Optimal Complements for a Class of Relational Views

Stephen J. Hegner Umeå University Department of Computing Science Sweden

• On the underlying states, the view mapping is generally *surjective* (onto) but not *injective* (one-to-one).

- On the underlying states, the view mapping is generally *surjective* (onto) but not *injective* (one-to-one).
- Thus, a view update has many possible *reflections* to the main schema.

- On the underlying states, the view mapping is generally *surjective* (onto) but not *injective* (one-to-one).
- Thus, a view update has many possible *reflections* to the main schema.
- The problem of identifying a suitable reflection is known as the *update translation problem* or *update reflection problem*.

- On the underlying states, the view mapping is generally *surjective* (onto) but not *injective* (one-to-one).
- Thus, a view update has many possible *reflections* to the main schema.
- The problem of identifying a suitable reflection is known as the *update translation problem* or *update reflection problem*.
- With a reasonable definition of suitability, it may not be the case that every view update has a suitable translation.

View Schema

Main Schema

 In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two *meet-complementary* views.

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two *meet-complementary* views.
- One is isomorphic to the view schema and tracks its updates exactly.

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two *meet-complementary* views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two *meet-complementary* views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.
- Although it is somewhat limited in the view updates which it allows, they are supported in an optimal manner.

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two *meet-complementary* views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.
- Although it is somewhat limited in the view updates which it allows, they are supported in an optimal manner.

• It can be shown [Hegner 03 AMAI] that this strategy is precisely that which avoids all *update anomalies*.

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two *meet-complementary* views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.
- Although it is somewhat limited in the view updates which it allows, they are supported in an optimal manner.

- It can be shown [Hegner 03 AMAI] that this strategy is precisely that which avoids all *update anomalies*.
- However, this is complicated by the *complement uniqueness problem*.

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two *meet-complementary* views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.
- Although it is somewhat limited in the view updates which it allows, they are supported in an optimal manner.

- It can be shown [Hegner 03 AMAI] that this strategy is precisely that which avoids all *update anomalies*.
- However, this is complicated by the *complement uniqueness problem*.
- Some examples will help illustrate these ideas.

• Consider the classical example to the right.

View Schema \mathbf{W}_{AB}

- Consider the classical example to the right.
- A natural complement to the AB-projection is the BC-projection.

- Consider the classical example to the right.
- A natural complement to the AB-projection is the BC-projection.
- The decomposed schema $\mathbf{W}_{AB} \otimes \mathbf{W}_{BC}$ has relation symbols $R_{[}AB]$ and $R_{2}[BC]$; the legal database are all states which are join compatible on B.

- Consider the classical example to the right.
- A natural complement to the AB-projection is the BC-projection.
- The decomposed schema $\mathbf{W}_{AB} \otimes \mathbf{W}_{BC}$ has relation symbols $R_{[}AB]$ and $R_{2}[BC]$; the legal database are all states which are join compatible on B.
- The *decomposition mapping* $\mathbf{E}_1 \rightarrow \mathbf{W}_{AB} \otimes \mathbf{W}_{BC}$, and is always bijective for complements.

- Consider the classical example to the right.
- A natural complement to the AB-projection is the BC-projection.
- The decomposed schema $\mathbf{W}_{AB} \otimes \mathbf{W}_{BC}$ has relation symbols $R_{[}AB]$ and $R_{2}[BC]$; the legal database are all states which are join compatible on B.
- The *decomposition mapping* $\mathbf{E}_1 \rightarrow \mathbf{W}_{AB} \otimes \mathbf{W}_{BC}$, and is always bijective for complements.
- The reconstruction mapping W_{AB} ⊗ W_{BC} → W₁ is the inverse of the decomposition mapping. It is the natural join in this case.

View SchemaComplement \mathbf{W}_{AB} Schema \mathbf{W}_{BC}

- Consider the classical example to the right.
- A natural complement to the AB-projection is the BC-projection.
- The decomposed schema $\mathbf{W}_{AB} \otimes \mathbf{W}_{BC}$ has relation symbols $R_{[}AB]$ and $R_{2}[BC]$; the legal database are all states which are join compatible on B.
- The *decomposition mapping* $\mathbf{E}_1 \rightarrow \mathbf{W}_{AB} \otimes \mathbf{W}_{BC}$, and is always bijective for complements.
- The reconstruction mapping W_{AB} ⊗ W_{BC} → W₁ is the inverse of the decomposition mapping. It is the natural join in this case.
- The view which is the projection on B is the *meet* of \mathbf{W}_{AB} and \mathbf{W}_{BC} , and is precisely that which must be held constant under a constant-complement update.

 \mathbf{W}_{AB}

Schema

 \mathbf{W}_{BC}

• Given is the following two-relation main schema.

 $\begin{array}{l} \mbox{Main Schema } \mathbf{E}_0 \\ \mbox{No dependencies} \end{array}$

R[A] S[A]

• Given is the following two-relation main schema.

$\begin{array}{l} \mbox{Main Schema } \mathbf{E}_0 \\ \mbox{No dependencies} \end{array}$

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_0 to be updated is that which preserves R[A] but discards S[A].

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_0 to be updated is that which preserves R[A] but discards S[A].
- The *natural complement* \mathbf{W}_1 is the schema which preserves S[A] but discards R[A].

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_0 to be updated is that which preserves R[A] but discards S[A].
- The *natural complement* \mathbf{W}_1 is the schema which preserves S[A] but discards R[A].
- With \mathbf{W}_1 constant, all updates to R[A] are allowed.

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_0 to be updated is that which preserves R[A] but discards S[A].
- The *natural complement* \mathbf{W}_1 is the schema which preserves S[A] but discards R[A].
- With \mathbf{W}_1 constant, all updates to R[A] are allowed.
- Clearly, this is the only reasonable update strategy for \mathbf{W}_0 .

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_0 to be updated is that which preserves R[A] but discards S[A].
- The *natural complement* \mathbf{W}_1 is the schema which preserves S[A] but discards R[A].
- With \mathbf{W}_1 constant, all updates to R[A] are allowed.
- Clearly, this is the only reasonable update strategy for \mathbf{W}_0 .
- However, \mathbf{W}_1 does not define the only complement.

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_0 to be updated is that which preserves R[A] but discards S[A].
- The *natural complement* \mathbf{W}_1 is the schema which preserves S[A] but discards R[A].
- With \mathbf{W}_1 constant, all updates to R[A] are allowed.
- Clearly, this is the only reasonable update strategy for \mathbf{W}_0 .
- However, \mathbf{W}_1 does not define the only complement.
- Without further restrictions, complements are almost never unique.

• The main schema is unchanged.

 $\begin{array}{l} \mbox{Main Schema } \mathbf{E}_0 \\ \mbox{No dependencies} \end{array}$

R[A] S[A]

- The main schema is unchanged.
- The view schema \mathbf{W}_0 to be updated is also the same.

- The main schema is unchanged.
- The view schema \mathbf{W}_0 to be updated is also the same.
- An alternative complement \mathbf{W}_2 is defined by the symmetric difference:

 $T[A] = (R[A] \setminus S[A]) \cup (S[A] \setminus R[A])$

- The main schema is unchanged.
- The view schema \mathbf{W}_0 to be updated is also the same.
- An alternative complement \mathbf{W}_2 is defined by the symmetric difference:

 $T[A] = (R[A] \setminus S[A]) \cup (S[A] \setminus R[A])$

• With this alternative complement, the update strategy is different — S[A] is altered.

 \mathbf{W}_2

- The main schema is unchanged.
- The view schema \mathbf{W}_0 to be updated is also the same.
- An alternative complement \mathbf{W}_2 is defined by the symmetric difference:

 $T[A] = (R[A] \setminus S[A]) \cup (S[A] \setminus R[A])$

- With this alternative complement, the update strategy is different S[A] is altered.
- Clearly, this is not a desirable complement.

- The main schema is unchanged.
- The view schema \mathbf{W}_0 to be updated is also the same.
- An alternative complement \mathbf{W}_2 is defined by the symmetric difference:

 $T[A] = (R[A] \setminus S[A]) \cup (S[A] \setminus R[A])$

- With this alternative complement, the update strategy is different S[A] is altered.
- Clearly, this is not a desirable complement.
- *Question*: How can these two complements be distinguished formally?

The Sufficiency of Monotonicity

• Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.

The Sufficiency of Monotonicity

• Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.

Theorem: If the view to be updated and is defined by a monotonic morphism, then the reflection of a given view update to the main schema is independent of the choice of complement, provided that the complement is also defined by a monotonic morphism.

The Sufficiency of Monotonicity

• Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.

Theorem: If the view to be updated and is defined by a monotonic morphism, then the reflection of a given view update to the main schema is independent of the choice of complement, provided that the complement is also defined by a monotonic morphism.

Proof: [Hegner 04 AMAI], [Hegner 08 SDKB], [Hegner 09 LID], [Hegner 10 JUCS]
The Sufficiency of Monotonicity

• Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.

Theorem: If the view to be updated and is defined by a monotonic morphism, then the reflection of a given view update to the main schema is independent of the choice of complement, provided that the complement is also defined by a monotonic morphism.

Proof: [Hegner 04 AMAI], [Hegner 08 SDKB], [Hegner 09 LID], [Hegner 10 JUCS]

However: It is not necessarily the case that all such view updates may be realized using the same complement.

The Sufficiency of Monotonicity

• Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.

Theorem: If the view to be updated and is defined by a monotonic morphism, then the reflection of a given view update to the main schema is independent of the choice of complement, provided that the complement is also defined by a monotonic morphism.

Proof: [Hegner 04 AMAI], [Hegner 08 SDKB], [Hegner 09 LID], [Hegner 10 JUCS]

However: It is not necessarily the case that all such view updates may be realized using the same complement.

• It is useful to illustrate with a simple example.

• The view Π_{ABC} of the schema to the right has Π_{BD} as a natural monotonic meet complement.

- The view Π_{ABC} of the schema to the right has Π_{BD} as a natural monotonic meet complement.
- With this complement, the allowable updates on Π_{ABC} are precisely those which keep Π_B constant.

- The view Π_{ABC} of the schema to the right has Π_{BD} as a natural monotonic meet complement.
- With this complement, the allowable updates on Π_{ABC} are precisely those which keep Π_B constant.
- However, Π_{ABC} also has Π_{CD} as a natural meet complement.

- The view Π_{ABC} of the schema to the right has Π_{BD} as a natural monotonic meet complement.
- With this complement, the allowable updates on Π_{ABC} are precisely those which keep Π_B constant.
- However, Π_{ABC} also has Π_{CD} as a natural meet complement.
- With this complement, the allowable updates on Π_{ABC} are precisely those which keep Π_C constant.

 Π_{CD}

- The view Π_{ABC} of the schema to the right has Π_{BD} as a natural monotonic meet complement.
- With this complement, the allowable updates on Π_{ABC} are precisely those which keep Π_B constant.
- However, Π_{ABC} also has Π_{CD} as a natural meet complement.
- With this complement, the allowable updates on Π_{ABC} are precisely those which keep Π_C constant.
- The only updates allowable with both complements are those which hold Π_{BC} constant.

View SchemaComplement Π_{ABC} Schema Π_{BCD}

- The view Π_{ABC} of the schema to the right has Π_{BD} as a natural monotonic meet complement.
- With this complement, the allowable updates on Π_{ABC} are precisely those which keep Π_B constant.
- However, Π_{ABC} also has Π_{CD} as a natural meet complement.
- With this complement, the allowable updates on Π_{ABC} are precisely those which keep Π_C constant.
- The only updates allowable with both complements are those which hold Π_{BC} constant.
- The combined complement is effectively Π_{BCD} .

View SchemaComplement Π_{ABC} Schema Π_{BCD}

- The view Π_{ABC} of the schema to the right has Π_{BD} as a natural monotonic meet complement.
- With this complement, the allowable updates on Π_{ABC} are precisely those which keep Π_B constant.
- However, Π_{ABC} also has Π_{CD} as a natural meet complement.
- With this complement, the allowable updates on Π_{ABC} are precisely those which keep Π_C constant.
- The only updates allowable with both complements are those which hold Π_{BC} constant.
- The combined complement is effectively Π_{BCD} .
- There is no Π -complement which is more general than Π_{BD} or Π_{CD} .

View SchemaComplement Π_{ABC} Schema Π_{BCD}

Context: A universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} .

Context: A universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} .

• A Π -view is defined by a single projection.

Context: A universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} .

• A Π -view is defined by a single projection.

Notation: Π_W is the projection onto attribute set W.

Context: A universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} .

• A Π -view is defined by a single projection.

Notation: Π_W is the projection onto attribute set W.

• Projective views may be compared via their attributes.

 $\Pi_{\mathbf{W}_1} \leq \Pi_{\mathbf{W}_2} \quad \text{iff} \quad \mathbf{W}_1 \subseteq \mathbf{W}_2 \qquad (\mathbf{W}_1, \mathbf{W}_2 \subseteq \mathbf{U})$

Context: A universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} .

• A Π -view is defined by a single projection.

Notation: Π_W is the projection onto attribute set W.

• Projective views may be compared via their attributes.

 $\Pi_{\mathbf{W}_1} \leq \Pi_{\mathbf{W}_2} \quad \text{iff} \quad \mathbf{W}_1 \subseteq \mathbf{W}_2 \qquad (\mathbf{W}_1, \mathbf{W}_2 \subseteq \mathbf{U})$

- Given a projective view $\Pi_{\mathbf{W}},$ a complement $\Pi_{\mathbf{W}'}$ is

Context: A universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} .

• A Π -view is defined by a single projection.

Notation: Π_W is the projection onto attribute set W.

• Projective views may be compared via their attributes.

 $\Pi_{\mathbf{W}_1} \leq \Pi_{\mathbf{W}_2} \quad \text{iff} \quad \mathbf{W}_1 \subseteq \mathbf{W}_2 \qquad (\mathbf{W}_1, \mathbf{W}_2 \subseteq \mathbf{U})$

- Given a projective view $\Pi_{\mathbf{W}},$ a complement $\Pi_{\mathbf{W}'}$ is
 - *minimal* if for no other complement $\Pi_{\mathbf{W}''}$ is it the case that $\mathbf{W}'' \subseteq \mathbf{W}'$;

Context: A universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} .

• A Π -view is defined by a single projection.

Notation: Π_W is the projection onto attribute set W.

• Projective views may be compared via their attributes.

 $\Pi_{\mathbf{W}_1} \leq \Pi_{\mathbf{W}_2} \quad \text{iff} \quad \mathbf{W}_1 \subseteq \mathbf{W}_2 \qquad (\mathbf{W}_1, \mathbf{W}_2 \subseteq \mathbf{U})$

- Given a projective view $\Pi_{\mathbf{W}},$ a complement $\Pi_{\mathbf{W}'}$ is
 - *minimal* if for no other complement $\Pi_{\mathbf{W}''}$ is it the case that $\mathbf{W}'' \subseteq \mathbf{W}'$;
 - optimal if for every other complement $\Pi_{\mathbf{W}''}$ it is the case that $\mathbf{W}' \subseteq \mathbf{W}''$.

• Let $R[\mathbf{U}]$ be universal relational schema constrained by some dependencies \mathcal{F} .

- Let $R[\mathbf{U}]$ be universal relational schema constrained by some dependencies \mathcal{F} .
- A governing JD is a representation of all JDs which hold on the schema.

- Let $R[\mathbf{U}]$ be universal relational schema constrained by some dependencies \mathcal{F} .
- A governing JD is a representation of all JDs which hold on the schema.
- More precisely, call a join dependency (JD) ⋈ [U₁,..., U_k] on R[U] governing (w.r.t. *F*) if it defines a lossless decomposition of R[U] satisfying the following properties:

- Let $R[\mathbf{U}]$ be universal relational schema constrained by some dependencies \mathcal{F} .
- A governing JD is a representation of all JDs which hold on the schema.
- More precisely, call a join dependency (JD) ⋈ [U₁,..., U_k] on R[U] governing (w.r.t. *F*) if it defines a lossless decomposition of R[U] satisfying the following properties:
 - full: $\mathbf{U}_1 \cup \ldots \cup \mathbf{U}_k = \mathbf{U};$

- Let $R[\mathbf{U}]$ be universal relational schema constrained by some dependencies \mathcal{F} .
- A governing JD is a representation of all JDs which hold on the schema.
- More precisely, call a join dependency (JD) ⋈ [U₁,..., U_k] on R[U] governing (w.r.t. *F*) if it defines a lossless decomposition of R[U] satisfying the following properties:
 - full: $\mathbf{U}_1 \cup \ldots \cup \mathbf{U}_k = \mathbf{U};$
 - entailed: $\mathcal{F} \models \bowtie [\mathbf{U}_1, \dots, \mathbf{U}_k];$

- Let $R[\mathbf{U}]$ be universal relational schema constrained by some dependencies \mathcal{F} .
- A governing JD is a representation of all JDs which hold on the schema.
- More precisely, call a join dependency (JD) ⋈ [U₁,..., U_k] on R[U] governing (w.r.t. *F*) if it defines a lossless decomposition of R[U] satisfying the following properties:
 - full: $\mathbf{U}_1 \cup \ldots \cup \mathbf{U}_k = \mathbf{U};$
 - entailed: $\mathcal{F} \vDash [\mathbf{U}_1, \dots, \mathbf{U}_k]$;
 - covering: $\bowtie [\mathbf{U}_1, \dots, \mathbf{U}_k] \models \varphi$ for every entailed JD (full or embedded) φ .

- Let $R[\mathbf{U}]$ be universal relational schema constrained by some dependencies \mathcal{F} .
- A governing JD is a representation of all JDs which hold on the schema.
- More precisely, call a join dependency (JD) ⋈ [U₁,..., U_k] on R[U] governing (w.r.t. *F*) if it defines a lossless decomposition of R[U] satisfying the following properties:
 - full: $\mathbf{U}_1 \cup \ldots \cup \mathbf{U}_k = \mathbf{U};$
 - entailed: $\mathcal{F} \vDash [\mathbf{U}_1, \dots, \mathbf{U}_k];$
 - covering: $\bowtie [\mathbf{U}_1, \dots, \mathbf{U}_k] \models \varphi$ for every entailed JD (full or embedded) φ .

Example: For $(R[ABCD] \text{ with } \mathcal{F} = \{B \rightarrow CD, C \rightarrow B\},\$ the JD $\bowtie [ABC, CD, BD]$ is governing.

- Let $R[\mathbf{U}]$ be universal relational schema constrained by some dependencies \mathcal{F} .
- A governing JD is a representation of all JDs which hold on the schema.
- More precisely, call a join dependency (JD) ⋈ [U₁,..., U_k] on R[U] governing (w.r.t. *F*) if it defines a lossless decomposition of R[U] satisfying the following properties:

• full:
$$\mathbf{U}_1 \cup \ldots \cup \mathbf{U}_k = \mathbf{U};$$

- entailed: $\mathcal{F} \vDash [\mathbf{U}_1, \dots, \mathbf{U}_k];$
- covering: $\bowtie [\mathbf{U}_1, \dots, \mathbf{U}_k] \models \varphi$ for every entailed JD (full or embedded) φ .

Example: For $(R[ABCD] \text{ with } \mathcal{F} = \{B \rightarrow CD, C \rightarrow B\},\$ the JD $\bowtie [ABC, CD, BD]$ is governing.

Example: For $(R[ABCD] \text{ with } \mathcal{F} = \{ \bowtie [AB, BC] \}$, there is no (nontrivial) governing JD.

To address the non-uniqueness of complements illustrated in examples, the following condition is introduced for the JD ⋈ [U₁,..., U_k]:

- To address the non-uniqueness of complements illustrated in examples, the following condition is introduced for the JD \bowtie $[\mathbf{U}_1, \ldots, \mathbf{U}_k]$:
- nonredundant: for no proper $J \subsetneq \{\mathbf{U}_1, \ldots, \mathbf{U}_k\}$ is $\bowtie [J]$ both entailed and full.

- To address the non-uniqueness of complements illustrated in examples, the following condition is introduced for the JD ⋈ [U₁,..., U_k]:
- nonredundant: for no proper $J \subsetneq \{\mathbf{U}_1, \dots, \mathbf{U}_k\}$ is $\bowtie [J]$ both entailed and full.
- There are two flavors of redundancy:

- To address the non-uniqueness of complements illustrated in examples, the following condition is introduced for the JD ⋈ [U₁,..., U_k]:
- *nonredundant*: for no proper $J \subsetneq \{\mathbf{U}_1, \ldots, \mathbf{U}_k\}$ is $\bowtie [J]$ both entailed and full.
- There are two flavors of redundancy:
 - ▶ [U₁,..., U_k] is *trivially redundant* (not *normalized*) if U_i ⊊ U_j for some distinct i, j.

- To address the non-uniqueness of complements illustrated in examples, the following condition is introduced for the JD \bowtie $[\mathbf{U}_1, \ldots, \mathbf{U}_k]$:
- nonredundant: for no proper $J \subsetneq \{\mathbf{U}_1, \ldots, \mathbf{U}_k\}$ is $\bowtie [J]$ both entailed and full.
- There are two flavors of redundancy:
 - ▶ [U₁,..., U_k] is *trivially redundant* (not *normalized*) if U_i ⊊ U_j for some distinct i, j.
 - This flavor of redundancy is "trivial" in the sense that it can be detected without any further knowledge of the underlying dependencies.

- To address the non-uniqueness of complements illustrated in examples, the following condition is introduced for the JD ⋈ [U₁,..., U_k]:
- nonredundant: for no proper $J \subsetneq \{\mathbf{U}_1, \ldots, \mathbf{U}_k\}$ is $\bowtie [J]$ both entailed and full.
- There are two flavors of redundancy:
 - ▶ [U₁,..., U_k] is *trivially redundant* (not *normalized*) if U_i ⊊ U_j for some distinct i, j.
 - This flavor of redundancy is "trivial" in the sense that it can be detected without any further knowledge of the underlying dependencies.
 - It may always be removed without changing the semantics.

- To address the non-uniqueness of complements illustrated in examples, the following condition is introduced for the JD ⋈ [U₁,..., U_k]:
- nonredundant: for no proper $J \subsetneq \{\mathbf{U}_1, \ldots, \mathbf{U}_k\}$ is $\bowtie [J]$ both entailed and full.
- There are two flavors of redundancy:
 - ▶ [U₁,..., U_k] is *trivially redundant* (not *normalized*) if U_i ⊊ U_j for some distinct i, j.
 - This flavor of redundancy is "trivial" in the sense that it can be detected without any further knowledge of the underlying dependencies.
 - It may always be removed without changing the semantics.

Example: \bowtie [*AC*, *ABC*, *CD*] is trivially redundant.

- To address the non-uniqueness of complements illustrated in examples, the following condition is introduced for the JD ⋈ [U₁,..., U_k]:
- nonredundant: for no proper $J \subsetneq \{\mathbf{U}_1, \ldots, \mathbf{U}_k\}$ is $\bowtie [J]$ both entailed and full.
- There are two flavors of redundancy:
 - ▶ [U₁,..., U_k] is *trivially redundant* (not *normalized*) if U_i ⊊ U_j for some distinct i, j.
 - This flavor of redundancy is "trivial" in the sense that it can be detected without any further knowledge of the underlying dependencies.
 - It may always be removed without changing the semantics.

Example: \bowtie [*AC*, *ABC*, *CD*] is trivially redundant.

• Otherwise, redundancy is *essential* and must be determined by examining the underlying dependencies.

- To address the non-uniqueness of complements illustrated in examples, the following condition is introduced for the JD ⋈ [U₁,..., U_k]:
- nonredundant: for no proper $J \subsetneq \{\mathbf{U}_1, \ldots, \mathbf{U}_k\}$ is $\bowtie [J]$ both entailed and full.
- There are two flavors of redundancy:
 - ▶ [U₁,..., U_k] is *trivially redundant* (not *normalized*) if U_i ⊊ U_j for some distinct i, j.
 - This flavor of redundancy is "trivial" in the sense that it can be detected without any further knowledge of the underlying dependencies.
 - It may always be removed without changing the semantics.

Example: \bowtie [*AC*, *ABC*, *CD*] is trivially redundant.

• Otherwise, redundancy is *essential* and must be determined by examining the underlying dependencies.

Example: For R[ABCD] with $\mathcal{F} = \{B \rightarrow CD, C \rightarrow B\}$, the JD $\bowtie [ABC, CD, BD]$ is governing but essentially redundant, since $\bowtie [ABC, CD]$ (as well as $\bowtie [ABC, BD]$) is both entailed and full.

Characterization of Optimal Π -Complements

Context: Universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} . Nonredundant governing JD $\bowtie [\mathcal{A}]$ with $\mathcal{A} \stackrel{\text{def}}{=} {\mathbf{U}_i \mid 1 \leq i \leq k}$.

Characterization of Optimal Π -Complements

Context: Universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} . Nonredundant governing JD $\bowtie [\mathcal{A}]$ with $\mathcal{A} \stackrel{\text{def}}{=} {\mathbf{U}_i \mid 1 \leq i \leq k}$.

Theorem: Let $\mathbf{W} \subseteq \mathbf{U}$, and define $\mathbf{W}' = \bigcup \{ \mathbf{U}_i \in \mathcal{A} \mid \mathbf{U}_i \notin \mathbf{W} \}$. Then $\Pi_{\mathbf{W}'}$ is an optimal Π -complement of $\Pi_{\mathbf{W}}$. If the JD is dependency preserving, then it is furthermore a meet complement. \Box

Characterization of Optimal II-Complements

Context: Universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} . Nonredundant governing JD $\bowtie [\mathcal{A}]$ with $\mathcal{A} \stackrel{\text{def}}{=} {\mathbf{U}_i \mid 1 \leq i \leq k}$.

Theorem: Let $\mathbf{W} \subseteq \mathbf{U}$, and define $\mathbf{W}' = \bigcup \{ \mathbf{U}_i \in \mathcal{A} \mid \mathbf{U}_i \notin \mathbf{W} \}$. Then $\Pi_{\mathbf{W}'}$ is an optimal Π -complement of $\Pi_{\mathbf{W}}$. If the JD is dependency preserving, then it is furthermore a meet complement. \Box

Example context: $R[ABCDE] \ C \rightarrow D \ D \rightarrow E \models$ $\bowtie [ABC, CD, DE]$ governing and nonredundant.
Context: Universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} . Nonredundant governing JD $\bowtie [\mathcal{A}]$ with $\mathcal{A} \stackrel{\text{def}}{=} {\mathbf{U}_i \mid 1 \leq i \leq k}$.

Theorem: Let $\mathbf{W} \subseteq \mathbf{U}$, and define $\mathbf{W}' = \bigcup \{ \mathbf{U}_i \in \mathcal{A} \mid \mathbf{U}_i \notin \mathbf{W} \}$. Then $\Pi_{\mathbf{W}'}$ is an optimal Π -complement of $\Pi_{\mathbf{W}}$. If the JD is dependency preserving, then it is furthermore a meet complement. \Box

Example context: $R[ABCDE] \ C \rightarrow D \ D \rightarrow E \models$ $\bowtie [ABC, CD, DE]$ governing and nonredundant.

• The optimal Π -complement of Π_{ABC} is $\Pi_{CD\cup DE} = \Pi_{CDE}$.

Context: Universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} . Nonredundant governing JD $\bowtie [\mathcal{A}]$ with $\mathcal{A} \stackrel{\text{def}}{=} {\mathbf{U}_i \mid 1 \leq i \leq k}$.

Theorem: Let $\mathbf{W} \subseteq \mathbf{U}$, and define $\mathbf{W}' = \bigcup \{ \mathbf{U}_i \in \mathcal{A} \mid \mathbf{U}_i \notin \mathbf{W} \}$. Then $\Pi_{\mathbf{W}'}$ is an optimal Π -complement of $\Pi_{\mathbf{W}}$. If the JD is dependency preserving, then it is furthermore a meet complement. \Box

- The optimal Π -complement of Π_{ABC} is $\Pi_{CD\cup DE} = \Pi_{CDE}$.
- The optimal Π -complement of Π_{ABCE} is $\Pi_{CD\cup DE} = \Pi_{CDE}$ also.

Context: Universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} . Nonredundant governing JD $\bowtie [\mathcal{A}]$ with $\mathcal{A} \stackrel{\text{def}}{=} {\mathbf{U}_i \mid 1 \leq i \leq k}$.

Theorem: Let $\mathbf{W} \subseteq \mathbf{U}$, and define $\mathbf{W}' = \bigcup \{ \mathbf{U}_i \in \mathcal{A} \mid \mathbf{U}_i \notin \mathbf{W} \}$. Then $\Pi_{\mathbf{W}'}$ is an optimal Π -complement of $\Pi_{\mathbf{W}}$. If the JD is dependency preserving, then it is furthermore a meet complement. \Box

- The optimal Π -complement of Π_{ABC} is $\Pi_{CD\cup DE} = \Pi_{CDE}$.
- The optimal Π -complement of Π_{ABCE} is $\Pi_{CD\cup DE} = \Pi_{CDE}$ also.
- The optimal Π -complement of Π_{ABCD} is Π_{DE} .

Context: Universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} . Nonredundant governing JD $\bowtie [\mathcal{A}]$ with $\mathcal{A} \stackrel{\text{def}}{=} {\mathbf{U}_i \mid 1 \leq i \leq k}$.

Theorem: Let $\mathbf{W} \subseteq \mathbf{U}$, and define $\mathbf{W}' = \bigcup \{ \mathbf{U}_i \in \mathcal{A} \mid \mathbf{U}_i \notin \mathbf{W} \}$. Then $\Pi_{\mathbf{W}'}$ is an optimal Π -complement of $\Pi_{\mathbf{W}}$. If the JD is dependency preserving, then it is furthermore a meet complement. \Box

- The optimal Π -complement of Π_{ABC} is $\Pi_{CD\cup DE} = \Pi_{CDE}$.
- The optimal Π -complement of Π_{ABCE} is $\Pi_{CD\cup DE} = \Pi_{CDE}$ also.
- The optimal Π -complement of Π_{ABCD} is Π_{DE} .
- The optimal Π -complement of Π_{AB} is $\Pi_{ABC\cup CD\cup DE} = \Pi_{ABCDE}$.

Context: Universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} . Nonredundant governing JD $\bowtie [\mathcal{A}]$ with $\mathcal{A} \stackrel{\text{def}}{=} {\mathbf{U}_i \mid 1 \leq i \leq k}$.

Theorem: Let $\mathbf{W} \subseteq \mathbf{U}$, and define $\mathbf{W}' = \bigcup \{ \mathbf{U}_i \in \mathcal{A} \mid \mathbf{U}_i \notin \mathbf{W} \}$. Then $\Pi_{\mathbf{W}'}$ is an optimal Π -complement of $\Pi_{\mathbf{W}}$. If the JD is dependency preserving, then it is furthermore a meet complement. \Box

- The optimal Π -complement of Π_{ABC} is $\Pi_{CD\cup DE} = \Pi_{CDE}$.
- The optimal Π -complement of Π_{ABCE} is $\Pi_{CD\cup DE} = \Pi_{CDE}$ also.
- The optimal Π -complement of Π_{ABCD} is Π_{DE} .
- The optimal Π -complement of Π_{AB} is $\Pi_{ABC\cup CD\cup DE} = \Pi_{ABCDE}$.
- The optimal Π -complement of Π_{CD} is $\Pi_{ABC\cup DE} = \Pi_{ABCDE}$ also.

Example context continued: $R[ABCDE] \ C \rightarrow D \ D \rightarrow E \models$ $\bowtie [ABC, CD, DE]$ governing and nonredundant.

• For Π_{CD} , the optimal Π -complement Π_{ABCDE} allows no updates at all under the constant-complement strategy.

- For Π_{CD} , the optimal Π -complement Π_{ABCDE} allows no updates at all under the constant-complement strategy.
- However, some updates are clearly possible.

- For Π_{CD} , the optimal Π -complement Π_{ABCDE} allows no updates at all under the constant-complement strategy.
- However, some updates are clearly possible.
- Let $M = \{R(a_1, b_1, c_1, d_1, e_1), R(a_2, b_2, c_2, d_2, e_2)\}$ be the current state of the main schema.

- For Π_{CD} , the optimal Π -complement Π_{ABCDE} allows no updates at all under the constant-complement strategy.
- However, some updates are clearly possible.
- Let $M = \{R(a_1, b_1, c_1, d_1, e_1), R(a_2, b_2, c_2, d_2, e_2)\}$ be the current state of the main schema.
- Consider the update (N, N') to Π_{CD} with $N = \{R(c_1, d_1), R(c_2, d_2)\}$. and $N' = \{R(c_1, d_2), R(c_2, d_1)\}$.

- For Π_{CD} , the optimal Π -complement Π_{ABCDE} allows no updates at all under the constant-complement strategy.
- However, some updates are clearly possible.
- Let $M = \{R(a_1, b_1, c_1, d_1, e_1), R(a_2, b_2, c_2, d_2, e_2)\}$ be the current state of the main schema.
- Consider the update (N, N') to Π_{CD} with $N = \{R(c_1, d_1), R(c_2, d_2)\}$. and $N' = \{R(c_1, d_2), R(c_2, d_1)\}$.
- The reflection $M' = \{R(a_1, b_1, c_1, d_2, e_2) R(a_2, b_2, c_2, d_1, e_1)\}$ keeps both Π_{ABC} and Π_{CD} constant.

- For Π_{CD} , the optimal Π -complement Π_{ABCDE} allows no updates at all under the constant-complement strategy.
- However, some updates are clearly possible.
- Let $M = \{R(a_1, b_1, c_1, d_1, e_1), R(a_2, b_2, c_2, d_2, e_2)\}$ be the current state of the main schema.
- Consider the update (N, N') to Π_{CD} with $N = \{R(c_1, d_1), R(c_2, d_2)\}$. and $N' = \{R(c_1, d_2), R(c_2, d_1)\}$.
- The reflection $M' = \{R(a_1, b_1, c_1, d_2, e_2)R(a_2, b_2, c_2, d_1, e_1)\}$ keeps both Π_{ABC} and Π_{CD} constant.
- The view $\Pi_{ABC} \vee \Pi_{DE}$ which contains two projections, R[ABC] and R[DE], is a complement of Π_{CD} .

- For Π_{CD} , the optimal Π -complement Π_{ABCDE} allows no updates at all under the constant-complement strategy.
- However, some updates are clearly possible.
- Let $M = \{R(a_1, b_1, c_1, d_1, e_1), R(a_2, b_2, c_2, d_2, e_2)\}$ be the current state of the main schema.
- Consider the update (N, N') to Π_{CD} with $N = \{R(c_1, d_1), R(c_2, d_2)\}$. and $N' = \{R(c_1, d_2), R(c_2, d_1)\}$.
- The reflection $M' = \{R(a_1, b_1, c_1, d_2, e_2)R(a_2, b_2, c_2, d_1, e_1)\}$ keeps both Π_{ABC} and Π_{CD} constant.
- The view $\Pi_{ABC} \vee \Pi_{DE}$ which contains two projections, R[ABC] and R[DE], is a complement of Π_{CD} .
- Thus, (M, M') is a constant-complement reflection of (N, N') with complement $\Pi_{ABC} \vee \Pi_{DE}$.

Complements of $\bigvee \Pi$ -views

Context: Universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} ; Nonredundant governing JD $\bowtie [\mathcal{A}]$ with $\mathcal{A} \stackrel{\text{def}}{=} {\mathbf{U}_i \mid 1 \leq i \leq k}$.

Complements of ${\bf n} {\bf n}$ -views

Context: Universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} ; Nonredundant governing JD $\bowtie [\mathcal{A}]$ with $\mathcal{A} \stackrel{\text{def}}{=} {\mathbf{U}_i \mid 1 \leq i \leq k}$.

• A $\bigvee \Pi$ -view is defined by a set of projections on a (universal) relational schema.

Complements of ${\bf n} \Pi$ -views

Context: Universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} ; Nonredundant governing JD $\bowtie [\mathcal{A}]$ with $\mathcal{A} \stackrel{\text{def}}{=} {\mathbf{U}_i \mid 1 \leq i \leq k}$.

• A $\bigvee \Pi$ -view is defined by a set of projections on a (universal) relational schema.

Example and notation: $\Pi_{ABC} \vee \Pi_{DE} = \bigvee \{ \Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \{ABC, DE\} \}.$

Complements of ${\bf n}\Pi\text{-views}$

Context: Universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} ; Nonredundant governing JD $\bowtie [\mathcal{A}]$ with $\mathcal{A} \stackrel{\text{def}}{=} {\mathbf{U}_i \mid 1 \leq i \leq k}$.

• A $\bigvee \Pi$ -view is defined by a set of projections on a (universal) relational schema.

Example and notation: $\Pi_{ABC} \vee \Pi_{DE} = \bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \{ABC, DE\}\}.$

Theorem: For any partition $\{A_1, A_2\}$ of A, $\bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in A_1\}$ and $\bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in A_2\}$ are complements. They are furthermore meet complements if the JD is dependency preserving. \Box

• A $\bigvee \Pi$ -view is defined by a set of projections on a (universal) relational schema.

Example and notation: $\Pi_{ABC} \vee \Pi_{DE} = \bigvee \{ \Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \{ABC, DE\} \}.$

Theorem: For any partition $\{A_1, A_2\}$ of A, $\bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in A_1\}$ and $\bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in A_2\}$ are complements. They are furthermore meet complements if the JD is dependency preserving. \Box

• A $\bigvee \Pi$ -view is defined by a set of projections on a (universal) relational schema.

Example and notation: $\Pi_{ABC} \vee \Pi_{DE} = \bigvee \{ \Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \{ABC, DE\} \}.$

Theorem: For any partition $\{A_1, A_2\}$ of A, $\bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in A_1\}$ and $\bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in A_2\}$ are complements. They are furthermore meet complements if the JD is dependency preserving. \Box

Example context: $R[ABCDE] \ C \rightarrow D \ D \rightarrow E \ E \rightarrow F \models$ $\bowtie [ABC, CD, DE, EF]$ is governing and nonredundant.

• $\Pi_{ABC} \vee \Pi_{DE}$ and $\Pi_{CD} \vee \Pi_{EF}$ are meet complements.

• A $\bigvee \Pi$ -view is defined by a set of projections on a (universal) relational schema.

Example and notation: $\Pi_{ABC} \vee \Pi_{DE} = \bigvee \{ \Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \{ABC, DE\} \}.$

Theorem: For any partition $\{A_1, A_2\}$ of A, $\bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in A_1\}$ and $\bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in A_2\}$ are complements. They are furthermore meet complements if the JD is dependency preserving. \Box

Example context: $R[ABCDE] \ C \rightarrow D \ D \rightarrow E \ E \rightarrow F \models$ $\bowtie [ABC, CD, DE, EF]$ is governing and nonredundant.

• $\Pi_{ABC} \vee \Pi_{DE}$ and $\Pi_{CD} \vee \Pi_{EF}$ are meet complements.

• Note that $\begin{array}{l} \Pi_{ABC} \lor \Pi_{DE} \neq \Pi_{ABCDE} \\ \Pi_{CD} \lor \Pi_{EF} \neq \Pi_{CDEF}; \end{array}$ they are not even isomorphic.

Comparison of $\sqrt{\Pi}$ -complements

Context: Universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} ; Nonredundant governing JD $\bowtie [\mathcal{A}]$ with $\mathcal{A} \stackrel{\text{def}}{=} {\mathbf{U}_i \mid 1 \leq i \leq k}$.

Comparison of $\sqrt{\Pi}$ -complements

Context: Universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} ; Nonredundant governing JD $\bowtie [\mathcal{A}]$ with $\mathcal{A} \stackrel{\text{def}}{=} {\mathbf{U}_i \mid 1 \leq i \leq k}$.

• A first attempt at a definition of comparison:

 $\bigvee \{ \Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_1 \} \leq \bigvee \{ \Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_2 \} \quad \text{iff} \quad (\forall \mathbf{Y} \in \mathcal{B}_1) (\exists \mathbf{Y}' \in \mathcal{B}_2) (\mathbf{Y} \subseteq \mathbf{Y}').$

• A first attempt at a definition of comparison:

$$\bigvee \{ \Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_1 \} \leq \bigvee \{ \Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_2 \} \quad \text{iff} \quad (\forall \mathbf{Y} \in \mathcal{B}_1) (\exists \mathbf{Y}' \in \mathcal{B}_2) (\mathbf{Y} \subseteq \mathbf{Y}').$$

Counterexample: $R[ABCDE] \ C \to D \ D \to E \models \bowtie [ABC, CD, DE].$ Since the embedded JD $\bowtie [ABC, CD]$ is implied, Π_{ABCD} is effectively the same as $\Pi_{ABC} \lor \Pi_{CD}$.

• A first attempt at a definition of comparison:

 $\bigvee \{ \Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_1 \} \leq \bigvee \{ \Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_2 \} \quad \text{iff} \quad (\forall \mathbf{Y} \in \mathcal{B}_1) (\exists \mathbf{Y}' \in \mathcal{B}_2) (\mathbf{Y} \subseteq \mathbf{Y}').$

- Counterexample: $R[ABCDE] \ C \to D \ D \to E \models \bowtie [ABC, CD, DE].$ Since the embedded JD $\bowtie [ABC, CD]$ is implied, Π_{ABCD} is effectively the same as $\Pi_{ABC} \lor \Pi_{CD}$.
- A better definition of comparison: every LHS attribute set is a subset of a valid join of a RHS set.

$$\bigvee \{ \Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_1 \} \leq \bigvee \{ \Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_2 \} \quad \text{iff} \\ (\forall \mathbf{Y} \in \mathcal{B}_1) (\exists \mathcal{B}_3 \subseteq \mathcal{B}_2) ((\bowtie [\mathcal{B}_3] \text{ valid}) \land (\mathbf{Y} \subseteq \bigcup \mathcal{B}_3)).$$

Optimal $\ensuremath{\bigvee}\Pi$ -complements

Context: Universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} ; Nonredundant governing JD $\bowtie [\mathcal{A}]$ with $\mathcal{A} \stackrel{\text{def}}{=} {\mathbf{U}_i \mid 1 \leq i \leq k}$. $\bigvee {\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_1\}} \leq \bigvee {\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_2\}}$ iff $(\forall \mathbf{Y} \in \mathcal{B}_1)(\exists \mathcal{B}_3 \subseteq \mathcal{B}_2)((\bowtie [\mathcal{B}_3] \text{ valid}) \land (\mathbf{Y} \subseteq \bigcup \mathcal{B}_3)).$

Optimal $\ensuremath{\bigvee}\Pi$ -complements

Context: Universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} ; Nonredundant governing JD $\bowtie [\mathcal{A}]$ with $\mathcal{A} \stackrel{\text{def}}{=} {\mathbf{U}_i \mid 1 \leq i \leq k}$. $\bigvee {\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_1\}} \leq \bigvee {\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_2\}}$ iff $(\forall \mathbf{Y} \in \mathcal{B}_1)(\exists \mathcal{B}_3 \subseteq \mathcal{B}_2)((\bowtie [\mathcal{B}_3] \text{ valid}) \land (\mathbf{Y} \subseteq \bigcup \mathcal{B}_3)).$

• $\bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_2\}$, is an *optimal* complement of $\bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_1\}$ if $\bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_2\} \leq \bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_3\}$ for every other $\bigvee \Pi$ -complement $\bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_3\}$,

Optimal $\ensuremath{\bigvee}\Pi$ -complements

Context: Universal relational schema $R[\mathbf{U}]$ constrained by some dependencies \mathcal{F} ; Nonredundant governing JD $\bowtie [\mathcal{A}]$ with $\mathcal{A} \stackrel{\text{def}}{=} {\mathbf{U}_i \mid 1 \leq i \leq k}$. $\bigvee {\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_1\}} \leq \bigvee {\{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_2\}}$ iff $(\forall \mathbf{Y} \in \mathcal{B}_1)(\exists \mathcal{B}_3 \subseteq \mathcal{B}_2)((\bowtie [\mathcal{B}_3] \text{ valid}) \land (\mathbf{Y} \subseteq [\mathcal{B}_3)).$

•
$$\bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_2\}$$
, is an *optimal* complement of $\bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_1\}$ if
 $\bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_2\} \leq \bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_3\}$
for every other $\lor \Pi$ -complement $\bigvee \{\Pi_{\mathbf{Y}} \mid \mathbf{Y} \in \mathcal{B}_3\}$,

• For $\mathbf{W} \subseteq \mathbf{U}$, define $\mathsf{JCompl}\langle \mathbf{W}, \mathcal{A} \rangle = \{ \mathbf{U}_i \in \mathcal{A} \mid \mathbf{U}_i \not\subseteq \mathbf{W} \}$.

Theorem: $\bigvee \{\Pi_{\mathbf{U}_i} \mid \mathbf{U}_i \in \mathsf{JCompl}(\mathbf{W}, \mathcal{A})\}$ is an optimal $\bigvee \Pi$ -complement of $\Pi_{\mathbf{W}}$. \Box

Issues with ${\bf n}\$

 For a wide variety of constraints on the main schema, the constraints on a Π-view are well behaved first-order database dependencies [Fagin 82 JACM] [Hull 84 JACM].

Issues with ${\bf \bigtriangledown}\Pi\text{-complements}$

- For a wide variety of constraints on the main schema, the constraints on a Π-view are well behaved first-order database dependencies [Fagin 82 JACM] [Hull 84 JACM].
- For $\bigvee \Pi$ -views, the situation is very different.

Issues with ${\bf n}\$

- For a wide variety of constraints on the main schema, the constraints on a Π-view are well behaved first-order database dependencies [Fagin 82 JACM] [Hull 84 JACM].
- For $\bigvee \Pi$ -views, the situation is very different.

- For a wide variety of constraints on the main schema, the constraints on a Π-view are well behaved first-order database dependencies [Fagin 82 JACM] [Hull 84 JACM].
- For $\bigvee \Pi$ -views, the situation is very different.

Example context continued: $R[ABCDE] \ C \rightarrow D \ D \rightarrow E \models \bowtie [ABC, CD, DE].$

• On $\Pi_{ABC} \vee \Pi_{DE}$, the constraint Cardinality $(\Pi_D) \leq Cardinality(\Pi_C)$ holds.

- For a wide variety of constraints on the main schema, the constraints on a Π-view are well behaved first-order database dependencies [Fagin 82 JACM] [Hull 84 JACM].
- For $\bigvee \Pi$ -views, the situation is very different.

- On $\Pi_{ABC} \vee \Pi_{DE}$, the constraint Cardinality $(\Pi_D) \leq Cardinality(\Pi_C)$ holds.
- It is not even first order for infinite databases.

- For a wide variety of constraints on the main schema, the constraints on a Π-view are well behaved first-order database dependencies [Fagin 82 JACM] [Hull 84 JACM].
- For $\bigvee \Pi$ -views, the situation is very different.

- On $\Pi_{ABC} \vee \Pi_{DE}$, the constraint Cardinality $(\Pi_D) \leq Cardinality(\Pi_C)$ holds.
- It is not even first order for infinite databases.
- Fortunately, it does not matter.

- For a wide variety of constraints on the main schema, the constraints on a Π-view are well behaved first-order database dependencies [Fagin 82 JACM] [Hull 84 JACM].
- For $\bigvee \Pi$ -views, the situation is very different.

- On $\Pi_{ABC} \vee \Pi_{DE}$, the constraint Cardinality $(\Pi_D) \leq Cardinality(\Pi_C)$ holds.
- It is not even first order for infinite databases.
- Fortunately, it does not matter.
- The truth value of such constraints is never altered by a constant-complement update [Hegner 06 AMAI].

- For a wide variety of constraints on the main schema, the constraints on a Π-view are well behaved first-order database dependencies [Fagin 82 JACM] [Hull 84 JACM].
- For $\bigvee \Pi$ -views, the situation is very different.

- On $\Pi_{ABC} \vee \Pi_{DE}$, the constraint Cardinality $(\Pi_D) \leq Cardinality(\Pi_C)$ holds.
- It is not even first order for infinite databases.
- Fortunately, it does not matter.
- The truth value of such constraints is never altered by a constant-complement update [Hegner 06 AMAI].
- Only "simple" constraints must be checked for an update.

Moving Beyond the Framework of Projections

Goal: Carry the theory of optimal complements beyond projections.
Goal: Carry the theory of optimal complements beyond projections.

• At least include selections, and preferably joins.

Goal: Carry the theory of optimal complements beyond projections.

• At least include selections, and preferably joins.

Principles: Look for a more general theory, as opposed to an approach based upon individual cases.

Goal: Carry the theory of optimal complements beyond projections.

• At least include selections, and preferably joins.

Principles: Look for a more general theory, as opposed to an approach based upon individual cases.

General contexts:

Goal: Carry the theory of optimal complements beyond projections.

• At least include selections, and preferably joins.

Principles: Look for a more general theory, as opposed to an approach based upon individual cases.

General contexts:

• For general principles of schemata and views, for the definition of optimality: a simple set-based context.

Goal: Carry the theory of optimal complements beyond projections.

• At least include selections, and preferably joins.

Principles: Look for a more general theory, as opposed to an approach based upon individual cases.

General contexts:

- For general principles of schemata and views, for the definition of optimality: a simple set-based context.
- For the characterization of views, *information* based upon Boolean queries.

Goal: Carry the theory of optimal complements beyond projections.

• At least include selections, and preferably joins.

Principles: Look for a more general theory, as opposed to an approach based upon individual cases.

General contexts:

- For general principles of schemata and views, for the definition of optimality: a simple set-based context.
- For the characterization of views, *information* based upon Boolean queries.
- For decomposition, the *information semilattice* of equivalence classes of Boolean queries on the main schema.

• Comparison of views in a general setting is easy.

- Comparison of views in a general setting is easy.
- A database schema ${\bf D}$ has a set $\mathsf{LDB}({\bf D})$ of legal states.

- Comparison of views in a general setting is easy.
- A database schema ${\bf D}$ has a set $\mathsf{LDB}({\bf D})$ of legal states.
- A view $\Gamma = (\mathbf{V}, \gamma)$ of \mathbf{D} consists of a schema \mathbf{V} together with a surjective morphism $\gamma : \mathsf{LDB}(\mathbf{D}) \to \mathsf{LDB}(\mathbf{V})$.

- Comparison of views in a general setting is easy.
- A database schema ${\bf D}$ has a set $\mathsf{LDB}({\bf D})$ of legal states.
- A view $\Gamma = (\mathbf{V}, \gamma)$ of \mathbf{D} consists of a schema \mathbf{V} together with a surjective morphism $\gamma : \mathsf{LDB}(\mathbf{D}) \to \mathsf{LDB}(\mathbf{V})$.
- The congruence of $\Gamma = (\mathbf{V}, \gamma)$ is $\operatorname{Congr}(\Gamma) = \{(M_1, M_2) \in \operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D}) \mid \gamma(M_1) = \gamma(M_2)\}.$

- Comparison of views in a general setting is easy.
- A database schema ${\bf D}$ has a set $\mathsf{LDB}({\bf D})$ of legal states.
- A view $\Gamma = (\mathbf{V}, \gamma)$ of \mathbf{D} consists of a schema \mathbf{V} together with a surjective morphism $\gamma : \mathsf{LDB}(\mathbf{D}) \to \mathsf{LDB}(\mathbf{V})$.
- The congruence of $\Gamma = (\mathbf{V}, \gamma)$ is $\operatorname{Congr}(\Gamma) = \{(M_1, M_2) \in \operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D}) \mid \gamma(M_1) = \gamma(M_2)\}.$
- Define $\Gamma_1 \leq \Gamma_2$ iff $\text{Congr}(\Gamma_2) \subseteq \text{Congr}(\Gamma_1)$.

- Comparison of views in a general setting is easy.
- A database schema ${\bf D}$ has a set $\mathsf{LDB}({\bf D})$ of legal states.
- A view $\Gamma = (\mathbf{V}, \gamma)$ of \mathbf{D} consists of a schema \mathbf{V} together with a surjective morphism $\gamma : \mathsf{LDB}(\mathbf{D}) \to \mathsf{LDB}(\mathbf{V})$.
- The congruence of $\Gamma = (\mathbf{V}, \gamma)$ is $\operatorname{Congr}(\Gamma) = \{(M_1, M_2) \in \operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D}) \mid \gamma(M_1) = \gamma(M_2)\}.$
- Define $\Gamma_1 \leq \Gamma_2$ iff $\text{Congr}(\Gamma_2) \subseteq \text{Congr}(\Gamma_1)$.
- This definition agrees with those given for $\Pi\text{-views}$ and ${\bigtriangledown}\Pi\text{-views}.$

- Comparison of views in a general setting is easy.
- A database schema ${\bf D}$ has a set $\mathsf{LDB}({\bf D})$ of legal states.
- A view $\Gamma = (\mathbf{V}, \gamma)$ of \mathbf{D} consists of a schema \mathbf{V} together with a surjective morphism $\gamma : \mathsf{LDB}(\mathbf{D}) \to \mathsf{LDB}(\mathbf{V})$.
- The congruence of $\Gamma = (\mathbf{V}, \gamma)$ is $\operatorname{Congr}(\Gamma) = \{(M_1, M_2) \in \operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D}) \mid \gamma(M_1) = \gamma(M_2)\}.$
- Define $\Gamma_1 \leq \Gamma_2$ iff $\text{Congr}(\Gamma_2) \subseteq \text{Congr}(\Gamma_1)$.
- This definition agrees with those given for Π -views and ${\bigtriangledown}\Pi$ -views.
- Thus, view Γ is optimal in a class ${\cal V}$ if its congruence is least over all elements of ${\cal V}.$

- Comparison of views in a general setting is easy.
- A database schema ${\bf D}$ has a set $\mathsf{LDB}({\bf D})$ of legal states.
- A view $\Gamma = (\mathbf{V}, \gamma)$ of \mathbf{D} consists of a schema \mathbf{V} together with a surjective morphism $\gamma : \mathsf{LDB}(\mathbf{D}) \to \mathsf{LDB}(\mathbf{V})$.
- The congruence of $\Gamma = (\mathbf{V}, \gamma)$ is $\operatorname{Congr}(\Gamma) = \{(M_1, M_2) \in \operatorname{LDB}(\mathbf{D}) \times \operatorname{LDB}(\mathbf{D}) \mid \gamma(M_1) = \gamma(M_2)\}.$
- Define $\Gamma_1 \leq \Gamma_2$ iff $\text{Congr}(\Gamma_2) \subseteq \text{Congr}(\Gamma_1)$.
- This definition agrees with those given for $\Pi\text{-views}$ and ${\bigtriangledown}\Pi\text{-views}.$
- Thus, view Γ is optimal in a class ${\cal V}$ if its congruence is least over all elements of ${\cal V}.$
- Such a view is unique up to the isomorphism class defined by congruence.

• A *conjunctive query* on a relational schema is a formula defined using only \land and \exists .

- A *conjunctive query* on a relational schema is a formula defined using only \land and \exists .
- (Single-value) selection, projection, and join are defined by such queries using the relational algebra:

- A *conjunctive query* on a relational schema is a formula defined using only \land and \exists .
- (Single-value) selection, projection, and join are defined by such queries using the relational algebra:

Example: $\pi_{AB}(R[ABC])$ is defined by $(\exists z)(R(x_A, x_B, z))$.

- A *conjunctive query* on a relational schema is a formula defined using only \land and \exists .
- (Single-value) selection, projection, and join are defined by such queries using the relational algebra:

Example: $\pi_{AB}(R[ABC])$ is defined by $(\exists z)(R(x_A, x_B, z))$. *Example*: $\sigma_{A=a}(R[ABC])$ is defined by $R(a, x_B, x_C)$.

- A *conjunctive query* on a relational schema is a formula defined using only \land and \exists .
- (Single-value) selection, projection, and join are defined by such queries using the relational algebra:

Example: $\pi_{AB}(R[ABC])$ is defined by $(\exists z)(R(x_A, x_B, z))$. *Example*: $\sigma_{A=a}(R[ABC])$ is defined by $R(a, x_B, x_C)$.

• These define the $\exists \land +$ -views.

- A *conjunctive query* on a relational schema is a formula defined using only \land and \exists .
- (Single-value) selection, projection, and join are defined by such queries using the relational algebra:

Example: $\pi_{AB}(R[ABC])$ is defined by $(\exists z)(R(x_A, x_B, z))$. *Example*: $\sigma_{A=a}(R[ABC])$ is defined by $R(a, x_B, x_C)$.

- These define the $\exists \land +$ -views.
- A Boolean conjunctive query or $\exists \land +$ -query contains no free variables.

- A *conjunctive query* on a relational schema is a formula defined using only \land and \exists .
- (Single-value) selection, projection, and join are defined by such queries using the relational algebra:

Example: $\pi_{AB}(R[ABC])$ is defined by $(\exists z)(R(x_A, x_B, z))$. *Example*: $\sigma_{A=a}(R[ABC])$ is defined by $R(a, x_B, x_C)$.

- These define the $\exists \land +$ -views.
- A Boolean conjunctive query or $\exists \land +-query$ contains no free variables.
- The tuples in ∃∧+-views correspond to Boolean conjunctive queries on the main schema

- A *conjunctive query* on a relational schema is a formula defined using only \land and \exists .
- (Single-value) selection, projection, and join are defined by such queries using the relational algebra:

Example: $\pi_{AB}(R[ABC])$ is defined by $(\exists z)(R(x_A, x_B, z))$. *Example*: $\sigma_{A=a}(R[ABC])$ is defined by $R(a, x_B, x_C)$.

- These define the $\exists \land +$ -views.
- A Boolean conjunctive query or $\exists \land +-query$ contains no free variables.
- The tuples in ∃∧+-views correspond to Boolean conjunctive queries on the main schema

Example: The tuple (b,c) for the view defined by $\pi_{AB}(R[ABC])$ corresponds to the Boolean query $(\exists z)(R(a, b, z))$.

- A *conjunctive query* on a relational schema is a formula defined using only \land and \exists .
- (Single-value) selection, projection, and join are defined by such queries using the relational algebra:

Example: $\pi_{AB}(R[ABC])$ is defined by $(\exists z)(R(x_A, x_B, z))$. **Example**: $\sigma_{A=a}(R[ABC])$ is defined by $R(a, x_B, x_C)$.

- These define the $\exists \land +$ -views.
- A Boolean conjunctive query or $\exists \land +$ -query contains no free variables.
- The tuples in ∃∧+-views correspond to Boolean conjunctive queries on the main schema

Example: The tuple (b,c) for the view defined by $\pi_{AB}(R[ABC])$ corresponds to the Boolean query $(\exists z)(R(a, b, z))$.

Example: The tuple (a, b, c) for the view defined by $\sigma_{A=a}(R[ABC])$ corresponds to the Boolean query R(a, b, c).

Extensions:

• A limitation of $\exists \land +$ -views is that they recapture only single-valued selection.

Extensions:

• A limitation of $\exists \land +$ -views is that they recapture only single-valued selection.

Example: A selection such as $\sigma_{(A \leq 30)}(R[ABC])$ is not recaptured.

Extensions:

• A limitation of $\exists \land +$ -views is that they recapture only single-valued selection.

Example: A selection such as $\sigma_{(A \leq 30)}(R[ABC])$ is not recaptured.

• The developed framework supports such $\sigma \exists \land +$ -queries for defining views.

Extensions:

• A limitation of $\exists \land +$ -views is that they recapture only single-valued selection.

Example: A selection such as $\sigma_{(A \leq 30)}(R[ABC])$ is not recaptured.

- The developed framework supports such $\sigma \exists \land +$ -queries for defining views.
- Any subset selection is allowed.

Extensions:

• A limitation of $\exists \land +$ -views is that they recapture only single-valued selection.

Example: A selection such as $\sigma_{(A \leq 30)}(R[ABC])$ is not recaptured.

- The developed framework supports such $\sigma \exists \land +$ -queries for defining views.
- Any subset selection is allowed.

Limitations:

• For technical reasons, view definitions which "hide" constants are not allowed.

Extensions:

• A limitation of $\exists \land +$ -views is that they recapture only single-valued selection.

Example: A selection such as $\sigma_{(A \leq 30)}(R[ABC])$ is not recaptured.

- The developed framework supports such $\sigma \exists \land +$ -queries for defining views.
- Any subset selection is allowed.

• For technical reasons, view definitions which "hide" constants are not allowed.

Example: The two definitions $\pi_{BC}(\sigma_{A=a_1}(R[ABC]))$ and $\pi_{BC}(\sigma_{A=a_2}(R[ABC]))$; hide their selection constant in the sense that it is not visible in the view.

• A relation R in a $\sigma \exists \land +$ -view Γ may be represented by the set $\text{DisjRep}\langle \Gamma, R \rangle$ of all $\exists \land +$ -queries which are obtained by grounding its defining formula.

- A relation R in a $\sigma \exists \land +$ -view Γ may be represented by the set $\text{DisjRep}\langle \Gamma, R \rangle$ of all $\exists \land +$ -queries which are obtained by grounding its defining formula.
- In this approach, each Boolean query corresponds to a possible view tuple.

- A relation R in a $\sigma \exists \land +$ -view Γ may be represented by the set $\text{DisjRep}\langle \Gamma, R \rangle$ of all $\exists \land +$ -queries which are obtained by grounding its defining formula.
- In this approach, each Boolean query corresponds to a possible view tuple.

Example: The view defined by $\pi_{AB}(R[ABC])$ corresponds to the set $\{(\exists z)(R(a, b, z)) \mid a, b, \in Const\}.$

- A relation R in a $\sigma \exists \land +$ -view Γ may be represented by the set $\text{DisjRep}\langle \Gamma, R \rangle$ of all $\exists \land +$ -queries which are obtained by grounding its defining formula.
- In this approach, each Boolean query corresponds to a possible view tuple.

Example: The view defined by $\pi_{AB}(R[ABC])$ corresponds to the set $\{(\exists z)(R(a, b, z)) \mid a, b, \in Const\}.$

Example: The view defined by $\sigma_{A=a}(R[ABC])$ corresponds to the set $\{(R(a, b, c)) \mid b, c \in Const\}.$

- A relation R in a $\sigma \exists \land +$ -view Γ may be represented by the set $\text{DisjRep}\langle \Gamma, R \rangle$ of all $\exists \land +$ -queries which are obtained by grounding its defining formula.
- In this approach, each Boolean query corresponds to a possible view tuple.

Example: The view defined by $\pi_{AB}(R[ABC])$ corresponds to the set $\{(\exists z)(R(a, b, z)) \mid a, b, \in \mathsf{Const}\}.$

Example: The view defined by $\sigma_{A=a}(R[ABC])$ corresponds to the set $\{(R(a, b, c)) \mid b, c \in Const\}.$

Example: The view defined by $\sigma_{A \in S}(R[ABC])$ corresponds to the set $\{(R(a, b, c)) \mid (a \in S) \land (b, c \in Const)\}.$

- A relation R in a $\sigma \exists \land +$ -view Γ may be represented by the set $\text{DisjRep}\langle \Gamma, R \rangle$ of all $\exists \land +$ -queries which are obtained by grounding its defining formula.
- In this approach, each Boolean query corresponds to a possible view tuple.

Example: The view defined by $\pi_{AB}(R[ABC])$ corresponds to the set $\{(\exists z)(R(a, b, z)) \mid a, b, \in \mathsf{Const}\}.$

Example: The view defined by $\sigma_{A=a}(R[ABC])$ corresponds to the set $\{(R(a, b, c)) \mid b, c \in Const\}.$

Example: The view defined by $\sigma_{A \in S}(R[ABC])$ corresponds to the set $\{(R(a, b, c)) \mid (a \in S) \land (b, c \in Const)\}.$

• The goal is to be able to represent all relations in the view using a single set of Boolean queries.

- A relation R in a $\sigma \exists \land +$ -view Γ may be represented by the set $\text{DisjRep}\langle \Gamma, R \rangle$ of all $\exists \land +$ -queries which are obtained by grounding its defining formula.
- In this approach, each Boolean query corresponds to a possible view tuple.

Example: The view defined by $\pi_{AB}(R[ABC])$ corresponds to the set $\{(\exists z)(R(a, b, z)) \mid a, b, \in \mathsf{Const}\}.$

Example: The view defined by $\sigma_{A=a}(R[ABC])$ corresponds to the set $\{(R(a, b, c)) \mid b, c \in Const\}.$

Example: The view defined by $\sigma_{A \in S}(R[ABC])$ corresponds to the set $\{(R(a, b, c)) \mid (a \in S) \land (b, c \in Const)\}.$

- The goal is to be able to represent all relations in the view using a single set of Boolean queries.
- This means that the view relation must be recoverable from information in the Boolean query.
The Representation of $\sigma \exists \land +$ -Views using sets of Boolean Queries

- A relation R in a $\sigma \exists \land +$ -view Γ may be represented by the set $\text{DisjRep}\langle \Gamma, R \rangle$ of all $\exists \land +$ -queries which are obtained by grounding its defining formula.
- In this approach, each Boolean query corresponds to a possible view tuple.

Example: The view defined by $\pi_{AB}(R[ABC])$ corresponds to the set $\{(\exists z)(R(a, b, z)) \mid a, b, \in \mathsf{Const}\}.$

Example: The view defined by $\sigma_{A=a}(R[ABC])$ corresponds to the set $\{(R(a, b, c)) \mid b, c \in Const\}.$

Example: The view defined by $\sigma_{A \in S}(R[ABC])$ corresponds to the set $\{(R(a, b, c)) \mid (a \in S) \land (b, c \in Const)\}.$

- The goal is to be able to represent all relations in the view using a single set of Boolean queries.
- This means that the view relation must be recoverable from information in the Boolean query.
- The $\exists \land +$ -formula defining the view is called its *pattern*.

The Representation of $\sigma \exists \land +$ -Views using sets of Boolean Queries

- A relation R in a $\sigma \exists \land +$ -view Γ may be represented by the set $\text{DisjRep}\langle \Gamma, R \rangle$ of all $\exists \land +$ -queries which are obtained by grounding its defining formula.
- In this approach, each Boolean query corresponds to a possible view tuple.

Example: The view defined by $\pi_{AB}(R[ABC])$ corresponds to the set $\{(\exists z)(R(a, b, z)) \mid a, b, \in \mathsf{Const}\}.$

Example: The view defined by $\sigma_{A=a}(R[ABC])$ corresponds to the set $\{(R(a, b, c)) \mid b, c \in Const\}.$

Example: The view defined by $\sigma_{A \in S}(R[ABC])$ corresponds to the set $\{(R(a, b, c)) \mid (a \in S) \land (b, c \in Const)\}.$

- The goal is to be able to represent all relations in the view using a single set of Boolean queries.
- This means that the view relation must be recoverable from information in the Boolean query.
- The $\exists \land +$ -formula defining the view is called its *pattern*.
- Each Boolean query must correspond to a single pattern.

 A concrete view is defined in the usual way, using the relational calculus restricted to the σ∃∧+-context.

Concrete and Abstract Views

- A concrete view is defined in the usual way, using the relational calculus restricted to the σ∃∧+-context.
- An *abstract view* consists of a set of Boolean queries, subject to the constraint that it is of *finite pattern index*.

- A concrete view is defined in the usual way, using the relational calculus restricted to the σ∃∧+-context.
- An *abstract view* consists of a set of Boolean queries, subject to the constraint that it is of *finite pattern index*.
 - This means that there is a finite set of patterns, and each of the queries matches one of those patterns.

- A concrete view is defined in the usual way, using the relational calculus restricted to the σ∃∧+-context.
- An *abstract view* consists of a set of Boolean queries, subject to the constraint that it is of *finite pattern index*.
 - This means that there is a finite set of patterns, and each of the queries matches one of those patterns.
 - This property is essential for recovering a concrete view from an abstract one.

- A concrete view is defined in the usual way, using the relational calculus restricted to the σ∃∧+-context.
- An *abstract view* consists of a set of Boolean queries, subject to the constraint that it is of *finite pattern index*.
 - This means that there is a finite set of patterns, and each of the queries matches one of those patterns.
 - This property is essential for recovering a concrete view from an abstract one.

Theorem; There is a natural correspondence between concrete and abstract views.

• Write $\varphi_1 \equiv_{\mathbf{D}} \varphi_2$ if the two Boolean queries have the same truth value on every $M \in \mathsf{LDB}(\mathbf{D})$.

• Write $\varphi_1 \equiv_{\mathbf{D}} \varphi_2$ if the two Boolean queries have the same truth value on every $M \in \text{LDB}(\mathbf{D})$.

Example: $R(a, b, c) \equiv_{\mathbf{D}} (\exists z)(R(a, b, z) \land (\exists x)(R(x, b, c)))$ if the JD $\bowtie [AB, BC]$ holds.

• Write $[\varphi]$ for the induced equivalence class on φ .

• Write $\varphi_1 \equiv_{\mathbf{D}} \varphi_2$ if the two Boolean queries have the same truth value on every $M \in \text{LDB}(\mathbf{D})$.

- Write $[\varphi]$ for the induced equivalence class on φ .
- Write $[\varphi_1] \sqsubseteq_{\mathbf{D}} [\varphi_2]$ if $[\varphi_2]$ is true on \mathbf{D} whenever $[\varphi_1]$ is.

• Write $\varphi_1 \equiv_{\mathbf{D}} \varphi_2$ if the two Boolean queries have the same truth value on every $M \in \text{LDB}(\mathbf{D})$.

- Write $[\varphi]$ for the induced equivalence class on φ .
- Write $[\varphi_1] \sqsubseteq_{\equiv \mathbf{D}} [\varphi_2]$ if $[\varphi_2]$ is true on \mathbf{D} whenever $[\varphi_1]$ is.
- This set forms a meet semilattice with top element [false] and bottom element [true].

• Write $\varphi_1 \equiv_{\mathbf{D}} \varphi_2$ if the two Boolean queries have the same truth value on every $M \in \text{LDB}(\mathbf{D})$.

- Write $[\varphi]$ for the induced equivalence class on φ .
- Write $[\varphi_1] \sqsubseteq_{\equiv \mathbf{D}} [\varphi_2]$ if $[\varphi_2]$ is true on \mathbf{D} whenever $[\varphi_1]$ is.
- This set forms a meet semilattice with top element [false] and bottom element [true].
- The key idea is to look for a *decomposition* basis in this semilattice. Roughly, a sentence is in the decomposition basis if

• Write $\varphi_1 \equiv_{\mathbf{D}} \varphi_2$ if the two Boolean queries have the same truth value on every $M \in \text{LDB}(\mathbf{D})$.

- Write $[\varphi]$ for the induced equivalence class on φ .
- Write $[\varphi_1] \sqsubseteq_{\equiv \mathbf{D}} [\varphi_2]$ if $[\varphi_2]$ is true on \mathbf{D} whenever $[\varphi_1]$ is.
- This set forms a meet semilattice with top element [false] and bottom element [true].
- The key idea is to look for a *decomposition* basis in this semilattice. Roughly, a sentence is in the decomposition basis if
 - it is a useful in a nontrivial way in the representation of a tuple as a join, and

• Write $\varphi_1 \equiv_{\mathbf{D}} \varphi_2$ if the two Boolean queries have the same truth value on every $M \in \text{LDB}(\mathbf{D})$.

- Write $[\varphi]$ for the induced equivalence class on φ .
- Write $[\varphi_1] \sqsubseteq_{\equiv \mathbf{D}} [\varphi_2]$ if $[\varphi_2]$ is true on \mathbf{D} whenever $[\varphi_1]$ is.
- This set forms a meet semilattice with top element [false] and bottom element [true].
- The key idea is to look for a *decomposition* basis in this semilattice. Roughly, a sentence is in the decomposition basis if
 - it is a useful in a nontrivial way in the representation of a tuple as a join, and
 - it cannot be further decomposed in a nontrivial way.

• Write $\varphi_1 \equiv_{\mathbf{D}} \varphi_2$ if the two Boolean queries have the same truth value on every $M \in \text{LDB}(\mathbf{D})$.

Example: $R(a, b, c) \equiv_{\mathbf{D}} (\exists z)(R(a, b, z) \land (\exists x)(R(x, b, c)))$ if the JD $\bowtie [AB, BC]$ holds.

- Write $[\varphi]$ for the induced equivalence class on φ .
- Write $[\varphi_1] \sqsubseteq_{\equiv \mathbf{D}} [\varphi_2]$ if $[\varphi_2]$ is true on \mathbf{D} whenever $[\varphi_1]$ is.
- This set forms a meet semilattice with top element [false] and bottom element [true].
- The key idea is to look for a *decomposition* basis in this semilattice. Roughly, a sentence is in the decomposition basis if
 - it is a useful in a nontrivial way in the representation of a tuple as a join, and
 - it cannot be further decomposed in a nontrivial way.

Example: For the schema R[ABC] constrained by $\bowtie [AB, BC]$, the decomposition basis consists of elements of the form $(\exists z)(R(a, b, z))$ and $(\exists x)(R(x, b, c))$.

- Let $\Gamma = (\mathbf{V}, \gamma)$ be the view whose optimal complement is to be determined.
 - All elements of the decomposition basis which "fit" into Γ are "placed" there.

- All elements of the decomposition basis which "fit" into Γ are "placed" there.
 - In the case of a JD, this corresponds to identifying those projections which are subsumed by some projection of the JD.

- All elements of the decomposition basis which "fit" into Γ are "placed" there.
 - In the case of a JD, this corresponds to identifying those projections which are subsumed by some projection of the JD.
- All other elements of the decomposition basis are used to generate a complement.
 - In the case of a JD, this corresponds to generating a complement from all projections of the JD which are not subsumed by the view to be complemented.

- All elements of the decomposition basis which "fit" into Γ are "placed" there.
 - In the case of a JD, this corresponds to identifying those projections which are subsumed by some projection of the JD.
- All other elements of the decomposition basis are used to generate a complement.
 - In the case of a JD, this corresponds to generating a complement from all projections of the JD which are not subsumed by the view to be complemented.
- The condition for optimality of a complement is that upon ultimate decompositions of tuples using the decomposition basis are unique.

- All elements of the decomposition basis which "fit" into Γ are "placed" there.
 - In the case of a JD, this corresponds to identifying those projections which are subsumed by some projection of the JD.
- All other elements of the decomposition basis are used to generate a complement.
 - In the case of a JD, this corresponds to generating a complement from all projections of the JD which are not subsumed by the view to be complemented.
- The condition for optimality of a complement is that upon ultimate decompositions of tuples using the decomposition basis are unique.
 - In the context of a single JD, this reduces exactly to that JD being nonredundant.

- All elements of the decomposition basis which "fit" into Γ are "placed" there.
 - In the case of a JD, this corresponds to identifying those projections which are subsumed by some projection of the JD.
- All other elements of the decomposition basis are used to generate a complement.
 - In the case of a JD, this corresponds to generating a complement from all projections of the JD which are not subsumed by the view to be complemented.
- The condition for optimality of a complement is that upon ultimate decompositions of tuples using the decomposition basis are unique.
 - In the context of a single JD, this reduces exactly to that JD being nonredundant.
- There are of course many details which have been omitted.

• A study of the notion of optimal complements for views of relational schemata has been initiated.

- A study of the notion of optimal complements for views of relational schemata has been initiated.
- A simple and concrete representation for complements of views defined via projections has been developed fully.

- A study of the notion of optimal complements for views of relational schemata has been initiated.
- A simple and concrete representation for complements of views defined via projections has been developed fully.
- If the governing JD is dependency preserving, then this representation furthermore produces meet complements and so is appropriate for the constant-complement update strategy.

- A study of the notion of optimal complements for views of relational schemata has been initiated.
- A simple and concrete representation for complements of views defined via projections has been developed fully.
- If the governing JD is dependency preserving, then this representation furthermore produces meet complements and so is appropriate for the constant-complement update strategy.
- It identifies in particular the situations in which all of the updates on a view which are supportable via constant-complement are supportable via a single complement, and hence via a single update strategy.

- A study of the notion of optimal complements for views of relational schemata has been initiated.
- A simple and concrete representation for complements of views defined via projections has been developed fully.
- If the governing JD is dependency preserving, then this representation furthermore produces meet complements and so is appropriate for the constant-complement update strategy.
- It identifies in particular the situations in which all of the updates on a view which are supportable via constant-complement are supportable via a single complement, and hence via a single update strategy.
- A more general theory, not restricted to projections but rather based upon information and Boolean queries has also been developed.

- A study of the notion of optimal complements for views of relational schemata has been initiated.
- A simple and concrete representation for complements of views defined via projections has been developed fully.
- If the governing JD is dependency preserving, then this representation furthermore produces meet complements and so is appropriate for the constant-complement update strategy.
- It identifies in particular the situations in which all of the updates on a view which are supportable via constant-complement are supportable via a single complement, and hence via a single update strategy.
- A more general theory, not restricted to projections but rather based upon information and Boolean queries has also been developed.
- That theory provides a beginning to a more general theory but leaves several further directions.

Further Directions

Effective identification of meet complements:

Further Directions

Effective identification of meet complements:

• The constant-complement update strategy requires meet complements.

- The constant-complement update strategy requires meet complements.
- This is equivalent to the dependency preservation of the decomposition.

- The constant-complement update strategy requires meet complements.
- This is equivalent to the dependency preservation of the decomposition.
- An effective means to check this property for more general classes of constraints and views is needed.

- The constant-complement update strategy requires meet complements.
- This is equivalent to the dependency preservation of the decomposition.
- An effective means to check this property for more general classes of constraints and views is needed.

- The constant-complement update strategy requires meet complements.
- This is equivalent to the dependency preservation of the decomposition.
- An effective means to check this property for more general classes of constraints and views is needed.

Explicit development of a theory of decomposition which includes selection:

• A simple theory for $\ensuremath{\bigvee} \Pi$ -views has been developed.

- The constant-complement update strategy requires meet complements.
- This is equivalent to the dependency preservation of the decomposition.
- An effective means to check this property for more general classes of constraints and views is needed.

- A simple theory for $\ensuremath{\bigvee} \Pi$ -views has been developed.
- It rests upon well-known results for Π -views and basic dependencies.

- The constant-complement update strategy requires meet complements.
- This is equivalent to the dependency preservation of the decomposition.
- An effective means to check this property for more general classes of constraints and views is needed.

- A simple theory for $\ensuremath{\bigvee} \Pi$ -views has been developed.
- It rests upon well-known results for Π -views and basic dependencies.
- An expanded framework which includes views defined by selection is suggested.

- The constant-complement update strategy requires meet complements.
- This is equivalent to the dependency preservation of the decomposition.
- An effective means to check this property for more general classes of constraints and views is needed.

- A simple theory for $\ensuremath{\bigvee} \Pi$ -views has been developed.
- It rests upon well-known results for Π -views and basic dependencies.
- An expanded framework which includes views defined by selection is suggested.