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The Update Problem for Database Views
1 / 26


 On the underlying states, the view map-ping is generally surje
tive (onto) butnot inje
tive (one-to-one).


 Thus, a view update has many possiblere�e
tions to the main s
hema.
 The problem of identifying a suitable re-�e
tion is known as the update transla-tion problem or update re�e
tion prob-lem.
 With a reasonable de�nition of suitabil-ity, it may not be the 
ase that everyview update has a suitable translation.
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The Gold Standard � the Constant-Complement Strategy
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 In the 
onstant-
omplement strategy[Ban
ilhon and Spyratos 81℄, [Hegner 04AMAI℄, the main s
hema is de
omposed intotwo meet-
omplementary views.
 One is isomorphi
 to the view s
hema and tra
ksits updates exa
tly.
 The other is held 
onstant for all updates to theview.
 Although it is somewhat limited in the view up-dates whi
h it allows, they are supported in anoptimal manner.
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an be shown [Hegner 03 AMAI℄ that this strategy is pre
isely that whi
h avoidsall update anomalies.
 However, this is 
ompli
ated by the 
omplement uniqueness problem.
 Some examples will help illustrate these ideas.
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 Consider the 
lassi
al example to the right.


 A natural 
omplement to the -proje
tion is the-proje
tion.
 The de
omposed s
hema b has relationsymbols r s and r s; the legal database areall states whi
h are join 
ompatible on .
 The de
omposition mapping Ñ b ,and is always bije
tive for 
omplements.
 The re
onstru
tion mapping b Ñis the inverse of the de
omposition mapping. It isthe natural join in this 
ase.
 The view whi
h is the proje
tion on is the meet ofand , and is pre
isely that whi
h must beheld 
onstant under a 
onstant-
omplement update.

Main S
hema E1Constraint: 1 rAB,BCs
RrABCs
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a1 b1 c1

R1rABs
πAB
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 Given is the following two-relation main s
hema.


 The view s
hema to be updated is thatwhi
h preserves r s but dis
ards r s.
 The natural 
omplement is the s
hemawhi
h preserves r s but dis
ards r s.
 With 
onstant, all updates to r s are al-lowed.
 Clearly, this is the only reasonable update strat-egy for .
 However, does not de�ne the only 
omple-ment.
 Without further restri
tions, 
omplements arealmost never unique.
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An Alternate Complement
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 The main s
hema is un
hanged.


 The view s
hema to be updated is also thesame.
 An alternative 
omplement is de�ned by thesymmetri
 di�eren
e:r s � p r sz r sq Y p r sz r sq
 With this alternative 
omplement, the updatestrategy is di�erent � r s is altered.
 Clearly, this is not a desirable 
omplement.Question: How 
an these two 
omplements be dis-tinguished formally?
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The Su�
ien
y of Monotoni
ity
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 Note that the symmetri
 di�eren
e mapping is not monotoni
 with respe
t to thenatural order of database states.

Theorem: If the view to be updated and is de�ned by a monotoni
 morphism, thenthe re�e
tion of a given view update to the main s
hema is independent of the
hoi
e of 
omplement, provided that the 
omplement is also de�ned by amonotoni
 morphism.Proof: [Hegner 04 AMAI℄, [Hegner 08 SDKB℄, [Hegner 09 LID℄, [Hegner 10 JUCS℄However: It is not ne
essarily the 
ase that all su
h view updates may be realizedusing the same 
omplement.
 It is useful to illustrate with a simple example.
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Context: A universal relational s
hema RrUs 
onstrained by some dependen
ies F .


 A -view is de�ned by a single proje
tion.Notation: is the proje
tion onto attribute set .
 Proje
tive views may be 
ompared via their attributes.¨ i� � p � q
 Given a proje
tive view , a 
omplement 1 is
 minimal if for no other 
omplement 2 is it the 
ase that 2 � 1;
 optimal if for every other 
omplement 2 it is the 
ase that 1 � 2.
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 Let RrUs be universal relational s
hema 
onstrained by some dependen
ies F .


 A governing JD is a representation of all JDs whi
h hold on the s
hema.
 More pre
isely, 
all a join dependen
y (JD) r s on r s governing(w.r.t. ) if it de�nes a lossless de
omposition of r s satisfying the followingproperties:
 full: Y Y � ;
 entailed: ( r s;
 
overing: r s ( for every entailed JD (full or embedded) .Example: For p r s with � t Ñ Ñ u,the JD r s is governing.Example: For p r s with � t r su, there is no (nontrivial)governing JD.
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 To address the non-uniqueness of 
omplements illustrated in examples, thefollowing 
ondition is introdu
ed for the JD 1 rU1, . . . ,Uks:


 nonredundant: for no proper � t u is r s both entailed and full.
 There are two �avors of redundan
y:
 r s is trivially redundant (not normalized) if � for somedistin
t .
 This �avor of redundan
y is �trivial� in the sense that it 
an be dete
tedwithout any further knowledge of the underlying dependen
ies.
 It may always be removed without 
hanging the semanti
s.Example: r s is trivially redundant.
 Otherwise, redundan
y is essential and must be determined by examining theunderlying dependen
ies.Example: For r s with � t Ñ Ñ u,the JD r s is governing but essentially redundant,sin
e r s (as well as r s) is both entailed and full.
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omplement allows no updates at all under the
onstant-
omplement strategy.
 However, some updates are 
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 Let � t p q p qu be the 
urrent state of themain s
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 Consider the update p 1q to with � t p q p qu. and1 � t p q p qu.
 The re�e
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omplement re�e
tion of p 1q with 
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 _ and _ are meet 
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.



Complements of �Π-views

13 / 26

Context: Universal relational s
hema RrUs 
onstrained by some dependen
ies F ;Nonredundant governing JD 1 rAs with A
def� tUi | 1 ¤ i ¤ ku.
 A �Π-view is de�ned by a set of proje
tions on a (universal) relational s
hema.

Example and notation: _ ��t | P t uu.Theorem: For any partition t u of , �t | P u and �t | P uare 
omplements. They are furthermore meet 
omplements if the JD isdependen
y preserving.Example 
ontext: r s Ñ Ñ Ñ (r s is governing and nonredundant.
 _ and _ are meet 
omplements.
 Note that _ �_ � ; they are not even isomorphi
.



Complements of �Π-views

13 / 26

Context: Universal relational s
hema RrUs 
onstrained by some dependen
ies F ;Nonredundant governing JD 1 rAs with A
def� tUi | 1 ¤ i ¤ ku.
 A �Π-view is de�ned by a set of proje
tions on a (universal) relational s
hema.Example and notation: ΠABC _ ΠDE ��tΠY | Y P tABC,DEuu.

Theorem: For any partition t u of , �t | P u and �t | P uare 
omplements. They are furthermore meet 
omplements if the JD isdependen
y preserving.Example 
ontext: r s Ñ Ñ Ñ (r s is governing and nonredundant.
 _ and _ are meet 
omplements.
 Note that _ �_ � ; they are not even isomorphi
.



Complements of �Π-views

13 / 26

Context: Universal relational s
hema RrUs 
onstrained by some dependen
ies F ;Nonredundant governing JD 1 rAs with A
def� tUi | 1 ¤ i ¤ ku.
 A �Π-view is de�ned by a set of proje
tions on a (universal) relational s
hema.Example and notation: ΠABC _ ΠDE ��tΠY | Y P tABC,DEuu.Theorem: For any partition tA1,A2u of A, �tΠY | Y P A1u and �tΠY | Y P A2uare 
omplements. They are furthermore meet 
omplements if the JD isdependen
y preserving. 2

Example 
ontext: r s Ñ Ñ Ñ (r s is governing and nonredundant.
 _ and _ are meet 
omplements.
 Note that _ �_ � ; they are not even isomorphi
.



Complements of �Π-views

13 / 26

Context: Universal relational s
hema RrUs 
onstrained by some dependen
ies F ;Nonredundant governing JD 1 rAs with A
def� tUi | 1 ¤ i ¤ ku.
 A �Π-view is de�ned by a set of proje
tions on a (universal) relational s
hema.Example and notation: ΠABC _ ΠDE ��tΠY | Y P tABC,DEuu.Theorem: For any partition tA1,A2u of A, �tΠY | Y P A1u and �tΠY | Y P A2uare 
omplements. They are furthermore meet 
omplements if the JD isdependen
y preserving. 2Example 
ontext: RrABCDEs C Ñ D D Ñ E E Ñ F (

1 rABC,CD,DE,EF s is governing and nonredundant.


 _ and _ are meet 
omplements.
 Note that _ �_ � ; they are not even isomorphi
.



Complements of �Π-views

13 / 26

Context: Universal relational s
hema RrUs 
onstrained by some dependen
ies F ;Nonredundant governing JD 1 rAs with A
def� tUi | 1 ¤ i ¤ ku.
 A �Π-view is de�ned by a set of proje
tions on a (universal) relational s
hema.Example and notation: ΠABC _ ΠDE ��tΠY | Y P tABC,DEuu.Theorem: For any partition tA1,A2u of A, �tΠY | Y P A1u and �tΠY | Y P A2uare 
omplements. They are furthermore meet 
omplements if the JD isdependen
y preserving. 2Example 
ontext: RrABCDEs C Ñ D D Ñ E E Ñ F (

1 rABC,CD,DE,EF s is governing and nonredundant.
 ΠABC _ΠDE and ΠCD _ ΠEF are meet 
omplements.


 Note that _ �_ � ; they are not even isomorphi
.



Complements of �Π-views

13 / 26

Context: Universal relational s
hema RrUs 
onstrained by some dependen
ies F ;Nonredundant governing JD 1 rAs with A
def� tUi | 1 ¤ i ¤ ku.
 A �Π-view is de�ned by a set of proje
tions on a (universal) relational s
hema.Example and notation: ΠABC _ ΠDE ��tΠY | Y P tABC,DEuu.Theorem: For any partition tA1,A2u of A, �tΠY | Y P A1u and �tΠY | Y P A2uare 
omplements. They are furthermore meet 
omplements if the JD isdependen
y preserving. 2Example 
ontext: RrABCDEs C Ñ D D Ñ E E Ñ F (

1 rABC,CD,DE,EF s is governing and nonredundant.
 ΠABC _ΠDE and ΠCD _ ΠEF are meet 
omplements.
 Note that ΠABC _ ΠDE � ΠABCDE

ΠCD _ ΠEF � ΠCDEF ; they are not even isomorphi
.



Comparison of �Π-
omplements

14 / 26

Context: Universal relational s
hema RrUs 
onstrained by some dependen
ies F ;Nonredundant governing JD 1 rAs with A
def� tUi | 1 ¤ i ¤ ku.


 A �rst attempt at a de�nition of 
omparison:ªt | P u ¨ªt | P u i� p� P qpD 1 P qp � 1qCounterexample: r s Ñ Ñ ( r s.Sin
e the embedded JD r s is implied, is e�e
tively the sameas _ .
 A better de�nition of 
omparison: every LHS attribute set is a subset of a validjoin of a RHS set.ªt | P u ¨ªt | P u i�p� P qpD � qpp r s validq ^ p �¤ qq



Comparison of �Π-
omplements

14 / 26

Context: Universal relational s
hema RrUs 
onstrained by some dependen
ies F ;Nonredundant governing JD 1 rAs with A
def� tUi | 1 ¤ i ¤ ku.
 A �rst attempt at a de�nition of 
omparison:ªtΠY | Y P B1u ¨ªtΠY | Y P B2u i� p�Y P B1qpDY1 P B2qpY � Y

1q.

Counterexample: r s Ñ Ñ ( r s.Sin
e the embedded JD r s is implied, is e�e
tively the sameas _ .
 A better de�nition of 
omparison: every LHS attribute set is a subset of a validjoin of a RHS set.ªt | P u ¨ªt | P u i�p� P qpD � qpp r s validq ^ p �¤ qq



Comparison of �Π-
omplements

14 / 26

Context: Universal relational s
hema RrUs 
onstrained by some dependen
ies F ;Nonredundant governing JD 1 rAs with A
def� tUi | 1 ¤ i ¤ ku.
 A �rst attempt at a de�nition of 
omparison:ªtΠY | Y P B1u ¨ªtΠY | Y P B2u i� p�Y P B1qpDY1 P B2qpY � Y

1q.Counterexample: RrABCDEs C Ñ D D Ñ E ( 1 rABC,CD,DEs.Sin
e the embedded JD 1 rABC,CDs is implied, ΠABCD is e�e
tively the sameas ΠABC _ΠCD.


 A better de�nition of 
omparison: every LHS attribute set is a subset of a validjoin of a RHS set.ªt | P u ¨ªt | P u i�p� P qpD � qpp r s validq ^ p �¤ qq



Comparison of �Π-
omplements

14 / 26

Context: Universal relational s
hema RrUs 
onstrained by some dependen
ies F ;Nonredundant governing JD 1 rAs with A
def� tUi | 1 ¤ i ¤ ku.
 A �rst attempt at a de�nition of 
omparison:ªtΠY | Y P B1u ¨ªtΠY | Y P B2u i� p�Y P B1qpDY1 P B2qpY � Y

1q.Counterexample: RrABCDEs C Ñ D D Ñ E ( 1 rABC,CD,DEs.Sin
e the embedded JD 1 rABC,CDs is implied, ΠABCD is e�e
tively the sameas ΠABC _ΠCD.
 A better de�nition of 
omparison: every LHS attribute set is a subset of a validjoin of a RHS set.ªtΠY | Y P B1u ¨ªtΠY | Y P B2u i�p�Y P B1qpDB3 � B2qpp1 rB3s validq ^ pY �¤B3qq.



Optimal �Π-
omplements

15 / 26

Context: Universal relational s
hema RrUs 
onstrained by some dependen
ies F ;Nonredundant governing JD 1 rAs with A
def� tUi | 1 ¤ i ¤ ku.ªtΠY | Y P B1u ¨ªtΠY | Y P B2u i�p�Y P B1qpDB3 � B2qpp1 rB3s validq ^ pY �¤B3qq.


 �t | P u, is an optimal 
omplement of �t | P u if�t | P u ¨ �t | P ufor every other � -
omplement �t | P u,
 For � , de�ne x y � t P | � u.Theorem: �t | P x yu is an optimal � -
omplement of .



Optimal �Π-
omplements

15 / 26

Context: Universal relational s
hema RrUs 
onstrained by some dependen
ies F ;Nonredundant governing JD 1 rAs with A
def� tUi | 1 ¤ i ¤ ku.ªtΠY | Y P B1u ¨ªtΠY | Y P B2u i�p�Y P B1qpDB3 � B2qpp1 rB3s validq ^ pY �¤B3qq.


 �tΠY | Y P B2u, is an optimal 
omplement of �tΠY | Y P B1u if�tΠY | Y P B2u ¨ �tΠY | Y P B3ufor every other �Π-
omplement �tΠY | Y P B3u,


 For � , de�ne x y � t P | � u.Theorem: �t | P x yu is an optimal � -
omplement of .



Optimal �Π-
omplements

15 / 26

Context: Universal relational s
hema RrUs 
onstrained by some dependen
ies F ;Nonredundant governing JD 1 rAs with A
def� tUi | 1 ¤ i ¤ ku.ªtΠY | Y P B1u ¨ªtΠY | Y P B2u i�p�Y P B1qpDB3 � B2qpp1 rB3s validq ^ pY �¤B3qq.


 �tΠY | Y P B2u, is an optimal 
omplement of �tΠY | Y P B1u if�tΠY | Y P B2u ¨ �tΠY | Y P B3ufor every other �Π-
omplement �tΠY | Y P B3u,
 For W � U, de�ne JComplxW,Ay � tUi P A | Ui � Wu.Theorem: �tΠUi

| Ui P JComplxW,Ayu is an optimal �Π-
omplement of ΠW . 2



Issues with �Π-
omplements

16 / 26


 For a wide variety of 
onstraints on the main s
hema, the 
onstraints on a Π-vieware well behaved �rst-order database dependen
ies [Fagin 82 JACM℄[Hull 84 JACM℄.


 For � -views, the situation is very di�erent.Example 
ontext 
ontinued: r s Ñ Ñ ( r s.
 On _ , the 
onstraint p q ¤ p q holds.
 It is not even �rst order for in�nite databases.
 Fortunately, it does not matter.
 The truth value of su
h 
onstraints is never altered by a 
onstant-
omplementupdate [Hegner 06 AMAI℄.
 Only �simple� 
onstraints must be 
he
ked for an update.
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tions
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Goal: Carry the theory of optimal 
omplements beyond proje
tions.


 At least in
lude sele
tions, and preferably joins.Prin
iples: Look for a more general theory, as opposed to an approa
h based uponindividual 
ases.General 
ontexts:
 For general prin
iples of s
hemata and views, for the de�nition of optimality:a simple set-based 
ontext.
 For the 
hara
terization of views, information based upon Boolean queries.
 For de
omposition, the information semilatti
e of equivalen
e 
lasses ofBoolean queries on the main s
hema.
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 Comparison of views in a general setting is easy.


 A database s
hema has a set p q of legal states.
 A view � p q of 
onsists of a s
hematogether with a surje
tive morphism p q Ñ p q.
 The 
ongruen
e of � p q isp q � tp q P p q � p q | p q � p qu.
 De�ne ¨ i� p q � p q.
 This de�nition agrees with those given for -views and � -views.
 Thus, view is optimal in a 
lass if its 
ongruen
e is least over all elements of.
 Su
h a view is unique up to the isomorphism 
lass de�ned by 
ongruen
e.
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 A 
onjun
tive query on a relational s
hema is a formula de�ned using only ^ and D.


 (Single-value) sele
tion, proje
tion, and join are de�ned by su
h queries using therelational algebra:Example: p r sq is de�ned by pD qp p qq.Example: � p r sq is de�ned by p q.
 These de�ne the D^�-views.
 A Boolean 
onjun
tive query or D^�-query 
ontains no free variables.
 The tuples in D^�-views 
orrespond to Boolean 
onjun
tive queries on the mains
hemaExample: The tuple p q for the view de�ned by p r sq 
orresponds tothe Boolean query pD qp p qq.Example: The tuple p q for the view de�ned by � p r sq 
orrespondsto the Boolean query p q.
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Extensions:
 A limitation of D^�-views is that they re
apture only single-valued sele
tion.

Example: A sele
tion su
h as p ¤ qp r sq is not re
aptured.
 The developed framework supports su
h D^�-queries for de�ning views.
 Any subset sele
tion is allowed.Limitations:
 For te
hni
al reasons, view de�nitions whi
h �hide� 
onstants are not allowed.Example: The two de�nitions p � p r sq and p � p r sq;hide their sele
tion 
onstant in the sense that it is not visible in the view.
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 A relation R in a σD^�-view Γ may be represented by the set DisjRepxΓ, Ry of allD^�-queries whi
h are obtained by grounding its de�ning formula.


 In this approa
h, ea
h Boolean query 
orresponds to a possible view tuple.Example: The view de�ned by p r sq 
orresponds to the settpD qp p qq | P u.Example: The view de�ned by � p r sq 
orresponds to the settp p qq | P u.Example: The view de�ned by P p r sq 
orresponds to the settp p qq | p P q^p P qu.
 The goal is to be able to represent all relations in the view using a single set ofBoolean queries.
 This means that the view relation must be re
overable from information in theBoolean query.
 The D^�-formula de�ning the view is 
alled its pattern.
 Ea
h Boolean query must 
orrespond to a single pattern.



The Representation of σD^�-Views using sets of Boolean Queries
21 / 26


 A relation R in a σD^�-view Γ may be represented by the set DisjRepxΓ, Ry of allD^�-queries whi
h are obtained by grounding its de�ning formula.
 In this approa
h, ea
h Boolean query 
orresponds to a possible view tuple.

Example: The view de�ned by p r sq 
orresponds to the settpD qp p qq | P u.Example: The view de�ned by � p r sq 
orresponds to the settp p qq | P u.Example: The view de�ned by P p r sq 
orresponds to the settp p qq | p P q^p P qu.
 The goal is to be able to represent all relations in the view using a single set ofBoolean queries.
 This means that the view relation must be re
overable from information in theBoolean query.
 The D^�-formula de�ning the view is 
alled its pattern.
 Ea
h Boolean query must 
orrespond to a single pattern.



The Representation of σD^�-Views using sets of Boolean Queries
21 / 26


 A relation R in a σD^�-view Γ may be represented by the set DisjRepxΓ, Ry of allD^�-queries whi
h are obtained by grounding its de�ning formula.
 In this approa
h, ea
h Boolean query 
orresponds to a possible view tuple.Example: The view de�ned by πABpRrABCsq 
orresponds to the settpDzqpRpa, b, zqq | a, b, P Constu.

Example: The view de�ned by � p r sq 
orresponds to the settp p qq | P u.Example: The view de�ned by P p r sq 
orresponds to the settp p qq | p P q^p P qu.
 The goal is to be able to represent all relations in the view using a single set ofBoolean queries.
 This means that the view relation must be re
overable from information in theBoolean query.
 The D^�-formula de�ning the view is 
alled its pattern.
 Ea
h Boolean query must 
orrespond to a single pattern.



The Representation of σD^�-Views using sets of Boolean Queries
21 / 26


 A relation R in a σD^�-view Γ may be represented by the set DisjRepxΓ, Ry of allD^�-queries whi
h are obtained by grounding its de�ning formula.
 In this approa
h, ea
h Boolean query 
orresponds to a possible view tuple.Example: The view de�ned by πABpRrABCsq 
orresponds to the settpDzqpRpa, b, zqq | a, b, P Constu.Example: The view de�ned by σA�apRrABCsq 
orresponds to the settpRpa, b, cqq | b, c P Constu.

Example: The view de�ned by P p r sq 
orresponds to the settp p qq | p P q^p P qu.
 The goal is to be able to represent all relations in the view using a single set ofBoolean queries.
 This means that the view relation must be re
overable from information in theBoolean query.
 The D^�-formula de�ning the view is 
alled its pattern.
 Ea
h Boolean query must 
orrespond to a single pattern.



The Representation of σD^�-Views using sets of Boolean Queries
21 / 26


 A relation R in a σD^�-view Γ may be represented by the set DisjRepxΓ, Ry of allD^�-queries whi
h are obtained by grounding its de�ning formula.
 In this approa
h, ea
h Boolean query 
orresponds to a possible view tuple.Example: The view de�ned by πABpRrABCsq 
orresponds to the settpDzqpRpa, b, zqq | a, b, P Constu.Example: The view de�ned by σA�apRrABCsq 
orresponds to the settpRpa, b, cqq | b, c P Constu.Example: The view de�ned by σAPSpRrABCsq 
orresponds to the settpRpa, b, cqq | pa P Sq^pb, c P Constqu.


 The goal is to be able to represent all relations in the view using a single set ofBoolean queries.
 This means that the view relation must be re
overable from information in theBoolean query.
 The D^�-formula de�ning the view is 
alled its pattern.
 Ea
h Boolean query must 
orrespond to a single pattern.



The Representation of σD^�-Views using sets of Boolean Queries
21 / 26


 A relation R in a σD^�-view Γ may be represented by the set DisjRepxΓ, Ry of allD^�-queries whi
h are obtained by grounding its de�ning formula.
 In this approa
h, ea
h Boolean query 
orresponds to a possible view tuple.Example: The view de�ned by πABpRrABCsq 
orresponds to the settpDzqpRpa, b, zqq | a, b, P Constu.Example: The view de�ned by σA�apRrABCsq 
orresponds to the settpRpa, b, cqq | b, c P Constu.Example: The view de�ned by σAPSpRrABCsq 
orresponds to the settpRpa, b, cqq | pa P Sq^pb, c P Constqu.
 The goal is to be able to represent all relations in the view using a single set ofBoolean queries.


 This means that the view relation must be re
overable from information in theBoolean query.
 The D^�-formula de�ning the view is 
alled its pattern.
 Ea
h Boolean query must 
orrespond to a single pattern.



The Representation of σD^�-Views using sets of Boolean Queries
21 / 26


 A relation R in a σD^�-view Γ may be represented by the set DisjRepxΓ, Ry of allD^�-queries whi
h are obtained by grounding its de�ning formula.
 In this approa
h, ea
h Boolean query 
orresponds to a possible view tuple.Example: The view de�ned by πABpRrABCsq 
orresponds to the settpDzqpRpa, b, zqq | a, b, P Constu.Example: The view de�ned by σA�apRrABCsq 
orresponds to the settpRpa, b, cqq | b, c P Constu.Example: The view de�ned by σAPSpRrABCsq 
orresponds to the settpRpa, b, cqq | pa P Sq^pb, c P Constqu.
 The goal is to be able to represent all relations in the view using a single set ofBoolean queries.
 This means that the view relation must be re
overable from information in theBoolean query.


 The D^�-formula de�ning the view is 
alled its pattern.
 Ea
h Boolean query must 
orrespond to a single pattern.



The Representation of σD^�-Views using sets of Boolean Queries
21 / 26


 A relation R in a σD^�-view Γ may be represented by the set DisjRepxΓ, Ry of allD^�-queries whi
h are obtained by grounding its de�ning formula.
 In this approa
h, ea
h Boolean query 
orresponds to a possible view tuple.Example: The view de�ned by πABpRrABCsq 
orresponds to the settpDzqpRpa, b, zqq | a, b, P Constu.Example: The view de�ned by σA�apRrABCsq 
orresponds to the settpRpa, b, cqq | b, c P Constu.Example: The view de�ned by σAPSpRrABCsq 
orresponds to the settpRpa, b, cqq | pa P Sq^pb, c P Constqu.
 The goal is to be able to represent all relations in the view using a single set ofBoolean queries.
 This means that the view relation must be re
overable from information in theBoolean query.
 The D^�-formula de�ning the view is 
alled its pattern.


 Ea
h Boolean query must 
orrespond to a single pattern.



The Representation of σD^�-Views using sets of Boolean Queries
21 / 26


 A relation R in a σD^�-view Γ may be represented by the set DisjRepxΓ, Ry of allD^�-queries whi
h are obtained by grounding its de�ning formula.
 In this approa
h, ea
h Boolean query 
orresponds to a possible view tuple.Example: The view de�ned by πABpRrABCsq 
orresponds to the settpDzqpRpa, b, zqq | a, b, P Constu.Example: The view de�ned by σA�apRrABCsq 
orresponds to the settpRpa, b, cqq | b, c P Constu.Example: The view de�ned by σAPSpRrABCsq 
orresponds to the settpRpa, b, cqq | pa P Sq^pb, c P Constqu.
 The goal is to be able to represent all relations in the view using a single set ofBoolean queries.
 This means that the view relation must be re
overable from information in theBoolean query.
 The D^�-formula de�ning the view is 
alled its pattern.
 Ea
h Boolean query must 
orrespond to a single pattern.



Con
rete and Abstra
t Views

22 / 26


 A 
on
rete view is de�ned in the usual way, using the relational 
al
ulus restri
tedto the σD^�-
ontext.


 An abstra
t view 
onsists of a set of Boolean queries, subje
t to the 
onstraintthat it is of �nite pattern index.
 This means that there is a �nite set of patterns, and ea
h of the queriesmat
hes one of those patterns.
 This property is essential for re
overing a 
on
rete view from an abstra
t one.Theorem; There is a natural 
orresponden
e between 
on
rete and abstra
t views.
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 Write ϕ1 �D ϕ2 if the two Boolean queries have the same truth value on every
M P LDBpDq.

Example: p q � pD qp p q^pD qp p qq if the JD r sholds.
 Write r s for the indu
ed equivalen
e 
lass on .
 Write r s �� r s if r s is true on whenever r s is.
 This set forms a meet semilatti
e with top element r s and bottom elementr s.
 The key idea is to look for a de
omposition basis in this semilatti
e. Roughly, asenten
e is in the de
omposition basis if
 it is a useful in a nontrivial way in the representation of a tuple as a join, and
 it 
annot be further de
omposed in a nontrivial way.Example: For the s
hema r s 
onstrained by r s, the de
ompositionbasis 
onsists of elements of the form pD qp p qq and pD qp p qq.



The Information Semilatti
e and the De
omposition Basis
23 / 26


 Write ϕ1 �D ϕ2 if the two Boolean queries have the same truth value on every
M P LDBpDq.Example: Rpa, b, cq �D pDzqpRpa, b, zq^pDxqpRpx, b, cqq if the JD 1 rAB,BCsholds.
 Write rϕs for the indu
ed equivalen
e 
lass on ϕ.


 Write r s �� r s if r s is true on whenever r s is.
 This set forms a meet semilatti
e with top element r s and bottom elementr s.
 The key idea is to look for a de
omposition basis in this semilatti
e. Roughly, asenten
e is in the de
omposition basis if
 it is a useful in a nontrivial way in the representation of a tuple as a join, and
 it 
annot be further de
omposed in a nontrivial way.Example: For the s
hema r s 
onstrained by r s, the de
ompositionbasis 
onsists of elements of the form pD qp p qq and pD qp p qq.



The Information Semilatti
e and the De
omposition Basis
23 / 26


 Write ϕ1 �D ϕ2 if the two Boolean queries have the same truth value on every
M P LDBpDq.Example: Rpa, b, cq �D pDzqpRpa, b, zq^pDxqpRpx, b, cqq if the JD 1 rAB,BCsholds.
 Write rϕs for the indu
ed equivalen
e 
lass on ϕ.
 Write rϕ1s ��D

rϕ2s if rϕ2s is true on D whenever rϕ1s is.


 This set forms a meet semilatti
e with top element r s and bottom elementr s.
 The key idea is to look for a de
omposition basis in this semilatti
e. Roughly, asenten
e is in the de
omposition basis if
 it is a useful in a nontrivial way in the representation of a tuple as a join, and
 it 
annot be further de
omposed in a nontrivial way.Example: For the s
hema r s 
onstrained by r s, the de
ompositionbasis 
onsists of elements of the form pD qp p qq and pD qp p qq.



The Information Semilatti
e and the De
omposition Basis
23 / 26


 Write ϕ1 �D ϕ2 if the two Boolean queries have the same truth value on every
M P LDBpDq.Example: Rpa, b, cq �D pDzqpRpa, b, zq^pDxqpRpx, b, cqq if the JD 1 rAB,BCsholds.
 Write rϕs for the indu
ed equivalen
e 
lass on ϕ.
 Write rϕ1s ��D

rϕ2s if rϕ2s is true on D whenever rϕ1s is.
 This set forms a meet semilatti
e with top element rfalses and bottom elementrtrues.


 The key idea is to look for a de
omposition basis in this semilatti
e. Roughly, asenten
e is in the de
omposition basis if
 it is a useful in a nontrivial way in the representation of a tuple as a join, and
 it 
annot be further de
omposed in a nontrivial way.Example: For the s
hema r s 
onstrained by r s, the de
ompositionbasis 
onsists of elements of the form pD qp p qq and pD qp p qq.



The Information Semilatti
e and the De
omposition Basis
23 / 26


 Write ϕ1 �D ϕ2 if the two Boolean queries have the same truth value on every
M P LDBpDq.Example: Rpa, b, cq �D pDzqpRpa, b, zq^pDxqpRpx, b, cqq if the JD 1 rAB,BCsholds.
 Write rϕs for the indu
ed equivalen
e 
lass on ϕ.
 Write rϕ1s ��D

rϕ2s if rϕ2s is true on D whenever rϕ1s is.
 This set forms a meet semilatti
e with top element rfalses and bottom elementrtrues.
 The key idea is to look for a de
omposition basis in this semilatti
e. Roughly, asenten
e is in the de
omposition basis if


 it is a useful in a nontrivial way in the representation of a tuple as a join, and
 it 
annot be further de
omposed in a nontrivial way.Example: For the s
hema r s 
onstrained by r s, the de
ompositionbasis 
onsists of elements of the form pD qp p qq and pD qp p qq.



The Information Semilatti
e and the De
omposition Basis
23 / 26


 Write ϕ1 �D ϕ2 if the two Boolean queries have the same truth value on every
M P LDBpDq.Example: Rpa, b, cq �D pDzqpRpa, b, zq^pDxqpRpx, b, cqq if the JD 1 rAB,BCsholds.
 Write rϕs for the indu
ed equivalen
e 
lass on ϕ.
 Write rϕ1s ��D

rϕ2s if rϕ2s is true on D whenever rϕ1s is.
 This set forms a meet semilatti
e with top element rfalses and bottom elementrtrues.
 The key idea is to look for a de
omposition basis in this semilatti
e. Roughly, asenten
e is in the de
omposition basis if
 it is a useful in a nontrivial way in the representation of a tuple as a join, and


 it 
annot be further de
omposed in a nontrivial way.Example: For the s
hema r s 
onstrained by r s, the de
ompositionbasis 
onsists of elements of the form pD qp p qq and pD qp p qq.



The Information Semilatti
e and the De
omposition Basis
23 / 26


 Write ϕ1 �D ϕ2 if the two Boolean queries have the same truth value on every
M P LDBpDq.Example: Rpa, b, cq �D pDzqpRpa, b, zq^pDxqpRpx, b, cqq if the JD 1 rAB,BCsholds.
 Write rϕs for the indu
ed equivalen
e 
lass on ϕ.
 Write rϕ1s ��D

rϕ2s if rϕ2s is true on D whenever rϕ1s is.
 This set forms a meet semilatti
e with top element rfalses and bottom elementrtrues.
 The key idea is to look for a de
omposition basis in this semilatti
e. Roughly, asenten
e is in the de
omposition basis if
 it is a useful in a nontrivial way in the representation of a tuple as a join, and
 it 
annot be further de
omposed in a nontrivial way.

Example: For the s
hema r s 
onstrained by r s, the de
ompositionbasis 
onsists of elements of the form pD qp p qq and pD qp p qq.



The Information Semilatti
e and the De
omposition Basis
23 / 26


 Write ϕ1 �D ϕ2 if the two Boolean queries have the same truth value on every
M P LDBpDq.Example: Rpa, b, cq �D pDzqpRpa, b, zq^pDxqpRpx, b, cqq if the JD 1 rAB,BCsholds.
 Write rϕs for the indu
ed equivalen
e 
lass on ϕ.
 Write rϕ1s ��D

rϕ2s if rϕ2s is true on D whenever rϕ1s is.
 This set forms a meet semilatti
e with top element rfalses and bottom elementrtrues.
 The key idea is to look for a de
omposition basis in this semilatti
e. Roughly, asenten
e is in the de
omposition basis if
 it is a useful in a nontrivial way in the representation of a tuple as a join, and
 it 
annot be further de
omposed in a nontrivial way.Example: For the s
hema RrABCs 
onstrained by 1 rAB,BCs, the de
ompositionbasis 
onsists of elements of the form pDzqpRpa, b, zqq and pDxqpRpx, b, cqq.



Optimal Complements in a General Setting
24 / 26

Let Γ � pV, γq be the view whose optimal 
omplement is to be determined.
 All elements of the de
omposition basis whi
h ��t� into Γ are �pla
ed� there.


 In the 
ase of a JD, this 
orresponds to identifying those proje
tions whi
hare subsumed by some proje
tion of the JD.
 All other elements of the de
omposition basis are used to generate a 
omplement.
 In the 
ase of a JD, this 
orresponds to generating a 
omplement from allproje
tions of the JD whi
h are not subsumed by the view to be
omplemented.
 The 
ondition for optimality of a 
omplement is that upon ultimatede
ompositions of tuples using the de
omposition basis are unique.
 In the 
ontext of a single JD, this redu
es exa
tly to that JD beingnonredundant.
 There are of 
ourse many details whi
h have been omitted.
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 A study of the notion of optimal 
omplements for views of relational s
hemata hasbeen initiated.


 A simple and 
on
rete representation for 
omplements of views de�ned viaproje
tions has been developed fully.
 If the governing JD is dependen
y preserving, then this representation furthermoreprodu
es meet 
omplements and so is appropriate for the 
onstant-
omplementupdate strategy.
 It identi�es in parti
ular the situations in whi
h all of the updates on a view whi
hare supportable via 
onstant-
omplement are supportable via a single 
omplement,and hen
e via a single update strategy.
 A more general theory, not restri
ted to proje
tions but rather based uponinformation and Boolean queries has also been developed.
 That theory provides a beginning to a more general theory but leaves severalfurther dire
tions.
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E�e
tive identi�
ation of meet 
omplements:


 The 
onstant-
omplement update strategy requires meet 
omplements.
 This is equivalent to the dependen
y preservation of the de
omposition.
 An e�e
tive means to 
he
k this property for more general 
lasses of
onstraints and views is needed.Expli
it development of a theory of de
omposition whi
h in
ludes sele
tion:
 A simple theory for � -views has been developed.
 It rests upon well-known results for -views and basi
 dependen
ies.
 An expanded framework whi
h in
ludes views de�ned by sele
tion issuggested.
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