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The Update Problem for Database Views
1 / 26

 On the underlying states, the view map-ping is generally surjetive (onto) butnot injetive (one-to-one).

 Thus, a view update has many possiblere�etions to the main shema. The problem of identifying a suitable re-�etion is known as the update transla-tion problem or update re�etion prob-lem. With a reasonable de�nition of suitabil-ity, it may not be the ase that everyview update has a suitable translation.
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The Gold Standard � the Constant-Complement Strategy
2 / 26

 In the onstant-omplement strategy[Banilhon and Spyratos 81℄, [Hegner 04AMAI℄, the main shema is deomposed intotwo meet-omplementary views. One is isomorphi to the view shema and traksits updates exatly. The other is held onstant for all updates to theview. Although it is somewhat limited in the view up-dates whih it allows, they are supported in anoptimal manner.
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 It an be shown [Hegner 03 AMAI℄ that this strategy is preisely that whih avoidsall update anomalies. However, this is ompliated by the omplement uniqueness problem. Some examples will help illustrate these ideas.
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The Idea of Constant-Complement by Example
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 Consider the lassial example to the right.

 A natural omplement to the -projetion is the-projetion. The deomposed shema b has relationsymbols r s and r s; the legal database areall states whih are join ompatible on . The deomposition mapping Ñ b ,and is always bijetive for omplements. The reonstrution mapping b Ñis the inverse of the deomposition mapping. It isthe natural join in this ase. The view whih is the projetion on is the meet ofand , and is preisely that whih must beheld onstant under a onstant-omplement update.

Main Shema E1Constraint: 1 rAB,BCs
RrABCs

a0 b0 c0
a1 b1 c1

R1rABs
πAB

View Shema

WAB

a0 b0
a1 b1
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The Problem of Complement Uniqueness
4 / 26

 Given is the following two-relation main shema.

 The view shema to be updated is thatwhih preserves r s but disards r s. The natural omplement is the shemawhih preserves r s but disards r s. With onstant, all updates to r s are al-lowed. Clearly, this is the only reasonable update strat-egy for . However, does not de�ne the only omple-ment. Without further restritions, omplements arealmost never unique.
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An Alternate Complement

5 / 26

 The main shema is unhanged.

 The view shema to be updated is also thesame. An alternative omplement is de�ned by thesymmetri di�erene:r s � p r sz r sq Y p r sz r sq With this alternative omplement, the updatestrategy is di�erent � r s is altered. Clearly, this is not a desirable omplement.Question: How an these two omplements be dis-tinguished formally?
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The Su�ieny of Monotoniity

6 / 26

 Note that the symmetri di�erene mapping is not monotoni with respet to thenatural order of database states.

Theorem: If the view to be updated and is de�ned by a monotoni morphism, thenthe re�etion of a given view update to the main shema is independent of thehoie of omplement, provided that the omplement is also de�ned by amonotoni morphism.Proof: [Hegner 04 AMAI℄, [Hegner 08 SDKB℄, [Hegner 09 LID℄, [Hegner 10 JUCS℄However: It is not neessarily the ase that all suh view updates may be realizedusing the same omplement. It is useful to illustrate with a simple example.
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Inompatible View Updates
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 The view ΠABC of the shema to the right has ΠBDas a natural monotoni meet omplement.

 With this omplement, the allowable updates onare preisely those whih keep onstant. However, also has as a natural meetomplement. With this omplement, the allowable updates onare preisely those whih keep onstant. The only updates allowable with both omplementsare those whih hold onstant. The ombined omplement is e�etively . There is no -omplement whih is more generalthan or .

Main Shema E1

B Ñ CD C Ñ B

RrABCDs
a0 b0 c0 d0
a1 b1 c1 d1

RrABCs
πABC
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Context: A universal relational shema RrUs onstrained by some dependenies F .

 A -view is de�ned by a single projetion.Notation: is the projetion onto attribute set . Projetive views may be ompared via their attributes.¨ i� � p � q Given a projetive view , a omplement 1 is minimal if for no other omplement 2 is it the ase that 2 � 1; optimal if for every other omplement 2 it is the ase that 1 � 2.
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 Let RrUs be universal relational shema onstrained by some dependenies F .

 A governing JD is a representation of all JDs whih hold on the shema. More preisely, all a join dependeny (JD) r s on r s governing(w.r.t. ) if it de�nes a lossless deomposition of r s satisfying the followingproperties: full: Y Y � ; entailed: ( r s; overing: r s ( for every entailed JD (full or embedded) .Example: For p r s with � t Ñ Ñ u,the JD r s is governing.Example: For p r s with � t r su, there is no (nontrivial)governing JD.
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 To address the non-uniqueness of omplements illustrated in examples, thefollowing ondition is introdued for the JD 1 rU1, . . . ,Uks:

 nonredundant: for no proper � t u is r s both entailed and full. There are two �avors of redundany: r s is trivially redundant (not normalized) if � for somedistint . This �avor of redundany is �trivial� in the sense that it an be detetedwithout any further knowledge of the underlying dependenies. It may always be removed without hanging the semantis.Example: r s is trivially redundant. Otherwise, redundany is essential and must be determined by examining theunderlying dependenies.Example: For r s with � t Ñ Ñ u,the JD r s is governing but essentially redundant,sine r s (as well as r s) is both entailed and full.



Normalization and Nonredundany

10 / 26

 To address the non-uniqueness of omplements illustrated in examples, thefollowing ondition is introdued for the JD 1 rU1, . . . ,Uks: nonredundant: for no proper J � tU1, . . . ,Uku is 1 rJs both entailed and full.

 There are two �avors of redundany: r s is trivially redundant (not normalized) if � for somedistint . This �avor of redundany is �trivial� in the sense that it an be detetedwithout any further knowledge of the underlying dependenies. It may always be removed without hanging the semantis.Example: r s is trivially redundant. Otherwise, redundany is essential and must be determined by examining theunderlying dependenies.Example: For r s with � t Ñ Ñ u,the JD r s is governing but essentially redundant,sine r s (as well as r s) is both entailed and full.



Normalization and Nonredundany

10 / 26

 To address the non-uniqueness of omplements illustrated in examples, thefollowing ondition is introdued for the JD 1 rU1, . . . ,Uks: nonredundant: for no proper J � tU1, . . . ,Uku is 1 rJs both entailed and full. There are two �avors of redundany:

 r s is trivially redundant (not normalized) if � for somedistint . This �avor of redundany is �trivial� in the sense that it an be detetedwithout any further knowledge of the underlying dependenies. It may always be removed without hanging the semantis.Example: r s is trivially redundant. Otherwise, redundany is essential and must be determined by examining theunderlying dependenies.Example: For r s with � t Ñ Ñ u,the JD r s is governing but essentially redundant,sine r s (as well as r s) is both entailed and full.



Normalization and Nonredundany

10 / 26

 To address the non-uniqueness of omplements illustrated in examples, thefollowing ondition is introdued for the JD 1 rU1, . . . ,Uks: nonredundant: for no proper J � tU1, . . . ,Uku is 1 rJs both entailed and full. There are two �avors of redundany: 1 rU1, . . . ,Uks is trivially redundant (not normalized) if Ui � Uj for somedistint i, j.

 This �avor of redundany is �trivial� in the sense that it an be detetedwithout any further knowledge of the underlying dependenies. It may always be removed without hanging the semantis.Example: r s is trivially redundant. Otherwise, redundany is essential and must be determined by examining theunderlying dependenies.Example: For r s with � t Ñ Ñ u,the JD r s is governing but essentially redundant,sine r s (as well as r s) is both entailed and full.



Normalization and Nonredundany

10 / 26

 To address the non-uniqueness of omplements illustrated in examples, thefollowing ondition is introdued for the JD 1 rU1, . . . ,Uks: nonredundant: for no proper J � tU1, . . . ,Uku is 1 rJs both entailed and full. There are two �avors of redundany: 1 rU1, . . . ,Uks is trivially redundant (not normalized) if Ui � Uj for somedistint i, j. This �avor of redundany is �trivial� in the sense that it an be detetedwithout any further knowledge of the underlying dependenies.

 It may always be removed without hanging the semantis.Example: r s is trivially redundant. Otherwise, redundany is essential and must be determined by examining theunderlying dependenies.Example: For r s with � t Ñ Ñ u,the JD r s is governing but essentially redundant,sine r s (as well as r s) is both entailed and full.



Normalization and Nonredundany

10 / 26

 To address the non-uniqueness of omplements illustrated in examples, thefollowing ondition is introdued for the JD 1 rU1, . . . ,Uks: nonredundant: for no proper J � tU1, . . . ,Uku is 1 rJs both entailed and full. There are two �avors of redundany: 1 rU1, . . . ,Uks is trivially redundant (not normalized) if Ui � Uj for somedistint i, j. This �avor of redundany is �trivial� in the sense that it an be detetedwithout any further knowledge of the underlying dependenies. It may always be removed without hanging the semantis.

Example: r s is trivially redundant. Otherwise, redundany is essential and must be determined by examining theunderlying dependenies.Example: For r s with � t Ñ Ñ u,the JD r s is governing but essentially redundant,sine r s (as well as r s) is both entailed and full.



Normalization and Nonredundany

10 / 26

 To address the non-uniqueness of omplements illustrated in examples, thefollowing ondition is introdued for the JD 1 rU1, . . . ,Uks: nonredundant: for no proper J � tU1, . . . ,Uku is 1 rJs both entailed and full. There are two �avors of redundany: 1 rU1, . . . ,Uks is trivially redundant (not normalized) if Ui � Uj for somedistint i, j. This �avor of redundany is �trivial� in the sense that it an be detetedwithout any further knowledge of the underlying dependenies. It may always be removed without hanging the semantis.Example: 1 rAC,ABC,CDs is trivially redundant.

 Otherwise, redundany is essential and must be determined by examining theunderlying dependenies.Example: For r s with � t Ñ Ñ u,the JD r s is governing but essentially redundant,sine r s (as well as r s) is both entailed and full.



Normalization and Nonredundany

10 / 26

 To address the non-uniqueness of omplements illustrated in examples, thefollowing ondition is introdued for the JD 1 rU1, . . . ,Uks: nonredundant: for no proper J � tU1, . . . ,Uku is 1 rJs both entailed and full. There are two �avors of redundany: 1 rU1, . . . ,Uks is trivially redundant (not normalized) if Ui � Uj for somedistint i, j. This �avor of redundany is �trivial� in the sense that it an be detetedwithout any further knowledge of the underlying dependenies. It may always be removed without hanging the semantis.Example: 1 rAC,ABC,CDs is trivially redundant. Otherwise, redundany is essential and must be determined by examining theunderlying dependenies.

Example: For r s with � t Ñ Ñ u,the JD r s is governing but essentially redundant,sine r s (as well as r s) is both entailed and full.



Normalization and Nonredundany

10 / 26

 To address the non-uniqueness of omplements illustrated in examples, thefollowing ondition is introdued for the JD 1 rU1, . . . ,Uks: nonredundant: for no proper J � tU1, . . . ,Uku is 1 rJs both entailed and full. There are two �avors of redundany: 1 rU1, . . . ,Uks is trivially redundant (not normalized) if Ui � Uj for somedistint i, j. This �avor of redundany is �trivial� in the sense that it an be detetedwithout any further knowledge of the underlying dependenies. It may always be removed without hanging the semantis.Example: 1 rAC,ABC,CDs is trivially redundant. Otherwise, redundany is essential and must be determined by examining theunderlying dependenies.Example: For RrABCDs with F � tB Ñ CD,C Ñ Bu,the JD 1 rABC,CD,BDs is governing but essentially redundant,sine 1 rABC,CDs (as well as 1 rABC,BDs) is both entailed and full.



Charaterization of Optimal Π-Complements
11 / 26

Context: Universal relational shema RrUs onstrained by some dependenies F .Nonredundant governing JD 1 rAs with A
def� tUi | 1 ¤ i ¤ ku.

Theorem: Let � , and de�ne 1 � �t P | � u.Then 1 is an optimal -omplement of . If the JD is dependenypreserving, then it is furthermore a meet omplement.Example ontext: r s Ñ Ñ (r s governing and nonredundant. The optimal -omplement of is Y � . The optimal -omplement of is Y � also. The optimal -omplement of is . The optimal -omplement of is Y Y � . The optimal -omplement of is Y � also.
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def� tUi | 1 ¤ i ¤ ku.

 A � -view is de�ned by a set of projetions on a (universal) relational shema.Example and notation: _ ��t | P t uu.Theorem: For any partition t u of , �t | P u and �t | P uare omplements. They are furthermore meet omplements if the JD isdependeny preserving.Example ontext: r s Ñ Ñ Ñ (r s is governing and nonredundant. _ and _ are meet omplements. Note that _ �_ � ; they are not even isomorphi.
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 For a wide variety of onstraints on the main shema, the onstraints on a Π-vieware well behaved �rst-order database dependenies [Fagin 82 JACM℄[Hull 84 JACM℄.

 For � -views, the situation is very di�erent.Example ontext ontinued: r s Ñ Ñ ( r s. On _ , the onstraint p q ¤ p q holds. It is not even �rst order for in�nite databases. Fortunately, it does not matter. The truth value of suh onstraints is never altered by a onstant-omplementupdate [Hegner 06 AMAI℄. Only �simple� onstraints must be heked for an update.
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Goal: Carry the theory of optimal omplements beyond projetions.

 At least inlude seletions, and preferably joins.Priniples: Look for a more general theory, as opposed to an approah based uponindividual ases.General ontexts: For general priniples of shemata and views, for the de�nition of optimality:a simple set-based ontext. For the haraterization of views, information based upon Boolean queries. For deomposition, the information semilattie of equivalene lasses ofBoolean queries on the main shema.
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 Comparison of views in a general setting is easy.

 A database shema has a set p q of legal states. A view � p q of onsists of a shematogether with a surjetive morphism p q Ñ p q. The ongruene of � p q isp q � tp q P p q � p q | p q � p qu. De�ne ¨ i� p q � p q. This de�nition agrees with those given for -views and � -views. Thus, view is optimal in a lass if its ongruene is least over all elements of. Suh a view is unique up to the isomorphism lass de�ned by ongruene.
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Views Based upon Conjuntive Queries
19 / 26

 A onjuntive query on a relational shema is a formula de�ned using only ^ and D.

 (Single-value) seletion, projetion, and join are de�ned by suh queries using therelational algebra:Example: p r sq is de�ned by pD qp p qq.Example: � p r sq is de�ned by p q. These de�ne the D^�-views. A Boolean onjuntive query or D^�-query ontains no free variables. The tuples in D^�-views orrespond to Boolean onjuntive queries on the mainshemaExample: The tuple p q for the view de�ned by p r sq orresponds tothe Boolean query pD qp p qq.Example: The tuple p q for the view de�ned by � p r sq orrespondsto the Boolean query p q.
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Extending and Limiting Views Based upon Conjuntive Queries
20 / 26

Extensions: A limitation of D^�-views is that they reapture only single-valued seletion.

Example: A seletion suh as p ¤ qp r sq is not reaptured. The developed framework supports suh D^�-queries for de�ning views. Any subset seletion is allowed.Limitations: For tehnial reasons, view de�nitions whih �hide� onstants are not allowed.Example: The two de�nitions p � p r sq and p � p r sq;hide their seletion onstant in the sense that it is not visible in the view.
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The Representation of σD^�-Views using sets of Boolean Queries
21 / 26

 A relation R in a σD^�-view Γ may be represented by the set DisjRepxΓ, Ry of allD^�-queries whih are obtained by grounding its de�ning formula.

 In this approah, eah Boolean query orresponds to a possible view tuple.Example: The view de�ned by p r sq orresponds to the settpD qp p qq | P u.Example: The view de�ned by � p r sq orresponds to the settp p qq | P u.Example: The view de�ned by P p r sq orresponds to the settp p qq | p P q^p P qu. The goal is to be able to represent all relations in the view using a single set ofBoolean queries. This means that the view relation must be reoverable from information in theBoolean query. The D^�-formula de�ning the view is alled its pattern. Eah Boolean query must orrespond to a single pattern.
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Conrete and Abstrat Views

22 / 26

 A onrete view is de�ned in the usual way, using the relational alulus restritedto the σD^�-ontext.

 An abstrat view onsists of a set of Boolean queries, subjet to the onstraintthat it is of �nite pattern index. This means that there is a �nite set of patterns, and eah of the queriesmathes one of those patterns. This property is essential for reovering a onrete view from an abstrat one.Theorem; There is a natural orrespondene between onrete and abstrat views.
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 Write ϕ1 �D ϕ2 if the two Boolean queries have the same truth value on every
M P LDBpDq.

Example: p q � pD qp p q^pD qp p qq if the JD r sholds. Write r s for the indued equivalene lass on . Write r s �� r s if r s is true on whenever r s is. This set forms a meet semilattie with top element r s and bottom elementr s. The key idea is to look for a deomposition basis in this semilattie. Roughly, asentene is in the deomposition basis if it is a useful in a nontrivial way in the representation of a tuple as a join, and it annot be further deomposed in a nontrivial way.Example: For the shema r s onstrained by r s, the deompositionbasis onsists of elements of the form pD qp p qq and pD qp p qq.
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Let Γ � pV, γq be the view whose optimal omplement is to be determined. All elements of the deomposition basis whih ��t� into Γ are �plaed� there.

 In the ase of a JD, this orresponds to identifying those projetions whihare subsumed by some projetion of the JD. All other elements of the deomposition basis are used to generate a omplement. In the ase of a JD, this orresponds to generating a omplement from allprojetions of the JD whih are not subsumed by the view to beomplemented. The ondition for optimality of a omplement is that upon ultimatedeompositions of tuples using the deomposition basis are unique. In the ontext of a single JD, this redues exatly to that JD beingnonredundant. There are of ourse many details whih have been omitted.
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 A study of the notion of optimal omplements for views of relational shemata hasbeen initiated.

 A simple and onrete representation for omplements of views de�ned viaprojetions has been developed fully. If the governing JD is dependeny preserving, then this representation furthermoreprodues meet omplements and so is appropriate for the onstant-omplementupdate strategy. It identi�es in partiular the situations in whih all of the updates on a view whihare supportable via onstant-omplement are supportable via a single omplement,and hene via a single update strategy. A more general theory, not restrited to projetions but rather based uponinformation and Boolean queries has also been developed. That theory provides a beginning to a more general theory but leaves severalfurther diretions.
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E�etive identi�ation of meet omplements:

 The onstant-omplement update strategy requires meet omplements. This is equivalent to the dependeny preservation of the deomposition. An e�etive means to hek this property for more general lasses ofonstraints and views is needed.Expliit development of a theory of deomposition whih inludes seletion: A simple theory for � -views has been developed. It rests upon well-known results for -views and basi dependenies. An expanded framework whih inludes views de�ned by seletion issuggested.
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