Optimal Complements
for a Class of Relational Views

Stephen J. Hegner
Umed University
Department of Computing Science
Sweden

0/ 26



The Update Problem for Database Views

e On the underlying states, the view map- Main Schema
ping is generally surjective (onto) but
not injective (one-to-one). °

View Schema

1/ 26



The Update Problem for Database Views

e On the underlying states, the view map-
ping is generally surjective (onto) but
not injective (one-to-one).

Main Schema

e Thus, a view update has many possible
reflections to the main schema.

View Schema

1/ 26



The Update Problem for Database Views

e On the underlying states, the view map- Main Schema
ping is generally surjective (onto) but
not injective (one-to-one).

e Thus, a view update has many possible
reflections to the main schema.

e The problem of identifying a suitable re-
flection is known as the update transla-
tion problem or update reflection prob-
lem.

View Schema

1/ 26
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e On the underlying states, the view map- Main Schema
ping is generally surjective (onto) but
not injective (one-to-one).

e Thus, a view update has many possible
reflections to the main schema.

e The problem of identifying a suitable re-
flection is known as the update transla-
tion problem or update reflection prob-
lem.

e With a reasonable definition of suitabil-
ity, it may not be the case that every
view update has a suitable translation.
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AMAI], the main schema is decomposed into
two meet-complementary views.

One is isomorphic to the view schema and tracks
its updates exactly.

The other is held constant for all updates to the
VIiew.

Although it is somewhat limited in the view up-
dates which it allows, they are supported in an
optimal manner.
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It can be shown [Hegner 03 AMAI] that this strategy is precisely that which avoids

all update anomalies.

However, this is complicated by the complement uniqueness problem.

Some examples will help illustrate these ideas.
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1
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An Alternate Complement

The main schema is unchanged.

The view schema Wy to be updated is also the
same.

An alternative complement Wy is defined by the
symmetric difference:

TlA] = (R[ANS[A]) v (S[A\R[A])

With this alternative complement, the update
strategy is different — S| A] is altered.

Clearly, this is not a desirable complement.

Question: How can these two complements be dis-

tinguished formally?
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natural order of database states.

Theorem: It the view to be updated and is defined by a monotonic morphism, then
the reflection of a given view update to the main schema is independent of the
choice of complement, provided that the complement is also defined by a
monotonic morphism.

Proof: [Hegner 04 AMAI], [Hegner 08 SDKB], [Hegner 09 LID], [Hegner 10 JUCS] O

However: It is not necessarily the case that all such view updates may be realized
using the same complement.

o It is useful to illustrate with a simple example.
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e A Il-view is defined by a single projection.
Notation: Ilyy is the projection onto attribute set W

e Projective views may be compared via their attributes.

]Ivvlji]IVVQ iff Wi <€ Wy (VV1{VV2§;]J)

e Given a projective view IIyw, a complement Il is

e minimal if for no other complement Il is it the case that W’ < W',
o optimal if for every other complement Ilyy~ it is the case that W/ < W”.
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(w.r.t. F) if it defines a lossless decomposition of R|U]| satisfying the following
properties:

o full U;u...uU, =1U;
e entailed: F = X [Uq,..., Uyl
o covering: X |Uy,..., U] & ¢ for every entailed JD (full or embedded) ¢.

Example: For (R|ABCD]| with F ={B — CD,C — B},
the JD X [ABC,CD, BD] is governing.

Example: For (R[ABC D] with F = {X [AB, BC'|}, there is no (nontrivial)
governing JD.
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distinct 1, 7.

e This flavor of redundancy is “trivial” in the sense that it can be detected
without any further knowledge of the underlying dependencies.

e |t may always be removed without changing the semantics.

Example: X [AC,; ABC,C D] is trivially redundant.
e Otherwise, redundancy is essential and must be determined by examining the

underlying dependencies.

Example: For RIABCD| with F = {B — CD,C — B},
the JD X [ABC,CD, BD] is governing but essentially redundant,
since X [ABC,CD]| (as well as X [ABC, BD]) is both entailed and full.
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e The optimal II-complement of Il 4gcr is Hepopr = Heopg also.
e The optimal II-complement of Il 4gcp is IIpEg.

e The optimal II-complement of I145 is Iapcucpupe = HapepE.

e The optimal II-complement of Ilop is Hapcupe = Hapopr also.
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e For Il p, the optimal II-complement Il 4gopE allows no updates at all under the
constant-complement strategy.

e However, some updates are clearly possible.

o Let M = {R(al, bi,c1,dq, 61), R(ag, ba, co, dog, 62)} be the current state of the
main schema.

e Consider the update (N, N’) to Ilop with N = {R(c1,d1), R(co,ds)}. and
N/ = {R(Cl, dg), R(CQ, dl)}

e The reflection M’ = {R(a1,b1,c1,ds, e2) R(ag, ba,ca,dy,e1)} keeps both Tl45c
and II~p constant.

e The view Il opc v IIpg which contains two projections, R|ABC'| and R|DFE], is
a complement of IIop.

e Thus, (M, M") is a constant-complement reflection of (N, N') with complement
Hapc v UpE.
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dependency preserving. O

Example context: RIABCDE|C - D D —-FE E — F
X [ABC,CD, DFE, EF| is governing and nonredundant.

o llupc vIlpg and Ilop v Ilgr are meet complements.

Hapc v pr # UapcbpE
Iep v lpr # UepEer;
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Counterexample: RIABCDFE|C —-D D —- FE = X |[ABC,CD,DE].
Since the embedded JD X [ABC,CD] is implied, I1 spcp is effectively the same
as HABC Vv HC’D-

e A better definition of comparison: every LHS attribute set is a subset of a valid
join of a RHS set.

\/{y | Y e Bi} < \/{Ily | Y € By} iff
(VY € B1)(3Bs = Ba)((X [Bs] valid) » (Y = | |Bs)).
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Context:  Universal relational schema R|U] constrained by some dependencies F;

Nonredundant governing JD X [A] with A L {U; | 1 <i <k}

\/{ly | Y eBi} < \/{Ily | Y € By} iff
(VY € B1)(3Bs = By)((X [Bs] valid) » (Y = | |Bs)).

o \/{Illy | Y € By}, is an optimal complement of \/{Ily | Y € By} if

\/{HY | Y € BQ} < \/{HY | Y € Bg}
for every other \/II-complement \/{Ily | Y € Bs},

e For W c U, define JCompKW, A ={U; e A|U; £ W}

Theorem: \/{Ily, | U; € JCompl{W, A} is an optimal \/II-complement of Ilyy. O
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e For \/II-views, the situation is very different.
Example context continued: RIABCDE|C - D D —- FE = X|ABC,CD,DE].
e On Il4pc v IlIpg, the constraint Cardinality(I1p) < Cardinality(Il) holds.
e |t is not even first order for infinite databases.
e Fortunately, it does not matter.

e The truth value of such constraints is never altered by a constant-complement
update [Hegner 06 AMALI]J.

e Only “simple” constraints must be checked for an update.
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Goal: Carry the theory of optimal complements beyond projections.
e At least include selections, and preferably joins.

Principles: Look for a more general theory, as opposed to an approach based upon
individual cases.

General contexts:

e For general principles of schemata and views, for the definition of optimality:
a simple set-based context.

e For the characterization of views, information based upon Boolean queries.

e For decomposition, the information semilattice of equivalence classes of
Boolean queries on the main schema.
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Congr(T") = {(M, My) € LDB(D) x LDB(D) | v(M;) = 7(My)}.

e Define I'y < T’y iff Congr(I'y) < Congr(I'y).

e This definition agrees with those given for II-views and \/II-views.
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e This definition agrees with those given for II-views and \/II-views.

e Thus, view I' is optimal in a class V if its congruence is least over all elements of

V.

e Such a view is unique up to the isomorphism class defined by congruence.
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Example: The tuple (b, c) for the view defined by msp5(R|ABC']) corresponds to
the Boolean query (3z)(R(a,b, 2)).

Example: The tuple (a, b, c) for the view defined by 0 4—,(R|ABC]) corresponds
to the Boolean query R(a,b,c).
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Example: A selection such as o(4<30)(R[ABC]) is not recaptured.
e The developed framework supports such odA+-queries for defining views.

e Any subset selection is allowed.

e For technical reasons, view definitions which “hide” constants are not allowed.

Example: The two definitions mpc(04=a, (R|ABC]) and mpc(04=a, (R[ABCY);
hide their selection constant in the sense that it is not visible in the view.
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e The goal is to be able to represent all relations in the view using a single set of
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e This means that the view relation must be recoverable from information in the
Boolean query.

e The dA+-formula defining the view is called its pattern.

e Each Boolean query must correspond to a single pattern.
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Concrete and Abstract Views

e A concrete view is defined in the usual way, using the relational calculus restricted
to the od A +-context.

e An abstract view consists of a set of Boolean queries, subject to the constraint
that it is of finite pattern index.

e This means that there is a finite set of patterns, and each of the queries
matches one of those patterns.

e This property is essential for recovering a concrete view from an abstract one.

Theorem; There is a natural correspondence between concrete and abstract views. O
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e This set forms a meet semilattice with top element [false| and bottom element
[true].

e The key idea is to look for a decomposition basis in this semilattice. Roughly, a
sentence is in the decomposition basis if

e it is a useful in a nontrivial way in the representation of a tuple as a join, and

e it cannot be further decomposed in a nontrivial way.

Example: For the schema R|ABC'| constrained by X [AB, BC'], the decomposition
basis consists of elements of the form (3z)(R(a,b, z)) and (3z)(R(x,b,c)).
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e All other elements of the decomposition basis are used to generate a complement.

e In the case of a JD, this corresponds to generating a complement from all
projections of the JD which are not subsumed by the view to be
complemented.

e The condition for optimality of a complement is that upon ultimate
decompositions of tuples using the decomposition basis are unique.

e In the context of a single JD, this reduces exactly to that JD being
nonredundant.

e There are of course many details which have been omitted.
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e If the governing JD is dependency preserving, then this representation furthermore
produces meet complements and so is appropriate for the constant-complement
update strategy.

e It identifies in particular the situations in which all of the updates on a view which
are supportable via constant-complement are supportable via a single complement,
and hence via a single update strategy.

e A more general theory, not restricted to projections but rather based upon
information and Boolean queries has also been developed.

e That theory provides a beginning to a more general theory but leaves several
further directions.
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