi_{B D}^{\mathrm{E}_{3}}$ and $\Pi_{C D}^{\mathrm{E}_{3}}$.
- However, it does have an optimal meet $\bigvee \Pi$-complement: $\Pi_{\{B C, C D\}}^{\mathrm{E}_{3}}$.

Question: Are there examples without optimal meet complements?
Yes: $\mathbf{E}_{4}=(R[A B C],\{A \rightarrow B C, B \rightarrow A C\})$.

- The two minimal complements $\Pi_{A B}^{\mathrm{E}_{4}}$ and $\Pi_{B C}^{\mathrm{E}_{4}}$ are related by an attribute equivalence $A \leftrightarrow B$ of keys.
- This is the only way that such non-isomorphic minimal complements can occur.
U
$R[A B C]$

Equivalence of Meet Complements in the $\bigvee \Pi$-FD framework

Context: • Universal relational schema $\mathbf{D}=(R[\mathbf{U}], \mathcal{F}) ; \mathcal{F}=$ FDs.

- $\Pi_{\left\{\mathbf{W}_{2}, \mathbf{w}_{2}, \ldots \mathbf{w}_{m}\right\}}^{\mathrm{D}}$ a $\bigvee \Pi$-view.

Equivalence of Meet Complements in the $\bigvee \Pi$-FD framework

Context: - Universal relational schema $\mathbf{D}=(R[\mathbf{U}], \mathcal{F}) ; \mathcal{F}=$ FDs.

- $\Pi_{\left\{\mathbf{w}_{2}, \mathbf{w}_{2}, \ldots \mathbf{w}_{m}\right\}}^{\mathrm{D}}$ a $\bigvee \Pi$-view.

Reduced: An FD $\mathbf{Y} \rightarrow A \in \mathcal{F}^{+}$is reduced if

Equivalence of Meet Complements in the $\bigvee \Pi$-FD framework

Context: - Universal relational schema $\mathbf{D}=(R[\mathbf{U}], \mathcal{F}) ; \mathcal{F}=$ FDs.

- $\Pi_{\left\{\mathbf{W}_{2}, \mathbf{W}_{2}, \ldots \mathbf{w}_{m}\right\}}^{\mathrm{D}}$ a $\bigvee \Pi$-view.

Reduced: An FD $\mathbf{Y} \rightarrow A \in \mathcal{F}^{+}$is reduced if

- $A \in \mathbf{U}$ (single attribute on RHS)

Equivalence of Meet Complements in the $\bigvee \Pi$-FD framework

Context: - Universal relational schema $\mathbf{D}=(R[\mathbf{U}], \mathcal{F}) ; \mathcal{F}=$ FDs.

- $\Pi_{\left\{\mathbf{W}_{2}, \mathbf{W}_{2}, \ldots \mathbf{w}_{m}\right\}}^{\mathrm{D}}$ a $\bigvee \Pi$-view.

Reduced: An FD $\mathbf{Y} \rightarrow A \in \mathcal{F}^{+}$is reduced if

- $A \in \mathbf{U}$ (single attribute on RHS)
- For any proper subset $\mathbf{Y}^{\prime} \subsetneq \mathbf{Y}, \mathbf{Y}^{\prime} \rightarrow A \notin \mathcal{F}^{+}$.

Equivalence of Meet Complements in the $\bigvee \Pi$-FD framework

Context: - Universal relational schema $\mathbf{D}=(R[\mathbf{U}], \mathcal{F}) ; \mathcal{F}=$ FDs.

- $\Pi_{\left\{\mathbf{w}_{2}, \mathbf{w}_{2}, \ldots \mathbf{w}_{m}\right\}}^{\mathrm{D}}$ a $\bigvee \Pi$-view.

Reduced: An FD $\mathbf{Y} \rightarrow A \in \mathcal{F}^{+}$is reduced if

- $A \in \mathbf{U}$ (single attribute on RHS)
- For any proper subset $\mathbf{Y}^{\prime} \subsetneq \mathbf{Y}, \mathbf{Y}^{\prime} \rightarrow A \notin \mathcal{F}^{+}$.

FD-equivalence: \mathbf{Y} and \mathbf{Z} are $F D$-equivalent (for \mathcal{F}), written $\mathbf{Y} \leftrightarrow \mathbf{Z}$, if both $\mathbf{Y} \rightarrow \mathbf{Z}$ and $\mathbf{Z} \rightarrow \mathbf{Y}$ hold.

Equivalence of Meet Complements in the \} \rceil -FD framework

Context: - Universal relational schema $\mathbf{D}=(R[\mathbf{U}], \mathcal{F}) ; \mathcal{F}=$ FDs.

- $\Pi_{\left\{\mathbf{W}_{2}, \mathbf{w}_{2}, \ldots \mathbf{w}_{m}\right\}}^{\mathrm{D}}$ a $\bigvee \Pi$-view.

Reduced: An FD $\mathbf{Y} \rightarrow A \in \mathcal{F}^{+}$is reduced if

- $A \in \mathbf{U}$ (single attribute on RHS)
- For any proper subset $\mathbf{Y}^{\prime} \subsetneq \mathbf{Y}, \mathbf{Y}^{\prime} \rightarrow A \notin \mathcal{F}^{+}$.

FD-equivalence: \mathbf{Y} and \mathbf{Z} are $F D$-equivalent (for \mathcal{F}), written $\mathbf{Y} \leftrightarrow \mathbf{Z}$, if both $\mathbf{Y} \rightarrow \mathbf{Z}$ and $\mathbf{Z} \rightarrow \mathbf{Y}$ hold.

Definition: $\Pi_{\left\{\mathbf{W}_{1}^{\prime}, \mathbf{W}_{2}^{\prime}, \ldots \mathbf{W}_{m^{\prime}}^{\prime}\right\}}^{\mathrm{D}}$, and $\Pi_{\left\{\mathbf{W}_{1}^{\prime \prime}, \mathbf{W}_{2}^{\prime \prime}, \ldots \mathbf{W}_{m^{\prime \prime}}^{\prime \prime}\right\}}^{\mathrm{D}}$ are FD-equivalent if for every $i \in\{1,2, \ldots, m\}$ and every $\mathbf{Y} \subseteq \mathbf{W}_{i}$ which is reduced for \mathcal{F}, there is a $j \in\left\{1,2, \ldots, m^{\prime \prime}\right\}$ and a $\mathbf{Z} \subseteq \mathbf{W}_{j}^{\prime \prime}$ with $\mathbf{Y} \leftrightarrow \mathbf{Z}$; and conversely.

Equivalence of Meet Complements in the \} \rceil -FD framework

Context: - Universal relational schema $\mathbf{D}=(R[\mathbf{U}], \mathcal{F}) ; \mathcal{F}=$ FDs.

- $\Pi_{\left\{\mathbf{W}_{2}, \mathbf{W}_{2}, \ldots \mathbf{W}_{m}\right\}}^{\mathrm{D}}$ a $\bigvee \Pi$-view.

Reduced: An FD $\mathbf{Y} \rightarrow A \in \mathcal{F}^{+}$is reduced if

- $A \in \mathbf{U}$ (single attribute on RHS)
- For any proper subset $\mathbf{Y}^{\prime} \subsetneq \mathbf{Y}, \mathbf{Y}^{\prime} \rightarrow A \notin \mathcal{F}^{+}$.

FD-equivalence: \mathbf{Y} and \mathbf{Z} are $F D$-equivalent (for \mathcal{F}), written $\mathbf{Y} \leftrightarrow \mathbf{Z}$, if both $\mathbf{Y} \rightarrow \mathbf{Z}$ and $\mathbf{Z} \rightarrow \mathbf{Y}$ hold.

Definition: $\Pi_{\left\{\mathbf{W}_{1}^{\prime}, \mathbf{W}_{2}^{\prime}, \ldots \mathbf{W}_{m^{\prime}}^{\prime}\right\}}^{\mathrm{D}}$, and $\Pi_{\left\{\mathbf{W}_{1}^{\prime \prime}, \mathbf{W}_{2}^{\prime \prime}, \ldots \mathbf{W}_{m^{\prime \prime}}^{\prime \prime}\right\}}^{\mathrm{D}}$ are FD-equivalent if for every $i \in\{1,2, \ldots, m\}$ and every $\mathbf{Y} \subseteq \mathbf{W}_{i}$ which is reduced for \mathcal{F}, there is a $j \in\left\{1,2, \ldots, m^{\prime \prime}\right\}$ and a $\mathbf{Z} \subseteq \mathbf{W}_{j}^{\prime \prime}$ with $\mathbf{Y} \leftrightarrow \mathbf{Z}$; and conversely.
Theorem: Any two meet complements are FD-equivalent. \square

Equivalence of Meet Complements in the \} \rceil -FD framework

Context: - Universal relational schema $\mathbf{D}=(R[\mathbf{U}], \mathcal{F}) ; \mathcal{F}=$ FDs.

- $\Pi_{\left\{\mathbf{W}_{2}, \mathbf{W}_{2}, \ldots \mathbf{w}_{m}\right\}}^{\mathrm{D}}$ a $\bigvee \Pi$-view.

Reduced: An FD $\mathbf{Y} \rightarrow A \in \mathcal{F}^{+}$is reduced if

- $A \in \mathbf{U}$ (single attribute on RHS)
- For any proper subset $\mathbf{Y}^{\prime} \subsetneq \mathbf{Y}, \mathbf{Y}^{\prime} \rightarrow A \notin \mathcal{F}^{+}$.

FD-equivalence: \mathbf{Y} and \mathbf{Z} are $F D$-equivalent (for \mathcal{F}), written $\mathbf{Y} \leftrightarrow \mathbf{Z}$, if both $\mathbf{Y} \rightarrow \mathbf{Z}$ and $\mathbf{Z} \rightarrow \mathbf{Y}$ hold.

Definition: $\Pi_{\left\{\mathbf{W}_{1}^{\prime}, \mathbf{W}_{2}^{\prime}, \ldots \mathbf{W}_{m^{\prime}}^{\prime}\right\}}^{\mathrm{D}}$, and $\Pi_{\left\{\mathbf{W}_{1}^{\prime \prime}, \mathbf{W}_{2}^{\prime \prime}, \ldots . \mathbf{W}_{m^{\prime \prime}}^{\prime \prime}\right\}}^{\mathrm{D}}$ are FD-equivalent if for every $i \in\{1,2, \ldots, m\}$ and every $\mathbf{Y} \subseteq \mathbf{W}_{i}$ which is reduced for \mathcal{F}, there is a $j \in\left\{1,2, \ldots, m^{\prime \prime}\right\}$ and a $\mathbf{Z} \subseteq \mathbf{W}_{j}^{\prime \prime}$ with $\mathbf{Y} \leftrightarrow \mathbf{Z}$; and conversely.
Theorem: Any two meet complements are FD-equivalent. \square
Corollary If \mathcal{F} does not contain any nontrivial FD-equivalences $(\mathbf{Y} \neq \mathbf{Z})$, then $\Pi_{\left\{\mathbf{W}_{1}, \mathbf{W}_{2}, \ldots \mathbf{W}_{m}\right\}}^{\mathrm{D}}$ has a unique optimal meet $\bigvee \Pi$-complement. \square

Examples of Equivalent Meet Complements

Context: $\bullet \mathbf{E}_{5}=\left(R[A B C D E], \mathcal{F}_{3}\right)$

- $\mathcal{F}_{5}=\{B \rightarrow C, C \rightarrow D, D \rightarrow E\}$
- $\Pi_{\{A B, C D\}}^{\mathrm{E}_{3}}$

Examples of Equivalent Meet Complements

Context: $\bullet \mathbf{E}_{5}=\left(R[A B C D E], \mathcal{F}_{3}\right)$

- $\mathcal{F}_{5}=\{B \rightarrow C, C \rightarrow D, D \rightarrow E\}$
- $\Pi_{\{A B, C D\}}^{\mathrm{E}_{3}}$
- \mathcal{F}_{5} implies no nontrivial FD-equivalences.

Examples of Equivalent Meet Complements

Context: $\bullet \mathbf{E}_{5}=\left(R[A B C D E], \mathcal{F}_{3}\right)$

- $\mathcal{F}_{5}=\{B \rightarrow C, C \rightarrow D, D \rightarrow E\}$
- $\Pi_{\{A B, C D\}}^{\mathrm{E}_{3}}$
- \mathcal{F}_{5} implies no nontrivial FD-equivalences.
- The view $\Pi_{\{A B, C D\}}^{\mathrm{E}_{5}}$ has a unique meet $\bigvee \Pi$-complement: $\Pi_{\{B C, D E\}}^{\mathrm{E}_{5}}$

Examples of Equivalent Meet Complements

Context: $\bullet \mathbf{E}_{5}=\left(R[A B C D E], \mathcal{F}_{3}\right)$

- $\mathcal{F}_{5}=\{B \rightarrow C, C \rightarrow D, D \rightarrow E\}$
- $\Pi_{\{A B, C D\}}^{\mathrm{E}_{3}}$
- \mathcal{F}_{5} implies no nontrivial FD-equivalences.
- The view $\Pi_{\{A B, C D\}}^{\mathrm{E}_{5}}$ has a unique meet $\bigvee \Pi$-complement: $\Pi_{\{B C, D E\}}^{\mathrm{E}_{5}}$

Context: $\bullet \mathbf{E}_{6}=\left(R\left[A B_{11} B_{12} B_{2} C D_{1} D_{2} E\right], \mathcal{F}_{6}\right)$

- $\mathcal{F}_{6}=\left\{B_{11} B_{12} \leftrightarrow B_{2}, D_{1} \leftrightarrow D_{2}, B_{1} \rightarrow C, C \rightarrow D_{1}, D_{1} \rightarrow E\right\}$
- $\Pi_{\left\{A B_{11} B_{12} B_{2}, C D_{1} D_{2}\right\}}^{\mathrm{E}_{6}}$

Examples of Equivalent Meet Complements

Context: $\bullet \mathbf{E}_{5}=\left(R[A B C D E], \mathcal{F}_{3}\right)$

- $\mathcal{F}_{5}=\{B \rightarrow C, C \rightarrow D, D \rightarrow E\}$
- $\Pi_{\{A B, C D\}}^{\mathrm{E}_{3}}$
- \mathcal{F}_{5} implies no nontrivial FD-equivalences.
- The view $\Pi_{\{A B, C D\}}^{\mathrm{E}_{5}}$ has a unique meet $\bigvee \Pi$-complement: $\Pi_{\{B C, D E\}}^{\mathrm{E}_{5}}$

Context: $\bullet \mathbf{E}_{6}=\left(R\left[A B_{11} B_{12} B_{2} C D_{1} D_{2} E\right], \mathcal{F}_{6}\right)$

- $\mathcal{F}_{6}=\left\{B_{11} B_{12} \leftrightarrow B_{2}, D_{1} \leftrightarrow D_{2}, B_{1} \rightarrow C, C \rightarrow D_{1}, D_{1} \rightarrow E\right\}$
- $\Pi_{\left\{A B_{11} B_{12} B_{2}, C D_{1} D_{2}\right\}}^{\mathrm{E}_{6}}$
- \mathcal{F}_{6} implies two nontrivial FD-equivalences: $B_{11} B_{12} \leftrightarrow B_{2}$ and $D_{1} \leftrightarrow D_{2}$.

Examples of Equivalent Meet Complements

Context: $\bullet \mathbf{E}_{5}=\left(R[A B C D E], \mathcal{F}_{3}\right)$

- $\mathcal{F}_{5}=\{B \rightarrow C, C \rightarrow D, D \rightarrow E\}$
- $\Pi_{\{A B, C D\}}^{\mathrm{E}_{3}}$
- \mathcal{F}_{5} implies no nontrivial FD-equivalences.
- The view $\Pi_{\{A B, C D\}}^{\mathrm{E}_{5}}$ has a unique meet $\bigvee \Pi$-complement: $\Pi_{\{B C, D E\}}^{\mathrm{E}_{5}}$

Context: $\bullet \mathbf{E}_{6}=\left(R\left[A B_{11} B_{12} B_{2} C D_{1} D_{2} E\right], \mathcal{F}_{6}\right)$

- $\mathcal{F}_{6}=\left\{B_{11} B_{12} \leftrightarrow B_{2}, D_{1} \leftrightarrow D_{2}, B_{1} \rightarrow C, C \rightarrow D_{1}, D_{1} \rightarrow E\right\}$
- $\Pi_{\left\{A B_{11} B_{12} B_{2}, C D_{1} D_{2}\right\}}^{\mathrm{E}_{6}}$
- \mathcal{F}_{6} implies two nontrivial FD-equivalences: $B_{11} B_{12} \leftrightarrow B_{2}$ and $D_{1} \leftrightarrow D_{2}$.
- The view $\Pi_{\left\{A B_{11} B_{12} B_{2}, C D_{1} D_{2}\right\}}^{\mathrm{E}_{6}}$ has four distinct meet complements: $\Pi_{\left\{B_{11} B_{12} C, D_{1} E\right\}}^{\mathrm{E}_{6}}$
$\Pi_{\left\{B_{11} B_{12} C, D_{2} E\right\}}^{\mathrm{E}_{6}}$
$\Pi_{\left\{B_{2} C, D_{1} E\right\}}^{\mathrm{E}_{6}}$
$\Pi_{\left\{B_{2} C, D_{2} E\right\}}^{\mathrm{E}_{6}}$

Extension to "Real-World" Situations

- "Real world" schemata have:

Extension to "Real-World" Situations

- "Real world" schemata have:
- Multiple relations

Extension to "Real-World" Situations

- "Real world" schemata have:
- Multiple relations
- Referential integrity constraints (foreign-key dependencies):

Extension to "Real-World" Situations

- "Real world" schemata have:
- Multiple relations
- Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.

Extension to "Real-World" Situations

- "Real world" schemata have:
- Multiple relations
- Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.
- Apply previous results on a relation-by-relation basis.

Extension to "Real-World" Situations

- "Real world" schemata have:
- Multiple relations
- Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.
- Apply previous results on a relation-by-relation basis.
- The theory also extends to fanout-free unary inclusion dependencies:

Extension to "Real-World" Situations

- "Real world" schemata have:
- Multiple relations
- Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.
- Apply previous results on a relation-by-relation basis.
- The theory also extends to fanout-free unary inclusion dependencies:
- $(R[A] \subseteq S[B] \wedge R[A] \subseteq T[C]) \Rightarrow(S[B] \subseteq T[C] \vee T[C] \subseteq S[B])$.

Extension to "Real-World" Situations

- "Real world" schemata have:
- Multiple relations
- Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.
- Apply previous results on a relation-by-relation basis.
- The theory also extends to fanout-free unary inclusion dependencies:
- $(R[A] \subseteq S[B] \wedge R[A] \subseteq T[C]) \Rightarrow(S[B] \subseteq T[C] \vee T[C] \subseteq S[B])$.
- Foreign-key dependencies are always fanout free.

Extension to "Real-World" Situations

- "Real world" schemata have:
- Multiple relations
- Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.
- Apply previous results on a relation-by-relation basis.
- The theory also extends to fanout-free unary inclusion dependencies:
- $(R[A] \subseteq S[B] \wedge R[A] \subseteq T[C]) \Rightarrow(S[B] \subseteq T[C] \vee T[C] \subseteq S[B])$.
- Foreign-key dependencies are always fanout free.
- Each one-way UID must always be embedded into one of the two views.

Extension to "Real-World" Situations

- "Real world" schemata have:
- Multiple relations
- Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.
- Apply previous results on a relation-by-relation basis.
- The theory also extends to fanout-free unary inclusion dependencies:
- $(R[A] \subseteq S[B] \wedge R[A] \subseteq T[C]) \Rightarrow(S[B] \subseteq T[C] \vee T[C] \subseteq S[B])$.
- Foreign-key dependencies are always fanout free.
- Each one-way UID must always be embedded into one of the two views. One-way UID: $R[A] \subseteq S[B]$ holds; $S[B] \subseteq R[A]$ does not.

Extension to "Real-World" Situations

- "Real world" schemata have:
- Multiple relations
- Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.
- Apply previous results on a relation-by-relation basis.
- The theory also extends to fanout-free unary inclusion dependencies:
- $(R[A] \subseteq S[B] \wedge R[A] \subseteq T[C]) \Rightarrow(S[B] \subseteq T[C] \vee T[C] \subseteq S[B])$.
- Foreign-key dependencies are always fanout free.
- Each one-way UID must always be embedded into one of the two views. One-way UID: $R[A] \subseteq S[B]$ holds; $S[B] \subseteq R[A]$ does not.
- Two-way UIDS $(R[A]=S[B])$ define true isomorphism, and must satisfy a condition similar to FD-equivalence.

Extension to "Real-World" Situations

- "Real world" schemata have:
- Multiple relations
- Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.
- Apply previous results on a relation-by-relation basis.
- The theory also extends to fanout-free unary inclusion dependencies:
- $(R[A] \subseteq S[B] \wedge R[A] \subseteq T[C]) \Rightarrow(S[B] \subseteq T[C] \vee T[C] \subseteq S[B])$.
- Foreign-key dependencies are always fanout free.
- Each one-way UID must always be embedded into one of the two views. One-way UID: $R[A] \subseteq S[B]$ holds; $S[B] \subseteq R[A]$ does not.
- Two-way UIDS $(R[A]=S[B])$ define true isomorphism, and must satisfy a condition similar to FD-equivalence.
Bottom line: The extension to multirelational settings constrained by both FDs and fanout-free UIDs is complete.

Extension to "Real-World" Situations

- "Real world" schemata have:
- Multiple relations
- Referential integrity constraints (foreign-key dependencies):
- The extension to multirelational schemata with FDs is trivial.
- Apply previous results on a relation-by-relation basis.
- The theory also extends to fanout-free unary inclusion dependencies:
- $(R[A] \subseteq S[B] \wedge R[A] \subseteq T[C]) \Rightarrow(S[B] \subseteq T[C] \vee T[C] \subseteq S[B])$.
- Foreign-key dependencies are always fanout free.
- Each one-way UID must always be embedded into one of the two views. One-way UID: $R[A] \subseteq S[B]$ holds; $S[B] \subseteq R[A]$ does not.
- Two-way UIDS $(R[A]=S[B])$ define true isomorphism, and must satisfy a condition similar to FD-equivalence.
Bottom line: The extension to multirelational settings constrained by both FDs and fanout-free UIDs is complete.
- Certain useful cases of non-unary IDs can also be handled.

Conclusions and Further Directions

Conclusions:

Further Directions:

Conclusions and Further Directions

Conclusions:

- Three distinct forms of invariance have been considered for constant-complement update:

Further Directions:

Conclusions and Further Directions

Conclusions:

- Three distinct forms of invariance have been considered for constant-complement update:
State invariance: The existence of a reflection does not depend upon the state of the complement.

Further Directions:

Conclusions and Further Directions

Conclusions:

- Three distinct forms of invariance have been considered for constant-complement update:
State invariance: The existence of a reflection does not depend upon the state of the complement.
Reflection invariance: The reflection of a view update is identical for all complements which support it.

Further Directions:

Conclusions and Further Directions

Conclusions:

- Three distinct forms of invariance have been considered for constant-complement update:
State invariance: The existence of a reflection does not depend upon the state of the complement.
Reflection invariance: The reflection of a view update is identical for all complements which support it.
Update-set invariance: There is a single complement which supports all constant-complement updates.

Further Directions:

Conclusions and Further Directions

Conclusions:

- Three distinct forms of invariance have been considered for constant-complement update:
State invariance: The existence of a reflection does not depend upon the state of the complement.
Reflection invariance: The reflection of a view update is identical for all complements which support it.
Update-set invariance: There is a single complement which supports all constant-complement updates.
- Reasonably broad theories characterizing the first two forms of invariance have been developed.

Further Directions:

Conclusions and Further Directions

Conclusions:

- Three distinct forms of invariance have been considered for constant-complement update:
State invariance: The existence of a reflection does not depend upon the state of the complement.
Reflection invariance: The reflection of a view update is identical for all complements which support it.
Update-set invariance: There is a single complement which supports all constant-complement updates.
- Reasonably broad theories characterizing the first two forms of invariance have been developed.

Further Directions:

- Pursue a more general theory of optimal meet complements which is not dependent upon specific constraints and the relational model.

