Optimal Complements for a Class of Relational Views

Stephen J. Hegner
Umeå University
Department of Computing Science
Sweden

The Update Problem for Database Views

- On the underlying states, the view mapping is generally surjective (onto) but not injective (one-to-one).

The Update Problem for Database Views

- On the underlying states, the view mapping is generally surjective (onto) but not injective (one-to-one).
- Thus, a view update has many possible reflections to the main schema.

The Update Problem for Database Views

- On the underlying states, the view mapping is generally surjective (onto) but not injective (one-to-one).
- Thus, a view update has many possible reflections to the main schema.
- The problem of identifying a suitable reflection is known as the update translation problem or update reflection problem.

The Update Problem for Database Views

- On the underlying states, the view mapping is generally surjective (onto) but not injective (one-to-one).
- Thus, a view update has many possible reflections to the main schema.
- The problem of identifying a suitable reflection is known as the update translation problem or update reflection problem.
- With a reasonable definition of suitability, it may not be the case that every view update has a suitable translation.

Main Schema

The Gold Standard - the Constant-Complement Strategy

Main Schema

The Gold Standard - the Constant-Complement Strategy

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two meet-complementary views.

Main Schema

The Gold Standard - the Constant-Complement Strategy

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two meet-complementary views.
- One is isomorphic to the view schema and tracks its updates exactly.

Main Schema

The Gold Standard - the Constant-Complement Strategy

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two meet-complementary views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.

Main Schema

The Gold Standard - the Constant-Complement Strategy

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two meet-complementary views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.
- Although it is somewhat limited in the view updates which it allows, they are supported in an optimal manner.

Main Schema

The Gold Standard - the Constant-Complement Strategy

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two meet-complementary views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.
- Although it is somewhat limited in the view updates which it allows, they are supported in an

Main Schema
 optimal manner.

- It can be shown [Hegner 03 AMAI] that this strategy is precisely that which avoids all update anomalies.

The Gold Standard - the Constant-Complement Strategy

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two meet-complementary views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.
- Although it is somewhat limited in the view updates which it allows, they are supported in an

Main Schema
 optimal manner.

- It can be shown [Hegner 03 AMAI] that this strategy is precisely that which avoids all update anomalies.
- However, this is complicated by the complement uniqueness problem.

The Gold Standard - the Constant-Complement Strategy

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two meet-complementary views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.
- Although it is somewhat limited in the view updates which it allows, they are supported in an

Main Schema
 optimal manner.

- It can be shown [Hegner 03 AMAI] that this strategy is precisely that which avoids all update anomalies.
- However, this is complicated by the complement uniqueness problem.
- Some examples will help illustrate these ideas.

The Idea of Constant-Complement by Example

- Consider the classical example to the right.

Main Schema \mathbf{E}_{1} Constraint: $\bowtie[A B, B C]$

View Schema $\mathbf{W}_{A B}$

The Idea of Constant-Complement by Example

- Consider the classical example to the right.
- A natural complement to the $A B$-projection is the $B C$-projection.

Main Schema \mathbf{E}_{1} Constraint: $\bowtie[A B, B C]$

View Schema Complement Schema $\mathbf{W}_{B C}$

The Idea of Constant-Complement by Example

- Consider the classical example to the right.
- A natural complement to the $A B$-projection is the $B C$-projection.
- The decomposed schema $\mathbf{W}_{A B} \otimes \mathbf{W}_{B C}$ has relation symbols $\left.R_{[} A B\right]$ and $R_{2}[B C]$; the legal database are all states which are join compatible on B.

Main Schema \mathbf{E}_{1} Constraint: $\bowtie[A B, B C]$

View Schema Complement Schema $\mathbf{W}_{B C}$

The Idea of Constant-Complement by Example

- Consider the classical example to the right.
- A natural complement to the $A B$-projection is the $B C$-projection.
- The decomposed schema $\mathbf{W}_{A B} \otimes \mathbf{W}_{B C}$ has relation symbols $\left.R_{[} A B\right]$ and $R_{2}[B C]$; the legal database are all states which are join compatible on B.
- The decomposition mapping $\mathbf{E}_{1} \rightarrow \mathbf{W}_{A B} \otimes \mathbf{W}_{B C}$, and is always bijective for complements.

Main Schema \mathbf{E}_{1} Constraint: $\bowtie[A B, B C]$

View Schema Complement Schema $\mathbf{W}_{B C}$

The Idea of Constant-Complement by Example

- Consider the classical example to the right.
- A natural complement to the $A B$-projection is the $B C$-projection.
- The decomposed schema $\mathbf{W}_{A B} \otimes \mathbf{W}_{B C}$ has relation symbols $\left.R_{[} A B\right]$ and $R_{2}[B C]$; the legal database are all states which are join compatible on B.
- The decomposition mapping $\mathbf{E}_{1} \rightarrow \mathbf{W}_{A B} \otimes \mathbf{W}_{B C}$, and is always bijective for complements.
- The reconstruction mapping $\mathbf{W}_{A B} \otimes \mathbf{W}_{B C} \rightarrow \mathbf{W}_{1}$ is the inverse of the decomposition mapping. It is the natural join in this case.

Main Schema \mathbf{E}_{1} Constraint: $\bowtie[A B, B C]$

View Schema Complement Schema $\mathbf{W}_{B C}$

The Idea of Constant-Complement by Example

- Consider the classical example to the right.
- A natural complement to the $A B$-projection is the $B C$-projection.
- The decomposed schema $\mathbf{W}_{A B} \otimes \mathbf{W}_{B C}$ has relation symbols $\left.R_{[} A B\right]$ and $R_{2}[B C]$; the legal database are all states which are join compatible on B.
- The decomposition mapping $\mathbf{E}_{1} \rightarrow \mathbf{W}_{A B} \otimes \mathbf{W}_{B C}$, and is always bijective for complements.
- The reconstruction mapping $\mathbf{W}_{A B} \otimes \mathbf{W}_{B C} \rightarrow \mathbf{W}_{1}$ is the inverse of the decomposition mapping. It is the natural join in this case.
- The view which is the projection on B is the meet of $\mathbf{W}_{A B}$ and $\mathbf{W}_{B C}$, and is precisely that which must be held constant under a constant-complement update.

Main Schema \mathbf{E}_{1} Constraint: $\bowtie[A B, B C]$

View Schema Complement Schema $\mathbf{W}_{B C}$

The Problem of Complement Uniqueness

- Given is the following two-relation main schema.

Main Schema \mathbf{E}_{0} No dependencies
$R[A] \quad S[A]$

The Problem of Complement Uniqueness

- Given is the following two-relation main schema.

Main Schema \mathbf{E}_{0} No dependencies
$R[A]$
a_{0}
$S[A]$
a_{1}
a_{2}

The Problem of Complement Uniqueness

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_{0} to be updated is that which preserves $R[A]$ but discards $S[A]$.

Main Schema \mathbf{E}_{0}
No dependencies

View Schema
\mathbf{W}_{0}

The Problem of Complement Uniqueness

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_{0} to be updated is that which preserves $R[A]$ but discards $S[A]$.
- The natural complement \mathbf{W}_{1} is the schema which preserves $S[A]$ but discards $R[A]$.

Main Schema \mathbf{E}_{0}
No dependencies

The Problem of Complement Uniqueness

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_{0} to be updated is that which preserves $R[A]$ but discards $S[A]$.
- The natural complement \mathbf{W}_{1} is the schema which preserves $S[A]$ but discards $R[A]$.
- With \mathbf{W}_{1} constant, all updates to $R[A]$ are allowed.

Main Schema \mathbf{E}_{0}
No dependencies

The Problem of Complement Uniqueness

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_{0} to be updated is that which preserves $R[A]$ but discards $S[A]$.
- The natural complement \mathbf{W}_{1} is the schema which preserves $S[A]$ but discards $R[A]$.
- With \mathbf{W}_{1} constant, all updates to $R[A]$ are allowed.
- Clearly, this is the only reasonable update strategy for \mathbf{W}_{0}.

Main Schema \mathbf{E}_{0}
No dependencies

The Problem of Complement Uniqueness

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_{0} to be updated is that which preserves $R[A]$ but discards $S[A]$.
- The natural complement \mathbf{W}_{1} is the schema which preserves $S[A]$ but discards $R[A]$.
- With \mathbf{W}_{1} constant, all updates to $R[A]$ are allowed.
- Clearly, this is the only reasonable update strategy for \mathbf{W}_{0}.
- However, \mathbf{W}_{1} does not define the only complement.

Main Schema \mathbf{E}_{0}
No dependencies

The Problem of Complement Uniqueness

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_{0} to be updated is that which preserves $R[A]$ but discards $S[A]$.
- The natural complement \mathbf{W}_{1} is the schema which preserves $S[A]$ but discards $R[A]$.
- With \mathbf{W}_{1} constant, all updates to $R[A]$ are allowed.
- Clearly, this is the only reasonable update strategy for \mathbf{W}_{0}.
- However, \mathbf{W}_{1} does not define the only complement.
- Without further restrictions, complements are almost never unique.

Main Schema \mathbf{E}_{0}
No dependencies

An Alternate Complement

- The main schema is unchanged.

Main Schema \mathbf{E}_{0} No dependencies
$R[A] \quad S[A]$

An Alternate Complement

- The main schema is unchanged.
- The view schema \mathbf{W}_{0} to be updated is also the same.

Main Schema \mathbf{E}_{0}
No dependencies

$1_{\mathrm{R}[\mathrm{A}]}$

View Schema
\mathbf{W}_{0}

An Alternate Complement

- The main schema is unchanged.
- The view schema \mathbf{W}_{0} to be updated is also the same.
- An alternative complement \mathbf{W}_{2} is defined by the symmetric difference:

$$
T[A]=(R[A] \backslash S[A]) \cup(S[A] \backslash R[A])
$$

Main Schema \mathbf{E}_{0}
No dependencies

An Alternate Complement

- The main schema is unchanged.
- The view schema \mathbf{W}_{0} to be updated is also the same.
- An alternative complement \mathbf{W}_{2} is defined by the symmetric difference:

$$
T[A]=(R[A] \backslash S[A]) \cup(S[A] \backslash R[A])
$$

- With this alternative complement, the update strategy is different $-S[A]$ is altered.

Main Schema \mathbf{E}_{0}
No dependencies

An Alternate Complement

- The main schema is unchanged.
- The view schema \mathbf{W}_{0} to be updated is also the same.
- An alternative complement \mathbf{W}_{2} is defined by the symmetric difference:

$$
T[A]=(R[A] \backslash S[A]) \cup(S[A] \backslash R[A])
$$

- With this alternative complement, the update strategy is different - $S[A]$ is altered.
- Clearly, this is not a desirable complement.

Main Schema \mathbf{E}_{0}
No dependencies

An Alternate Complement

- The main schema is unchanged.
- The view schema \mathbf{W}_{0} to be updated is also the same.
- An alternative complement \mathbf{W}_{2} is defined by the symmetric difference:

$$
T[A]=(R[A] \backslash S[A]) \cup(S[A] \backslash R[A])
$$

- With this alternative complement, the update strategy is different $-S[A]$ is altered.
- Clearly, this is not a desirable complement.

Question: How can these two complements be distinguished formally?

Main Schema \mathbf{E}_{0}
No dependencies

The Sufficiency of Monotonicity

- Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.

The Sufficiency of Monotonicity

- Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.

Theorem: If the view to be updated and is defined by a monotonic morphism, then the reflection of a given view update to the main schema is independent of the choice of complement, provided that the complement is also defined by a monotonic morphism.

The Sufficiency of Monotonicity

- Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.

Theorem: If the view to be updated and is defined by a monotonic morphism, then the reflection of a given view update to the main schema is independent of the choice of complement, provided that the complement is also defined by a monotonic morphism.

Proof: [Hegner 04 AMAI], [Hegner 08 SDKB], [Hegner 09 LID], [Hegner 10 JUCS] \square

The Sufficiency of Monotonicity

- Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.

Theorem: If the view to be updated and is defined by a monotonic morphism, then the reflection of a given view update to the main schema is independent of the choice of complement, provided that the complement is also defined by a monotonic morphism.

Proof: [Hegner 04 AMAI], [Hegner 08 SDKB], [Hegner 09 LID], [Hegner 10 JUCS] \square
However: It is not necessarily the case that all such view updates may be realized using the same complement.

The Sufficiency of Monotonicity

- Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.

Theorem: If the view to be updated and is defined by a monotonic morphism, then the reflection of a given view update to the main schema is independent of the choice of complement, provided that the complement is also defined by a monotonic morphism.

Proof: [Hegner 04 AMAI], [Hegner 08 SDKB], [Hegner 09 LID], [Hegner 10 JUCS] \square
However: It is not necessarily the case that all such view updates may be realized using the same complement.

- It is useful to illustrate with a simple example.

Incompatible View Updates

- The view $\Pi_{A B C}$ of the schema to the right has $\Pi_{B D}$ as a natural monotonic meet complement.

Main Schema \mathbf{E}_{1}

$$
B \rightarrow C D \quad C \rightarrow B
$$

$\begin{array}{cc}\text { View Schema } \\ \Pi_{A B C} & \text { Complement } \\ & \text { Schema } \\ \Pi_{B D}\end{array}$

Incompatible View Updates

- The view $\Pi_{A B C}$ of the schema to the right has $\Pi_{B D}$ as a natural monotonic meet complement.
- With this complement, the allowable updates on $\Pi_{A B C}$ are precisely those which keep Π_{B} constant.

Main Schema \mathbf{E}_{1}

$$
B \rightarrow C D \quad C \rightarrow B
$$

View Schema Complement Schema $\Pi_{B D}$

Incompatible View Updates

- The view $\Pi_{A B C}$ of the schema to the right has $\Pi_{B D}$ as a natural monotonic meet complement.
- With this complement, the allowable updates on $\Pi_{A B C}$ are precisely those which keep Π_{B} constant.
- However, $\Pi_{A B C}$ also has $\Pi_{C D}$ as a natural meet complement.

Main Schema \mathbf{E}_{1}

$$
B \rightarrow C D \quad C \rightarrow B
$$

View Schema Complement Schema $\Pi_{C D}$

Incompatible View Updates

- The view $\Pi_{A B C}$ of the schema to the right has $\Pi_{B D}$ as a natural monotonic meet complement.
- With this complement, the allowable updates on $\Pi_{A B C}$ are precisely those which keep Π_{B} constant.
- However, $\Pi_{A B C}$ also has $\Pi_{C D}$ as a natural meet complement.
- With this complement, the allowable updates on $\Pi_{A B C}$ are precisely those which keep Π_{C} constant.

Main Schema \mathbf{E}_{1}

$$
B \rightarrow C D \quad C \rightarrow B
$$

View Schema Complement Schema $\Pi_{C D}$

Incompatible View Updates

- The view $\Pi_{A B C}$ of the schema to the right has $\Pi_{B D}$ as a natural monotonic meet complement.
- With this complement, the allowable updates on $\Pi_{A B C}$ are precisely those which keep Π_{B} constant.
- However, $\Pi_{A B C}$ also has $\Pi_{C D}$ as a natural meet complement.
- With this complement, the allowable updates on $\Pi_{A B C}$ are precisely those which keep Π_{C} constant.
- The only updates allowable with both complements are those which hold $\Pi_{B C}$ constant.

Main Schema \mathbf{E}_{1}

$$
B \rightarrow C D \quad C \rightarrow B
$$

View Schema Complement Schema
$\Pi_{B C D}$

Incompatible View Updates

- The view $\Pi_{A B C}$ of the schema to the right has $\Pi_{B D}$ as a natural monotonic meet complement.
- With this complement, the allowable updates on $\Pi_{A B C}$ are precisely those which keep Π_{B} constant.
- However, $\Pi_{A B C}$ also has $\Pi_{C D}$ as a natural meet complement.
- With this complement, the allowable updates on $\Pi_{A B C}$ are precisely those which keep Π_{C} constant.
- The only updates allowable with both complements are those which hold $\Pi_{B C}$ constant.
- The combined complement is effectively $\Pi_{B C D}$.

Main Schema \mathbf{E}_{1}

$$
B \rightarrow C D \quad C \rightarrow B
$$

View Schema Complement Schema
$\Pi_{B C D}$

Incompatible View Updates

- The view $\Pi_{A B C}$ of the schema to the right has $\Pi_{B D}$ as a natural monotonic meet complement.
- With this complement, the allowable updates on $\Pi_{A B C}$ are precisely those which keep Π_{B} constant.
- However, $\Pi_{A B C}$ also has $\Pi_{C D}$ as a natural meet complement.
- With this complement, the allowable updates on $\Pi_{A B C}$ are precisely those which keep Π_{C} constant.
- The only updates allowable with both complements are those which hold $\Pi_{B C}$ constant.
- The combined complement is effectively $\Pi_{B C D}$.
- There is no Π-complement which is more general than $\Pi_{B D}$ or $\Pi_{C D}$.

Main Schema \mathbf{E}_{1}

$$
B \rightarrow C D \quad C \rightarrow B
$$

View Schema Complement Schema
$\Pi_{B C D}$

Comparison of Projections and Optimal Complements

Context: A universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F}.

Comparison of Projections and Optimal Complements

Context: A universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F}.

- A Π-view is defined by a single projection.

Comparison of Projections and Optimal Complements

Context: A universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F}.

- A Π-view is defined by a single projection.

Notation: Π_{W} is the projection onto attribute set W.

Comparison of Projections and Optimal Complements

Context: A universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F}.

- A Π-view is defined by a single projection.

Notation: Π_{W} is the projection onto attribute set W.

- Projective views may be compared via their attributes.

$$
\Pi_{\mathbf{W}_{1}} \leq \Pi_{\mathbf{W}_{2}} \quad \text { iff } \quad \mathbf{W}_{1} \subseteq \mathbf{W}_{2} \quad\left(\mathbf{W}_{1}, \mathbf{W}_{2} \subseteq \mathbf{U}\right)
$$

Comparison of Projections and Optimal Complements

Context: A universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F}.

- A Π-view is defined by a single projection.

Notation: Π_{W} is the projection onto attribute set W.

- Projective views may be compared via their attributes.

$$
\Pi_{\mathbf{W}_{1}} \leq \Pi_{\mathbf{W}_{2}} \quad \text { iff } \quad \mathbf{W}_{1} \subseteq \mathbf{W}_{2} \quad\left(\mathbf{W}_{1}, \mathbf{W}_{2} \subseteq \mathbf{U}\right)
$$

- Given a projective view Π_{W}, a complement $\Pi_{\mathrm{W}^{\prime}}$ is

Comparison of Projections and Optimal Complements

Context: A universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F}.

- A Π-view is defined by a single projection.

Notation: Π_{W} is the projection onto attribute set W.

- Projective views may be compared via their attributes.

$$
\Pi_{\mathbf{W}_{1}} \leq \Pi_{\mathbf{W}_{2}} \quad \text { iff } \quad \mathbf{W}_{1} \subseteq \mathbf{W}_{2} \quad\left(\mathbf{W}_{1}, \mathbf{W}_{2} \subseteq \mathbf{U}\right)
$$

- Given a projective view $\Pi_{\mathbf{W}}$, a complement $\Pi_{\mathbf{W}^{\prime}}$ is
- minimal if for no other complement $\Pi_{\mathbf{W}^{\prime \prime}}$ is it the case that $\mathbf{W}^{\prime \prime} \subseteq \mathbf{W}^{\prime}$;

Comparison of Projections and Optimal Complements

Context: A universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F}.

- A Π-view is defined by a single projection.

Notation: Π_{W} is the projection onto attribute set W.

- Projective views may be compared via their attributes.

$$
\Pi_{\mathbf{W}_{1}} \leq \Pi_{\mathbf{W}_{2}} \quad \text { iff } \quad \mathbf{W}_{1} \subseteq \mathbf{W}_{2} \quad\left(\mathbf{W}_{1}, \mathbf{W}_{2} \subseteq \mathbf{U}\right)
$$

- Given a projective view $\Pi_{\mathbf{W}}$, a complement $\Pi_{\mathbf{W}^{\prime}}$ is
- minimal if for no other complement $\Pi_{\mathbf{W}^{\prime \prime}}$ is it the case that $\mathbf{W}^{\prime \prime} \subseteq \mathbf{W}^{\prime}$;
- optimal if for every other complement $\Pi_{\mathbf{W}^{\prime \prime}}$ it is the case that $\mathbf{W}^{\prime} \subseteq \mathbf{W}^{\prime \prime}$.

A Context for Optimal Complements of Projections

- Let $R[\mathbf{U}]$ be universal relational schema constrained by some dependencies \mathcal{F}.

A Context for Optimal Complements of Projections

- Let $R[\mathbf{U}]$ be universal relational schema constrained by some dependencies \mathcal{F}.
- A governing JD is a representation of all JDs which hold on the schema.

A Context for Optimal Complements of Projections

- Let $R[\mathbf{U}]$ be universal relational schema constrained by some dependencies \mathcal{F}.
- A governing JD is a representation of all JDs which hold on the schema.
- More precisely, call a join dependency (JD) $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$ on $R[\mathbf{U}]$ governing (w.r.t. \mathcal{F}) if it defines a lossless decomposition of $R[\mathbf{U}]$ satisfying the following properties:

A Context for Optimal Complements of Projections

- Let $R[\mathbf{U}]$ be universal relational schema constrained by some dependencies \mathcal{F}.
- A governing JD is a representation of all JDs which hold on the schema.
- More precisely, call a join dependency (JD) $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$ on $R[\mathbf{U}]$ governing (w.r.t. \mathcal{F}) if it defines a lossless decomposition of $R[\mathbf{U}]$ satisfying the following properties:
- full: $\mathbf{U}_{1} \cup \ldots \cup \mathbf{U}_{k}=\mathbf{U} ;$

A Context for Optimal Complements of Projections

- Let $R[\mathbf{U}]$ be universal relational schema constrained by some dependencies \mathcal{F}.
- A governing JD is a representation of all JDs which hold on the schema.
- More precisely, call a join dependency (JD) $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$ on $R[\mathbf{U}]$ governing (w.r.t. \mathcal{F}) if it defines a lossless decomposition of $R[\mathbf{U}]$ satisfying the following properties:
- full: $\mathbf{U}_{1} \cup \ldots \cup \mathbf{U}_{k}=\mathbf{U}$;
- entailed: $\mathcal{F} \vDash \bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$;

A Context for Optimal Complements of Projections

- Let $R[\mathbf{U}]$ be universal relational schema constrained by some dependencies \mathcal{F}.
- A governing JD is a representation of all JDs which hold on the schema.
- More precisely, call a join dependency (JD) $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$ on $R[\mathbf{U}]$ governing (w.r.t. \mathcal{F}) if it defines a lossless decomposition of $R[\mathbf{U}]$ satisfying the following properties:
- full: $\mathbf{U}_{1} \cup \ldots \cup \mathbf{U}_{k}=\mathbf{U}$;
- entailed: $\mathcal{F} \vDash \bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$;
- covering: $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right] \vDash \varphi$ for every entailed JD (full or embedded) φ.

A Context for Optimal Complements of Projections

- Let $R[\mathbf{U}]$ be universal relational schema constrained by some dependencies \mathcal{F}.
- A governing JD is a representation of all JDs which hold on the schema.
- More precisely, call a join dependency (JD) $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$ on $R[\mathbf{U}]$ governing (w.r.t. \mathcal{F}) if it defines a lossless decomposition of $R[\mathrm{U}]$ satisfying the following properties:
- full: $\mathbf{U}_{1} \cup \ldots \cup \mathbf{U}_{k}=\mathbf{U}$;
- entailed: $\mathcal{F} \vDash \bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$;
- covering: $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right] \vDash \varphi$ for every entailed JD (full or embedded) φ.

Example: For $(R[A B C D]$ with $\mathcal{F}=\{B \rightarrow C D, C \rightarrow B\}$, the $\mathrm{JD} \bowtie[A B C, C D, B D]$ is governing.

A Context for Optimal Complements of Projections

- Let $R[\mathbf{U}]$ be universal relational schema constrained by some dependencies \mathcal{F}.
- A governing JD is a representation of all JDs which hold on the schema.
- More precisely, call a join dependency (JD) $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$ on $R[\mathbf{U}]$ governing (w.r.t. \mathcal{F}) if it defines a lossless decomposition of $R[\mathbf{U}]$ satisfying the following properties:
- full: $\mathbf{U}_{1} \cup \ldots \cup \mathbf{U}_{k}=\mathbf{U}$;
- entailed: $\mathcal{F} \vDash \bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$;
- covering: $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right] \vDash \varphi$ for every entailed JD (full or embedded) φ.

Example: For $(R[A B C D]$ with $\mathcal{F}=\{B \rightarrow C D, C \rightarrow B\}$, the $\mathrm{JD} \bowtie[A B C, C D, B D]$ is governing.

Example: For $(R[A B C D]$ with $\mathcal{F}=\{\bowtie[A B, B C]\}$, there is no (nontrivial) governing JD.

Normalization and Nonredundancy

- To address the non-uniqueness of complements illustrated in examples, the following condition is introduced for the JD $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$:

Normalization and Nonredundancy

- To address the non-uniqueness of complements illustrated in examples, the following condition is introduced for the JD $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$:
- nonredundant: for no proper $J \subsetneq\left\{\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right\}$ is $\bowtie[J]$ both entailed and full.

Normalization and Nonredundancy

- To address the non-uniqueness of complements illustrated in examples, the following condition is introduced for the JD $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$:
- nonredundant: for no proper $J \subsetneq\left\{\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right\}$ is $\bowtie[J]$ both entailed and full.
- There are two flavors of redundancy:

Normalization and Nonredundancy

- To address the non-uniqueness of complements illustrated in examples, the following condition is introduced for the JD $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$:
- nonredundant: for no proper $J \subsetneq\left\{\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right\}$ is $\bowtie[J]$ both entailed and full.
- There are two flavors of redundancy:
- $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$ is trivially redundant (not normalized) if $\mathbf{U}_{i} \subsetneq \mathbf{U}_{j}$ for some distinct i, j.

Normalization and Nonredundancy

- To address the non-uniqueness of complements illustrated in examples, the following condition is introduced for the JD $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$:
- nonredundant: for no proper $J \subsetneq\left\{\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right\}$ is $\bowtie[J]$ both entailed and full.
- There are two flavors of redundancy:
- $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$ is trivially redundant (not normalized) if $\mathbf{U}_{i} \subsetneq \mathbf{U}_{j}$ for some distinct i, j.
- This flavor of redundancy is "trivial" in the sense that it can be detected without any further knowledge of the underlying dependencies.

Normalization and Nonredundancy

- To address the non-uniqueness of complements illustrated in examples, the following condition is introduced for the JD $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$:
- nonredundant: for no proper $J \subsetneq\left\{\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right\}$ is $\bowtie[J]$ both entailed and full.
- There are two flavors of redundancy:
- $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$ is trivially redundant (not normalized) if $\mathbf{U}_{i} \subsetneq \mathbf{U}_{j}$ for some distinct i, j.
- This flavor of redundancy is "trivial" in the sense that it can be detected without any further knowledge of the underlying dependencies.
- It may always be removed without changing the semantics.

Normalization and Nonredundancy

- To address the non-uniqueness of complements illustrated in examples, the following condition is introduced for the JD $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$:
- nonredundant: for no proper $J \subsetneq\left\{\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right\}$ is $\bowtie[J]$ both entailed and full.
- There are two flavors of redundancy:
- $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$ is trivially redundant (not normalized) if $\mathbf{U}_{i} \subsetneq \mathbf{U}_{j}$ for some distinct i, j.
- This flavor of redundancy is "trivial" in the sense that it can be detected without any further knowledge of the underlying dependencies.
- It may always be removed without changing the semantics.

Example: $\bowtie[A C, A B C, C D]$ is trivially redundant.

Normalization and Nonredundancy

- To address the non-uniqueness of complements illustrated in examples, the following condition is introduced for the JD $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$:
- nonredundant: for no proper $J \subsetneq\left\{\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right\}$ is $\bowtie[J]$ both entailed and full.
- There are two flavors of redundancy:
- $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$ is trivially redundant (not normalized) if $\mathbf{U}_{i} \subsetneq \mathbf{U}_{j}$ for some distinct i, j.
- This flavor of redundancy is "trivial" in the sense that it can be detected without any further knowledge of the underlying dependencies.
- It may always be removed without changing the semantics.

Example: $\bowtie[A C, A B C, C D]$ is trivially redundant.

- Otherwise, redundancy is essential and must be determined by examining the underlying dependencies.

Normalization and Nonredundancy

- To address the non-uniqueness of complements illustrated in examples, the following condition is introduced for the JD $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$:
- nonredundant: for no proper $J \subsetneq\left\{\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right\}$ is $\bowtie[J]$ both entailed and full.
- There are two flavors of redundancy:
- $\bowtie\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{k}\right]$ is trivially redundant (not normalized) if $\mathbf{U}_{i} \subsetneq \mathbf{U}_{j}$ for some distinct i, j.
- This flavor of redundancy is "trivial" in the sense that it can be detected without any further knowledge of the underlying dependencies.
- It may always be removed without changing the semantics.

Example: $\bowtie[A C, A B C, C D]$ is trivially redundant.

- Otherwise, redundancy is essential and must be determined by examining the underlying dependencies.
Example: For $R[A B C D]$ with $\mathcal{F}=\{B \rightarrow C D, C \rightarrow B\}$,
the $\mathrm{JD} \bowtie[A B C, C D, B D]$ is governing but essentially redundant, since $\bowtie[A B C, C D]$ (as well as $\bowtie[A B C, B D]$) is both entailed and full.

Characterization of Optimal П-Complements

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}. Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

Characterization of Optimal П-Complements

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}. Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

Theorem: Let $\mathbf{W} \subseteq \mathbf{U}$, and define $\mathbf{W}^{\prime}=\bigcup\left\{\mathbf{U}_{i} \in \mathcal{A} \mid \mathbf{U}_{i} \ddagger \mathbf{W}\right\}$.
Then $\Pi_{\mathbf{W}^{\prime}}$ is an optimal Π-complement of $\Pi_{\mathbf{W}}$. If the JD is dependency preserving, then it is furthermore a meet complement.

Characterization of Optimal П-Complements

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}. Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

Theorem: Let $\mathbf{W} \subseteq \mathbf{U}$, and define $\mathbf{W}^{\prime}=\bigcup\left\{\mathbf{U}_{i} \in \mathcal{A} \mid \mathbf{U}_{i} \ddagger \mathbf{W}\right\}$.
Then $\Pi_{\mathbf{W}^{\prime}}$ is an optimal Π-complement of $\Pi_{\mathbf{W}}$. If the JD is dependency preserving, then it is furthermore a meet complement.

Example context: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash$
$\bowtie[A B C, C D, D E]$ governing and nonredundant.

Characterization of Optimal П-Complements

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}. Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

Theorem: Let $\mathbf{W} \subseteq \mathbf{U}$, and define $\mathbf{W}^{\prime}=\bigcup\left\{\mathbf{U}_{i} \in \mathcal{A} \mid \mathbf{U}_{i} \ddagger \mathbf{W}\right\}$.
Then $\Pi_{\mathbf{W}^{\prime}}$ is an optimal Π-complement of $\Pi_{\mathbf{W}}$. If the JD is dependency preserving, then it is furthermore a meet complement.

Example context: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash$
$\bowtie[A B C, C D, D E]$ governing and nonredundant.

- The optimal Π-complement of $\Pi_{A B C}$ is $\Pi_{C D \cup D E}=\Pi_{C D E}$.

Characterization of Optimal П-Complements

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}. Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

Theorem: Let $\mathbf{W} \subseteq \mathbf{U}$, and define $\mathbf{W}^{\prime}=\bigcup\left\{\mathbf{U}_{i} \in \mathcal{A} \mid \mathbf{U}_{i} \ddagger \mathbf{W}\right\}$.
Then $\Pi_{\mathbf{W}^{\prime}}$ is an optimal Π-complement of $\Pi_{\mathbf{W}}$. If the JD is dependency preserving, then it is furthermore a meet complement.

Example context: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash$
$\bowtie[A B C, C D, D E]$ governing and nonredundant.

- The optimal Π-complement of $\Pi_{A B C}$ is $\Pi_{C D \cup D E}=\Pi_{C D E}$.
- The optimal Π-complement of $\Pi_{A B C E}$ is $\Pi_{C D \cup D E}=\Pi_{C D E}$ also.

Characterization of Optimal П-Complements

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}. Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

Theorem: Let $\mathbf{W} \subseteq \mathbf{U}$, and define $\mathbf{W}^{\prime}=\bigcup\left\{\mathbf{U}_{i} \in \mathcal{A} \mid \mathbf{U}_{i} \ddagger \mathbf{W}\right\}$.
Then $\Pi_{\mathbf{W}^{\prime}}$ is an optimal Π-complement of $\Pi_{\mathbf{W}}$. If the JD is dependency preserving, then it is furthermore a meet complement.

Example context: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash$
$\bowtie[A B C, C D, D E]$ governing and nonredundant.

- The optimal Π-complement of $\Pi_{A B C}$ is $\Pi_{C D \cup D E}=\Pi_{C D E}$.
- The optimal Π-complement of $\Pi_{A B C E}$ is $\Pi_{C D \cup D E}=\Pi_{C D E}$ also.
- The optimal Π-complement of $\Pi_{A B C D}$ is $\Pi_{D E}$.

Characterization of Optimal П-Complements

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}. Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

Theorem: Let $\mathbf{W} \subseteq \mathbf{U}$, and define $\mathbf{W}^{\prime}=\bigcup\left\{\mathbf{U}_{i} \in \mathcal{A} \mid \mathbf{U}_{i} \ddagger \mathbf{W}\right\}$.
Then $\Pi_{\mathbf{W}^{\prime}}$ is an optimal Π-complement of $\Pi_{\mathbf{W}}$. If the JD is dependency preserving, then it is furthermore a meet complement.

Example context: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash$
$\bowtie[A B C, C D, D E]$ governing and nonredundant.

- The optimal Π-complement of $\Pi_{A B C}$ is $\Pi_{C D \cup D E}=\Pi_{C D E}$.
- The optimal Π-complement of $\Pi_{A B C E}$ is $\Pi_{C D \cup D E}=\Pi_{C D E}$ also.
- The optimal Π-complement of $\Pi_{A B C D}$ is $\Pi_{D E}$.
- The optimal Π-complement of $\Pi_{A B}$ is $\Pi_{A B C \cup C D \cup D E}=\Pi_{A B C D E}$.

Characterization of Optimal П-Complements

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}. Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

Theorem: Let $\mathbf{W} \subseteq \mathbf{U}$, and define $\mathbf{W}^{\prime}=\bigcup\left\{\mathbf{U}_{i} \in \mathcal{A} \mid \mathbf{U}_{i} \ddagger \mathbf{W}\right\}$.
Then $\Pi_{\mathbf{W}^{\prime}}$ is an optimal Π-complement of $\Pi_{\mathbf{W}}$. If the JD is dependency preserving, then it is furthermore a meet complement.

Example context: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash$
$\bowtie[A B C, C D, D E]$ governing and nonredundant.

- The optimal Π-complement of $\Pi_{A B C}$ is $\Pi_{C D \cup D E}=\Pi_{C D E}$.
- The optimal Π-complement of $\Pi_{A B C E}$ is $\Pi_{C D \cup D E}=\Pi_{C D E}$ also.
- The optimal Π-complement of $\Pi_{A B C D}$ is $\Pi_{D E}$.
- The optimal Π-complement of $\Pi_{A B}$ is $\Pi_{A B C \cup C D \cup D E}=\Pi_{A B C D E}$.
- The optimal Π-complement of $\Pi_{C D}$ is $\Pi_{A B C \cup D E}=\Pi_{A B C D E}$ also.

An Issue of Suboptimality within a Wider Context

Example context continued: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash$
$\bowtie[A B C, C D, D E]$ governing and nonredundant.

An Issue of Suboptimality within a Wider Context

Example context continued: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash$ $\bowtie[A B C, C D, D E]$ governing and nonredundant.

- For $\Pi_{C D}$, the optimal Π-complement $\Pi_{A B C D E}$ allows no updates at all under the constant-complement strategy.

An Issue of Suboptimality within a Wider Context

Example context continued: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash$ $\bowtie[A B C, C D, D E]$ governing and nonredundant.

- For $\Pi_{C D}$, the optimal Π-complement $\Pi_{A B C D E}$ allows no updates at all under the constant-complement strategy.
- However, some updates are clearly possible.

An Issue of Suboptimality within a Wider Context

Example context continued: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash$ $\bowtie[A B C, C D, D E]$ governing and nonredundant.

- For $\Pi_{C D}$, the optimal Π-complement $\Pi_{A B C D E}$ allows no updates at all under the constant-complement strategy.
- However, some updates are clearly possible.
- Let $M=\left\{R\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}, \mathrm{~d}_{1}, \mathrm{e}_{1}\right), R\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}, \mathrm{~d}_{2}, \mathrm{e}_{2}\right)\right\}$ be the current state of the main schema.

An Issue of Suboptimality within a Wider Context

Example context continued: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash$
$\bowtie[A B C, C D, D E]$ governing and nonredundant.

- For $\Pi_{C D}$, the optimal Π-complement $\Pi_{A B C D E}$ allows no updates at all under the constant-complement strategy.
- However, some updates are clearly possible.
- Let $M=\left\{R\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}, \mathrm{~d}_{1}, \mathrm{e}_{1}\right), R\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}, \mathrm{~d}_{2}, \mathrm{e}_{2}\right)\right\}$ be the current state of the main schema.
- Consider the update $\left(N, N^{\prime}\right)$ to $\Pi_{C D}$ with $N=\left\{R\left(\mathrm{c}_{1}, \mathrm{~d}_{1}\right), R\left(\mathrm{c}_{2}, \mathrm{~d}_{2}\right)\right\}$. and $N^{\prime}=\left\{R\left(\mathrm{c}_{1}, \mathrm{~d}_{2}\right), R\left(\mathrm{c}_{2}, \mathrm{~d}_{1}\right)\right\}$.

An Issue of Suboptimality within a Wider Context

Example context continued: $R[A B C D E] C \rightarrow D D \rightarrow E \vDash$
$\bowtie[A B C, C D, D E]$ governing and nonredundant.

- For $\Pi_{C D}$, the optimal Π-complement $\Pi_{A B C D E}$ allows no updates at all under the constant-complement strategy.
- However, some updates are clearly possible.
- Let $M=\left\{R\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}, \mathrm{~d}_{1}, \mathrm{e}_{1}\right), R\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}, \mathrm{~d}_{2}, \mathrm{e}_{2}\right)\right\}$ be the current state of the main schema.
- Consider the update $\left(N, N^{\prime}\right)$ to $\Pi_{C D}$ with $N=\left\{R\left(\mathrm{c}_{1}, \mathrm{~d}_{1}\right), R\left(\mathrm{c}_{2}, \mathrm{~d}_{2}\right)\right\}$. and $N^{\prime}=\left\{R\left(\mathrm{c}_{1}, \mathrm{~d}_{2}\right), R\left(\mathrm{c}_{2}, \mathrm{~d}_{1}\right)\right\}$.
- The reflection $M^{\prime}=\left\{R\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}, \mathrm{~d}_{2}, \mathrm{e}_{2}\right) R\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}, \mathrm{~d}_{1}, \mathrm{e}_{1}\right)\right\}$ keeps both $\Pi_{A B C}$ and $\Pi_{C D}$ constant.

An Issue of Suboptimality within a Wider Context

Example context continued: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash$
$\bowtie[A B C, C D, D E]$ governing and nonredundant.

- For $\Pi_{C D}$, the optimal Π-complement $\Pi_{A B C D E}$ allows no updates at all under the constant-complement strategy.
- However, some updates are clearly possible.
- Let $M=\left\{R\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}, \mathrm{~d}_{1}, \mathrm{e}_{1}\right), R\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}, \mathrm{~d}_{2}, \mathrm{e}_{2}\right)\right\}$ be the current state of the main schema.
- Consider the update $\left(N, N^{\prime}\right)$ to $\Pi_{C D}$ with $N=\left\{R\left(\mathrm{c}_{1}, \mathrm{~d}_{1}\right), R\left(\mathrm{c}_{2}, \mathrm{~d}_{2}\right)\right\}$. and $N^{\prime}=\left\{R\left(\mathrm{c}_{1}, \mathrm{~d}_{2}\right), R\left(\mathrm{c}_{2}, \mathrm{~d}_{1}\right)\right\}$.
- The reflection $M^{\prime}=\left\{R\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}, \mathrm{~d}_{2}, \mathrm{e}_{2}\right) R\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}, \mathrm{~d}_{1}, \mathrm{e}_{1}\right)\right\}$ keeps both $\Pi_{A B C}$ and $\Pi_{C D}$ constant.
- The view $\Pi_{A B C} \vee \Pi_{D E}$ which contains two projections, $R[A B C]$ and $R[D E]$, is a complement of $\Pi_{C D}$.

An Issue of Suboptimality within a Wider Context

Example context continued: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash$
$\bowtie[A B C, C D, D E]$ governing and nonredundant.

- For $\Pi_{C D}$, the optimal Π-complement $\Pi_{A B C D E}$ allows no updates at all under the constant-complement strategy.
- However, some updates are clearly possible.
- Let $M=\left\{R\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}, \mathrm{~d}_{1}, \mathrm{e}_{1}\right), R\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}, \mathrm{~d}_{2}, \mathrm{e}_{2}\right)\right\}$ be the current state of the main schema.
- Consider the update $\left(N, N^{\prime}\right)$ to $\Pi_{C D}$ with $N=\left\{R\left(\mathrm{c}_{1}, \mathrm{~d}_{1}\right), R\left(\mathrm{c}_{2}, \mathrm{~d}_{2}\right)\right\}$. and $N^{\prime}=\left\{R\left(\mathrm{c}_{1}, \mathrm{~d}_{2}\right), R\left(\mathrm{c}_{2}, \mathrm{~d}_{1}\right)\right\}$.
- The reflection $M^{\prime}=\left\{R\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}, \mathrm{~d}_{2}, \mathrm{e}_{2}\right) R\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}, \mathrm{~d}_{1}, \mathrm{e}_{1}\right)\right\}$ keeps both $\Pi_{A B C}$ and $\Pi_{C D}$ constant.
- The view $\Pi_{A B C} \vee \Pi_{D E}$ which contains two projections, $R[A B C]$ and $R[D E]$, is a complement of $\Pi_{C D}$.
- Thus, $\left(M, M^{\prime}\right)$ is a constant-complement reflection of $\left(N, N^{\prime}\right)$ with complement $\Pi_{A B C} \vee \Pi_{D E}$.

Complements of $\vee \Pi$-views

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}; Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

Complements of $\vee \Pi$-views

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}; Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

- A $\vee \Pi$-view is defined by a set of projections on a (universal) relational schema.

Complements of $\vee \Pi$-views

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}; Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

- A $\vee \Pi$-view is defined by a set of projections on a (universal) relational schema.

Example and notation: $\Pi_{A B C} \vee \Pi_{D E}=\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in\{A B C, D E\}\right\}$.

Complements of $\vee \Pi$-views

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}; Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

- A $\vee \Pi$-view is defined by a set of projections on a (universal) relational schema.

Example and notation: $\Pi_{A B C} \vee \Pi_{D E}=\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in\{A B C, D E\}\right\}$.
Theorem: For any partition $\left\{\mathcal{A}_{1}, \mathcal{A}_{2}\right\}$ of $\mathcal{A}, \bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{A}_{1}\right\}$ and $\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{A}_{2}\right\}$ are complements. They are furthermore meet complements if the JD is dependency preserving.

Complements of $\vee \Pi$-views

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}; Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

- A $\vee \Pi$-view is defined by a set of projections on a (universal) relational schema.

Example and notation: $\Pi_{A B C} \vee \Pi_{D E}=\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in\{A B C, D E\}\right\}$.
Theorem: For any partition $\left\{\mathcal{A}_{1}, \mathcal{A}_{2}\right\}$ of $\mathcal{A}, \bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{A}_{1}\right\}$ and $\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{A}_{2}\right\}$ are complements. They are furthermore meet complements if the JD is dependency preserving.

Example context: $R[A B C D E] C \rightarrow D D \rightarrow E \quad E \rightarrow F \vDash$ $\bowtie[A B C, C D, D E, E F]$ is governing and nonredundant.

Complements of $\vee \Pi$-views

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}; Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

- A $\vee \Pi$-view is defined by a set of projections on a (universal) relational schema.

Example and notation: $\Pi_{A B C} \vee \Pi_{D E}=\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in\{A B C, D E\}\right\}$.
Theorem: For any partition $\left\{\mathcal{A}_{1}, \mathcal{A}_{2}\right\}$ of $\mathcal{A}, \bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{A}_{1}\right\}$ and $\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{A}_{2}\right\}$ are complements. They are furthermore meet complements if the JD is dependency preserving.

Example context: $R[A B C D E] C \rightarrow D D \rightarrow E \quad E \rightarrow F \vDash$ $\bowtie[A B C, C D, D E, E F]$ is governing and nonredundant.

- $\Pi_{A B C} \vee \Pi_{D E}$ and $\Pi_{C D} \vee \Pi_{E F}$ are meet complements.

Complements of $\vee \Pi$-views

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}; Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

- A $\vee \Pi$-view is defined by a set of projections on a (universal) relational schema.

Example and notation: $\Pi_{A B C} \vee \Pi_{D E}=\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in\{A B C, D E\}\right\}$.
Theorem: For any partition $\left\{\mathcal{A}_{1}, \mathcal{A}_{2}\right\}$ of $\mathcal{A}, \bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{A}_{1}\right\}$ and $\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{A}_{2}\right\}$ are complements. They are furthermore meet complements if the JD is dependency preserving.

Example context: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \quad E \rightarrow F \vDash$ $\bowtie[A B C, C D, D E, E F]$ is governing and nonredundant.

- $\Pi_{A B C} \vee \Pi_{D E}$ and $\Pi_{C D} \vee \Pi_{E F}$ are meet complements.
- Note that $\begin{aligned} & \Pi_{A B C} \vee \Pi_{D E} \neq \Pi_{A B C D E} \\ & \Pi_{C D} \vee \Pi_{E F} \neq \Pi_{C D E F} ;\end{aligned}$ they are not even isomorphic.

Comparison of $\vee \Pi$-complements

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}; Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

Comparison of $\vee \Pi$-complements

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}; Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

- A first attempt at a definition of comparison:
$\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{1}\right\} \leq \bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{2}\right\} \quad$ iff $\quad\left(\forall \mathbf{Y} \in \mathcal{B}_{1}\right)\left(\exists \mathbf{Y}^{\prime} \in \mathcal{B}_{2}\right)\left(\mathbf{Y} \subseteq \mathbf{Y}^{\prime}\right)$.

Comparison of $\vee \Pi$-complements

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}; Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

- A first attempt at a definition of comparison:
$\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{1}\right\} \leq \bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{2}\right\} \quad$ iff $\quad\left(\forall \mathbf{Y} \in \mathcal{B}_{1}\right)\left(\exists \mathbf{Y}^{\prime} \in \mathcal{B}_{2}\right)\left(\mathbf{Y} \subseteq \mathbf{Y}^{\prime}\right)$.
Counterexample: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash \bowtie[A B C, C D, D E]$.
Since the embedded $\mathrm{JD} \bowtie[A B C, C D]$ is implied, $\Pi_{A B C D}$ is effectively the same as $\Pi_{A B C} \vee \Pi_{C D}$.

Comparison of $\vee \Pi$-complements

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}; Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

- A first attempt at a definition of comparison:

$$
\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{1}\right\} \leq \bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{2}\right\} \quad \text { iff } \quad\left(\forall \mathbf{Y} \in \mathcal{B}_{1}\right)\left(\exists \mathbf{Y}^{\prime} \in \mathcal{B}_{2}\right)\left(\mathbf{Y} \subseteq \mathbf{Y}^{\prime}\right)
$$

Counterexample: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash \bowtie[A B C, C D, D E]$.
Since the embedded $\mathrm{JD} \bowtie[A B C, C D]$ is implied, $\Pi_{A B C D}$ is effectively the same as $\Pi_{A B C} \vee \Pi_{C D}$.

- A better definition of comparison: every LHS attribute set is a subset of a valid join of a RHS set.

$$
\begin{aligned}
\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{1}\right\} \leq & \bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{2}\right\} \text { iff } \\
& \left(\forall \mathbf{Y} \in \mathcal{B}_{1}\right)\left(\exists \mathcal{B}_{3} \subseteq \mathcal{B}_{2}\right)\left(\left(\bowtie\left[\mathcal{B}_{3}\right] \text { valid }\right) \wedge\left(\mathbf{Y} \subseteq \bigcup \mathcal{B}_{3}\right)\right) .
\end{aligned}
$$

Optimal $\vee \Pi$-complements

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}; Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

$$
\begin{aligned}
\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{1}\right\} \leq & \bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{2}\right\} \text { iff } \\
& \left(\forall \mathbf{Y} \in \mathcal{B}_{1}\right)\left(\exists \mathcal{B}_{3} \subseteq \mathcal{B}_{2}\right)\left(\left(\bowtie\left[\mathcal{B}_{3}\right] \text { valid }\right) \wedge\left(\mathbf{Y} \subseteq \bigcup \mathcal{B}_{3}\right)\right) .
\end{aligned}
$$

Optimal $\bigvee \Pi$-complements

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}; Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

$$
\begin{aligned}
\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{1}\right\} \leq & \bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{2}\right\} \quad \text { iff } \\
& \left(\forall \mathbf{Y} \in \mathcal{B}_{1}\right)\left(\exists \mathcal{B}_{3} \subseteq \mathcal{B}_{2}\right)\left(\left(\bowtie\left[\mathcal{B}_{3}\right] \text { valid }\right) \wedge\left(\mathbf{Y} \subseteq \bigcup \mathcal{B}_{3}\right)\right) .
\end{aligned}
$$

- $\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{2}\right\}$, is an optimal complement of $\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{1}\right\}$ if

$$
\begin{aligned}
& \bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{2}\right\} \leq \bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{3}\right\} \\
& \quad \text { for every other } \bigvee \Pi_{\text {-complement }} \bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{3}\right\},
\end{aligned}
$$

Optimal $\bigvee \Pi$-complements

Context: Universal relational schema $R[\mathrm{U}]$ constrained by some dependencies \mathcal{F}; Nonredundant governing JD $\bowtie[\mathcal{A}]$ with $\mathcal{A} \stackrel{\text { def }}{=}\left\{\mathbf{U}_{i} \mid 1 \leqslant i \leqslant k\right\}$.

$$
\begin{aligned}
\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{1}\right\} \leq & \bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{2}\right\} \quad \text { iff } \\
& \left(\forall \mathbf{Y} \in \mathcal{B}_{1}\right)\left(\exists \mathcal{B}_{3} \subseteq \mathcal{B}_{2}\right)\left(\left(\bowtie\left[\mathcal{B}_{3}\right] \text { valid }\right) \wedge\left(\mathbf{Y} \subseteq \bigcup \mathcal{B}_{3}\right)\right) .
\end{aligned}
$$

- $\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{2}\right\}$, is an optimal complement of $\bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{1}\right\}$ if

$$
\begin{aligned}
& \bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{2}\right\} \leq \bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{3}\right\} \\
& \quad \text { for every other } \bigvee \Pi_{\text {-complement }} \bigvee\left\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_{3}\right\},
\end{aligned}
$$

- For $\mathbf{W} \subseteq \mathbf{U}$, define $\mathrm{JCompl}\langle\mathbf{W}, \mathcal{A}\rangle=\left\{\mathbf{U}_{i} \in \mathcal{A} \mid \mathbf{U}_{i} \ddagger \mathbf{W}\right\}$.

Theorem: $\bigvee\left\{\Pi_{\mathbf{U}_{i}} \mid \mathbf{U}_{i} \in \operatorname{JCompl}\langle\mathbf{W}, \mathcal{A}\rangle\right\}$ is an optimal $\bigvee \Pi$-complement of $\Pi_{\mathbf{W}} . \square$

Issues with $\vee \Pi$-complements

- For a wide variety of constraints on the main schema, the constraints on a Π-view are well behaved first-order database dependencies [Fagin 82 JACM] [Hull 84 JACM].

Issues with $\vee \Pi$-complements

- For a wide variety of constraints on the main schema, the constraints on a Π-view are well behaved first-order database dependencies [Fagin 82 JACM] [Hull 84 JACM].
- For $\vee \Pi$-views, the situation is very different.

Issues with $\vee \Pi$-complements

- For a wide variety of constraints on the main schema, the constraints on a Π-view are well behaved first-order database dependencies [Fagin 82 JACM] [Hull 84 JACM].
- For $\vee \Pi$-views, the situation is very different.

Example context continued: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash \bowtie[A B C, C D, D E]$.

Issues with $\vee \Pi$-complements

- For a wide variety of constraints on the main schema, the constraints on a Π-view are well behaved first-order database dependencies [Fagin 82 JACM] [Hull 84 JACM].
- For $\vee \Pi$-views, the situation is very different.

Example context continued: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash \bowtie[A B C, C D, D E]$.

- On $\Pi_{A B C} \vee \Pi_{D E}$, the constraint Cardinality $\left(\Pi_{D}\right) \leqslant \operatorname{Cardinality}\left(\Pi_{C}\right)$ holds.

Issues with $\vee \Pi$-complements

- For a wide variety of constraints on the main schema, the constraints on a Π-view are well behaved first-order database dependencies [Fagin 82 JACM] [Hull 84 JACM].
- For $\vee \Pi$-views, the situation is very different.

Example context continued: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash \bowtie[A B C, C D, D E]$.

- On $\Pi_{A B C} \vee \Pi_{D E}$, the constraint Cardinality $\left(\Pi_{D}\right) \leqslant \operatorname{Cardinality}\left(\Pi_{C}\right)$ holds.
- It is not even first order for infinite databases.

Issues with $\vee \Pi$-complements

- For a wide variety of constraints on the main schema, the constraints on a Π-view are well behaved first-order database dependencies [Fagin 82 JACM] [Hull 84 JACM].
- For $\vee \Pi$-views, the situation is very different.

Example context continued: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash \bowtie[A B C, C D, D E]$.

- On $\Pi_{A B C} \vee \Pi_{D E}$, the constraint Cardinality $\left(\Pi_{D}\right) \leqslant \operatorname{Cardinality}\left(\Pi_{C}\right)$ holds.
- It is not even first order for infinite databases.
- Fortunately, it does not matter.

Issues with $\vee \Pi$-complements

- For a wide variety of constraints on the main schema, the constraints on a Π-view are well behaved first-order database dependencies [Fagin 82 JACM] [Hull 84 JACM].
- For $\vee \Pi$-views, the situation is very different.

Example context continued: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash \bowtie[A B C, C D, D E]$.

- On $\Pi_{A B C} \vee \Pi_{D E}$, the constraint Cardinality $\left(\Pi_{D}\right) \leqslant \operatorname{Cardinality}\left(\Pi_{C}\right)$ holds.
- It is not even first order for infinite databases.
- Fortunately, it does not matter.
- The truth value of such constraints is never altered by a constant-complement update [Hegner 06 AMAI].

Issues with $\vee \Pi$-complements

- For a wide variety of constraints on the main schema, the constraints on a Π-view are well behaved first-order database dependencies [Fagin 82 JACM] [Hull 84 JACM].
- For $\vee \Pi$-views, the situation is very different.

Example context continued: $R[A B C D E] C \rightarrow D \quad D \rightarrow E \vDash \bowtie[A B C, C D, D E]$.

- On $\Pi_{A B C} \vee \Pi_{D E}$, the constraint Cardinality $\left(\Pi_{D}\right) \leqslant$ Cardinality $\left(\Pi_{C}\right)$ holds.
- It is not even first order for infinite databases.
- Fortunately, it does not matter.
- The truth value of such constraints is never altered by a constant-complement update [Hegner 06 AMAI].
- Only "simple" constraints must be checked for an update.

Moving Beyond the Framework of Projections

Goal: Carry the theory of optimal complements beyond projections.

Moving Beyond the Framework of Projections

Goal: Carry the theory of optimal complements beyond projections.

- At least include selections, and preferably joins.

Moving Beyond the Framework of Projections

Goal: Carry the theory of optimal complements beyond projections.

- At least include selections, and preferably joins.

Principles: Look for a more general theory, as opposed to an approach based upon individual cases.

Moving Beyond the Framework of Projections

Goal: Carry the theory of optimal complements beyond projections.

- At least include selections, and preferably joins.

Principles: Look for a more general theory, as opposed to an approach based upon individual cases.

General contexts:

Moving Beyond the Framework of Projections

Goal: Carry the theory of optimal complements beyond projections.

- At least include selections, and preferably joins.

Principles: Look for a more general theory, as opposed to an approach based upon individual cases.

General contexts:

- For general principles of schemata and views, for the definition of optimality: a simple set-based context.

Moving Beyond the Framework of Projections

Goal: Carry the theory of optimal complements beyond projections.

- At least include selections, and preferably joins.

Principles: Look for a more general theory, as opposed to an approach based upon individual cases.

General contexts:

- For general principles of schemata and views, for the definition of optimality: a simple set-based context.
- For the characterization of views, information based upon Boolean queries.

Moving Beyond the Framework of Projections

Goal: Carry the theory of optimal complements beyond projections.

- At least include selections, and preferably joins.

Principles: Look for a more general theory, as opposed to an approach based upon individual cases.

General contexts:

- For general principles of schemata and views, for the definition of optimality: a simple set-based context.
- For the characterization of views, information based upon Boolean queries.
- For decomposition, the information semilattice of equivalence classes of Boolean queries on the main schema.

Optimality in a General Context

- Comparison of views in a general setting is easy.

Optimality in a General Context

- Comparison of views in a general setting is easy.
- A database schema \mathbf{D} has a set $\operatorname{LDB}(\mathbf{D})$ of legal states.

Optimality in a General Context

- Comparison of views in a general setting is easy.
- A database schema \mathbf{D} has a set $\operatorname{LDB}(\mathbf{D})$ of legal states.
- A view $\Gamma=(\mathbf{V}, \gamma)$ of \mathbf{D} consists of a schema \mathbf{V} together with a surjective morphism $\gamma: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V})$.

Optimality in a General Context

- Comparison of views in a general setting is easy.
- A database schema \mathbf{D} has a set $\operatorname{LDB}(\mathbf{D})$ of legal states.
- A view $\Gamma=(\mathbf{V}, \gamma)$ of \mathbf{D} consists of a schema \mathbf{V} together with a surjective morphism $\gamma: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V})$.
- The congruence of $\Gamma=(\mathbf{V}, \gamma)$ is

$$
\operatorname{Congr}(\Gamma)=\left\{\left(M_{1}, M_{2}\right) \in \operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D}) \mid \gamma\left(M_{1}\right)=\gamma\left(M_{2}\right)\right\}
$$

Optimality in a General Context

- Comparison of views in a general setting is easy.
- A database schema \mathbf{D} has a set $\operatorname{LDB}(\mathbf{D})$ of legal states.
- A view $\Gamma=(\mathbf{V}, \gamma)$ of \mathbf{D} consists of a schema \mathbf{V} together with a surjective morphism $\gamma: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V})$.
- The congruence of $\Gamma=(\mathbf{V}, \gamma)$ is

$$
\operatorname{Congr}(\Gamma)=\left\{\left(M_{1}, M_{2}\right) \in \operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D}) \mid \gamma\left(M_{1}\right)=\gamma\left(M_{2}\right)\right\}
$$

- Define $\Gamma_{1} \leq \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subseteq \operatorname{Congr}\left(\Gamma_{1}\right)$.

Optimality in a General Context

- Comparison of views in a general setting is easy.
- A database schema \mathbf{D} has a set $\operatorname{LDB}(\mathbf{D})$ of legal states.
- A view $\Gamma=(\mathbf{V}, \gamma)$ of \mathbf{D} consists of a schema \mathbf{V} together with a surjective morphism $\gamma: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V})$.
- The congruence of $\Gamma=(\mathbf{V}, \gamma)$ is

$$
\operatorname{Congr}(\Gamma)=\left\{\left(M_{1}, M_{2}\right) \in \operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D}) \mid \gamma\left(M_{1}\right)=\gamma\left(M_{2}\right)\right\}
$$

- Define $\Gamma_{1} \leq \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subseteq \operatorname{Congr}\left(\Gamma_{1}\right)$.
- This definition agrees with those given for Π-views and $\bigvee \Pi$-views.

Optimality in a General Context

- Comparison of views in a general setting is easy.
- A database schema \mathbf{D} has a set $\operatorname{LDB}(\mathbf{D})$ of legal states.
- A view $\Gamma=(\mathbf{V}, \gamma)$ of \mathbf{D} consists of a schema \mathbf{V} together with a surjective morphism $\gamma: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V})$.
- The congruence of $\Gamma=(\mathbf{V}, \gamma)$ is

$$
\operatorname{Congr}(\Gamma)=\left\{\left(M_{1}, M_{2}\right) \in \operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D}) \mid \gamma\left(M_{1}\right)=\gamma\left(M_{2}\right)\right\}
$$

- Define $\Gamma_{1} \leq \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subseteq \operatorname{Congr}\left(\Gamma_{1}\right)$.
- This definition agrees with those given for Π-views and $\bigvee \Pi$-views.
- Thus, view Γ is optimal in a class \mathcal{V} if its congruence is least over all elements of \mathcal{V}.

Optimality in a General Context

- Comparison of views in a general setting is easy.
- A database schema \mathbf{D} has a set $\operatorname{LDB}(\mathbf{D})$ of legal states.
- A view $\Gamma=(\mathbf{V}, \gamma)$ of \mathbf{D} consists of a schema \mathbf{V} together with a surjective morphism $\gamma: \operatorname{LDB}(\mathbf{D}) \rightarrow \operatorname{LDB}(\mathbf{V})$.
- The congruence of $\Gamma=(\mathbf{V}, \gamma)$ is

$$
\operatorname{Congr}(\Gamma)=\left\{\left(M_{1}, M_{2}\right) \in \operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D}) \mid \gamma\left(M_{1}\right)=\gamma\left(M_{2}\right)\right\}
$$

- Define $\Gamma_{1} \leq \Gamma_{2}$ iff $\operatorname{Congr}\left(\Gamma_{2}\right) \subseteq \operatorname{Congr}\left(\Gamma_{1}\right)$.
- This definition agrees with those given for Π-views and $\bigvee \Pi$-views.
- Thus, view Γ is optimal in a class \mathcal{V} if its congruence is least over all elements of \mathcal{V}.
- Such a view is unique up to the isomorphism class defined by congruence.

Views Based upon Conjunctive Queries

- A conjunctive query on a relational schema is a formula defined using only ^ and \exists.

Views Based upon Conjunctive Queries

- A conjunctive query on a relational schema is a formula defined using only ^ and \exists.
- (Single-value) selection, projection, and join are defined by such queries using the relational algebra:

Views Based upon Conjunctive Queries

- A conjunctive query on a relational schema is a formula defined using only ^ and \exists.
- (Single-value) selection, projection, and join are defined by such queries using the relational algebra:
Example: $\pi_{A B}(R[A B C])$ is defined by $(\exists z)\left(R\left(x_{A}, x_{B}, z\right)\right)$.

Views Based upon Conjunctive Queries

- A conjunctive query on a relational schema is a formula defined using only ^ and \exists.
- (Single-value) selection, projection, and join are defined by such queries using the relational algebra:

Example: $\pi_{A B}(R[A B C])$ is defined by $(\exists z)\left(R\left(x_{A}, x_{B}, z\right)\right)$.
Example: $\sigma_{A=\mathrm{a}}(R[A B C])$ is defined by $R\left(\mathrm{a}, x_{B}, x_{C}\right)$.

Views Based upon Conjunctive Queries

- A conjunctive query on a relational schema is a formula defined using only ^ and \exists.
- (Single-value) selection, projection, and join are defined by such queries using the relational algebra:
Example: $\pi_{A B}(R[A B C])$ is defined by $(\exists z)\left(R\left(x_{A}, x_{B}, z\right)\right)$.
Example: $\sigma_{A=\mathrm{a}}(R[A B C])$ is defined by $R\left(\mathrm{a}, x_{B}, x_{C}\right)$.
- These define the $\exists \wedge+$-views.

Views Based upon Conjunctive Queries

- A conjunctive query on a relational schema is a formula defined using only ^ and \exists.
- (Single-value) selection, projection, and join are defined by such queries using the relational algebra:

Example: $\pi_{A B}(R[A B C])$ is defined by $(\exists z)\left(R\left(x_{A}, x_{B}, z\right)\right)$.
Example: $\sigma_{A=\mathrm{a}}(R[A B C])$ is defined by $R\left(\mathrm{a}, x_{B}, x_{C}\right)$.

- These define the $\exists \wedge+$-views.
- A Boolean conjunctive query or $\exists \wedge+$-query contains no free variables.

Views Based upon Conjunctive Queries

- A conjunctive query on a relational schema is a formula defined using only ^ and \exists.
- (Single-value) selection, projection, and join are defined by such queries using the relational algebra:
Example: $\pi_{A B}(R[A B C])$ is defined by $(\exists z)\left(R\left(x_{A}, x_{B}, z\right)\right)$.
Example: $\sigma_{A=\mathrm{a}}(R[A B C])$ is defined by $R\left(\mathrm{a}, x_{B}, x_{C}\right)$.
- These define the $\exists \wedge+$-views.
- A Boolean conjunctive query or $\exists \wedge+$-query contains no free variables.
- The tuples in $\exists \wedge+$-views correspond to Boolean conjunctive queries on the main schema

Views Based upon Conjunctive Queries

- A conjunctive query on a relational schema is a formula defined using only ^ and \exists.
- (Single-value) selection, projection, and join are defined by such queries using the relational algebra:

Example: $\pi_{A B}(R[A B C])$ is defined by $(\exists z)\left(R\left(x_{A}, x_{B}, z\right)\right)$.
Example: $\sigma_{A=\mathrm{a}}(R[A B C])$ is defined by $R\left(\mathrm{a}, x_{B}, x_{C}\right)$.

- These define the $\exists \wedge+$-views.
- A Boolean conjunctive query or $\exists \wedge+$-query contains no free variables.
- The tuples in $\exists \wedge+$-views correspond to Boolean conjunctive queries on the main schema

Example: The tuple (b, c) for the view defined by $\pi_{A B}(R[A B C])$ corresponds to the Boolean query $(\exists z)(R(\mathrm{a}, \mathrm{b}, z))$.

Views Based upon Conjunctive Queries

- A conjunctive query on a relational schema is a formula defined using only ^ and \exists.
- (Single-value) selection, projection, and join are defined by such queries using the relational algebra:

Example: $\pi_{A B}(R[A B C])$ is defined by $(\exists z)\left(R\left(x_{A}, x_{B}, z\right)\right)$.
Example: $\sigma_{A=\mathrm{a}}(R[A B C])$ is defined by $R\left(\mathrm{a}, x_{B}, x_{C}\right)$.

- These define the $\exists \wedge+$-views.
- A Boolean conjunctive query or $\exists \wedge+$-query contains no free variables.
- The tuples in $\exists \wedge+$-views correspond to Boolean conjunctive queries on the main schema

Example: The tuple (b, c) for the view defined by $\pi_{A B}(R[A B C])$ corresponds to the Boolean query $(\exists z)(R(\mathrm{a}, \mathrm{b}, z))$.
Example: The tuple (a, b, c) for the view defined by $\sigma_{A=\mathrm{a}}(R[A B C])$ corresponds to the Boolean query $R(\mathrm{a}, \mathrm{b}, \mathrm{c})$.

Extending and Limiting Views Based upon Conjunctive Queries

Extensions:

- A limitation of $\exists \wedge+$-views is that they recapture only single-valued selection.

Extending and Limiting Views Based upon Conjunctive Queries

Extensions:

- A limitation of $\exists \wedge+$-views is that they recapture only single-valued selection. Example: A selection such as $\sigma_{(A \leqslant 30)}(R[A B C])$ is not recaptured.

Extending and Limiting Views Based upon Conjunctive Queries

Extensions:

- A limitation of $\exists \wedge+$-views is that they recapture only single-valued selection.

Example: A selection such as $\sigma_{(A \leqslant 30)}(R[A B C])$ is not recaptured.

- The developed framework supports such $\sigma \exists \wedge+$-queries for defining views.

Extending and Limiting Views Based upon Conjunctive Queries

Extensions:

- A limitation of $\exists \wedge+$-views is that they recapture only single-valued selection.

Example: A selection such as $\sigma_{(A \leqslant 30)}(R[A B C])$ is not recaptured.

- The developed framework supports such $\sigma \exists \wedge+$-queries for defining views.
- Any subset selection is allowed.

Extending and Limiting Views Based upon Conjunctive Queries

Extensions:

- A limitation of $\exists \wedge+$-views is that they recapture only single-valued selection.

Example: A selection such as $\sigma_{(A \leqslant 30)}(R[A B C])$ is not recaptured.

- The developed framework supports such $\sigma \exists \wedge+$-queries for defining views.
- Any subset selection is allowed.

Limitations:

- For technical reasons, view definitions which "hide" constants are not allowed.

Extending and Limiting Views Based upon Conjunctive Queries

Extensions:

- A limitation of $\exists \wedge+$-views is that they recapture only single-valued selection.

Example: A selection such as $\sigma_{(A \leqslant 30)}(R[A B C])$ is not recaptured.

- The developed framework supports such $\sigma \exists \wedge+$-queries for defining views.
- Any subset selection is allowed.
- For technical reasons, view definitions which "hide" constants are not allowed.

Example: The two definitions $\pi_{B C}\left(\sigma_{A=\mathrm{a}_{1}}(R[A B C])\right.$ and $\pi_{B C}\left(\sigma_{A=\mathrm{a}_{2}}(R[A B C])\right.$; hide their selection constant in the sense that it is not visible in the view.

The Representation of $\sigma \exists \wedge+-$ Views using sets of Boolean Queries

- A relation R in a $\sigma \exists \wedge+$-view Γ may be represented by the set $\operatorname{DisjRep}\langle\Gamma, R\rangle$ of all $\exists \wedge+$-queries which are obtained by grounding its defining formula.

The Representation of $\sigma \exists \wedge+-$ Views using sets of Boolean Queries

- A relation R in a $\sigma \exists \wedge+$-view Γ may be represented by the set $\operatorname{DisjRep}\langle\Gamma, R\rangle$ of all $\exists \wedge+$-queries which are obtained by grounding its defining formula.
- In this approach, each Boolean query corresponds to a possible view tuple.

The Representation of $\sigma \exists \wedge+-$ Views using sets of Boolean Queries

- A relation R in a $\sigma \exists \wedge+$-view Γ may be represented by the set $\operatorname{DisjRep}\langle\Gamma, R\rangle$ of all $\exists \wedge+$-queries which are obtained by grounding its defining formula.
- In this approach, each Boolean query corresponds to a possible view tuple.

Example: The view defined by $\pi_{A B}(R[A B C])$ corresponds to the set

$$
\{(\exists z)(R(a, b, z)) \mid a, b, \in \text { Const }\} .
$$

The Representation of $\sigma \exists \wedge+-$ Views using sets of Boolean Queries

- A relation R in a $\sigma \exists \wedge+$-view Γ may be represented by the set $\operatorname{DisjRep}\langle\Gamma, R\rangle$ of all $\exists \wedge+$-queries which are obtained by grounding its defining formula.
- In this approach, each Boolean query corresponds to a possible view tuple.

Example: The view defined by $\pi_{A B}(R[A B C])$ corresponds to the set

$$
\{(\exists z)(R(a, b, z)) \mid a, b, \in \text { Const }\} .
$$

Example: The view defined by $\sigma_{A=\mathrm{a}}(R[A B C])$ corresponds to the set

$$
\{(R(\mathrm{a}, b, c)) \mid b, c \in \text { Const }\} .
$$

The Representation of $\sigma \exists \wedge+-$ Views using sets of Boolean Queries

- A relation R in a $\sigma \exists \wedge+$-view Γ may be represented by the set $\operatorname{DisjRep}\langle\Gamma, R\rangle$ of all $\exists \wedge+$-queries which are obtained by grounding its defining formula.
- In this approach, each Boolean query corresponds to a possible view tuple.

Example: The view defined by $\pi_{A B}(R[A B C])$ corresponds to the set

$$
\{(\exists z)(R(a, b, z)) \mid a, b, \in \text { Const }\} .
$$

Example: The view defined by $\sigma_{A=\mathrm{a}}(R[A B C])$ corresponds to the set

$$
\{(R(\mathrm{a}, b, c)) \mid b, c \in \text { Const }\} .
$$

Example: The view defined by $\sigma_{A \in S}(R[A B C])$ corresponds to the set

$$
\left\{(R(a, b, c)) \mid(a \in S)_{\wedge}(b, c \in \text { Const })\right\} .
$$

The Representation of $\sigma \exists \wedge+-$ Views using sets of Boolean Queries

- A relation R in a $\sigma \exists \wedge+$-view Γ may be represented by the set $\operatorname{DisjRep}\langle\Gamma, R\rangle$ of all $\exists \wedge+$-queries which are obtained by grounding its defining formula.
- In this approach, each Boolean query corresponds to a possible view tuple.

Example: The view defined by $\pi_{A B}(R[A B C])$ corresponds to the set

$$
\{(\exists z)(R(a, b, z)) \mid a, b, \in \text { Const }\} .
$$

Example: The view defined by $\sigma_{A=\mathrm{a}}(R[A B C])$ corresponds to the set

$$
\{(R(\mathrm{a}, b, c)) \mid b, c \in \text { Const }\} .
$$

Example: The view defined by $\sigma_{A \in S}(R[A B C])$ corresponds to the set

$$
\left\{(R(a, b, c)) \mid(a \in S)_{\wedge}(b, c \in \text { Const })\right\} .
$$

- The goal is to be able to represent all relations in the view using a single set of Boolean queries.

The Representation of $\sigma \exists \wedge+-$ Views using sets of Boolean Queries

- A relation R in a $\sigma \exists \wedge+$-view Γ may be represented by the set $\operatorname{DisjRep}\langle\Gamma, R\rangle$ of all $\exists \wedge+$-queries which are obtained by grounding its defining formula.
- In this approach, each Boolean query corresponds to a possible view tuple.

Example: The view defined by $\pi_{A B}(R[A B C])$ corresponds to the set

$$
\{(\exists z)(R(a, b, z)) \mid a, b, \in \text { Const }\} .
$$

Example: The view defined by $\sigma_{A=\mathrm{a}}(R[A B C])$ corresponds to the set

$$
\{(R(\mathrm{a}, b, c)) \mid b, c \in \text { Const }\} .
$$

Example: The view defined by $\sigma_{A \in S}(R[A B C])$ corresponds to the set

$$
\left\{(R(a, b, c)) \mid(a \in S)_{\wedge}(b, c \in \text { Const })\right\} .
$$

- The goal is to be able to represent all relations in the view using a single set of Boolean queries.
- This means that the view relation must be recoverable from information in the Boolean query.

The Representation of $\sigma \exists \wedge+-$ Views using sets of Boolean Queries

- A relation R in a $\sigma \exists \wedge+$-view Γ may be represented by the set $\operatorname{DisjRep}\langle\Gamma, R\rangle$ of all $\exists \wedge+$-queries which are obtained by grounding its defining formula.
- In this approach, each Boolean query corresponds to a possible view tuple.

Example: The view defined by $\pi_{A B}(R[A B C])$ corresponds to the set

$$
\{(\exists z)(R(a, b, z)) \mid a, b, \in \text { Const }\} .
$$

Example: The view defined by $\sigma_{A=\mathrm{a}}(R[A B C])$ corresponds to the set

$$
\{(R(\mathrm{a}, b, c)) \mid b, c \in \text { Const }\} .
$$

Example: The view defined by $\sigma_{A \in S}(R[A B C])$ corresponds to the set

$$
\left\{(R(a, b, c)) \mid(a \in S)_{\wedge}(b, c \in \text { Const })\right\} .
$$

- The goal is to be able to represent all relations in the view using a single set of Boolean queries.
- This means that the view relation must be recoverable from information in the Boolean query.
- The $\exists \wedge+$-formula defining the view is called its pattern.

The Representation of $\sigma \exists \wedge+-$ Views using sets of Boolean Queries

- A relation R in a $\sigma \exists \wedge+$-view Γ may be represented by the set $\operatorname{DisjRep}\langle\Gamma, R\rangle$ of all $\exists \wedge+$-queries which are obtained by grounding its defining formula.
- In this approach, each Boolean query corresponds to a possible view tuple.

Example: The view defined by $\pi_{A B}(R[A B C])$ corresponds to the set

$$
\{(\exists z)(R(a, b, z)) \mid a, b, \in \text { Const }\} .
$$

Example: The view defined by $\sigma_{A=\mathrm{a}}(R[A B C])$ corresponds to the set

$$
\{(R(\mathrm{a}, b, c)) \mid b, c \in \text { Const }\} .
$$

Example: The view defined by $\sigma_{A \in S}(R[A B C])$ corresponds to the set

$$
\left\{(R(a, b, c)) \mid(a \in S)_{\wedge}(b, c \in \text { Const })\right\} .
$$

- The goal is to be able to represent all relations in the view using a single set of Boolean queries.
- This means that the view relation must be recoverable from information in the Boolean query.
- The $\exists \wedge+$-formula defining the view is called its pattern.
- Each Boolean query must correspond to a single pattern.

Concrete and Abstract Views

- A concrete view is defined in the usual way, using the relational calculus restricted to the $\sigma \exists \wedge+$-context.

Concrete and Abstract Views

- A concrete view is defined in the usual way, using the relational calculus restricted to the $\sigma \exists \wedge+$-context.
- An abstract view consists of a set of Boolean queries, subject to the constraint that it is of finite pattern index.

Concrete and Abstract Views

- A concrete view is defined in the usual way, using the relational calculus restricted to the $\sigma \exists \wedge+$-context.
- An abstract view consists of a set of Boolean queries, subject to the constraint that it is of finite pattern index.
- This means that there is a finite set of patterns, and each of the queries matches one of those patterns.

Concrete and Abstract Views

- A concrete view is defined in the usual way, using the relational calculus restricted to the $\sigma \exists \wedge+$-context.
- An abstract view consists of a set of Boolean queries, subject to the constraint that it is of finite pattern index.
- This means that there is a finite set of patterns, and each of the queries matches one of those patterns.
- This property is essential for recovering a concrete view from an abstract one.

Concrete and Abstract Views

- A concrete view is defined in the usual way, using the relational calculus restricted to the $\sigma \exists \wedge+$-context.
- An abstract view consists of a set of Boolean queries, subject to the constraint that it is of finite pattern index.
- This means that there is a finite set of patterns, and each of the queries matches one of those patterns.
- This property is essential for recovering a concrete view from an abstract one.

Theorem; There is a natural correspondence between concrete and abstract views.

The Information Semilattice and the Decomposition Basis

- Write $\varphi_{1} \equiv_{\mathrm{D}} \varphi_{2}$ if the two Boolean queries have the same truth value on every $M \in \operatorname{LDB}(\mathbf{D})$.

The Information Semilattice and the Decomposition Basis

- Write $\varphi_{1} \equiv_{\mathrm{D}} \varphi_{2}$ if the two Boolean queries have the same truth value on every $M \in \operatorname{LDB}(\mathbf{D})$.

Example: $R(\mathrm{a}, \mathrm{b}, \mathrm{c}) \equiv_{\mathrm{D}}(\exists z)(R(\mathrm{a}, \mathrm{b}, z) \wedge(\exists x)(R(x, \mathrm{~b}, \mathrm{c}))$ if the $\mathrm{JD} \bowtie[A B, B C]$ holds.

- Write [φ] for the induced equivalence class on φ.

The Information Semilattice and the Decomposition Basis

- Write $\varphi_{1} \equiv_{\mathrm{D}} \varphi_{2}$ if the two Boolean queries have the same truth value on every $M \in \operatorname{LDB}(\mathbf{D})$.

Example: $R(\mathrm{a}, \mathrm{b}, \mathrm{c}) \equiv_{\mathrm{D}}(\exists z)(R(\mathrm{a}, \mathrm{b}, z) \wedge(\exists x)(R(x, \mathrm{~b}, \mathrm{c}))$ if the $\mathrm{JD} \bowtie[A B, B C]$ holds.

- Write $[\varphi]$ for the induced equivalence class on φ.
- Write $\left[\varphi_{1}\right] \sqsubseteq_{\xi_{\mathrm{D}}}\left[\varphi_{2}\right]$ if $\left[\varphi_{2}\right]$ is true on \mathbf{D} whenever $\left[\varphi_{1}\right]$ is.

The Information Semilattice and the Decomposition Basis

- Write $\varphi_{1} \equiv_{\mathrm{D}} \varphi_{2}$ if the two Boolean queries have the same truth value on every $M \in \operatorname{LDB}(\mathbf{D})$.

Example: $R(\mathrm{a}, \mathrm{b}, \mathrm{c}) \equiv_{\mathrm{D}}(\exists z)(R(\mathrm{a}, \mathrm{b}, z) \wedge(\exists x)(R(x, \mathrm{~b}, \mathrm{c}))$ if the $\mathrm{JD} \bowtie[A B, B C]$ holds.

- Write $[\varphi]$ for the induced equivalence class on φ.
- Write $\left[\varphi_{1}\right] \sqsubseteq_{\xi_{\mathrm{D}}}\left[\varphi_{2}\right]$ if $\left[\varphi_{2}\right]$ is true on \mathbf{D} whenever $\left[\varphi_{1}\right]$ is.
- This set forms a meet semilattice with top element [false] and bottom element [true].

The Information Semilattice and the Decomposition Basis

- Write $\varphi_{1} \equiv_{\mathrm{D}} \varphi_{2}$ if the two Boolean queries have the same truth value on every $M \in \operatorname{LDB}(\mathbf{D})$.
Example: $R(\mathrm{a}, \mathrm{b}, \mathrm{c}) \equiv_{\mathrm{D}}(\exists z)(R(\mathrm{a}, \mathrm{b}, z) \wedge(\exists x)(R(x, \mathrm{~b}, \mathrm{c}))$ if the $\mathrm{JD} \bowtie[A B, B C]$ holds.
- Write [φ] for the induced equivalence class on φ.
- Write $\left[\varphi_{1}\right] \sqsubseteq_{\xi_{\mathrm{D}}}\left[\varphi_{2}\right]$ if $\left[\varphi_{2}\right]$ is true on \mathbf{D} whenever $\left[\varphi_{1}\right]$ is.
- This set forms a meet semilattice with top element [false] and bottom element [true].
- The key idea is to look for a decomposition basis in this semilattice. Roughly, a sentence is in the decomposition basis if

The Information Semilattice and the Decomposition Basis

- Write $\varphi_{1} \equiv_{\mathrm{D}} \varphi_{2}$ if the two Boolean queries have the same truth value on every $M \in \operatorname{LDB}(\mathbf{D})$.
Example: $R(\mathrm{a}, \mathrm{b}, \mathrm{c}) \equiv_{\mathrm{D}}(\exists z)(R(\mathrm{a}, \mathrm{b}, z) \wedge(\exists x)(R(x, \mathrm{~b}, \mathrm{c}))$ if the $\mathrm{JD} \bowtie[A B, B C]$ holds.
- Write [φ] for the induced equivalence class on φ.
- Write $\left[\varphi_{1}\right] \sqsubseteq_{\xi_{\mathrm{D}}}\left[\varphi_{2}\right]$ if $\left[\varphi_{2}\right]$ is true on \mathbf{D} whenever $\left[\varphi_{1}\right]$ is.
- This set forms a meet semilattice with top element [false] and bottom element [true].
- The key idea is to look for a decomposition basis in this semilattice. Roughly, a sentence is in the decomposition basis if
- it is a useful in a nontrivial way in the representation of a tuple as a join, and

The Information Semilattice and the Decomposition Basis

- Write $\varphi_{1} \equiv_{\mathrm{D}} \varphi_{2}$ if the two Boolean queries have the same truth value on every $M \in \operatorname{LDB}(\mathbf{D})$.
Example: $R(\mathrm{a}, \mathrm{b}, \mathrm{c}) \equiv_{\mathrm{D}}(\exists z)(R(\mathrm{a}, \mathrm{b}, z) \wedge(\exists x)(R(x, \mathrm{~b}, \mathrm{c}))$ if the $\mathrm{JD} \bowtie[A B, B C]$ holds.
- Write [φ] for the induced equivalence class on φ.
- Write $\left[\varphi_{1}\right] \sqsubseteq_{\xi_{\mathrm{D}}}\left[\varphi_{2}\right]$ if $\left[\varphi_{2}\right]$ is true on \mathbf{D} whenever $\left[\varphi_{1}\right]$ is.
- This set forms a meet semilattice with top element [false] and bottom element [true].
- The key idea is to look for a decomposition basis in this semilattice. Roughly, a sentence is in the decomposition basis if
- it is a useful in a nontrivial way in the representation of a tuple as a join, and
- it cannot be further decomposed in a nontrivial way.

The Information Semilattice and the Decomposition Basis

- Write $\varphi_{1} \equiv_{\mathrm{D}} \varphi_{2}$ if the two Boolean queries have the same truth value on every $M \in \operatorname{LDB}(\mathbf{D})$.

Example: $R(\mathrm{a}, \mathrm{b}, \mathrm{c}) \equiv_{\mathrm{D}}(\exists z)(R(\mathrm{a}, \mathrm{b}, z) \wedge(\exists x)(R(x, \mathrm{~b}, \mathrm{c}))$ if the $\mathrm{JD} \bowtie[A B, B C]$ holds.

- Write [φ] for the induced equivalence class on φ.
- Write $\left[\varphi_{1}\right] \sqsubseteq_{\xi_{\mathrm{D}}}\left[\varphi_{2}\right]$ if $\left[\varphi_{2}\right]$ is true on \mathbf{D} whenever $\left[\varphi_{1}\right]$ is.
- This set forms a meet semilattice with top element [false] and bottom element [true].
- The key idea is to look for a decomposition basis in this semilattice. Roughly, a sentence is in the decomposition basis if
- it is a useful in a nontrivial way in the representation of a tuple as a join, and
- it cannot be further decomposed in a nontrivial way.

Example: For the schema $R[A B C]$ constrained by $\bowtie[A B, B C]$, the decomposition basis consists of elements of the form $(\exists z)(R(\mathrm{a}, \mathrm{b}, z))$ and $(\exists x)(R(x, \mathrm{~b}, \mathrm{c}))$.

Optimal Complements in a General Setting

Let $\Gamma=(\mathbf{V}, \gamma)$ be the view whose optimal complement is to be determined.

- All elements of the decomposition basis which "fit" into Γ are "placed" there.

Optimal Complements in a General Setting

Let $\Gamma=(\mathbf{V}, \gamma)$ be the view whose optimal complement is to be determined.

- All elements of the decomposition basis which "fit" into Γ are "placed" there.
- In the case of a JD, this corresponds to identifying those projections which are subsumed by some projection of the JD.

Optimal Complements in a General Setting

Let $\Gamma=(\mathbf{V}, \gamma)$ be the view whose optimal complement is to be determined.

- All elements of the decomposition basis which "fit" into Γ are "placed" there.
- In the case of a JD, this corresponds to identifying those projections which are subsumed by some projection of the JD.
- All other elements of the decomposition basis are used to generate a complement.
- In the case of a JD, this corresponds to generating a complement from all projections of the JD which are not subsumed by the view to be complemented.

Optimal Complements in a General Setting

Let $\Gamma=(\mathbf{V}, \gamma)$ be the view whose optimal complement is to be determined.

- All elements of the decomposition basis which "fit" into Γ are "placed" there.
- In the case of a JD, this corresponds to identifying those projections which are subsumed by some projection of the JD.
- All other elements of the decomposition basis are used to generate a complement.
- In the case of a JD, this corresponds to generating a complement from all projections of the JD which are not subsumed by the view to be complemented.
- The condition for optimality of a complement is that upon ultimate decompositions of tuples using the decomposition basis are unique.

Optimal Complements in a General Setting

Let $\Gamma=(\mathbf{V}, \gamma)$ be the view whose optimal complement is to be determined.

- All elements of the decomposition basis which "fit" into Γ are "placed" there.
- In the case of a JD, this corresponds to identifying those projections which are subsumed by some projection of the JD.
- All other elements of the decomposition basis are used to generate a complement.
- In the case of a JD, this corresponds to generating a complement from all projections of the JD which are not subsumed by the view to be complemented.
- The condition for optimality of a complement is that upon ultimate decompositions of tuples using the decomposition basis are unique.
- In the context of a single JD, this reduces exactly to that JD being nonredundant.

Optimal Complements in a General Setting

Let $\Gamma=(\mathbf{V}, \gamma)$ be the view whose optimal complement is to be determined.

- All elements of the decomposition basis which "fit" into Γ are "placed" there.
- In the case of a JD, this corresponds to identifying those projections which are subsumed by some projection of the JD.
- All other elements of the decomposition basis are used to generate a complement.
- In the case of a JD, this corresponds to generating a complement from all projections of the JD which are not subsumed by the view to be complemented.
- The condition for optimality of a complement is that upon ultimate decompositions of tuples using the decomposition basis are unique.
- In the context of a single JD, this reduces exactly to that JD being nonredundant.
- There are of course many details which have been omitted.

Conclusions

- A study of the notion of optimal complements for views of relational schemata has been initiated.

Conclusions

- A study of the notion of optimal complements for views of relational schemata has been initiated.
- A simple and concrete representation for complements of views defined via projections has been developed fully.

Conclusions

- A study of the notion of optimal complements for views of relational schemata has been initiated.
- A simple and concrete representation for complements of views defined via projections has been developed fully.
- If the governing JD is dependency preserving, then this representation furthermore produces meet complements and so is appropriate for the constant-complement update strategy.

Conclusions

- A study of the notion of optimal complements for views of relational schemata has been initiated.
- A simple and concrete representation for complements of views defined via projections has been developed fully.
- If the governing JD is dependency preserving, then this representation furthermore produces meet complements and so is appropriate for the constant-complement update strategy.
- It identifies in particular the situations in which all of the updates on a view which are supportable via constant-complement are supportable via a single complement, and hence via a single update strategy.

Conclusions

- A study of the notion of optimal complements for views of relational schemata has been initiated.
- A simple and concrete representation for complements of views defined via projections has been developed fully.
- If the governing JD is dependency preserving, then this representation furthermore produces meet complements and so is appropriate for the constant-complement update strategy.
- It identifies in particular the situations in which all of the updates on a view which are supportable via constant-complement are supportable via a single complement, and hence via a single update strategy.
- A more general theory, not restricted to projections but rather based upon information and Boolean queries has also been developed.

Conclusions

- A study of the notion of optimal complements for views of relational schemata has been initiated.
- A simple and concrete representation for complements of views defined via projections has been developed fully.
- If the governing JD is dependency preserving, then this representation furthermore produces meet complements and so is appropriate for the constant-complement update strategy.
- It identifies in particular the situations in which all of the updates on a view which are supportable via constant-complement are supportable via a single complement, and hence via a single update strategy.
- A more general theory, not restricted to projections but rather based upon information and Boolean queries has also been developed.
- That theory provides a beginning to a more general theory but leaves several further directions.

Further Directions

Effective identification of meet complements:

Further Directions

Effective identification of meet complements:

- The constant-complement update strategy requires meet complements.

Further Directions

Effective identification of meet complements:

- The constant-complement update strategy requires meet complements.
- This is equivalent to the dependency preservation of the decomposition.

Further Directions

Effective identification of meet complements:

- The constant-complement update strategy requires meet complements.
- This is equivalent to the dependency preservation of the decomposition.
- An effective means to check this property for more general classes of constraints and views is needed.

Further Directions

Effective identification of meet complements:

- The constant-complement update strategy requires meet complements.
- This is equivalent to the dependency preservation of the decomposition.
- An effective means to check this property for more general classes of constraints and views is needed.

Explicit development of a theory of decomposition which includes selection:

Further Directions

Effective identification of meet complements:

- The constant-complement update strategy requires meet complements.
- This is equivalent to the dependency preservation of the decomposition.
- An effective means to check this property for more general classes of constraints and views is needed.

Explicit development of a theory of decomposition which includes selection:

- A simple theory for $\vee \Pi$-views has been developed.

Further Directions

Effective identification of meet complements:

- The constant-complement update strategy requires meet complements.
- This is equivalent to the dependency preservation of the decomposition.
- An effective means to check this property for more general classes of constraints and views is needed.

Explicit development of a theory of decomposition which includes selection:

- A simple theory for $\vee \Pi$-views has been developed.
- It rests upon well-known results for Π-views and basic dependencies.

Further Directions

Effective identification of meet complements:

- The constant-complement update strategy requires meet complements.
- This is equivalent to the dependency preservation of the decomposition.
- An effective means to check this property for more general classes of constraints and views is needed.

Explicit development of a theory of decomposition which includes selection:

- A simple theory for $\vee \Pi$-views has been developed.
- It rests upon well-known results for Π-views and basic dependencies.
- An expanded framework which includes views defined by selection is suggested.

Further Directions

Effective identification of meet complements:

- The constant-complement update strategy requires meet complements.
- This is equivalent to the dependency preservation of the decomposition.
- An effective means to check this property for more general classes of constraints and views is needed.

Explicit development of a theory of decomposition which includes selection:

- A simple theory for $\vee \Pi$-views has been developed.
- It rests upon well-known results for Π-views and basic dependencies.
- An expanded framework which includes views defined by selection is suggested.

