Complements of Database Views:
Uniqueness and Optimality Issues

Stephen J. Hegner
Umed University
Department of Computing Science
SE-901 87 Umed, Sweden
hegner@cs.umu.se
http://www.cs.umu.se/ hegner

Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema D is
characterized by a set LDB(D) of /egal databases.

Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema D is
characterized by a set LDB(D) of /egal databases.

e At each point in time, there is exactly one legal database.

Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema D is
characterized by a set LDB(D) of /egal databases.

e At each point in time, there is exactly one legal database.

Prototypical example: Relational schemata D = (Rels(D), Constr(D)).

Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema D is
characterized by a set LDB(D) of /egal databases.

e At each point in time, there is exactly one legal database.

Prototypical example: Relational schemata D = (Rels(D), Constr(D)).
e LDB(D) = set of databases of D which satisfy the integrity
constraints Constr(D).

Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema D is
characterized by a set LDB(D) of /egal databases.

e At each point in time, there is exactly one legal database.

Prototypical example: Relational schemata D = (Rels(D), Constr(D)).
e LDB(D) = set of databases of D which satisfy the integrity
constraints Constr(D).

Database morphism: A morphism f : D; — D5 is characterized by a
function f : LDB(D;) — LDB(D>).

Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema D is
characterized by a set LDB(D) of /egal databases.

e At each point in time, there is exactly one legal database.

Prototypical example: Relational schemata D = (Rels(D), Constr(D)).
e LDB(D) = set of databases of D which satisfy the integrity
constraints Constr(D).

Database morphism: A morphism f : D; — D5 is characterized by a
function f : LDB(D;) — LDB(D>).

e In the relational model, such functions are typically defined in one of two
ways: (Example for R, S € Rels(D1), T € Rels(D2))

Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema D is
characterized by a set LDB(D) of /egal databases.

e At each point in time, there is exactly one legal database.

Prototypical example: Relational schemata D = (Rels(D), Constr(D)).
e LDB(D) = set of databases of D which satisfy the integrity
constraints Constr(D).

Database morphism: A morphism f : D; — D5 is characterized by a
function f : LDB(D;) — LDB(D>).

e In the relational model, such functions are typically defined in one of two
ways: (Example for R, S € Rels(D1), T € Rels(D2))
Relational algebra: T[AC] = mac(R[AB] x S[BC])

Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema D is
characterized by a set LDB(D) of /egal databases.

e At each point in time, there is exactly one legal database.

Prototypical example: Relational schemata D = (Rels(D), Constr(D)).
e LDB(D) = set of databases of D which satisfy the integrity
constraints Constr(D).

Database morphism: A morphism f : D; — D5 is characterized by a
function f : LDB(D;) — LDB(D>).

e In the relational model, such functions are typically defined in one of two
ways: (Example for R, S € Rels(D1), T € Rels(D2))
Relational algebra: T[AC] = mac(R[AB] * S[BC])
Relational calculus: T(x,z) < (3y)((R(x,y)AS(y, z)).

Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema D is
characterized by a set LDB(D) of /egal databases.

e At each point in time, there is exactly one legal database.

Prototypical example: Relational schemata D = (Rels(D), Constr(D)).
e LDB(D) = set of databases of D which satisfy the integrity
constraints Constr(D).

Database morphism: A morphism f : D; — D5 is characterized by a
function f : LDB(D;) — LDB(D>).

e In the relational model, such functions are typically defined in one of two
ways: (Example for R, S € Rels(D1), T € Rels(D2))
Relational algebra: T[AC] = mac(R[AB] * S[BC])
Relational calculus: T(x,z) < (3y)((R(x,y)AS(y, z)).

e However, the results are not limited to the relational model in any way.

Database Views

e A viewl = (V,7) of the schema D is given by:

Database Views

o A view I =(V,~) of the schema D is given by:
e A schema V;

Database Views

e A viewl = (V,7) of the schema D is given by:
e A schema V;
e A morphism v : D — V for which
v : LDB(D) — LDB(V) is surjective.

Database Views

Main Schema D
o A view I =(V,~) of the schema D is given by:

e A schema V; e o
e A morphism v : D — V for which o0 0
~: LDB(D) — LDB(V) is surjective. | /

e Surjectivity implies that the state of V is always
determined completely by the state of D.

View Schema V

Database Views

Main Schema D
o A view I =(V,~) of the schema D is given by:

e A schema V; e o
e A morphism v : D — V for which @
v : LDB(D) — LDB(V) is surjective.
e Surjectivity implies that the state of V is always
determined completely by the state of D.

4

Congruence: The congruence Congr(I) is given by .
{(My1, M) € LDB(D) | v(M1) = v(M2)}. View Schema V

Database Views

Main Schema D
o A view I =(V,~) of the schema D is given by:

e A schema V; e o
e A morphism v : D — V for which @
v : LDB(D) — LDB(V) is surjective.
e Surjectivity implies that the state of V is always
determined completely by the state of D.

4

[J [J
Congruence: The congruence Congr(I) is given by
{(M1, My) € LDB(D) | v(M1) = v(My)}. View Schema V
e There is a natural bijective correspondence between the states of V and
the blocks of Congr(T).

Database Views

Main Schema D

o A view I =(V,~) of the schema D is given by:
e A schema V; e o

e A morphism v : D — V for which @
v : LDB(D) — LDB(V) is surjective.
e Surjectivity implies that the state of V is always
determined completely by the state of D.

4

o o
Congruence: The congruence Congr(I) is given by
{(M1, My) € LDB(D) | v(M1) = v(My)}. View Schema V
e There is a natural bijective correspondence between the states of V and
the blocks of Congr(T).
e Thus, view construction is fundamentally a quotient operation, and not a
subset operation.

Database Views

Main Schema D
o A view I =(V,~) of the schema D is given by:

e A schema V; e o
e A morphism v : D — V for which @
v : LDB(D) — LDB(V) is surjective.
e Surjectivity implies that the state of V is always

determined completely by the state of D. > <

Congruence: The congruence Congr(I) is given by

{(M1, My) € LDB(D) | v(M1) = v(My)}. View Schema V

e There is a natural bijective correspondence between the states of V and
the blocks of Congr(T).

e Thus, view construction is fundamentally a quotient operation, and not a
subset operation.

e For the purposes of this work, views with identical congruences are
considered to be isomorphic.

Implied Constraints on the View

e The constraints Constr(V) of V are completely determined by the
constraints of Constr(D).

Implied Constraints on the View

e The constraints Constr(V) of V are completely determined by the
constraints of Constr(D).

e In the relational model, simple constraints on D can nevertheless result in
complex constraints on V.

Implied Constraints on the View

e The constraints Constr(V) of V are completely determined by the
constraints of Constr(D).

e In the relational model, simple constraints on D can nevertheless result in
complex constraints on V.

Example: D = (R[ABCD],{A — D,B — D,CD — A})

[= N2, = projection of RIABCD] onto R[ABC]
admits no finite basis of first-order constraints.

Implied Constraints on the View

e The constraints Constr(V) of V are completely determined by the
constraints of Constr(D).

e In the relational model, simple constraints on D can nevertheless result in
complex constraints on V.

Example: D = (R[ABCD],{A— D,B — D,CD — A})
M= I'IEBC = projection of R[ABCD] onto R[ABC]
admits no finite basis of first-order constraints.
e Constr(V) is not finitely axiomatizable.

Implied Constraints on the View

e The constraints Constr(V) of V are completely determined by the
constraints of Constr(D).

e In the relational model, simple constraints on D can nevertheless result in
complex constraints on V.

Example: D = (R[ABCD],{A — D,B — D, CD — A})
M= I_IA'?BC = projection of R[ABCD] onto R[ABC]
admits no finite basis of first-order constraints.
e Constr(V) is not finitely axiomatizable.
Example: D = (R[AB],{A— B})

r=(V,y) = I_I,I:4)+B with v : r = (ma(r), mg(r))
admits no first-order axiomatization for infinite models.

Implied Constraints on the View

e The constraints Constr(V) of V are completely determined by the
constraints of Constr(D).

e In the relational model, simple constraints on D can nevertheless result in
complex constraints on V.

Example: D = (R[ABCD],{A— D,B — D,CD — A})
M= I_IA'?BC = projection of R[ABCD] onto R[ABC]
admits no finite basis of first-order constraints.
e Constr(V) is not finitely axiomatizable.

Example: D = (R[AB],{A— B})

r=(V,y) = I_I,I:4)+B with v : r = (ma(r), mg(r))
admits no first-order axiomatization for infinite models.
e Constr(V) = {Card(R[B]) < Card(R[A])}.

The View-Update Problem

Main Schema D

Context: A view [= (V,~) of the schema D. ?
o o

4

View Schema V

4/2

The View-Update Problem

Main Schema D

Context: A view I' = (V,~) of the schema D.
v an

e Given the state of the main schema and a view @
update ...

View Schema V

The View-Update Problem

Main Schema D

Context: A view I' = (V,~) of the schema D.
) an
e Given the state of the main schema and a view \ | ® 0 0
update ...

e there are in general many possible reflections of
that view update to the main schema.

View Schema V

The View-Update Problem

Main Schema D

Context: A view I' = (V,~) of the schema D.
) an
e Given the state of the main schema and a view \ | o0 @
update ...

e there are in general many possible reflections of
that view update to the main schema.

View Schema V

The View-Update Problem

Main Schema D

Context: A view I' = (V,~) of the schema D.
) an
e Given the state of the main schema and a view \ | ' 0@
update ...

e there are in general many possible reflections of
that view update to the main schema.

View Schema V

The View-Update Problem

Main Schema D

Context: A view I' = (V,~) of the schema D.
) an
e Given the state of the main schema and a view \ | ' 0@
update ...

e there are in general many possible reflections of
that view update to the main schema.

e Note that there is always at least one. View Schema V

The View-Update Problem

Main Schema D

Context: A view I' = (V,~) of the schema D.
) an
e Given the state of the main schema and a view \ | R
update ...

e there are in general many possible reflections of
that view update to the main schema.

e Note that there is always at least one. View Schema V

e The view-update problem is to determine:

The View-Update Problem

Main Schema D
Context: A view [= (V,~) of the schema D. O
o O,

e Given the state of the main schema and a view
update ...

e there are in general many possible reflections of
that view update to the main schema.

e Note that there is always at least one. View Schema V

e The view-update problem is to determine:
e which reflections, if any, are suitable; and

The View-Update Problem

Main Schema D
Context: A view [= (V,~) of the schema D. o
o O.

e Given the state of the main schema and a view
update ...

e there are in general many possible reflections of
that view update to the main schema.

e Note that there is always at least one. View Schema V

e The view-update problem is to determine:
e which reflections, if any, are suitable; and
e if there is more than one suitable choice,
which is best.

Approaches to the View-Update Problem

e Three main classifications of most work on this problem:

Approaches to the View-Update Problem

e Three main classifications of most work on this problem:

Direct modelling:

Minimal/least change:

Constant complement:

Approaches to the View-Update Problem

e Three main classifications of most work on this problem:

Direct modelling:
e Look for direct solutions, usually using the relational algebra and
null values.

Minimal/least change:

Constant complement:

Approaches to the View-Update Problem

e Three main classifications of most work on this problem:

Direct modelling:
e Look for direct solutions, usually using the relational algebra and
null values.
e "“Bag-of-tricks” approaches rather than comprehensive theories.

Minimal/least change:

Constant complement:

Approaches to the View-Update Problem

e Three main classifications of most work on this problem:

Direct modelling:
e Look for direct solutions, usually using the relational algebra and
null values.
e "“Bag-of-tricks” approaches rather than comprehensive theories.
Minimal/least change:
e A measure of distance between database states is identified.

Constant complement:

Approaches to the View-Update Problem

e Three main classifications of most work on this problem:
Direct modelling:
e Look for direct solutions, usually using the relational algebra and
null values.
e "“Bag-of-tricks” approaches rather than comprehensive theories.
Minimal/least change:
e A measure of distance between database states is identified.
e For reflected updates, smaller is better (intuitively, fewer changes).

Constant complement:

Approaches to the View-Update Problem

e Three main classifications of most work on this problem:
Direct modelling:
e Look for direct solutions, usually using the relational algebra and
null values.
e "“Bag-of-tricks” approaches rather than comprehensive theories.
Minimal/least change:
e A measure of distance between database states is identified.
e For reflected updates, smaller is better (intuitively, fewer changes).
e This approach is a favorite in the deductive-database community.

Constant complement:

Approaches to the View-Update Problem

e Three main classifications of most work on this problem:
Direct modelling:

e Look for direct solutions, usually using the relational algebra and
null values.

e "“Bag-of-tricks” approaches rather than comprehensive theories.
Minimal/least change:
e A measure of distance between database states is identified.
e For reflected updates, smaller is better (intuitively, fewer changes).
e This approach is a favorite in the deductive-database community.
e But it has also been applied in the state-based context.
Constant complement:

Approaches to the View-Update Problem

e Three main classifications of most work on this problem:
Direct modelling:

e Look for direct solutions, usually using the relational algebra and
null values.

e "“Bag-of-tricks” approaches rather than comprehensive theories.
Minimal/least change:
e A measure of distance between database states is identified.
e For reflected updates, smaller is better (intuitively, fewer changes).
e This approach is a favorite in the deductive-database community.
e But it has also been applied in the state-based context.
Constant complement:

e In updating view I, identify a second view I’ which recaptures the
“rest” of the main schema D.

Approaches to the View-Update Problem

e Three main classifications of most work on this problem:
Direct modelling:

e Look for direct solutions, usually using the relational algebra and
null values.

e "“Bag-of-tricks” approaches rather than comprehensive theories.
Minimal/least change:
e A measure of distance between database states is identified.
e For reflected updates, smaller is better (intuitively, fewer changes).
e This approach is a favorite in the deductive-database community.
e But it has also been applied in the state-based context.
Constant complement:
e In updating view I, identify a second view I’ which recaptures the
“rest” of the main schema D.
e Updates to [must keep I’ constant.

Approaches to the View-Update Problem

e Three main classifications of most work on this problem:
Direct modelling:

e Look for direct solutions, usually using the relational algebra and
null values.

e "“Bag-of-tricks” approaches rather than comprehensive theories.
Minimal/least change:
e A measure of distance between database states is identified.
e For reflected updates, smaller is better (intuitively, fewer changes).
e This approach is a favorite in the deductive-database community.
e But it has also been applied in the state-based context.
Constant complement:
e In updating view I, identify a second view I’ which recaptures the
“rest” of the main schema D.
e Updates to [must keep I’ constant.
e Support for this approach is the main focus of this presentation.

A Concise Formulation of View Update

e Updates(D) = LDB(D) x LDB(D) for any schema D.

A Concise Formulation of View Update

e Updates(D) = LDB(D) x LDB(D) for any schema D.
Context: Main schema D, view [= (V7).

A Concise Formulation of View Update

e Updates(D) = LDB(D) x LDB(D) for any schema D.
Context: Main schema D, view I' = (V, 7).
e A translation (reflection) of (Ny, N2) € Updates(V) My —— M,
with respect to M; € LDB(D) with v(My) = Ny is 17 1
an M, € LDB(D) with v(Mz) = No. Ny —— N

A Concise Formulation of View Update

e Updates(D) = LDB(D) x LDB(D) for any schema D.
Context: Main schema D, view [= (V7).

e A translation (reflection) of (Ny, N2) € Updates(V) My —— M,
with respect to M; € LDB(D) with v(My) = Ny is 17 1
an M, € LDB(D) with v(Mz) = No. Ny —— N

e Everything is specified by:

A Concise Formulation of View Update

e Updates(D) = LDB(D) x LDB(D) for any schema D.
Context: Main schema D, view I' = (V, 7).

e A translation (reflection) of (Ny, N2) € Updates(V) My —— M,
with respect to M; € LDB(D) with v(My) = Ny is 17 1
an M, € LDB(D) with v(Mz) = Ns. Ny —— Ns

e Everything is specified by:

e the current state My of the main schema; and

A Concise Formulation of View Update

e Updates(D) = LDB(D) x LDB(D) for any schema D.
Context: Main schema D, view [= (V7).

e A translation (reflection) of (Ny, N2) € Updates(V) My —— M,
with respect to M; € LDB(D) with v(My) = Ny is 1 1
an M, € LDB(D) with v(Mz) = No. Ny —— N

e Everything is specified by:
e the current state My of the main schema; and
e the desired new state Ny of the view schema.

A Concise Formulation of View Update

e Updates(D) = LDB(D) x LDB(D) for any schema D.
Context: Main schema D, view [= (V7).

e A translation (reflection) of (Ny, N2) € Updates(V) My —— M,
with respect to M; € LDB(D) with v(My) = Ny is 1 1
an M, € LDB(D) with v(Mz) = No. Ny —— N

e Everything is specified by:
e the current state My of the main schema; and
e the desired new state Ny of the view schema.

e N is recaptured as y(M;).

A Concise Formulation of View Update

e Updates(D) = LDB(D) x LDB(D) for any schema D.
Context: Main schema D, view I' = (V, 7).
e A translation (reflection) of (Ny, N2) € Updates(V) My —— M,

with respect to M; € LDB(D) with v(My) = Ny is 1 1
an My € LDB(D) with v(Ms) = No. Ny — N

e Everything is specified by:
e the current state My of the main schema; and
e the desired new state Ny of the view schema.
e N is recaptured as y(M;).

Update request: Formally, an update request from I to D is a pair
(M1, N») € LDB(D) x LDB(V).

A Concise Formulation of View Update

e Updates(D) = LDB(D) x LDB(D) for any schema D.
Context: Main schema D, view I' = (V, 7).
e A translation (reflection) of (Ny, N2) € Updates(V) My —— M,

with respect to M; € LDB(D) with v(My) = Ny is 1 1
an My € LDB(D) with v(Ms) = No. Ny — N

e Everything is specified by:
e the current state My of the main schema; and
e the desired new state Ny of the view schema.
e N is recaptured as y(M;).
Update request: Formally, an update request from I to D is a pair
(M1, N») € LDB(D) x LDB(V).

Realization: A realization of (My, N») along I is a translation of (y(My), N>)
with respect to M.

View Complements and the Constant-Complement Approach

e The view ' = (V’,+/) is a complement of [= (V,~) if the
decomposition morphism ~ x~" : LDB(D) — LDB(V) x LDB(V’)
Moo (M), 7/(M))
is injective.

View Complements and the Constant-Complement Approach

e The view ' = (V’,+/) is a complement of [= (V,~) if the
decomposition morphism ~ x~" : LDB(D) — LDB(V) x LDB(V’)
M = (y(M),~(M))
is injective.
Observation: [Bancilhon & Spyratos 1981] If "' = (V',+/) is a complement
of I = (V,~), then for any update request (M, N») from I to D, there
is at most one realization which keeps the state of [’ constant.

View Complements and the Constant-Complement Approach

e The view ' = (V’,+/) is a complement of [= (V,~) if the
decomposition morphism ~ x~" : LDB(D) — LDB(V) x LDB(V’)
M = (y(M),~(M))
is injective.
Observation: [Bancilhon & Spyratos 1981] If "' = (V',+/) is a complement
of I = (V,~), then for any update request (M, N») from I to D, there
is at most one realization which keeps the state of [’ constant.

Proof: This realization must be (M, (v x v') " ((N1,72(M1)))). O

View Complements and the Constant-Complement Approach

e The view ' = (V’,+/) is a complement of [= (V,~) if the
decomposition morphism ~ x~" : LDB(D) — LDB(V) x LDB(V’)
M = (y(M),~(M))
is injective.
Observation: [Bancilhon & Spyratos 1981] If "' = (V',+/) is a complement
of I = (V,~), then for any update request (M, N») from I to D, there
is at most one realization which keeps the state of [’ constant.

Proof: This realization must be (My, (v x v') " ((N1,v2(My)))). O

{B— C}

Familiar example: Eqg = (R[ABC],{B — C}).
(RIABC].{ 1) RIABC]

View Complements and the Constant-Complement Approach

e The view ' = (V’,+/) is a complement of [= (V,~) if the
decomposition morphism ~ x~" : LDB(D) — LDB(V) x LDB(V’)
M = (y(M),~(M))
is injective.
Observation: [Bancilhon & Spyratos 1981] If "' = (V',+/) is a complement
of I = (V,~), then for any update request (M, N») from I to D, there
is at most one realization which keeps the state of [’ constant.

Proof: This realization must be (M, (v x v') " ((N1,72(M1)))). O

Familiar example: Eq = (R[ABC],{B — C}). {B—~C}
View to be updated: NE%, = (E4B, 75%). RIABC]

Eo
WA‘,/

R[AB]

View Complements and the Constant-Complement Approach

e The view ' = (V’,+/) is a complement of [= (V,~) if the
decomposition morphism ~ x~" : LDB(D) — LDB(V) x LDB(V’)
o Mo M),y (M))
is injective.

Observation: [Bancilhon & Spyratos 1981] If "' = (V',+/) is a complement
of I = (V,~), then for any update request (M, N») from I to D, there
is at most one realization which keeps the state of [’ constant.

Proof: This realization must be (M, (v x v') " ((N1,72(M1)))). O

Familiar example: Eq = (R[ABC],{B — C}). {B—~C}
View to be updated: NE%, = (E4B, 75%). RIABC]

. B _ (gBC - Eo
Natural complement: Mg = (Eg“, 75%). E Eo
TaB TBc

R[AB] R[BC]

7/2

View Complements and the Constant-Complement Approach

e The view ' = (V’,+/) is a complement of [= (V,~) if the
decomposition morphism ~ x~" : LDB(D) — LDB(V) x LDB(V’)
M = (y(M),~(M))
is injective.
Observation: [Bancilhon & Spyratos 1981] If "' = (V',+/) is a complement
of I = (V,~), then for any update request (M, N») from I to D, there
is at most one realization which keeps the state of [’ constant.

Proof: This realization must be (My, (v x v') " ((N1,v2(My)))). O

Familiar example: Eq = (R[ABC],{B — C}). {B—~C}
View to be updated: I'IE\OB = (E{B, 75%). RIABC]

Natural complement: HBC = (EBC, ﬂgoc) E Eo
T T
e The updates to HAB with constant complement AB Bc

I'IEC are precisely those which keep I'I fixed. R[AB] R[BC]

7/2

Three Uniqueness Issues for Constant Complement

Locality: The constant-complement strategy is intuitively appealing because
it formalizes the notion of locality — the part of the main schema not
included in the view to be updated (the complement) is held constant.

Three Uniqueness Issues for Constant Complement

Locality: The constant-complement strategy is intuitively appealing because
it formalizes the notion of locality — the part of the main schema not
included in the view to be updated (the complement) is held constant.

e However, there are at least three invariance issues surrounding the
constant-complement approach to the reflection of view update.

Three Uniqueness Issues for Constant Complement

Locality: The constant-complement strategy is intuitively appealing because
it formalizes the notion of locality — the part of the main schema not
included in the view to be updated (the complement) is held constant.

e However, there are at least three invariance issues surrounding the
constant-complement approach to the reflection of view update.

Context: Main schema D, view I' = (V,), complement " = (V',+/), with:

Three Uniqueness Issues for Constant Complement

Locality: The constant-complement strategy is intuitively appealing because
it formalizes the notion of locality — the part of the main schema not
included in the view to be updated (the complement) is held constant.

e However, there are at least three invariance issues surrounding the
constant-complement approach to the reflection of view update.

Context: Main schema D, view I' = (V,), complement " = (V',+/), with:

e update request u = (Mg, Np) from I to D.

Three Uniqueness Issues for Constant Complement

Locality: The constant-complement strategy is intuitively appealing because
it formalizes the notion of locality — the part of the main schema not
included in the view to be updated (the complement) is held constant.

e However, there are at least three invariance issues surrounding the
constant-complement approach to the reflection of view update.

Context: Main schema D, view I' = (V,), complement " = (V',+/), with:

e update request u = (Mg, Np) from I to D.

State invariance: If u is realizable with constant complement I, then every
u' = (Mj, Np) with v(M7) = (M) is also so realizable.

Three Uniqueness Issues for Constant Complement

Locality: The constant-complement strategy is intuitively appealing because
it formalizes the notion of locality — the part of the main schema not
included in the view to be updated (the complement) is held constant.

e However, there are at least three invariance issues surrounding the
constant-complement approach to the reflection of view update.

Context: Main schema D, view I' = (V,), complement " = (V',+/), with:

e update request u = (Mg, Np) from I to D.

State invariance: If u is realizable with constant complement I, then every
u' = (Mj, Np) with v(M7) = (M) is also so realizable.

Reflection invariance: If u is also realizable with respect to constant
complement " = (V" 4"), then the two realizations the same.

Three Uniqueness Issues for Constant Complement

Locality: The constant-complement strategy is intuitively appealing because
it formalizes the notion of locality — the part of the main schema not
included in the view to be updated (the complement) is held constant.

e However, there are at least three invariance issues surrounding the
constant-complement approach to the reflection of view update.

Context: Main schema D, view I' = (V,), complement " = (V',+/), with:

e update request u = (Mg, Np) from I to D.

State invariance: If u is realizable with constant complement I, then every
u' = (Mj, Np) with v(M7) = (M) is also so realizable.

Reflection invariance: If u is also realizable with respect to constant
complement " = (V" 4"), then the two realizations the same.

Update-set invariance: If " = (V" +") is a second complement, then " and
I support the same constant-complement updates.

Three Uniqueness Issues for Constant Complement

Locality: The constant-complement strategy is intuitively appealing because
it formalizes the notion of locality — the part of the main schema not
included in the view to be updated (the complement) is held constant.

e However, there are at least three invariance issues surrounding the
constant-complement approach to the reflection of view update.

Context: Main schema D, view I' = (V,), complement " = (V',+/), with:

e update request u = (Mg, Np) from I to D.

State invariance: If u is realizable with constant complement I, then every
u' = (Mj, Np) with v(M7) = (M) is also so realizable.

Reflection invariance: If u is also realizable with respect to constant
complement " = (V" 4"), then the two realizations the same.

Update-set invariance: If " = (V" +") is a second complement, then " and
I support the same constant-complement updates.

Observation: These three conditions are in general independent of one
another.

Dependency Preservation = State Invariance

Recall: Eo = (R[ABC],{B — C}). {B—C}
View to be updated: I'IE\‘}B = (EéB,T(E%). RIABC]

E E
Natural complement: Mg = (E§C, n%). K K
e The updates to I'IE\‘}B with constant complement AB BC

FIEOC are precisely those which keep I_I',EBO fixed. R[AB] R[BC]

Dependency Preservation = State Invariance

Recall: Eo = (R[ABC],{B — C}). {B—C}
View to be updated: I'IE\‘}B = (EéB,T(E%). RIABC]

Natural complement: I—IEOC = (EEC,WE"C). K K
e The updates to I'IE\‘}B with constant complement AB BC
FIEOC are precisely those which keep I_I',EBO fixed. R[AB] R[BC]

e This situation exhibits state invariance.

Dependency Preservation = State Invariance

Recall: Eq = (R[ABC],{B — C}). {B— C,A— C}
View to be updated: I'IE\‘}B = (EéB,T(E%). RIABC]

Natural complement: I—IEOC = (EEC,WE"C). K K
e The updates to I'IE\‘}B with constant complement AB BC

FIEOC are precisely those which keep I_I',EBO fixed. R[AB] R[BC]
e This situation exhibits state invariance.

e If the FD A — C is added, this property no longer holds.

Dependency Preservation = State Invariance

Recall: Eq = (R[ABC],{B — C}). {B— C,A— C}
View to be updated: I'IE\‘}B = (EéB,T(E%). RIABC]

Natural complement: I—IEOC = (EEC,WE"C). K K
e The updates to I'IE\‘}B with constant complement AB BC
FIEOC are precisely those which keep I_I',EBO fixed. R[AB] R[BC]
e This situation exhibits state invariance.
e If the FD A — C is added, this property no longer holds.
Example: Ml = {R(al, bl, Cl), R(az, b2, Cl)}
M; = {R(a1,br,c1), R(az, b2, c2)}

Dependency Preservation = State Invariance

Recall: Eq = (R[ABC],{B — C}). {B— C,A— C}
View to be updated: I'IE\‘}B = (EéB,T(E%). RIABC]

Natural complement: I—IEOC = (EEC,WE"C). K K
e The updates to I'IE\‘}B with constant complement AB BC
FIEOC are precisely those which keep I_I',EBO fixed. R[AB] R[BC]
e This situation exhibits state invariance.
e If the FD A — C is added, this property no longer holds.
Example: Ml = {R(al, bl, Cl), R(az, b2, Cl)}
M; = {R(a1,br,c1), R(az, b2, c2)}

e The view update ({R(a1,b1), R(az,b2)}, {R(a1,b1), R(a1,b2)}) is
realizable if the state of Eq is M; but not if it is Mj.

Dependency Preservation = State Invariance

Recall: Eq = (R[ABC],{B — C}). {B— C,A— C}
View to be updated: I'IE\‘}B = (EéB,T(E%). RIABC]

Natural complement: I—IEOC = (Egc,wg"c). E Eo
e The updates to I'IE\‘}B with constant complement AB [BC
FIEOC are precisely those which keep I_I',EB0 fixed. R[AB] R[BC]
e This situation exhibits state invariance.
e If the FD A — C is added, this property no longer holds.
Example: Ml = {R(al, bl, Cl), R(az, b2, Cl)}
Mi = {R(al, bl, Cl), R(az, b2, C2)}
e The view update ({R(a1,b1), R(az,b2)}, {R(a1,b1), R(a1,b2)}) is
realizable if the state of Eq is M; but not if it is Mj.
e With the addition of A — C, a cover of the dependencies no longer
embeds in the views, so these dependencies cannot be checked on a

b Lo

Meets — the Generalization of Dependency Preservation

R[ABC]
e A visualization of the previous example: B— C

10/2.

Meets — the Generalization of Dependency Preservation

R[ABC]
e A visualization of the previous example: B—C

e The goal is to update the view [= I_If‘f,g...

10/2.

Meets — the Generalization of Dependency Preservation

R[ABC]
e A visualization of the previous example: B—C

e The goal is to update the view [= I_If‘f,g...
e while holding the view " = I'IEIC constant. ~ — 51 / E;

10/2.

Meets — the Generalization of Dependency Preservation

R[ABC]
e A visualization of the previous example: B— C

e The goal is to update the view [= I_If‘f,g...
e while holding the view " = I'IEIC constant. ~ — 51 / E;

Question: When does the visualization
describe reality?

10/2.

Meets — the Generalization of Dependency Preservation

R[ABC]
e A visualization of the previous example: B— C

e The goal is to update the view [= I_If‘f,g...
e while holding the view " = I'IEIC constant. ~ — 51 / E;

Question: When does the visualization
describe reality?

r
e When does it suffice to keep the G[AB] G[BD R[B@
overlap area R[B] constant?

10/2.

Meets — the Generalization of Dependency Preservation

R[ABC]
e A visualization of the previous example: B— C

e The goal is to update the view [= I_If‘f,g...

o while holding the view I = Mg constant. — 7€,
Question: When does the visualization

describe reality?
e When does it suffice to keep the ([AB] G[B) R[B()
overlap area R[B] constant?

Answer: The overlap area must define a view I, (the meet of I and I)
with: Congr(I") C Congr(I"") and Congr(I") C Congr(r”)

10/2.

Meets — the Generalization of Dependency Preservation

R[ABC]
e A visualization of the previous example: B— C

e The goal is to update the view [= I_If‘f,g...

o while holding the view I = Mg constant. — 7€,
Question: When does the visualization

describe reality?
e When does it suffice to keep the ([AB] G[B) R[B()
overlap area R[B] constant?
Answer: The overlap area must define a view I, (the meet of I and I)
with: Congr(I") C Congr(I"") and Congr(I") C Congr(r”)

Solution: This happens precisely when the congruences commute:
Congr(I") o Congr(I'") = Congr(I"") o Congr(I")

10/2.

Meets — the Generalization of Dependency Preservation

R[ABC]
e A visualization of the previous example: B— C

e The goal is to update the view [= I_If‘lB...

o while holding the view I = Mg constant. — 7€,
Question: When does the visualization
describe reality?

e When does it suffice to keep the ([AB] G[B) R[B()
overlap area R[B] constant?
Answer: The overlap area must define a view ”, (the meet of I' and ')
with: Congr(I") € Congr(I'”’) and Congr(I'") C Congr(l’”)
Solution: This happens precisely when the congruences commute:
Congr(I") o Congr(I"") = Congr(I") o Congr(IN)

Theorem: Commuting congruences identifies precisely the conditions under
which state invariance holds. O

10/2.

Meets — the Generalization of Dependency Preservation

R[ABC]
e A visualization of the previous example: B— C

e The goal is to update the view [= I_If‘lB...

o while holding the view I = Mg constant. — 7€,
Question: When does the visualization
describe reality?

e When does it suffice to keep the ([AB] G[B) R[B()
overlap area R[B] constant?
Answer: The overlap area must define a view ”, (the meet of I' and ')
with: Congr(I") € Congr(I'”’) and Congr(I'") C Congr(l’”)
Solution: This happens precisely when the congruences commute:
Congr(I") o Congr(I"") = Congr(I") o Congr(IN)

Theorem: Commuting congruences identifies precisely the conditions under
which state invariance holds. O

e A complement with commuting congruences is called a meet complement.

10/2.

Constraints and Meet Complements

e In general, the constraints on a view may be very complex, if if the
constraints on the main schema are simple (e.g., FDs) and the view is
simple (e.g., a projection).

11/2.

Constraints and Meet Complements

e In general, the constraints on a view may be very complex, if if the
constraints on the main schema are simple (e.g., FDs) and the view is
simple (e.g., a projection).

e In the case of update via meet complement, the constraint which actually
need be checked are those which embed from the main schema.

11/2.

Constraints and Meet Complements

e In general, the constraints on a view may be very complex, if if the
constraints on the main schema are simple (e.g., FDs) and the view is
simple (e.g., a projection).

e In the case of update via meet complement, the constraint which actually
need be checked are those which embed from the main schema.

Example: E; = (R[ABCDE],{A — D,B — D,CD — A, A — E}).

11/2.

Constraints and Meet Complements

e In general, the constraints on a view may be very complex, if if the
constraints on the main schema are simple (e.g., FDs) and the view is
simple (e.g., a projection).

e In the case of update via meet complement, the constraint which actually
need be checked are those which embed from the main schema.

Example: E; = (R[ABCDE],{A — D,B — D,CD — A, A — E}).

E
E/148CE 1)

: E
View to be updated: My = (s T ABCE

11/2.

Constraints and Meet Complements

e In general, the constraints on a view may be very complex, if if the
constraints on the main schema are simple (e.g., FDs) and the view is
simple (e.g., a projection).

e In the case of update via meet complement, the constraint which actually
need be checked are those which embed from the main schema.

Example: E; = (R[ABCDE],{A— D,B — D,CD — A, A — E}).
View to be updated: I'IE\18CE = (E{‘BCE,Wf\lBCE).
e Embedded constraints: {A — E}.

11/2.

Constraints and Meet Complements

e In general, the constraints on a view may be very complex, if if the
constraints on the main schema are simple (e.g., FDs) and the view is
simple (e.g., a projection).

e In the case of update via meet complement, the constraint which actually
need be checked are those which embed from the main schema.

Example: E; = (R[ABCDE],{A— D,B — D,CD — A, A — E}).
View to be updated: I'IE\18CE = (E{‘BCE,Wf\lBCE).

e Embedded constraints: {A — E}.

e The view itself does not admit a finite basis of constraints.

11/2.

Constraints and Meet Complements

e In general, the constraints on a view may be very complex, if if the
constraints on the main schema are simple (e.g., FDs) and the view is
simple (e.g., a projection).

e In the case of update via meet complement, the constraint which actually
need be checked are those which embed from the main schema.

Example: E; = (R[ABCDE],{A— D,B — D,CD — A, A — E}).
View to be updated: I'IE\18CE = (E{‘BCE,Wf\lBCE).

e Embedded constraints: {A — E}.

e The view itself does not admit a finite basis of constraints.

E{\BCD E;

Meet complement: I'IE\IBCD =(T agcp) With meet I'IE‘IBC.

11/2.

Constraints and Meet Complements

e In general, the constraints on a view may be very complex, if if the
constraints on the main schema are simple (e.g., FDs) and the view is
simple (e.g., a projection).

e In the case of update via meet complement, the constraint which actually
need be checked are those which embed from the main schema.

Example: E; = (R[ABCDE],{A— D,B — D,CD — A, A — E}).
View to be updated: I'IE\18CE = (E{‘BCE,Wf\lBCE).
e Embedded constraints: {A — E}.

e The view itself does not admit a finite basis of constraints.

. ME._ _ (gABCD _Ei : E
Meet complement: M3~y = (E{"%", magcp) With meet 15 .

e Embedded constraints: {A — D,B — D, CD — A}.

11/2.

Constraints and Meet Complements

e In general, the constraints on a view may be very complex, if if the
constraints on the main schema are simple (e.g., FDs) and the view is
simple (e.g., a projection).

e In the case of update via meet complement, the constraint which actually
need be checked are those which embed from the main schema.

Example: E; = (R[ABCDE],{A— D,B — D,CD — A, A — E}).
View to be updated: I'If\lsCE = (E{‘BCE,Wf\lBCE).
e Embedded constraints: {A — E}.

e The view itself does not admit a finite basis of constraints.

. ME._ _ (gABCD _Ei : E
Meet complement: M3~y = (E{"%", magcp) With meet 15 .

e Embedded constraints: {A — D,B — D, CD — A}.

e The updates on I'If\lBCE with I'IE\lﬁ,CD constant = updates with I'If‘lBC
constant which satisfy A — E.

11/2.

Constraints and Meet Complements

e In general, the constraints on a view may be very complex, if if the
constraints on the main schema are simple (e.g., FDs) and the view is
simple (e.g., a projection).

e In the case of update via meet complement, the constraint which actually
need be checked are those which embed from the main schema.

Example: E; = (R[ABCDE],{A— D,B — D,CD — A, A — E}).
View to be updated: I'If\lsCE = (E{‘BCE,Wf\lBCE).
e Embedded constraints: {A — E}.

e The view itself does not admit a finite basis of constraints.

. ME._ _ (gABCD _Ei : E
Meet complement: M3~y = (E{"%", magcp) With meet 15 .

e Embedded constraints: {A — D,B — D, CD — A}.

e The updates on I'If\lBCE with I'IE\lﬁ,CD constant = updates with I'If‘lBC
constant which satisfy A — E.
e {A— D,B— D,CD — A} are satisfied by virtue of N5, being

held constant.
11/2.

A Simple Example of the Nonuniqueness of Complements

e Recall that reflection invariance requires that a constant-complement
update be independent of the choice of complement.

12/2.

A Simple Example of the Nonuniqueness of Complements

e Recall that reflection invariance requires that a constant-complement
update be independent of the choice of complement.

e |t is easy to show how such invariance may fail.

12/2.

A Simple Example of the Nonuniqueness of Complements

e Recall that reflection invariance requires that a constant-complement
update be independent of the choice of complement.

e |t is easy to show how such invariance may fail.

Example: E has two relation symbols R[A] and S[A]. R[A] S[A]

12/2.

A Simple Example of the Nonuniqueness of Complements

e Recall that reflection invariance requires that a constant-complement
update be independent of the choice of complement.

e |t is easy to show how such invariance may fail.

Example: E has two relation symbols R[A] and S[A]. R[A] S[A]

e The view to be updated is I'IER2.
7TE2

RIA]

12/2.

A Simple Example of the Nonuniqueness of Complements

e Recall that reflection invariance requires that a constant-complement
update be independent of the choice of complement.

e |t is easy to show how such invariance may fail.

Example: E; has two relation symbols R[A] and S[A]. R[A] S[A]
e The view to be updated is I'IER2. . .
2 2
e The obvious and natural complement is I'I§2. TR s

RIA] S[Al

12/2.

A Simple Example of the Nonuniqueness of Complements

e Recall that reflection invariance requires that a constant-complement
update be independent of the choice of complement.

e |t is easy to show how such invariance may fail.

Example: E has two relation symbols R[A] and S[A]. R[A] S[A]
e The view to be updated is I'IER2. . .

2 T 2
e The obvious and natural complement is I'I§2. TR 'RAS

e Another complement: FI%AS = (T[A],W,EEAS). R[A] RASI[A]

12/2.

A Simple Example of the Nonuniqueness of Complements

e Recall that reflection invariance requires that a constant-complement
update be independent of the choice of complement.

e |t is easy to show how such invariance may fail.

Example: E has two relation symbols R[A] and S[A]. R[A] S[A]
e The view to be updated is I'IER2. . .
2 T 2
e The obvious and natural complement is I'I§2. TR 'RAS
e Another complement: FI%AS = (T[A],W,EEAS). R[A] RASI[A]

o Tix] & (ROIA=SOONV((=R(x))AS(X)))-

12/2.

A Simple Example of the Nonuniqueness of Complements

e Recall that reflection invariance requires that a constant-complement
update be independent of the choice of complement.

e |t is easy to show how such invariance may fail.

{R(a),S(a")}

Example: E has two relation symbols R[A] and S[A]. R[A] S[A]
e The view to be updated is I'IER2. E/ \E2
e The obvious and natural complement is I'I§2. TR "RAS
e Another complement: FI%AS = (T[A],W,EEAS). R[A] RASI[A]
o Tlx] & (ROIA=S(x))V((=R(x))AS(x))). (Ra)} {T(a), T(a')}

Current state of main schema E;: My = {R(a), S(a')}.

12/2.

A Simple Example of the Nonuniqueness of Complements

e Recall that reflection invariance requires that a constant-complement
update be independent of the choice of complement.

e |t is easy to show how such invariance may fail.

{R(a),S(a")}

Example: E; has two relation symbols R[A] and S[A]. R[A] S[A]

e The view to be updated is I'IER2. E/ \E2

e The obvious and natural complement is I'IE2. "R "RAS
e Another complement: FIRAS = (TI[A], 7TRA5) R[A] RASI[A]

o T[x] & (RO)A(=SO)VI(=R(x))AS(X)))- {R(a),R(a")} {T(a), T(a')}
Current state of main schema Ej: {R(a) (N}

My =
View update: u = ({R(a)}, {R(a), R(a')}) on Mg, (Insert R(a')).

12/2.

A Simple Example of the Nonuniqueness of Complements

e Recall that reflection invariance requires that a constant-complement
update be independent of the choice of complement.

e |t is easy to show how such invariance may fail.

{R(2), R(), ST}
Example: E; has two relation symbols R[A] and S[A]. R[A] S[A]
e The view to be updated is I'IER2. E/ \E2
e The obvious and natural complement is I'IE2. "R "RAS
e Another complement: FIRAS = (TI[A], 7TRA5) R[A] RASI[A]

o T[x] & (ROA=SCIVI(=R()IAS(X))) (Ra), RGaY} {T(a), T(a)]
Current state of main schema E: My = {R(a), S(a')}.

View update: u = ({R(a)},{R(a),R(a’)}) on I_IER2. (Insert R(a)).
New state of Ex: Mo = {R(a), R(a’)} with constant complement M2, .

12/2.

A Simple Example of the Nonuniqueness of Complements

e Recall that reflection invariance requires that a constant-complement
update be independent of the choice of complement.

e |t is easy to show how such invariance may fail.

{R(2), R(), ST}
Example: E; has two relation symbols R[A] and S[A]. R[A] S[A]
e The view to be updated is I'IER2. E/ \E2
e The obvious and natural complement is I'IE2. TR s
e Another complement: FIRAS = (TI[A], 7TRA5) R[A] S[A]

o TI & (ROOASCMEREDNASC). (riapir) 1007
Current state of main schema E: My = {R(a), S(a')}.

View update: u = ({R(a)},{R(a),R(a’)}) on I_IER2. (Insert R(a)).

New state of Ex: My = {R(a), R(a’)} with constant complement I'IERZAS.

e But note that update-set invariance is satisfied — both complements
support all view updates.

12/2.

Order-Based Views and Updates

Problem: Characterize “good” complements formally.

13/2.

Order-Based Views and Updates

Problem: Characterize “good” complements formally.

Order: The states of database schemata often admit a natural order.

13/2

Order-Based Views and Updates

Problem: Characterize “good” complements formally.

Order: The states of database schemata often admit a natural order.
Example: In the relational model, relation-by-relation inclusion.

13/2

Order-Based Views and Updates

Problem: Characterize “good” complements formally.

Order: The states of database schemata often admit a natural order.
Example: In the relational model, relation-by-relation inclusion.
Notation: Cp for this order on LDB(D).

13/2

Order-Based Views and Updates

Problem: Characterize “good” complements formally.

Order: The states of database schemata often admit a natural order.
Example: In the relational model, relation-by-relation inclusion.
Notation: Cp for this order on LDB(D).

e The following have natural and obvious definitions:

13/2.

Order-Based Views and Updates

Problem: Characterize “good” complements formally.

Order: The states of database schemata often admit a natural order.
Example: In the relational model, relation-by-relation inclusion.
Notation: Cp for this order on LDB(D).

e The following have natural and obvious definitions:
e order-based schema

13/2.

Order-Based Views and Updates

Problem: Characterize “good” complements formally.

Order: The states of database schemata often admit a natural order.
Example: In the relational model, relation-by-relation inclusion.
Notation: Cp for this order on LDB(D).

e The following have natural and obvious definitions:
e order-based schema
e In the relational model, morphisms which are defined without
using negation (explicitly or implicitly) are order morphisms.

13/2.

Order-Based Views and Updates

Problem: Characterize “good” complements formally.

Order: The states of database schemata often admit a natural order.
Example: In the relational model, relation-by-relation inclusion.
Notation: Cp for this order on LDB(D).

e The following have natural and obvious definitions:
e order-based schema
e In the relational model, morphisms which are defined without
using negation (explicitly or implicitly) are order morphisms.
e order-preserving database morphism (or order morphism)

13/2.

Order-Based Views and Updates

Problem: Characterize “good” complements formally.

Order: The states of database schemata often admit a natural order.
Example: In the relational model, relation-by-relation inclusion.
Notation: Cp for this order on LDB(D).

e The following have natural and obvious definitions:
e order-based schema
e In the relational model, morphisms which are defined without
using negation (explicitly or implicitly) are order morphisms.
e order-preserving database morphism (or order morphism)
e order view

13/2.

Order-Based Views and Updates

Problem: Characterize “good” complements formally.

Order: The states of database schemata often admit a natural order.
Example: In the relational model, relation-by-relation inclusion.
Notation: Cp for this order on LDB(D).

e The following have natural and obvious definitions:
e order-based schema
e In the relational model, morphisms which are defined without
using negation (explicitly or implicitly) are order morphisms.
e order-preserving database morphism (or order morphism)
e order view

Insertion: (M, Mp) with My Cp Ms.

13/2.

Order-Based Views and Updates

Problem: Characterize “good” complements formally.

Order: The states of database schemata often admit a natural order.
Example: In the relational model, relation-by-relation inclusion.
Notation: Cp for this order on LDB(D).

e The following have natural and obvious definitions:
e order-based schema
e In the relational model, morphisms which are defined without
using negation (explicitly or implicitly) are order morphisms.
e order-preserving database morphism (or order morphism)
e order view

Insertion: (M, Mp) with My Cp Ms.
Deletion: (Ml, MQ) with Mb Cp M;.

13/2.

Order-Based Views and Updates

Problem: Characterize “good” complements formally.

Order: The states of database schemata often admit a natural order.
Example: In the relational model, relation-by-relation inclusion.
Notation: Cp for this order on LDB(D).

e The following have natural and obvious definitions:
e order-based schema
e In the relational model, morphisms which are defined without
using negation (explicitly or implicitly) are order morphisms.
e order-preserving database morphism (or order morphism)
e order view

Insertion: (M, Mp) with My Cp Ms.
Deletion: (Ml, MQ) with Mb Cp M;.

Order-based update: An update which is representable as a composition of

insertions and deletions.
13/2.

The Uniqueness Theorem for Order-Based Updates

Order complement: " = (V',+/) is an order complement of T = (V,~) if
v x v : LDB(D) — LDB(V) x LDB(V’)
is an order isomorphism onto its image.

14 /2.

The Uniqueness Theorem for Order-Based Updates

Order complement: " = (V',~') is an order complement of T = (V,) if
v x ' : LDB(D) — LDB(V) x LDB(V’)
is an order isomorphism onto its image. R[A] S[A]

Example: In the context E; = ({R[A], S[A]}, 0):

14/2

The Uniqueness Theorem for Order-Based Updates

Order complement: " = (V',~') is an order complement of T = (V,) if
v x ' : LDB(D) — LDB(V) x LDB(V’)
is an order isomorphism onto its image. R[A] S[A]

Example: In the context E; = ({R[A], S[A]},0): e e
. ﬂ? is an order complement of FIER?.

RIA] SAl

14 /2.

The Uniqueness Theorem for Order-Based Updates

Order complement: " = (V',~') is an order complement of T = (V,) if
v x ' : LDB(D) — LDB(V) x LDB(V’)
is an order isomorphism onto its image. R[A] S[A]

Example: In the context E; = ({R[A], S[A]},0): e w2
. ﬂ? is an order complement of FIER?.

. I_IERzAS is not an order complement of I'IER2. R[A] RAS[A]

14 /2.

The Uniqueness Theorem for Order-Based Updates

Order complement: " = (V',+/) is an order complement of T = (V,~) if
v x v : LDB(D) — LDB(V) x LDB(V’)
is an order isomorphism onto its image.

R[A] S[A]
Example: In the context E; = ({R[A], S[A]},0): e w2 ¢
. I_IE2 is an order complement of FIER?.
. I'IERzAS is not an order complement of I'IER2. R[A] RAS[A]

Theorem: Reflection invariance holds for order-based updates in an
order-based context: the realization of an order-based view update is
independent of the choice of order complement. O

14 /2.

The Uniqueness Theorem for Order-Based Updates

Order complement: " = (V',+/) is an order complement of T = (V,~) if
v x v : LDB(D) — LDB(V) x LDB(V’)
is an order isomorphism onto its image.

R[A] S[A]
Example: In the context E; = ({R[A], S[A]},0): e w2 ¢
. I_IE2 is an order complement of FIER?.
. I'IER2AS is not an order complement of I'IER2. R[A] RAS[A]

Theorem: Reflection invariance holds for order-based updates in an
order-based context: the realization of an order-based view update is
independent of the choice of order complement. O

Tricks in the relational context to make additional updates order based:

14 /2.

The Uniqueness Theorem for Order-Based Updates

Order complement: " = (V',+/) is an order complement of T = (V,~) if
v x v : LDB(D) — LDB(V) x LDB(V’)
is an order isomorphism onto its image.

R[A] S[A]
Example: In the context E; = ({R[A], S[A]},0): e w2 ¢
. I_IE2 is an order complement of FIER?.
. I'IER2AS is not an order complement of I'IER2. R[A] RAS[A]

Theorem: Reflection invariance holds for order-based updates in an
order-based context: the realization of an order-based view update is
independent of the choice of order complement. O

Tricks in the relational context to make additional updates order based:
e Forget all constraints except the decomposition dependency.

14 /2.

The Uniqueness Theorem for Order-Based Updates

Order complement: " = (V',+/) is an order complement of T = (V,~) if
v x v : LDB(D) — LDB(V) x LDB(V’)
is an order isomorphism onto its image.

R[A] S[A]
Example: In the context E; = ({R[A], S[A]},0): e w2 ¢
. I_IE2 is an order complement of FIER?.
. I'IER2AS is not an order complement of I'IER2. R[A] RAS[A]

Theorem: Reflection invariance holds for order-based updates in an
order-based context: the realization of an order-based view update is
independent of the choice of order complement. O

Tricks in the relational context to make additional updates order based:
e Forget all constraints except the decomposition dependency.
e Extend the schemata using null values.

14 /2.

An Example of the Nonuniqueness of Order Complements

e The order-based context exhibits reflection invariance.

15/2.

An Example of the Nonuniqueness of Order Complements

e The order-based context exhibits reflection invariance.
e A simple example shows that it need not exhibit update-set invariance.

15/2.

An Example of the Nonuniqueness of Order Complements

e The order-based context exhibits reflection invariance.
e A simple example shows that it need not exhibit update-set invariance.

o Let E3 = (R[ABCD],{B — D, C — D}). {8~ D,C— D}
R[ABCD]

15/2.

An Example of the Nonuniqueness of Order Complements

e The order-based context exhibits reflection invariance.
e A simple example shows that it need not exhibit update-set invariance.

Let E3 = (R[ABCD],{B — D, C — D}). {8~ D,C— D}

e The view to be updated is HE\3Bc- R[ABCD]
|
E
TaBC
\

R[ABC]

15/2.

An Example of the Nonuniqueness of Order Complements

The order-based context exhibits reflection invariance.
e A simple example shows that it need not exhibit update-set invariance.

Let E3 = (R[ABCD],{B — D, C — D}). {8~ D,C— D}

e The view to be updated is HE\3Bc- R[ABCD]
e Both I'IF;D and I'IE3D are complements. E WEL &
BD, A*BC cD

R[BD] R[ABC] R[CD]
{B — D} {C — D}

15/2.

An Example of the Nonuniqueness of Order Complements

The order-based context exhibits reflection invariance.
A simple example shows that it need not exhibit update-set invariance.

Let E3 = (R[ABCD],{B — D, C — D}). {8~ D,C— D}

The view to be updated is HE\3Bc- R[ABCD]
Both I'IF;D and I'IE3D are complements. E WEL E
The schema E3 is completely symmetric BD A*BC D

in B and C, so (mathematically) there is
no way to prefer one complement to the
other.

R[BD] R[ABC] R[CD]
{B — D} {C — D}

15/2.

An Example of the Nonuniqueness of Order Complements

e The order-based context exhibits reflection invariance.
e A simple example shows that it need not exhibit update-set invariance.

o Let E5 = (R[ABCD], {B — D, C — D}). {8 —D,C— D}
e The view to be updated is HE\3Bc- RIABCD]
e Both I'IF;D and I'IE3D are complements. _E; 7rE|3 Es
e The schema E3 is completely symmetric BD A*BC D
in B and C, so (mathematically) there is RIBD] RIABC] R[CD]
no way to prefer one complement to the
other. {8 — D} {C— D}
e There is no smaller projection which is a complement.

15/2.

An Example of the Nonuniqueness of Order Complements

e The order-based context exhibits reflection invariance.

e A simple example shows that it need not exhibit update-set invariance.
{B— D,C— D}

e Let E3 = (R[ABCD],{B — D,C — D}).
. . HEs R[ABCD]
e The view to be updated is 1,5
e Both I'IF;D and I'IE3D are complements. _E; 7rE|3 Es
e The schema E3 is completely symmetric BD A*BC D

in B and C, so (mathematically) there is RIBD] RIABC] R[CD]

no way to prefer one complement to the

other. {B — D} {C — D}
e There is no smaller projection which is a complement.

° FIE"b constant = R[AC] may change, R[B] may not change.

15/2.

An Example of the Nonuniqueness of Order Complements

The order-based context exhibits reflection invariance.
A simple example shows that it need not exhibit update-set invariance.
Let Es = (R[ABCD], {B — D, C — D}). {B—~D,C~D}
The view to be updated is HE\3Bc- R[ABCD]

Both I'IF;D and I'IE3D are complements. E WEL E
The schema E3 is completely symmetric BD/ TABC D

in B and C, so (mathematically) there is y

no way to prefer one complement to the RIBD] RIABC] RICD]
other. {8 — D} {C— D}

There is no smaller projection which is a complement.
FIE"b constant = R[AC] may change, R[B] may not change.
I'I'E:"D constant = R[AB] may change, R[C] may not change.

15/2.

An Example of the Nonuniqueness of Order Complements

e The order-based context exhibits reflection invariance.
e A simple example shows that it need not exhibit update-set invariance.

o Let E5 = (R[ABCD], {B — D, C — D}). {8 —D,C— D}
e The view to be updated is HE\3Bc- RIABCD]
e Both I'IF;D and I'IE3D are complements. _E; 7rE|3 Es
e The schema E3 is completely symmetric BD A*BC D
in B and C, so (mathematically) there is RIBD] RIABC] R[CD]
no way to prefer one complement to the
other. {8 — D} {C— D}
e There is no smaller projection which is a complement.
. Flg’b constant = R[AC] may change, R[B] may not change.
o I'I'E:"D constant = R[AB] may change, R[C] may not change.
Reflection invariance: Updates which are possible with both complements
must keep both constant R[A] only may change, with the same

reflections in each case.
15/2.

Minimal and Optimal Complements

e The examples so far have worked implicitly with minimal complements.

16/2.

Minimal and Optimal Complements

e The examples so far have worked implicitly with minimal complements.
Formal context: Schema D; set V of views of D; M, eV

16/2.

Minimal and Optimal Complements

e The examples so far have worked implicitly with minimal complements.
Formal context: Schema D; set V of views of D; M, eV
e [<p Iy iff Congr(I'2) C Congr(l'1).

16/2.

Minimal and Optimal Complements

e The examples so far have worked implicitly with minimal complements.
Formal context: Schema D: set V of views of D; M, eV

e [<p Iy iff Congr(I'2) C Congr(l'1).

e 1 <p I iff Congr(I'2) € Congr(l'y) iff 1 <p N2 and My Zp I5.

16/2.

Minimal and Optimal Complements

e The examples so far have worked implicitly with minimal complements.
Formal context: Schema D: set V of views of D; M, eV
e [<p Iy iff Congr(I'2) C Congr(l'1).
e 1 <p I iff Congr(I'2) € Congr(l'y) iff 1 <p N2 and My Zp I5.
e [, € Vis a minimal [meet] complement of 'y relative to V if for no other
[meet] complement '3 € V it is the case that '3 <p .

16/2.

Minimal and Optimal Complements

e The examples so far have worked implicitly with minimal complements.
Formal context: Schema D: set V of views of D; M, eV
e [<p Iy iff Congr(I'2) C Congr(l'1).
e 1 <p I iff Congr(I'2) € Congr(l'y) iff 1 <p N2 and My Zp I5.
e [, € Vis a minimal [meet] complement of 'y relative to V if for no other
[meet] complement '3 € V it is the case that '3 <p .

Motivation: The smaller the complement, the greater the number of
view updates supported.

16/2.

Minimal and Optimal Complements

e The examples so far have worked implicitly with minimal complements.
Formal context: Schema D: set V of views of D; M, eV

e [<p Iy iff Congr(I'2) C Congr(l'1).

° F1 <D F2 iff Congr(rg) g Congr(rl) iff Fl jD F2 and r2 ﬁD Fl.

e [, € Vis a minimal [meet] complement of 'y relative to V if for no other

[meet] complement '3 € V it is the case that '3 <p .
Motivation: The smaller the complement, the greater the number of
view updates supported.
e Clearly, minimal is always desirable.

16/2.

Minimal and Optimal Complements

e The examples so far have worked implicitly with minimal complements.
Formal context: Schema D: set V of views of D; M, eV
e [<p Iy iff Congr(I'2) C Congr(l'1).
° F1 <D F2 iff Congr(rg) g Congr(rl) iff Fl jD F2 and r2 ﬁD Fl.
e [, € Vis a minimal [meet] complement of 'y relative to V if for no other
[meet] complement '3 € V it is the case that '3 <p .
Motivation: The smaller the complement, the greater the number of
view updates supported.
e Clearly, minimal is always desirable.
e However, minimal cannot guarantee update-set invariance, since
distinct minimal complements give rise to distinct update sets.

16/2.

Minimal and Optimal Complements

e The examples so far have worked implicitly with minimal complements.
Formal context: Schema D: set V of views of D; M, eV
e [<p Iy iff Congr(I'2) C Congr(l'1).
° F1 <D F2 iff Congr(rz) g Congr(rl) iff Fl jD F2 and r2 ﬁD Fl.
e [, € Vis a minimal [meet] complement of 'y relative to V if for no other
[meet] complement '3 € V it is the case that '3 <p .
Motivation: The smaller the complement, the greater the number of
view updates supported.
e Clearly, minimal is always desirable.
e However, minimal cannot guarantee update-set invariance, since
distinct minimal complements give rise to distinct update sets.
e [y € Vis an optimal [meet] complement of 'y relative to V if for every
other [meet] complement '3 € V), it is the case that ' <p 3.

16/2.

Minimal and Optimal Complements

e The examples so far have worked implicitly with minimal complements.
Formal context: Schema D: set V of views of D; M, eV
e [<p Iy iff Congr(I'2) C Congr(l'1).
F1 <D F2 iff Congr(rz) g Congr(rl) iff Fl =D F2 and r2 ﬁD Fl.
2 € Vis a minimal [meet] complement of 'y relative to V if for no other
[meet] complement '3 € V it is the case that '3 <p .
Motivation: The smaller the complement, the greater the number of
view updates supported.
e Clearly, minimal is always desirable.
e However, minimal cannot guarantee update-set invariance, since
distinct minimal complements give rise to distinct update sets.

[€ Vis an optimal [meet] complement of 'y relative to V if for every
other [meet] complement '3 € V), it is the case that ' <p 3.
Movivation: It is precisely an optimal complement which guarantees
update-set independence.

16/2.

Examples of Minimal and Optimal Complements

Context: Consider again the running example Ej3.

17/2

Examples of Minimal and Optimal Complements

{B— D,C— D}
R[ABCD]

e Both FI'E; and FI'?D are minimal complements of . EI .
3 3 3
ME - relative to the projections M-Views(Es). WBE/TA,BNCD

Context: Consider again the running example Ej3.

R[BD] R[ABC] R[CD]
{B — D} {C — D}

17/2

Examples of Minimal and Optimal Complements

{B— D,C— D}
° e R[ABCD]

e Both I3 and I, are minimal complements of . EI .

3 3 3

ME - relative to the projections M-Views(Es). WBE/TA,BNCD

e Thus, neither can be optimal. RIBD] R[ABC] R[CD]
{B — D} {C— D}

Context: Consider again the running example Ej3.

17/2

Examples of Minimal and Optimal Complements

. . . {B— D,C — D}
Context: Consider again the running example Ej3.

h c R[ABCD]
e Both I3 and I, are minimal complements of . EI .
3 3 3
ME - relative to the projections M-Views(Es). "Bl TABC NP
e Thus, neither can be optimal. R[BD] R[ABC] R[CD]
{B — D} {C— D}

° HEB3CD is a complement which is not minimal
relative to M-Views(E3).
{B— D,C — D}

R[ABCD]
\
E E
7733D/ TaBC
<
R[BCD] R[ABC]
{B — D,

C — D}

17/2

Examples of Minimal and Optimal Complements

. . . {B— D,C— D}
Context: Consider again the running example Es. RIABCD]

e Both FI'E; and FI'?D are minimal complements of
I'IEﬁBC relative to the projections IN-Views(E3).

I
E3 E3 E3
Tep/ "aBc \'cD
A\

e Thus, neither can be optimal. R[BD] R[ABC] R[CD]

. . . . B— D D
° HEB3CD is a complement which is not minimal {8~ D} {¢— D}
relative to M-Views(E3).
e But I'IE3CD is an optimal meet complement {B—D,C— D}
amongst projections. RIABCD]
\
5/
<
R[BCD] RIABC]
{B — D,

C — D}

17/2

Examples of Minimal and Optimal Complements

. . . {B— D,C— D}
Context: Consider again the running example Es. RIABCD]

e Both FI'E; and FI'?D are minimal complements of . EI .
3 3 3
ME - relative to the projections M-Views(Es). WBE/TA,BNCD

e Thus, neither can be optimal. R[BD] R[ABC] R[CD]

. . . . B— D D
° HEB3CD is a complement which is not minimal {8~ D} {¢— D}
relative to M-Views(E3).
e But I'IE3CD is an optimal meet complement {B—D,C— D}
amongst projections. RIABCD]
. . . . E; . \
o If s.tate invariance is desired, g,y is the best 77539/ B
which can be achieved. h
R[BCD] RIABC]
{B — D,

C — D}

17/2

Examples of Minimal and Optimal Complements

. . . {B— D,C— D}
Context: Consider again the running example Es. RIABCD]

e Both FI'E; and FI'?D are minimal complements of . EI .
3 3 3
ME - relative to the projections M-Views(Es). WBE/TA,BNCD

e Thus, neither can be optimal. R[BD] R[ABC] R[CD]

. . . . B— D D
° HEB3CD is a complement which is not minimal {8~ D} {¢— D}
relative to M-Views(E3).
e But I'IE3CD is an optimal meet complement {B—D,C— D}
amongst projections. RIABCD]
. . . . E; . \
o If s.tate invariance is desired, g,y is the best 77539/ B
which can be achieved. h
. R[BCD RIABC
e Update-set independence comes as a bonus, [BCD] [ABC]
but f ller set of updates th B=0,
ut for a smaller set of updates than C - D}

supported by I'IEB3D or I'IE3D as complements.

17/2

Examples of Minimal and Optimal Complements

. . . {B— D,C — D}
Context: Consider again the running example Ej3.

° c R[ABCD]
e Both I3 and I, are minimal complements of
ME - relative to the projections M-Views(Es). /TABNCD
e Thus, neither can be optimal. R[BD] R[ABC] R[CD]
° HEB3CD is a complement which is not minimal {8~ D} {¢— D}
relative to M-Views(E3).
e But I'IE3CD is an optimal meet complement {B—D,C— D}
amongst projections. RIABCD]
. . . . E; . \
o If s.tate invariance is desired, g,y is the best 7TEaD’\/ .
which can be achieved. h
. R[BCD RIABC
e Update-set independence comes as a bonus, [BCD] [ABC]
but f ller set of updates th B=0,
ut for a smaller set of updates than C - D}

supported by I'IEB3D or I'IE3D as complements.
e Clearly, there are tradeoffs.

17/2

The Context of \/[-Views

{B— D,C— D}
R[ABCD]
|

E3
TABC

\
R[ABC]

e Consider again the running example.

18/2.

The Context of \/[-Views

Consider again th i | e B¢ b}
o Consider again the running example. R[ABCD]

e The view I_IE:"CD is the optimal meet |
complement of M&%- amongst all WEECD} .
projections.

R[BCD] R[ABC]

{B — D,
C —» D}

18/2.

The Context of \/[-Views

. . _ {B— D,C— D}
e Consider again the running example.

R[ABCD]
e The view I_IE:"CD is the optimal meet |
Es E Es
complement of 1,5~ amongst all mhsc NT(bD.cD)
projections. v "
e However, consider the view I'Ifng D R[ABC] R[BD] R[CD]
which consists of two projections B {B— D,

and CD. C — D}

18/2.

The Context of \/[-Views

. . _ {B— D,C— D}
e Consider again the running example.

R[ABCD]
e The view I_IE:"CD is the optimal meet |
Es E E3

complement of 1,5~ amongst all mhsc NT(bD.cD)
projections. v "

e However, consider the view I'Ifng D R[ABC] R[BD] R[CD]
which consists of two projections B {B— D,
and CD. C — D}

. . nEs3 E3
o Itis a smaller meet complement: Mgy -y <E;5 Mpep-

18/2.

The Context of \/[-Views

. . _ {B— D,C— D}
e Consider again the running example.

R[ABCD]
e The view I_IE:"CD is the optimal meet |
complement of M&%- amongst all ~E3 T b
projections. A+BC {B0,CD}
e However, consider the view I'IEEQCD R[ABC] R[BD] R[CD]
which consists of two projections B {B— D,
and CD. C — D}

. . nEs3 E3
o Itis a smaller meet complement: Mgy -y <E;5 Mpep-

e The association of B-values and C-values is not preserved by this view.

18/2.

The Context of \/[-Views

. . _ {B— D,C— D}
e Consider again the running example.

R[ABCD]
e The view I_IE:"CD is the optimal meet |
Es E E3

complement of 1,5~ amongst all mhsc NT(bD.cD)
projections. v "

e However, consider the view I'Ifng D R[ABC] R[BD] R[CD]
which consists of two projections B {B— D,
and CD. C — D}

. . MEs Es
o Itis a smaller meet complement: Mgy -y <E;5 Mpep-
e The association of B-values and C-values is not preserved by this view.

e Such a view consisting of multiple projections is called a \/N-view.

18/2.

The Context of \/[-Views

. . _ {B— D,C— D}
e Consider again the running example.

R[ABCD]
e The view I_IE:"CD is the optimal meet |
Es E E3

complement of 1,5~ amongst all mhsc NT(bD.cD)
projections. "

e However, consider the view I'Ifng D R[ABC] R[BD] R[CD]
which consists of two projections B {B— D,
and CD. C — D}

e It is a smaller meet complement: I'IffS,D cpy ~Es I'I?CD.
e The association of B-values and C-values is not preserved by this view.
e Such a view consisting of multiple projections is called a \/N-view.

e They can be used instead of single projections with little or no extra work.

18/2.

The Context of \/[-Views

. . _ {B— D,C— D}
e Consider again the running example.

R[ABCD]
e The view I_IE:"CD is the optimal meet |
Es E E3

complement of 1,5~ amongst all mhsc NT(bD.cD)
projections. v "

e However, consider the view I'Ifng D R[ABC] R[BD] R[CD]
which consists of two projections B {B— D,
and CD. C — D}

e It is a smaller meet complement: nffso,co} ~<E; I'I?CD.

e The association of B-values and C-values is not preserved by this view.

e Such a view consisting of multiple projections is called a \/N-view.

e They can be used instead of single projections with little or no extra work.

Notation: \/MM-Views(D) denotes the set of all \/ views of D.

18/2.

Nonuniqueness of Meet Complements in the FD context

e Context: A Universal-relational schema constrained by FDs.

19/2.

Nonuniqueness of Meet Complements in the FD context

e Context: A Universal-relational schema constrained by FDs.

e A simple example of the nonexistence of optimal projective complements
has been given:

19/2.

Nonuniqueness of Meet Complements in the FD context

e Context: A Universal-relational schema constrained by FDs.

e A simple example of the nonexistence of optimal projective complements
has been given:
e E3; = (R[ABCD],{B — D,C — D}).

19/2.

Nonuniqueness of Meet Complements in the FD context

e Context: A Universal-relational schema constrained by FDs.

e A simple example of the nonexistence of optimal projective complements
has been given:
o E3 = (R[ABCD],{B — D, C — D}).
° I'IE\QBC has distinct minimal \/ll-complements I—IF;D and I_II(E.‘3D-

19/2.

Nonuniqueness of Meet Complements in the FD context

e Context: A Universal-relational schema constrained by FDs.

e A simple example of the nonexistence of optimal projective complements
has been given:

e E3; = (R[ABCD],{B — D,C — D}).
o I'IE\QBC has distinct minimal \/ll-complements I—IF;D and I_IEFD_

e However, it does have an optimal meet \/ll-complement: ﬂfEC’CD}.

19/2.

Nonuniqueness of Meet Complements in the FD context

e Context: A Universal-relational schema constrained by FDs.

e A simple example of the nonexistence of optimal projective complements
has been given:
e E3; = (R[ABCD],{B — D,C — D}).
o I'IE\QBC has distinct minimal \/ll-complements I—IF;D and I'I'(E_.3D_
e However, it does have an optimal meet \/ll-complement: ﬂfEC’CD}.

Question: Are there examples without optimal meet complements?

19/2.

Nonuniqueness of Meet Complements in the FD context

e Context: A Universal-relational schema constrained by FDs.

e A simple example of the nonexistence of optimal projective complements
has been given:
o E3 = (R[ABCD],{B — D, C — D}).
° I_IE\QBC has distinct minimal \/ll-complements I—IF;D and I_II(E.‘3D-

e However, it does have an optimal meet \/ll-complement: ﬂfEC’CD}.

Question: Are there examples without optimal meet complements?
{A— BC,B — AC}

Yes: B4 = (RIABC], {A — BC, B — AC}). R[ABC]

19/2.

Nonuniqueness of Meet Complements in the FD context

e Context: A Universal-relational schema constrained by FDs.

e A simple example of the nonexistence of optimal projective complements
has been given:
o E3 = (R[ABCD],{B — D, C — D}).
° I_IE\QBC has distinct minimal \/ll-complements I—IF;D and I_II(E.‘3D-

e However, it does have an optimal meet \/ll-complement: ﬂfEC’CD}.

Question: Are there examples without optimal meet complements?

Yes: Eq = (R[ABC],{A — BC,B — AC}). {A— BC,B— AC}

e The two minimal complements I_IE“}B and RIABC]
I'IEB“C are related by an attribute é4
equivalence A <> B of keys. 7ri\B

R[AB]

{A+ B}

19/2.

Nonuniqueness of Meet Complements in the FD context

e Context: A Universal-relational schema constrained by FDs.

e A simple example of the nonexistence of optimal projective complements
has been given:
o E3 = (R[ABCD],{B — D, C — D}).
° I_IE\QBC has distinct minimal \/ll-complements I—IF;D and |‘|E_3D_

e However, it does have an optimal meet \/M-complement: ﬂfEC’CD}.

Question: Are there examples without optimal meet complements?
{A— BC,B — AC}

Yes: B4 = (R[ABC], {A — BC, B — AC}). R[ABC]

e The two minimal complements I_IE“}B and
E4 . |

I'IBC. are related by an attribute - E, E.

equivalence A <+ B of keys. A Tag N'BC

e This is the only way that such \

non-isomorphic minimal complements can
occur.

R[AC] R[AB] R[BC]
{A— CH{A+ BH{C — D}

19/2.

Equivalence of Meet Complements in the \/[-FD framework

Context: e Universal relational schema D = (R[U], F); F = FDs.
D -
* M, w,,..w,y @ V-view,

Equivalence of Meet Complements in the \/[-FD framework

Context: e Universal relational schema D = (R[U], F); F = FDs.
D -
* M, w,,..w,y @ V-view,

Reduced: An FDY — A € FT is reduced if

Equivalence of Meet Complements in the \/[-FD framework

Context: e Universal relational schema D = (R[U], F); F = FDs.
D -
* M, w,,..w,y @ V-view,

Reduced: An FDY — A € FT is reduced if
e A c U (single attribute on RHS)

Equivalence of Meet Complements in the \/[-FD framework

Context: e Universal relational schema D = (R[U], F); F = FDs.
D .
* Mo, w,. w, 2 \M-view.
Reduced: An FDY — A€ F' is reduced if

e A c U (single attribute on RHS)
e For any proper subset Y/ CY, Y — Ag Ft.

Equivalence of Meet Complements in the \/[-FD framework

Context: e Universal relational schema D = (R[U], F); F = FDs.
D .
* Mo, w,. w, 2 \M-view.
Reduced: An FDY — A€ F' is reduced if

e A c U (single attribute on RHS)
e For any proper subset Y/ CY, Y — Ag Ft.

FD-equivalence: Y and Z are FD-equivalent (for F), written Y <+ Z, if both
Y -Z and Z — Y hold.

Equivalence of Meet Complements in the \/[-FD framework

Context: e Universal relational schema D = (R[U], F); F = FDs.
D -
* H{Wz,Wg,,,,Wm} a \M-view.

Reduced: An FDY — A € F' is reduced if
e A c U (single attribute on RHS)
e For any proper subset Y/ CY, Y — Ag Ft.

FD-equivalence: Y and Z are FD-equivalent (for F), written Y <+ Z, if both
Y -Z and Z — Y hold.

. ... D D : . .
Definition: H{WQ,WQ,---W:H,}’ and ”{w;’,wg,...w;;,,} are FD-equivalent if for
every i € {1,2,...,m} and every Y C W, which is reduced for F, there

isaje{l,2,....,m"}anda Z C WJ’-’ with Y <> Z; and conversely.

Equivalence of Meet Complements in the \/[-FD framework

Context: e Universal relational schema D = (R[U], F); F = FDs.
D .
* Mo, w,. w, 2 \M-view.
Reduced: An FDY — A€ F' is reduced if

e A c U (single attribute on RHS)
e For any proper subset Y/ CY, Y — Ag Ft.

FD-equivalence: Y and Z are FD-equivalent (for F), written Y <+ Z, if both
Y -Z and Z — Y hold.

. ... D D : . .
Definition: H{WQ,WQ,---W:H,}’ and ”{w;’,wg,...w;;,,} are FD-equivalent if for
every i € {1,2,...,m} and every Y C W, which is reduced for F, there

isaje{l,2,....,m"}anda Z C WJ’-’ with Y <> Z; and conversely.

Theorem: Any two meet complements are FD-equivalent. O

Equivalence of Meet Complements in the \/[-FD framework

Context: e Universal relational schema D = (R[U], F); F = FDs.

D .
* H{W21W27---Wm} a \fM-view.

Reduced: An FDY — A € F' is reduced if
e A c U (single attribute on RHS)
e For any proper subset Y/ CY, Y — Ag Ft.

FD-equivalence: Y and Z are FD-equivalent (for F), written Y <+ Z, if both
Y -Z and Z — Y hold.

. ... D D : . .
Definition: H{WQ,WQ,---W:H,}’ and ”{w;’,wg,...w;;,,} are FD-equivalent if for
every i € {1,2,...,m} and every Y C W, which is reduced for F, there

isaje{l,2,....,m"}anda Z C WJ’-’ with Y <> Z; and conversely.
Theorem: Any two meet complements are FD-equivalent. O
Corollary If F does not contain any nontrivial FD-equivalences (Y # Z),

then I'IJ?Wl Wo,. W} has a unique optimal meet \/M-complement. O

Examples of Equivalent Meet Complements

Context: e Egs = (R[ABCDE], F3)
e /5={B—>C,C—D,D—E}

E
° ”{3\37 cD}

Examples of Equivalent Meet Complements

Context: e Egs = (R[ABCDE], F3)
e /5={B—>C,C—D,D—E}

E
° ”{3\37 cD}

e F5 implies no nontrivial FD-equivalences.

Examples of Equivalent Meet Complements

Context: e Egs = (R[ABCDE], F3)
e /5={B—>C,C—D,D—E}

E
° ”{3\37 cD}

e F5 implies no nontrivial FD-equivalences.

e The view ﬂfz& D} has a unique meet \/Nl-complement: I_Iffgq DE}

Examples of Equivalent Meet Complements

Context: e Egs = (R[ABCDE], F3)
e /5={B—>C,C—D,D—E}

E
° ”{3\37 cD}

e F5 implies no nontrivial FD-equivalences.

e The view ﬂfz& D} has a unique meet \/Nl-complement: I_Iffgq DE}

Context: e Eg= (R[ABH B1»B; CDlDzE],JT6)
° f62{311312<—>32,D1HD2,51—>C7C—>D1,D1—>E}
Ee

°
{AB11B12B,, CD:1 D>}

Examples of Equivalent Meet Complements

Context: e Egs = (R[ABCDE], F3)
e /5={B—>C,C—D,D—E}

E
° ”{3\37 cD}

e F5 implies no nontrivial FD-equivalences.

e The view ﬂfi\& D} has a unique meet \/Nl-complement: I_Iffgq DE}

Context: e Eg= (R[ABH B1»B; CD1D2E],JT6)

° .FGZ{BllBlQ(—}BQ,DlHD2,51—>C,C—>D1,D1—>E}
E
° {5\31131232, CD; Dy}

e Fg implies two nontrivial FD-equivalences: By1Bi2 <> By and D1 <> D».

Examples of Equivalent Meet Complements

Context: e Egs = (R[ABCDE], F3)
e /5={B—>C,C—D,D—E}

E
° ”{3\37 cD}

e F5 implies no nontrivial FD-equivalences.

e The view ﬂfi\& D} has a unique meet \/Nl-complement: I_Iffgq DE}

Context: e Eg= (R[ABH B1»B; CD1D2E],JT6)

° .FGZ{BllBlQ(—}BQ,DlHD2,51—>C,C—>D1,D1—>E}
Ee

°
{AB11B12B,, CD:1 D>}

e Fg implies two nontrivial FD-equivalences: By1Bi2 <> By and D1 <> D».
e The view NEs
£ {AB11B12B>,

6

M Mnes
{BuB12C, D1E} {BuB12C, D>E}

CD1D>} has four distinct meet complements:

Es Ee
n{Bzc, D1 E} n{BzC D>E}

Extension to “Real-World” Situations

o “Real world” schemata have:

Extension to “Real-World” Situations

o “Real world” schemata have:
e Multiple relations

Extension to “Real-World” Situations

e “Real world” schemata have:
e Multiple relations
e Referential integrity constraints (foreign-key dependencies):

Extension to “Real-World” Situations

e “Real world” schemata have:
e Multiple relations
e Referential integrity constraints (foreign-key dependencies):

e The extension to multirelational schemata with FDs is trivial.

Extension to “Real-World” Situations

e “Real world” schemata have:

e Multiple relations

e Referential integrity constraints (foreign-key dependencies):
e The extension to multirelational schemata with FDs is trivial.

e Apply previous results on a relation-by-relation basis.

Extension to “Real-World” Situations

e “Real world” schemata have:

e Multiple relations

e Referential integrity constraints (foreign-key dependencies):
e The extension to multirelational schemata with FDs is trivial.

e Apply previous results on a relation-by-relation basis.

e The theory also extends to fanout-free unary inclusion dependencies:

Extension to “Real-World” Situations

e “Real world” schemata have:

e Multiple relations

e Referential integrity constraints (foreign-key dependencies):
e The extension to multirelational schemata with FDs is trivial.

e Apply previous results on a relation-by-relation basis.

e The theory also extends to fanout-free unary inclusion dependencies:
e (R[A] C S[BJAR[A] C T[C]) = (S[B] € T[C]vT[C] C S[B]).

Extension to “Real-World” Situations

e “Real world” schemata have:
e Multiple relations
e Referential integrity constraints (foreign-key dependencies):

e The extension to multirelational schemata with FDs is trivial.
e Apply previous results on a relation-by-relation basis.

e The theory also extends to fanout-free unary inclusion dependencies:
e (R[A] C S[BJAR[A] C T[C]) = (S[B] € T[C]vT[C] C S[B]).
e Foreign-key dependencies are always fanout free.

Extension to “Real-World” Situations

“Real world” schemata have:
e Multiple relations
e Referential integrity constraints (foreign-key dependencies):

The extension to multirelational schemata with FDs is trivial.
e Apply previous results on a relation-by-relation basis.

The theory also extends to fanout-free unary inclusion dependencies:
e (R[A] C S[BJAR[A] C T[C]) = (S[B] € T[C]vT[C] C S[B]).
e Foreign-key dependencies are always fanout free.

Each one-way UID must always be embedded into one of the two views.

Extension to “Real-World” Situations

“Real world” schemata have:
e Multiple relations
e Referential integrity constraints (foreign-key dependencies):

The extension to multirelational schemata with FDs is trivial.
e Apply previous results on a relation-by-relation basis.

The theory also extends to fanout-free unary inclusion dependencies:
e (R[A] C S[BJAR[A] C T[C]) = (S[B] € T[C]vT[C] C S[B]).
e Foreign-key dependencies are always fanout free.

Each one-way UID must always be embedded into one of the two views.
One-way UID: R[A] C S[B] holds; S[B] C R[A] does not.

Extension to “Real-World” Situations

“Real world” schemata have:
e Multiple relations
e Referential integrity constraints (foreign-key dependencies):
The extension to multirelational schemata with FDs is trivial.
e Apply previous results on a relation-by-relation basis.
The theory also extends to fanout-free unary inclusion dependencies:
e (R[A] C S[BJAR[A] C T[C]) = (S[B] € T[C]vT[C] C S[B]).
e Foreign-key dependencies are always fanout free.
Each one-way UID must always be embedded into one of the two views.
One-way UID: R[A] C S[B] holds; S[B] C R[A] does not.
Two-way UIDS (R[A] = S[B]) define true isomorphism, and must satisfy
a condition similar to FD-equivalence.

Extension to “Real-World” Situations

“Real world” schemata have:

e Multiple relations

e Referential integrity constraints (foreign-key dependencies):
The extension to multirelational schemata with FDs is trivial.

e Apply previous results on a relation-by-relation basis.

The theory also extends to fanout-free unary inclusion dependencies:
e (R[A] C S[BJAR[A] C T[C]) = (S[B] € T[C]vT[C] C S[B]).
e Foreign-key dependencies are always fanout free.

Each one-way UID must always be embedded into one of the two views.
One-way UID: R[A] C S[B] holds; S[B] C R[A] does not.

o Two-way UIDS (R[A] = S[B]) define true isomorphism, and must satisfy
a condition similar to FD-equivalence.

Bottom line: The extension to multirelational settings constrained by both
FDs and fanout-free UIDs is complete.

Extension to “Real-World” Situations

“Real world” schemata have:

e Multiple relations

e Referential integrity constraints (foreign-key dependencies):
The extension to multirelational schemata with FDs is trivial.

e Apply previous results on a relation-by-relation basis.

The theory also extends to fanout-free unary inclusion dependencies:
e (R[A] C S[BJAR[A] C T[C]) = (S[B] € T[C]vT[C] C S[B]).
e Foreign-key dependencies are always fanout free.

Each one-way UID must always be embedded into one of the two views.
One-way UID: R[A] C S[B] holds; S[B] C R[A] does not.

o Two-way UIDS (R[A] = S[B]) define true isomorphism, and must satisfy
a condition similar to FD-equivalence.

Bottom line: The extension to multirelational settings constrained by both
FDs and fanout-free UIDs is complete.

e Certain useful cases of non-unary IDs can also be handled.

Conclusions and Further Directions

Conclusions:

Further Directions:

Conclusions and Further Directions

Conclusions:

e Three distinct forms of invariance have been considered for
constant-complement update:

Further Directions:

Conclusions and Further Directions

Conclusions:

e Three distinct forms of invariance have been considered for
constant-complement update:
State invariance: The existence of a reflection does not depend upon
the state of the complement.

Further Directions:

Conclusions and Further Directions

Conclusions:

e Three distinct forms of invariance have been considered for
constant-complement update:
State invariance: The existence of a reflection does not depend upon
the state of the complement.
Reflection invariance: The reflection of a view update is identical for all
complements which support it.

Further Directions:

Conclusions and Further Directions

Conclusions:

e Three distinct forms of invariance have been considered for
constant-complement update:

State invariance: The existence of a reflection does not depend upon
the state of the complement.

Reflection invariance: The reflection of a view update is identical for all
complements which support it.

Update-set invariance: There is a single complement which supports all
constant-complement updates.

Further Directions:

Conclusions and Further Directions

Conclusions:

e Three distinct forms of invariance have been considered for
constant-complement update:

State invariance: The existence of a reflection does not depend upon
the state of the complement.

Reflection invariance: The reflection of a view update is identical for all
complements which support it.

Update-set invariance: There is a single complement which supports all
constant-complement updates.

e Reasonably broad theories characterizing the first two forms of invariance
have been developed.

Further Directions:

Conclusions and Further Directions

Conclusions:

e Three distinct forms of invariance have been considered for
constant-complement update:

State invariance: The existence of a reflection does not depend upon
the state of the complement.

Reflection invariance: The reflection of a view update is identical for all
complements which support it.

Update-set invariance: There is a single complement which supports all
constant-complement updates.

e Reasonably broad theories characterizing the first two forms of invariance
have been developed.

Further Directions:

e Pursue a more general theory of optimal meet complements which is not
dependent upon specific constraints and the relational model.

