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Schemata, Databases, and Schema Morphisms

Context: State-based database schemata: A database schema D is
characterized by a set LDB(D) of legal databases.

• At each point in time, there is exactly one legal database.

Prototypical example: Relational schemata D = (Rels(D),Constr(D)).

• LDB(D) = set of databases of D which satisfy the integrity
constraints Constr(D).

Database morphism: A morphism f : D1 → D2 is characterized by a
function f : LDB(D1)→ LDB(D2).

• In the relational model, such functions are typically defined in one of two
ways: (Example for R,S ∈ Rels(D1), T ∈ Rels(D2))

Relational algebra: T [AC ] = πAC (R[AB] ∗ S [BC ])

Relational calculus: T (x , z)⇔ (∃y)((R(x , y)∧S(y , z)).

• However, the results are not limited to the relational model in any way.
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Database Views

• A view Γ = (V, γ) of the schema D is given by:

• A schema V;

• A morphism γ : D → V for which
γ : LDB(D)→ LDB(V) is surjective.

• Surjectivity implies that the state of V is always
determined completely by the state of D.

Congruence: The congruence Congr(Γ) is given by
{(M1,M2) ∈ LDB(D) | γ(M1) = γ(M2)}.

Main Schema D

View Schema V

• There is a natural bijective correspondence between the states of V and
the blocks of Congr(Γ).

• Thus, view construction is fundamentally a quotient operation, and not a
subset operation.

• For the purposes of this work, views with identical congruences are
considered to be isomorphic.
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Implied Constraints on the View

• The constraints Constr(V) of V are completely determined by the
constraints of Constr(D).

• In the relational model, simple constraints on D can nevertheless result in
complex constraints on V.

Example: D = (R[ABCD], {A→ D,B → D,CD → A})
Γ = ΠD

ABC = projection of R[ABCD] onto R[ABC ]
admits no finite basis of first-order constraints.

• Constr(V) is not finitely axiomatizable.

Example: D = (R[AB], {A→ B})
Γ = (V, γ) = ΠD

A+B with γ : r 7→ (πA(r), πB(r))
admits no first-order axiomatization for infinite models.

• Constr(V) = {Card(R[B]) ≤ Card(R[A])}.
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The View-Update Problem

Context: A view Γ = (V, γ) of the schema D.

• Given the state of the main schema and a view
update ...

• there are in general many possible reflections of
that view update to the main schema.

• Note that there is always at least one.

• The view-update problem is to determine:

• which reflections, if any, are suitable; and

• if there is more than one suitable choice,
which is best.

Main Schema D

View Schema V
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Approaches to the View-Update Problem

• Three main classifications of most work on this problem:

Direct modelling:

• Look for direct solutions, usually using the relational algebra and
null values.

• “Bag-of-tricks” approaches rather than comprehensive theories.

Minimal/least change:

• A measure of distance between database states is identified.

• For reflected updates, smaller is better (intuitively, fewer changes).

• This approach is a favorite in the deductive-database community.

• But it has also been applied in the state-based context.

Constant complement:

• In updating view Γ, identify a second view Γ′ which recaptures the
“rest” of the main schema D.

• Updates to Γ must keep Γ′ constant.

• Support for this approach is the main focus of this presentation.
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A Concise Formulation of View Update

• Updates〈D〉 = LDB(D)× LDB(D) for any schema D.

Context: Main schema D, view Γ = (V, γ).

• A translation (reflection) of (N1,N2) ∈ Updates〈V〉
with respect to M1 ∈ LDB(D) with γ(M1) = N1 is
an M2 ∈ LDB(D) with γ(M2) = N2.

M1 M2

N1 N2

γ γ

• Everything is specified by:

• the current state M1 of the main schema; and

• the desired new state N2 of the view schema.

• N1 is recaptured as γ(M1).

Update request: Formally, an update request from Γ to D is a pair
(M1,N2) ∈ LDB(D)× LDB(V).

Realization: A realization of (M1,N2) along Γ is a translation of (γ(M1),N2)
with respect to M1.
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View Complements and the Constant-Complement Approach

• The view Γ′ = (V′, γ′) is a complement of Γ = (V, γ) if the
decomposition morphism γ × γ′ : LDB(D) → LDB(V)× LDB(V′)

M 7→ 〈γ(M), γ′(M)〉
is injective.

Observation: [Bancilhon & Spyratos 1981] If Γ′ = (V′, γ′) is a complement
of Γ = (V, γ), then for any update request (M1,N2) from Γ to D, there
is at most one realization which keeps the state of Γ′ constant.

Proof: This realization must be (M1, (γ × γ′)−1((N1, γ2(M1)))). 2

Familiar example: E0 = (R[ABC ], {B → C}).

View to be updated: ΠE0
AB = (EAB

0 , πE0
AB).

Natural complement: ΠE0
BC = (EBC

0 , πE0
BC ).

• The updates to ΠE0
AB with constant complement

ΠE0
BC are precisely those which keep ΠE0

B fixed.

R[ABC ]

{B → C}

R[AB]

πE0
AB

R[BC ]

πE0
BC
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Three Uniqueness Issues for Constant Complement

Locality: The constant-complement strategy is intuitively appealing because
it formalizes the notion of locality — the part of the main schema not
included in the view to be updated (the complement) is held constant.

• However, there are at least three invariance issues surrounding the
constant-complement approach to the reflection of view update.

Context: Main schema D, view Γ = (V, γ), complement Γ′ = (V′, γ′), with:

• update request u = (M1,N2) from Γ to D.

State invariance: If u is realizable with constant complement Γ′, then every
u′ = (M ′

1,N2) with γ(M ′
1) = γ(M1) is also so realizable.

Reflection invariance: If u is also realizable with respect to constant
complement Γ′′ = (V′′, γ′′), then the two realizations the same.

Update-set invariance: If Γ′′ = (V′′, γ′′) is a second complement, then Γ′ and
Γ′′ support the same constant-complement updates.

Observation: These three conditions are in general independent of one
another.
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Dependency Preservation ⇒ State Invariance

Recall: E0 = (R[ABC ], {B → C}).

View to be updated: ΠE0
AB = (EAB

0 , πE0
AB).

Natural complement: ΠE0
BC = (EBC

0 , πE0
BC ).

• The updates to ΠE0
AB with constant complement

ΠE0
BC are precisely those which keep ΠE0

B fixed.

R[ABC ]

{B → C}

{B → C ,A→ C}

R[AB] R[BC ]

πE0
AB πE0

BC

• This situation exhibits state invariance.

• If the FD A→ C is added, this property no longer holds.

Example: M1 = {R(a1,b1, c1),R(a2,b2, c1)}
M ′

1 = {R(a1,b1, c1),R(a2,b2, c2)}
• The view update ({R(a1,b1),R(a2, b2)}, {R(a1, b1),R(a1,b2)}) is

realizable if the state of E0 is M1 but not if it is M ′
1.

• With the addition of A→ C , a cover of the dependencies no longer
embeds in the views, so these dependencies cannot be checked on a
view-by-view basis.
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Meets — the Generalization of Dependency Preservation

• A visualization of the previous example:

• The goal is to update the view Γ = ΠE1
AB ...

• while holding the view Γ′ = ΠE1
BC constant.

Question: When does the visualization
describe reality?

• When does it suffice to keep the
overlap area R[B] constant?

R[ABC ]
B → C

Answer: The overlap area must define a view Γ′′, (the meet of Γ and Γ′)
with: Congr(Γ) ⊆ Congr(Γ′′) and Congr(Γ′) ⊆ Congr(Γ′′)

Solution: This happens precisely when the congruences commute:
Congr(Γ) ◦ Congr(Γ′) = Congr(Γ′) ◦ Congr(Γ)

Theorem: Commuting congruences identifies precisely the conditions under
which state invariance holds. 2

• A complement with commuting congruences is called a meet complement.
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Constraints and Meet Complements

• In general, the constraints on a view may be very complex, if if the
constraints on the main schema are simple (e.g., FDs) and the view is
simple (e.g., a projection).

• In the case of update via meet complement, the constraint which actually
need be checked are those which embed from the main schema.

Example: E1 = (R[ABCDE ], {A→ D,B → D,CD → A,A→ E}).

View to be updated: ΠE1
ABCE = (EABCE

1 , πE1
ABCE ).

• Embedded constraints: {A→ E}.
• The view itself does not admit a finite basis of constraints.

Meet complement: ΠE1
ABCD = (EABCD

1 , πE1
ABCD) with meet ΠE1

ABC .

• Embedded constraints: {A→ D,B → D,CD → A}.

• The updates on ΠE1
ABCE with ΠE1

ABCD constant = updates with ΠE1
ABC

constant which satisfy A→ E .

• {A→ D,B → D,CD → A} are satisfied by virtue of ΠE1
ABCD being

held constant.
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A Simple Example of the Nonuniqueness of Complements
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Order-Based Views and Updates

Problem: Characterize “good” complements formally.

Order: The states of database schemata often admit a natural order.

Example: In the relational model, relation-by-relation inclusion.

Notation: vD for this order on LDB(D).

• The following have natural and obvious definitions:

• order-based schema

• In the relational model, morphisms which are defined without
using negation (explicitly or implicitly) are order morphisms.

• order-preserving database morphism (or order morphism)

• order view

Insertion: (M1,M2) with M1 vD M2.

Deletion: (M1,M2) with M2 vD M1.

Order-based update: An update which is representable as a composition of
insertions and deletions.
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The Uniqueness Theorem for Order-Based Updates

Order complement: Γ′ = (V′, γ′) is an order complement of Γ = (V, γ) if
γ × γ′ : LDB(D)→ LDB(V)× LDB(V′)

is an order isomorphism onto its image.

Example: In the context E2 = ({R[A], S [A]}, ∅):

• ΠE2
S is an order complement of ΠE2

R .

• ΠE2
R∆S is not an order complement of ΠE2

R .

R[A] S [A]

R[A]

πE2
R

S [A]

πE2
S

R∆S [A]

πE2
R∆S

Theorem: Reflection invariance holds for order-based updates in an
order-based context: the realization of an order-based view update is
independent of the choice of order complement. 2

Tricks in the relational context to make additional updates order based:

• Forget all constraints except the decomposition dependency.

• Extend the schemata using null values.
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An Example of the Nonuniqueness of Order Complements

• The order-based context exhibits reflection invariance.

• A simple example shows that it need not exhibit update-set invariance.

• Let E3 = (R[ABCD], {B → D,C → D}).

• The view to be updated is ΠE3
ABC .

• Both ΠE3
BD and ΠE3

CD are complements.

• The schema E3 is completely symmetric
in B and C , so (mathematically) there is
no way to prefer one complement to the
other.

R[ABCD]

{B → D,C → D}

R[ABC ]

πE3
ABC

R[BD]

{B → D}
R[CD]

{C → D}

πE3
BD πE3

CD

• There is no smaller projection which is a complement.

• ΠE3
BD constant ⇒ R[AC ] may change, R[B] may not change.

• ΠE3
CD constant ⇒ R[AB] may change, R[C ] may not change.

Reflection invariance: Updates which are possible with both complements
must keep both constant R[A] only may change, with the same
reflections in each case.
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Minimal and Optimal Complements

• The examples so far have worked implicitly with minimal complements.

Formal context: Schema D; set V of views of D; Γ1, Γ2 ∈ V.

• Γ1 �D Γ2 iff Congr(Γ2) ⊆ Congr(Γ1).

• Γ1 ≺D Γ2 iff Congr(Γ2) ( Congr(Γ1) iff Γ1 �D Γ2 and Γ2 6�D Γ1.

• Γ2 ∈ V is a minimal [meet] complement of Γ1 relative to V if for no other
[meet] complement Γ3 ∈ V it is the case that Γ3 ≺D Γ2.

Motivation: The smaller the complement, the greater the number of
view updates supported.

• Clearly, minimal is always desirable.

• However, minimal cannot guarantee update-set invariance, since
distinct minimal complements give rise to distinct update sets.

• Γ2 ∈ V is an optimal [meet] complement of Γ1 relative to V if for every
other [meet] complement Γ3 ∈ V, it is the case that Γ2 �D Γ3.

Movivation: It is precisely an optimal complement which guarantees
update-set independence.
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Examples of Minimal and Optimal Complements

Context: Consider again the running example E3.

• Both ΠE3
D and ΠE3

CD are minimal complements of

ΠE3
ABC relative to the projections Π-Views〈E3〉.

• Thus, neither can be optimal.

• ΠE3
BCD is a complement which is not minimal

relative to Π-Views〈E3〉.
• But ΠE3

BCD is an optimal meet complement
amongst projections.

• If state invariance is desired, ΠE3
BCD is the best

which can be achieved.

• Update-set independence comes as a bonus,
but for a smaller set of updates than
supported by ΠE3

BD or ΠE3
CD as complements.

• Clearly, there are tradeoffs.
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The Context of
∨

Π-Views

• Consider again the running example.

• The view ΠE3
BCD is the optimal meet

complement of ΠE3
ABC amongst all

projections.

• However, consider the view ΠE3

{BD,CD}
which consists of two projections BD
and CD.

R[ABCD]

{B → D,C → D}

R[ABC ]

πE3
ABC

R[BCD]

{B → D,

C → D}

πE3

{BCD}

R[BCD]

{B → D,

C → D}

πE3

{BCD}

R[BD] R[CD]

{B → D,

C → D}

πE3

{BD,CD}

• It is a smaller meet complement: ΠE3

{BD,CD} ≺E3 ΠE3
BCD .

• The association of B-values and C -values is not preserved by this view.

• Such a view consisting of multiple projections is called a
∨

Π-view.

• They can be used instead of single projections with little or no extra work.

Notation:
∨

Π-Views〈D〉 denotes the set of all
∨

Π views of D.
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Nonuniqueness of Meet Complements in the FD context

• Context: A Universal-relational schema constrained by FDs.

• A simple example of the nonexistence of optimal projective complements
has been given:

• E3 = (R[ABCD], {B → D,C → D}).

• ΠE2
ABC has distinct minimal

∨
Π-complements ΠE3

BD and ΠE3
CD .

• However, it does have an optimal meet
∨

Π-complement: ΠE3

{BC ,CD}.

Question: Are there examples without optimal meet complements?

Yes: E4 = (R[ABC ], {A→ BC ,B → AC}).

• The two minimal complements ΠE4
AB and

ΠE4
BC are related by an attribute

equivalence A↔ B of keys.

• This is the only way that such
non-isomorphic minimal complements can
occur.

R[ABC ]

{A→ BC ,B → AC}

R[AB]

πE4
AB

{A↔ B}
R[AC ]

{A→ C}
R[BC ]

{C → D}

πE4
AC πE4

BC
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Equivalence of Meet Complements in the
∨

Π-FD framework

Context: • Universal relational schema D = (R[U],F); F = FDs.

• ΠD
{W2,W2,...Wm} a

∨
Π-view.

Reduced: An FD Y → A ∈ F+ is reduced if

• A ∈ U (single attribute on RHS)

• For any proper subset Y′ ( Y, Y′ → A 6∈ F+.

FD-equivalence: Y and Z are FD-equivalent (for F), written Y ↔ Z, if both
Y → Z and Z → Y hold.

Definition: ΠD
{W′1,W′2,...W′m′}

, and ΠD
{W′′1 ,W′′2 ,...W′′m′′}

are FD-equivalent if for

every i ∈ {1, 2, . . . ,m} and every Y ⊆Wi which is reduced for F, there
is a j ∈ {1, 2, . . . ,m′′} and a Z ⊆W′′

j with Y ↔ Z; and conversely.

Theorem: Any two meet complements are FD-equivalent. 2

Corollary If F does not contain any nontrivial FD-equivalences (Y 6= Z),
then ΠD

{W1,W2,...Wm} has a unique optimal meet
∨

Π-complement. 2
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Examples of Equivalent Meet Complements

Context: • E5 = (R[ABCDE ],F3)
• F5 = {B → C ,C → D,D → E}
• ΠE3

{AB, CD}

• F5 implies no nontrivial FD-equivalences.

• The view ΠE5

{AB, CD} has a unique meet
∨

Π-complement: ΠE5

{BC , DE}

Context: • E6 = (R[AB11B12B2CD1D2E ],F6)
• F6 = {B11B12 ↔ B2,D1 ↔ D2,B1 → C ,C → D1,D1 → E}
• ΠE6

{AB11B12B2, CD1D2}

• F6 implies two nontrivial FD-equivalences: B11B12 ↔ B2 and D1 ↔ D2.

• The view ΠE6

{AB11B12B2, CD1D2} has four distinct meet complements:

ΠE6

{B11B12C , D1E} ΠE6

{B11B12C , D2E} ΠE6

{B2C , D1E} ΠE6

{B2C , D2E}
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Extension to “Real-World” Situations

• “Real world” schemata have:

• Multiple relations

• Referential integrity constraints (foreign-key dependencies):

• The extension to multirelational schemata with FDs is trivial.

• Apply previous results on a relation-by-relation basis.

• The theory also extends to fanout-free unary inclusion dependencies:

• (R[A] ⊆ S [B]∧R[A] ⊆ T [C ])⇒ (S [B] ⊆ T [C ]∨T [C ] ⊆ S [B]).

• Foreign-key dependencies are always fanout free.

• Each one-way UID must always be embedded into one of the two views.

One-way UID: R[A] ⊆ S [B] holds; S [B] ⊆ R[A] does not.

• Two-way UIDS (R[A] = S [B]) define true isomorphism, and must satisfy
a condition similar to FD-equivalence.

Bottom line: The extension to multirelational settings constrained by both
FDs and fanout-free UIDs is complete.

• Certain useful cases of non-unary IDs can also be handled.

22/23



Extension to “Real-World” Situations

• “Real world” schemata have:

• Multiple relations

• Referential integrity constraints (foreign-key dependencies):

• The extension to multirelational schemata with FDs is trivial.

• Apply previous results on a relation-by-relation basis.

• The theory also extends to fanout-free unary inclusion dependencies:

• (R[A] ⊆ S [B]∧R[A] ⊆ T [C ])⇒ (S [B] ⊆ T [C ]∨T [C ] ⊆ S [B]).

• Foreign-key dependencies are always fanout free.

• Each one-way UID must always be embedded into one of the two views.

One-way UID: R[A] ⊆ S [B] holds; S [B] ⊆ R[A] does not.

• Two-way UIDS (R[A] = S [B]) define true isomorphism, and must satisfy
a condition similar to FD-equivalence.

Bottom line: The extension to multirelational settings constrained by both
FDs and fanout-free UIDs is complete.

• Certain useful cases of non-unary IDs can also be handled.

22/23



Extension to “Real-World” Situations

• “Real world” schemata have:

• Multiple relations

• Referential integrity constraints (foreign-key dependencies):

• The extension to multirelational schemata with FDs is trivial.

• Apply previous results on a relation-by-relation basis.

• The theory also extends to fanout-free unary inclusion dependencies:

• (R[A] ⊆ S [B]∧R[A] ⊆ T [C ])⇒ (S [B] ⊆ T [C ]∨T [C ] ⊆ S [B]).

• Foreign-key dependencies are always fanout free.

• Each one-way UID must always be embedded into one of the two views.

One-way UID: R[A] ⊆ S [B] holds; S [B] ⊆ R[A] does not.

• Two-way UIDS (R[A] = S [B]) define true isomorphism, and must satisfy
a condition similar to FD-equivalence.

Bottom line: The extension to multirelational settings constrained by both
FDs and fanout-free UIDs is complete.

• Certain useful cases of non-unary IDs can also be handled.

22/23



Extension to “Real-World” Situations

• “Real world” schemata have:

• Multiple relations

• Referential integrity constraints (foreign-key dependencies):

• The extension to multirelational schemata with FDs is trivial.

• Apply previous results on a relation-by-relation basis.

• The theory also extends to fanout-free unary inclusion dependencies:

• (R[A] ⊆ S [B]∧R[A] ⊆ T [C ])⇒ (S [B] ⊆ T [C ]∨T [C ] ⊆ S [B]).

• Foreign-key dependencies are always fanout free.

• Each one-way UID must always be embedded into one of the two views.

One-way UID: R[A] ⊆ S [B] holds; S [B] ⊆ R[A] does not.

• Two-way UIDS (R[A] = S [B]) define true isomorphism, and must satisfy
a condition similar to FD-equivalence.

Bottom line: The extension to multirelational settings constrained by both
FDs and fanout-free UIDs is complete.

• Certain useful cases of non-unary IDs can also be handled.

22/23



Extension to “Real-World” Situations

• “Real world” schemata have:

• Multiple relations

• Referential integrity constraints (foreign-key dependencies):

• The extension to multirelational schemata with FDs is trivial.

• Apply previous results on a relation-by-relation basis.

• The theory also extends to fanout-free unary inclusion dependencies:

• (R[A] ⊆ S [B]∧R[A] ⊆ T [C ])⇒ (S [B] ⊆ T [C ]∨T [C ] ⊆ S [B]).

• Foreign-key dependencies are always fanout free.

• Each one-way UID must always be embedded into one of the two views.

One-way UID: R[A] ⊆ S [B] holds; S [B] ⊆ R[A] does not.

• Two-way UIDS (R[A] = S [B]) define true isomorphism, and must satisfy
a condition similar to FD-equivalence.

Bottom line: The extension to multirelational settings constrained by both
FDs and fanout-free UIDs is complete.

• Certain useful cases of non-unary IDs can also be handled.

22/23



Extension to “Real-World” Situations

• “Real world” schemata have:

• Multiple relations

• Referential integrity constraints (foreign-key dependencies):

• The extension to multirelational schemata with FDs is trivial.

• Apply previous results on a relation-by-relation basis.

• The theory also extends to fanout-free unary inclusion dependencies:

• (R[A] ⊆ S [B]∧R[A] ⊆ T [C ])⇒ (S [B] ⊆ T [C ]∨T [C ] ⊆ S [B]).

• Foreign-key dependencies are always fanout free.

• Each one-way UID must always be embedded into one of the two views.

One-way UID: R[A] ⊆ S [B] holds; S [B] ⊆ R[A] does not.

• Two-way UIDS (R[A] = S [B]) define true isomorphism, and must satisfy
a condition similar to FD-equivalence.

Bottom line: The extension to multirelational settings constrained by both
FDs and fanout-free UIDs is complete.

• Certain useful cases of non-unary IDs can also be handled.

22/23



Extension to “Real-World” Situations

• “Real world” schemata have:

• Multiple relations

• Referential integrity constraints (foreign-key dependencies):

• The extension to multirelational schemata with FDs is trivial.

• Apply previous results on a relation-by-relation basis.

• The theory also extends to fanout-free unary inclusion dependencies:

• (R[A] ⊆ S [B]∧R[A] ⊆ T [C ])⇒ (S [B] ⊆ T [C ]∨T [C ] ⊆ S [B]).

• Foreign-key dependencies are always fanout free.

• Each one-way UID must always be embedded into one of the two views.

One-way UID: R[A] ⊆ S [B] holds; S [B] ⊆ R[A] does not.

• Two-way UIDS (R[A] = S [B]) define true isomorphism, and must satisfy
a condition similar to FD-equivalence.

Bottom line: The extension to multirelational settings constrained by both
FDs and fanout-free UIDs is complete.

• Certain useful cases of non-unary IDs can also be handled.

22/23



Extension to “Real-World” Situations

• “Real world” schemata have:

• Multiple relations

• Referential integrity constraints (foreign-key dependencies):

• The extension to multirelational schemata with FDs is trivial.

• Apply previous results on a relation-by-relation basis.

• The theory also extends to fanout-free unary inclusion dependencies:

• (R[A] ⊆ S [B]∧R[A] ⊆ T [C ])⇒ (S [B] ⊆ T [C ]∨T [C ] ⊆ S [B]).

• Foreign-key dependencies are always fanout free.

• Each one-way UID must always be embedded into one of the two views.

One-way UID: R[A] ⊆ S [B] holds; S [B] ⊆ R[A] does not.

• Two-way UIDS (R[A] = S [B]) define true isomorphism, and must satisfy
a condition similar to FD-equivalence.

Bottom line: The extension to multirelational settings constrained by both
FDs and fanout-free UIDs is complete.

• Certain useful cases of non-unary IDs can also be handled.

22/23



Extension to “Real-World” Situations

• “Real world” schemata have:

• Multiple relations

• Referential integrity constraints (foreign-key dependencies):

• The extension to multirelational schemata with FDs is trivial.

• Apply previous results on a relation-by-relation basis.

• The theory also extends to fanout-free unary inclusion dependencies:

• (R[A] ⊆ S [B]∧R[A] ⊆ T [C ])⇒ (S [B] ⊆ T [C ]∨T [C ] ⊆ S [B]).

• Foreign-key dependencies are always fanout free.

• Each one-way UID must always be embedded into one of the two views.

One-way UID: R[A] ⊆ S [B] holds; S [B] ⊆ R[A] does not.

• Two-way UIDS (R[A] = S [B]) define true isomorphism, and must satisfy
a condition similar to FD-equivalence.

Bottom line: The extension to multirelational settings constrained by both
FDs and fanout-free UIDs is complete.

• Certain useful cases of non-unary IDs can also be handled.

22/23



Extension to “Real-World” Situations

• “Real world” schemata have:

• Multiple relations

• Referential integrity constraints (foreign-key dependencies):

• The extension to multirelational schemata with FDs is trivial.

• Apply previous results on a relation-by-relation basis.

• The theory also extends to fanout-free unary inclusion dependencies:

• (R[A] ⊆ S [B]∧R[A] ⊆ T [C ])⇒ (S [B] ⊆ T [C ]∨T [C ] ⊆ S [B]).

• Foreign-key dependencies are always fanout free.

• Each one-way UID must always be embedded into one of the two views.

One-way UID: R[A] ⊆ S [B] holds; S [B] ⊆ R[A] does not.

• Two-way UIDS (R[A] = S [B]) define true isomorphism, and must satisfy
a condition similar to FD-equivalence.

Bottom line: The extension to multirelational settings constrained by both
FDs and fanout-free UIDs is complete.

• Certain useful cases of non-unary IDs can also be handled.

22/23



Extension to “Real-World” Situations

• “Real world” schemata have:

• Multiple relations

• Referential integrity constraints (foreign-key dependencies):

• The extension to multirelational schemata with FDs is trivial.

• Apply previous results on a relation-by-relation basis.

• The theory also extends to fanout-free unary inclusion dependencies:

• (R[A] ⊆ S [B]∧R[A] ⊆ T [C ])⇒ (S [B] ⊆ T [C ]∨T [C ] ⊆ S [B]).

• Foreign-key dependencies are always fanout free.

• Each one-way UID must always be embedded into one of the two views.

One-way UID: R[A] ⊆ S [B] holds; S [B] ⊆ R[A] does not.

• Two-way UIDS (R[A] = S [B]) define true isomorphism, and must satisfy
a condition similar to FD-equivalence.

Bottom line: The extension to multirelational settings constrained by both
FDs and fanout-free UIDs is complete.

• Certain useful cases of non-unary IDs can also be handled.

22/23



Extension to “Real-World” Situations

• “Real world” schemata have:

• Multiple relations

• Referential integrity constraints (foreign-key dependencies):

• The extension to multirelational schemata with FDs is trivial.

• Apply previous results on a relation-by-relation basis.

• The theory also extends to fanout-free unary inclusion dependencies:

• (R[A] ⊆ S [B]∧R[A] ⊆ T [C ])⇒ (S [B] ⊆ T [C ]∨T [C ] ⊆ S [B]).

• Foreign-key dependencies are always fanout free.

• Each one-way UID must always be embedded into one of the two views.

One-way UID: R[A] ⊆ S [B] holds; S [B] ⊆ R[A] does not.

• Two-way UIDS (R[A] = S [B]) define true isomorphism, and must satisfy
a condition similar to FD-equivalence.

Bottom line: The extension to multirelational settings constrained by both
FDs and fanout-free UIDs is complete.

• Certain useful cases of non-unary IDs can also be handled.

22/23



Extension to “Real-World” Situations

• “Real world” schemata have:

• Multiple relations

• Referential integrity constraints (foreign-key dependencies):

• The extension to multirelational schemata with FDs is trivial.

• Apply previous results on a relation-by-relation basis.

• The theory also extends to fanout-free unary inclusion dependencies:

• (R[A] ⊆ S [B]∧R[A] ⊆ T [C ])⇒ (S [B] ⊆ T [C ]∨T [C ] ⊆ S [B]).

• Foreign-key dependencies are always fanout free.

• Each one-way UID must always be embedded into one of the two views.

One-way UID: R[A] ⊆ S [B] holds; S [B] ⊆ R[A] does not.

• Two-way UIDS (R[A] = S [B]) define true isomorphism, and must satisfy
a condition similar to FD-equivalence.

Bottom line: The extension to multirelational settings constrained by both
FDs and fanout-free UIDs is complete.

• Certain useful cases of non-unary IDs can also be handled.
22/23



Conclusions and Further Directions

Conclusions:

• Three distinct forms of invariance have been considered for
constant-complement update:

State invariance: The existence of a reflection does not depend upon
the state of the complement.

Reflection invariance: The reflection of a view update is identical for all
complements which support it.

Update-set invariance: There is a single complement which supports all
constant-complement updates.

• Reasonably broad theories characterizing the first two forms of invariance
have been developed.

Further Directions:

• Pursue a more general theory of optimal meet complements which is not
dependent upon specific constraints and the relational model.
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