Semantic Bijectivity and the Uniqueness of Constant-Complement Updates in the Relational Context

> Stephen J. Hegner Umeå University Department of Computing Science Sweden

• On the underlying states, the view mapping is generally *surjective* (onto) but not *injective* (one-to-one).

- On the underlying states, the view mapping is generally *surjective* (onto) but not *injective* (one-to-one).
- Thus, a view update has many possible *reflections* to the main schema.

- On the underlying states, the view mapping is generally *surjective* (onto) but not *injective* (one-to-one).
- Thus, a view update has many possible *reflections* to the main schema.
- The problem of identifying a suitable reflection is known as the *update translation problem* or *update reflection problem*.

- On the underlying states, the view mapping is generally *surjective* (onto) but not *injective* (one-to-one).
- Thus, a view update has many possible *reflections* to the main schema.
- The problem of identifying a suitable reflection is known as the *update translation problem* or *update reflection problem*.
- With a reasonable definition of suitability, it may not be the case that every view update has a suitable translation.

View Schema

Main Schema

 In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two meet-complementary views.

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two *meet-complementary* views.
- One is isomorphic to the view schema and tracks its updates exactly.

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two *meet-complementary* views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two *meet-complementary* views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.
- Although it is somewhat limited in the view updates which it allows, they are supported in an optimal manner.

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two *meet-complementary* views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.
- Although it is somewhat limited in the view updates which it allows, they are supported in an optimal manner.

• It can be shown [Hegner 03] that this strategy is precisely that which avoids all *update anomalies*.

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two *meet-complementary* views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.
- Although it is somewhat limited in the view updates which it allows, they are supported in an optimal manner.

- It can be shown [Hegner 03] that this strategy is precisely that which avoids all *update anomalies*.
- However, this is complicated by the *complement uniqueness problem*.

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two *meet-complementary* views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.
- Although it is somewhat limited in the view updates which it allows, they are supported in an optimal manner.

- It can be shown [Hegner 03] that this strategy is precisely that which avoids all *update anomalies*.
- However, this is complicated by the *complement uniqueness problem*.
- Some examples will help illustrate these ideas.

• Consider the classical example to the right.

 \mathbf{W}_{AB}

- Consider the classical example to the right.
- A natural complement to the AB-projection is the BC-projection.

- Consider the classical example to the right.
- A natural complement to the AB-projection is the BC-projection.
- The decomposed schema $\mathbf{W}_{AB} \otimes \mathbf{W}_{BC}$ has relation symbols $R_{[}AB]$ and $R_{2}[BC]$; the legal database are all states which are join compatible on B.

- Consider the classical example to the right.
- A natural complement to the AB-projection is the BC-projection.
- The decomposed schema $\mathbf{W}_{AB} \otimes \mathbf{W}_{BC}$ has relation symbols $R_{[}AB]$ and $R_{2}[BC]$; the legal database are all states which are join compatible on B.
- The *decomposition mapping* $\mathbf{W}_1 \rightarrow \mathbf{W}_{AB} \otimes \mathbf{W}_{BC}$, and is always bijective for complements.

 \mathbf{W}_{BC}

- Consider the classical example to the right.
- A natural complement to the AB-projection is the BC-projection.
- The decomposed schema $\mathbf{W}_{AB} \otimes \mathbf{W}_{BC}$ has relation symbols $R_{[}AB]$ and $R_{2}[BC]$; the legal database are all states which are join compatible on B.
- The *decomposition mapping* $\mathbf{W}_1 \to \mathbf{W}_{AB} \otimes \mathbf{W}_{BC}$, and is always bijective for complements.
- The reconstruction mapping $\mathbf{W}_{AB} \otimes \mathbf{W}_{BC} \rightarrow \mathbf{W}_1$ is the inverse of the decomposition mapping. It is the natural join in this case.

View SchemaComplement \mathbf{W}_{AB} Schema \mathbf{W}_{BC}

- Consider the classical example to the right.
- A natural complement to the AB-projection is the BC-projection.
- The decomposed schema $\mathbf{W}_{AB} \otimes \mathbf{W}_{BC}$ has relation symbols $R_{[}AB]$ and $R_{2}[BC]$; the legal database are all states which are join compatible on B.
- The *decomposition mapping* $\mathbf{W}_1 \to \mathbf{W}_{AB} \otimes \mathbf{W}_{BC}$, and is always bijective for complements.
- The reconstruction mapping $\mathbf{W}_{AB} \otimes \mathbf{W}_{BC} \rightarrow \mathbf{W}_1$ is the inverse of the decomposition mapping. It is the natural join in this case.
- The view which is the projection on B is the *meet* of \mathbf{W}_{AB} and \mathbf{W}_{BC} , and is precisely that which must be held constant under a constant-complement update.

View SchemaComplement \mathbf{W}_{AB} Schema \mathbf{W}_{BC}

• Given is the following two-relation main schema.

 $\begin{array}{l} \mbox{Main Schema } \mathbf{E}_0 \\ \mbox{No dependencies} \end{array}$

R[A] S[A]

• Given is the following two-relation main schema.

$\begin{array}{l} \mbox{Main Schema } \mathbf{E}_0 \\ \mbox{No dependencies} \end{array}$

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_0 to be updated is that which preserves R[A] but discards S[A].

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_0 to be updated is that which preserves R[A] but discards S[A].
- The *natural complement* \mathbf{W}_1 is the schema which preserves S[A] but discards R[A].

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_0 to be updated is that which preserves R[A] but discards S[A].
- The *natural complement* \mathbf{W}_1 is the schema which preserves S[A] but discards R[A].
- With \mathbf{W}_1 constant, all updates to R[A] are allowed.

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_0 to be updated is that which preserves R[A] but discards S[A].
- The *natural complement* \mathbf{W}_1 is the schema which preserves S[A] but discards R[A].
- With \mathbf{W}_1 constant, all updates to R[A] are allowed.
- Clearly, this is the only reasonable update strategy for \mathbf{W}_0 .

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_0 to be updated is that which preserves R[A] but discards S[A].
- The *natural complement* \mathbf{W}_1 is the schema which preserves S[A] but discards R[A].
- With \mathbf{W}_1 constant, all updates to R[A] are allowed.
- Clearly, this is the only reasonable update strategy for \mathbf{W}_0 .
- However, \mathbf{W}_1 does not define the only complement.

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_0 to be updated is that which preserves R[A] but discards S[A].
- The *natural complement* \mathbf{W}_1 is the schema which preserves S[A] but discards R[A].
- With \mathbf{W}_1 constant, all updates to R[A] are allowed.
- Clearly, this is the only reasonable update strategy for \mathbf{W}_0 .
- However, \mathbf{W}_1 does not define the only complement.
- Without further restrictions, complements are almost never unique.

• The main schema is unchanged.

 $\begin{array}{l} \mbox{Main Schema } \mathbf{E}_0 \\ \mbox{No dependencies} \end{array}$

R[A] S[A]

- The main schema is unchanged.
- The view schema \mathbf{W}_0 to be updated is also the same.

- The main schema is unchanged.
- The view schema \mathbf{W}_0 to be updated is also the same.
- An alternative complement \mathbf{W}_2 is defined by the symmetric difference:

 $T[A] = (R[A] \setminus S[A]) \cup (S[A] \setminus R[A])$

- The main schema is unchanged.
- The view schema \mathbf{W}_0 to be updated is also the same.
- An alternative complement \mathbf{W}_2 is defined by the symmetric difference:

 $T[A] = (R[A] \setminus S[A]) \cup (S[A] \setminus R[A])$

• With this alternative complement, the update strategy is different — S[A] is altered.

- The main schema is unchanged.
- The view schema \mathbf{W}_0 to be updated is also the same.
- An alternative complement \mathbf{W}_2 is defined by the symmetric difference:

 $T[A] = (R[A] \setminus S[A]) \cup (S[A] \setminus R[A])$

- With this alternative complement, the update strategy is different S[A] is altered.
- Clearly, this is not a desirable complement.

- The main schema is unchanged.
- The view schema \mathbf{W}_0 to be updated is also the same.
- An alternative complement W_2 is defined by the symmetric difference:

 $T[A] = (R[A] \setminus S[A]) \cup (S[A] \setminus R[A])$

- With this alternative complement, the update strategy is different S[A] is altered.
- Clearly, this is not a desirable complement.
- *Question*: How can these two complements be distinguished formally?

A Partial Solution Based upon Monotonicity

• Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.

A Partial Solution Based upon Monotonicity

- Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.
- In earlier work [Hegner04 AMAI], it was shown that order-realizable update translations are unique when both view mappings are monotonic and the decomposition mapping is an order isomorphism.

A Partial Solution Based upon Monotonicity

- Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.
- In earlier work [Hegner04 AMAI], it was shown that order-realizable update translations are unique when both view mappings are monotonic and the decomposition mapping is an order isomorphism.
- An *order-realizable* update is one which is realizable as a sequence of **legal** insertions and deletions.

- Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.
- In earlier work [Hegner04 AMAI], it was shown that order-realizable update translations are unique when both view mappings are monotonic and the decomposition mapping is an order isomorphism.
- An *order-realizable* update is one which is realizable as a sequence of **legal** insertions and deletions.
- In the example to the right, no update to \mathbf{W}_{AB} with \mathbf{W}_{BC} constant is order realizable.

View SchemaComplement \mathbf{W}_{AB} Schema \mathbf{W}_{BC}

- Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.
- In earlier work [Hegner04 AMAI], it was shown that order-realizable update translations are unique when both view mappings are monotonic and the decomposition mapping is an order isomorphism.
- An *order-realizable* update is one which is realizable as a sequence of **legal** insertions and deletions.
- In the example to the right, no update to \mathbf{W}_{AB} with \mathbf{W}_{BC} constant is order realizable.
- The only allowable updates to \mathbf{W}_{AB} keep the *meet* R[B] constant.

 \mathbf{W}_{AB}

Schema

 \mathbf{W}_{BC}

- Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.
- In earlier work [Hegner04 AMAI], it was shown that order-realizable update translations are unique when both view mappings are monotonic and the decomposition mapping is an order isomorphism.
- An *order-realizable* update is one which is realizable as a sequence of **legal** insertions and deletions.
- In the example to the right, no update to \mathbf{W}_{AB} with \mathbf{W}_{BC} constant is order realizable.
- The only allowable updates to \mathbf{W}_{AB} keep the *meet* R[B] constant.
- Thus, the only possible updates are those which change the A value of a tuple, and these are not order realizable.

View SchemaComplement \mathbf{W}_{AB} Schema \mathbf{W}_{BC}

- Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.
- In earlier work [Hegner04 AMAI], it was shown that order-realizable update translations are unique when both view mappings are monotonic and the decomposition mapping is an order isomorphism.
- An *order-realizable* update is one which is realizable as a sequence of **legal** insertions and deletions.
- In the example to the right, no update to \mathbf{W}_{AB} with \mathbf{W}_{BC} constant is order realizable.
- The only allowable updates to \mathbf{W}_{AB} keep the *meet* R[B] constant.
- Thus, the only possible updates are those which change the A value of a tuple, and these are not order realizable.

View SchemaComplement \mathbf{W}_{AB} Schema \mathbf{W}_{BC}

• Let WFS(D) denote the set of all well-formed sentences in the language of the relational database schema D.

- Let WFS(D) denote the set of all well-formed sentences in the language of the relational database schema D.
- A database mapping $f : \mathbf{D}_1 \to \mathbf{D}_2$ between relational schemata is represented as a logical interpretation $\text{Subst}\langle f, \rangle : \text{WFS}(\mathbf{D}_2) \to \text{WFS}(\mathbf{D}_1)$.

- Let WFS(D) denote the set of all well-formed sentences in the language of the relational database schema D.
- A database mapping $f : \mathbf{D}_1 \to \mathbf{D}_2$ between relational schemata is represented as a logical interpretation $\mathsf{Subst}\langle f, \rangle : \mathsf{WFS}(\mathbf{D}_2) \to \mathsf{WFS}(\mathbf{D}_1)$.

Example: The projection $\pi_{AB} : R[ABC] \to S[AB]$ is represented by the formula $(\exists x_3)(R(x_1, x_2, x_3))$ in the relational calculus.

- Let WFS(D) denote the set of all well-formed sentences in the language of the relational database schema D.
- A database mapping $f : \mathbf{D}_1 \to \mathbf{D}_2$ between relational schemata is represented as a logical interpretation $\mathsf{Subst}\langle f, \rangle : \mathsf{WFS}(\mathbf{D}_2) \to \mathsf{WFS}(\mathbf{D}_1)$.

Example: The projection $\pi_{AB} : R[ABC] \to S[AB]$ is represented by the formula $(\exists x_3)(R(x_1, x_2, x_3))$ in the relational calculus.

- Let WFS(D) denote the set of all well-formed sentences in the language of the relational database schema D.
- A database mapping $f : \mathbf{D}_1 \to \mathbf{D}_2$ between relational schemata is represented as a logical interpretation $\mathsf{Subst}\langle f, \rangle : \mathsf{WFS}(\mathbf{D}_2) \to \mathsf{WFS}(\mathbf{D}_1)$.

Example: The projection $\pi_{AB} : R[ABC] \to S[AB]$ is represented by the formula $(\exists x_3)(R(x_1, x_2, x_3))$ in the relational calculus.

 $\mathsf{Subst}\langle f, -\rangle : (\exists y)(S(a_1, y) \land S(a_2, y)) \mapsto (\exists x_3)(\exists y)(R(a_1, y, x_3) \land R(a_2, y, x_3)).$

Let WFS(D, ∃∧+) denote the subset of WFS(D) consisting of all positive conjunctive sentences (no disjunction, no negation).

- Let WFS(D) denote the set of all well-formed sentences in the language of the relational database schema D.
- A database mapping $f : \mathbf{D}_1 \to \mathbf{D}_2$ between relational schemata is represented as a logical interpretation $\mathsf{Subst}\langle f, \rangle : \mathsf{WFS}(\mathbf{D}_2) \to \mathsf{WFS}(\mathbf{D}_1).$
- *Example*: The projection $\pi_{AB} : R[ABC] \to S[AB]$ is represented by the formula $(\exists x_3)(R(x_1, x_2, x_3))$ in the relational calculus.

- Let $WFS(\mathbf{D}, \exists \land +)$ denote the subset of $WFS(\mathbf{D})$ consisting of all positive conjunctive sentences (no disjunction, no negation).
- The morphism $f : \mathbf{D}_1 \to \mathbf{D}_2$ is of *class* $\exists \land +$ if for every $\varphi \in \mathsf{WFS}(\mathbf{D}_2,)$, Subst $\langle f, - \rangle(\varphi)$ is equivalent to a sentence in $\mathsf{WFS}(\mathbf{D}_1, \exists \land +)$.

- Let WFS(D) denote the set of all well-formed sentences in the language of the relational database schema D.
- A database mapping $f : \mathbf{D}_1 \to \mathbf{D}_2$ between relational schemata is represented as a logical interpretation $\mathsf{Subst}\langle f, -\rangle : \mathsf{WFS}(\mathbf{D}_2) \to \mathsf{WFS}(\mathbf{D}_1).$
- *Example*: The projection $\pi_{AB} : R[ABC] \to S[AB]$ is represented by the formula $(\exists x_3)(R(x_1, x_2, x_3))$ in the relational calculus.

- Let $WFS(\mathbf{D}, \exists \land +)$ denote the subset of $WFS(\mathbf{D})$ consisting of all positive conjunctive sentences (no disjunction, no negation).
- The morphism $f : \mathbf{D}_1 \to \mathbf{D}_2$ is of *class* $\exists \land +$ if for every $\varphi \in \mathsf{WFS}(\mathbf{D}_2,)$, $\mathsf{Subst}\langle f, -\rangle(\varphi)$ is equivalent to a sentence in $\mathsf{WFS}(\mathbf{D}_1, \exists \land +)$.
- Every SPJ-mapping (select-project-join) is of class $\exists \land +$.

- Let WFS(D) denote the set of all well-formed sentences in the language of the relational database schema D.
- A database mapping $f : \mathbf{D}_1 \to \mathbf{D}_2$ between relational schemata is represented as a logical interpretation $\mathsf{Subst}\langle f, \rangle : \mathsf{WFS}(\mathbf{D}_2) \to \mathsf{WFS}(\mathbf{D}_1).$
- *Example*: The projection $\pi_{AB} : R[ABC] \to S[AB]$ is represented by the formula $(\exists x_3)(R(x_1, x_2, x_3))$ in the relational calculus.

- Let $WFS(\mathbf{D}, \exists \land +)$ denote the subset of $WFS(\mathbf{D})$ consisting of all positive conjunctive sentences (no disjunction, no negation).
- The morphism $f : \mathbf{D}_1 \to \mathbf{D}_2$ is of *class* $\exists \land +$ if for every $\varphi \in \mathsf{WFS}(\mathbf{D}_2,)$, Subst $\langle f, - \rangle(\varphi)$ is equivalent to a sentence in $\mathsf{WFS}(\mathbf{D}_1, \exists \land +)$.
- Every SPJ-mapping (select-project-join) is of class $\exists \land +$.
- These are also called conjunctive queries.

• $\equiv_{\mathbf{D}}$ denotes semantic equivalence of sentences in WFS(\mathbf{D}) on the databases which satisfy all integrity constraints.

- $\equiv_{\mathbf{D}}$ denotes semantic equivalence of sentences in WFS(\mathbf{D}) on the databases which satisfy all integrity constraints.
- *Definition*: The database mapping $f : \mathbf{D}_1 \to \mathbf{D}_2$ of class $\exists \land +$ is *semantically bijective* for $\exists \land +$ if $\mathsf{Subst}\langle f, \rangle$ induces a bijection

$$\mathsf{WFS}(\mathbf{D}_2,\exists\wedge+)/\equiv_{\mathbf{D}_2}\longleftrightarrow\mathsf{WFS}(\mathbf{D}_1,\exists\wedge+)/\equiv_{\mathbf{D}_1}$$

- $\equiv_{\mathbf{D}}$ denotes semantic equivalence of sentences in WFS(\mathbf{D}) on the databases which satisfy all integrity constraints.
- *Definition*: The database mapping $f : \mathbf{D}_1 \to \mathbf{D}_2$ of class $\exists \wedge +$ is *semantically bijective* for $\exists \wedge +$ if $\mathsf{Subst}\langle f, - \rangle$ induces a bijection

$$\mathsf{WFS}(\mathbf{D}_2,\exists\wedge+)/\equiv_{\mathbf{D}_2}\longleftrightarrow\mathsf{WFS}(\mathbf{D}_1,\exists\wedge+)/\equiv_{\mathbf{D}_1}.$$

Fact (Semantic bijectivity is stronger than ordinary bijectivity): Every semantic bijection for $\exists \land +$ is also a bijection $f : LDB(D_1) \rightarrow LDB(D_2)$ on the legal database states (those which satisfy the integrity constraints.)

- $\equiv_{\mathbf{D}}$ denotes semantic equivalence of sentences in WFS(\mathbf{D}) on the databases which satisfy all integrity constraints.
- *Definition*: The database mapping $f : \mathbf{D}_1 \to \mathbf{D}_2$ of class $\exists \wedge +$ is *semantically bijective* for $\exists \wedge +$ if $\mathsf{Subst}\langle f, - \rangle$ induces a bijection

$$\mathsf{WFS}(\mathbf{D}_2,\exists\wedge+)/\equiv_{\mathbf{D}_2}\longleftrightarrow\mathsf{WFS}(\mathbf{D}_1,\exists\wedge+)/\equiv_{\mathbf{D}_1}.$$

Fact (Semantic bijectivity is stronger than ordinary bijectivity): Every semantic bijection for $\exists \land +$ is also a bijection $f : LDB(D_1) \rightarrow LDB(D_2)$ on the legal database states (those which satisfy the integrity constraints.)

Proposition: Let $f : \mathbf{D}_1 \to \mathbf{D}_2$ be of class $\exists \land +$ and a bijection on database states. Then it is a semantic bijection iff its inverse is also of class $\exists \land +$. \Box

- $\equiv_{\mathbf{D}}$ denotes semantic equivalence of sentences in WFS(\mathbf{D}) on the databases which satisfy all integrity constraints.
- *Definition*: The database mapping $f : \mathbf{D}_1 \to \mathbf{D}_2$ of class $\exists \wedge +$ is *semantically bijective* for $\exists \wedge +$ if $\mathsf{Subst}\langle f, - \rangle$ induces a bijection

$$\mathsf{WFS}(\mathbf{D}_2,\exists\wedge+)/\equiv_{\mathbf{D}_2}\longleftrightarrow\mathsf{WFS}(\mathbf{D}_1,\exists\wedge+)/\equiv_{\mathbf{D}_1}.$$

Fact (Semantic bijectivity is stronger than ordinary bijectivity): Every semantic bijection for $\exists \land +$ is also a bijection $f : LDB(D_1) \rightarrow LDB(D_2)$ on the legal database states (those which satisfy the integrity constraints.)

Proposition: Let $f : \mathbf{D}_1 \to \mathbf{D}_2$ be of class $\exists \land +$ and a bijection on database states. Then it is a semantic bijection iff its inverse is also of class $\exists \land +$. \Box

Theorem (Uniqueness of complements): A view whose morphism is of class $\exists \land +$ can have only one complement of class $\exists \land +$ for which the decomposition mapping is semantically bijective for $\exists \land +$. \Box

- In the classical example to the right, all mappings are of class ∃∧+.
- Therefore, Π_{BC} is the only complement of Π_{AB} for which the reconstruction mapping is also of class $\exists \wedge +$.

- In the classical example to the right, all mappings are of class ∃∧+.
- Therefore, Π_{BC} is the only complement of Π_{AB} for which the reconstruction mapping is also of class $\exists \wedge +$.
- Likewise for the second example, now to the right.

Main Schema \mathbf{E}_0

- In the classical example to the right, all mappings are of class ∃∧+.
- Therefore, Π_{BC} is the only complement of Π_{AB} for which the reconstruction mapping is also of class $\exists \wedge +$.
- Likewise for the second example, now to the right.
- In the third example, the view mapping for \mathbf{W}_2 is not of class $\exists \land +:$ $T(x) \Leftrightarrow (R[x] \land \neg S(x)) \lor (S(x) \land \neg R(x))$
- In particular, this complement does not define a reconstruction mapping of class ∃∧+.

Main Schema E_0

- In the classical example to the right, all mappings are of class ∃∧+.
- Therefore, Π_{BC} is the only complement of Π_{AB} for which the reconstruction mapping is also of class ∃∧+.
- Likewise for the second example, now to the right.
- In the third example, the view mapping for \mathbf{W}_2 is not of class $\exists \land +:$ $T(x) \Leftrightarrow (R[x] \land \neg S(x)) \lor (S(x) \land \neg R(x))$
- In particular, this complement does not define a reconstruction mapping of class ∃∧+.
- The complement defined by \mathbf{W}_1 is the only one for \mathbf{W}_0 which defines a reconstruction of class $\exists \land +$.

Question: Are there conditions which may be imposed on a schema D_1 which guarantee that every bijective morphism $f : D_1 \to D_2$ of class $\exists \land +$ is semantically bijective?

Question: Are there conditions which may be imposed on a schema D_1 which guarantee that every bijective morphism $f : D_1 \to D_2$ of class $\exists \land +$ is semantically bijective?

Theorem: If D_1 admits *universal models*, then every such bijective morphism of class $\exists \land +$ is semantically bijective. \Box

Question: Are there conditions which may be imposed on a schema \mathbf{D}_1 which guarantee that every bijective morphism $f : \mathbf{D}_1 \to \mathbf{D}_2$ of class $\exists \land +$ is semantically bijective?

- *Theorem*: If D_1 admits *universal models*, then every such bijective morphism of class $\exists \land +$ is semantically bijective. \Box
- Theorem (Chase generates universal models): Suppose that D_1 is constrained by classical database dependencies: EGDs (equality-generating dependencies) and TGDs (tuple-generating dependencies, possibly embedded). If the classical chase inference procedure terminates when applied to every M which is a subset of a legal database, then D_1 admits universal models. \Box

- Question: Are there conditions which may be imposed on a schema D_1 which guarantee that every bijective morphism $f : D_1 \to D_2$ of class $\exists \land +$ is semantically bijective?
- *Theorem*: If D_1 admits *universal models*, then every such bijective morphism of class $\exists \land +$ is semantically bijective. \Box
- Theorem (Chase generates universal models): Suppose that D_1 is constrained by classical database dependencies: EGDs (equality-generating dependencies) and TGDs (tuple-generating dependencies, possibly embedded). If the classical chase inference procedure terminates when applied to every M which is a subset of a legal database, then D_1 admits universal models. \Box
- *Fact*: The chase procedure always terminates when restricted to EGDs and the *weakly acyclic TGDs* [Fagin et al TCS 2005]. □

- Question: Are there conditions which may be imposed on a schema D_1 which guarantee that every bijective morphism $f : D_1 \to D_2$ of class $\exists \land +$ is semantically bijective?
- *Theorem*: If D_1 admits *universal models*, then every such bijective morphism of class $\exists \land +$ is semantically bijective. \Box
- Theorem (Chase generates universal models): Suppose that D_1 is constrained by classical database dependencies: EGDs (equality-generating dependencies) and TGDs (tuple-generating dependencies, possibly embedded). If the classical chase inference procedure terminates when applied to every M which is a subset of a legal database, then D_1 admits universal models. \Box
- *Fact*: The chase procedure always terminates when restricted to EGDs and the *weakly acyclic TGDs* [Fagin et al TCS 2005]. □
- *Bottom Line*: If the main schema is constrained by EGDs and weakly acyclic TGDs, and all view mappings are of class $\exists \land +$, then view complements are unique. \Box

Constant-Complement Update and Information Change

 For M a database regarded as a set of ground atoms, the *information content* of M relative to ∃∧+ is:

 $\mathsf{Info}\langle M\rangle = \{\varphi \in \mathsf{WFS}(\mathbf{D}, \exists \land +) \mid M \models \varphi\}$

Constant-Complement Update and Information Change

 For M a database regarded as a set of ground atoms, the *information content* of M relative to ∃∧+ is:

 $\mathsf{Info}\langle M\rangle = \{\varphi \in \mathsf{WFS}(\mathbf{D}, \exists \wedge +) \mid M \models \varphi\}$

• For an update (M_1, M_2) , the *information change* is:

 $\Delta \langle M_1, M_2 \rangle = (\mathsf{Info} \langle M_2 \rangle \setminus \mathsf{Info} \langle M_1 \rangle) \cup (\mathsf{Info} \langle M_1 \rangle \setminus \mathsf{Info} \langle M_2 \rangle)$

Constant-Complement Update and Information Change

 For M a database regarded as a set of ground atoms, the *information content* of M relative to ∃∧+ is:

 $\mathsf{Info}\langle M\rangle = \{\varphi \in \mathsf{WFS}(\mathbf{D}, \exists \wedge +) \mid M \models \varphi\}$

• For an update (M_1, M_2) , the *information change* is:

 $\Delta \langle M_1, M_2 \rangle = (\mathsf{Info} \langle M_2 \rangle \setminus \mathsf{Info} \langle M_1 \rangle) \cup (\mathsf{Info} \langle M_1 \rangle \setminus \mathsf{Info} \langle M_2 \rangle)$

Theorem (Constant-complement view update implies least information change):

- Γ_1 a view of class $\exists \land +$.
- (N_1, N_2) an update on view Γ_1 .
- Γ_2 the unique complement of Γ_1 which is also of class $\exists \wedge +$.
- The decomposition morphism is semantically bijective.

Then the update (M_1, M_2) on the main schema which is defined by constant-complement Γ_2 has the least information change over all possible reflections. \Box

Conclusions

 It has been shown that under suitable conditions which include common database dependencies and views defined by SPJ-mappings, complements of relational schemata are unique.

Conclusions

- It has been shown that under suitable conditions which include common database dependencies and views defined by SPJ-mappings, complements of relational schemata are unique.
- This in turn implies that there is a unique, natural realization for reflecting a view update to the main schema when using the the constant-complement strategy.

Conclusions

- It has been shown that under suitable conditions which include common database dependencies and views defined by SPJ-mappings, complements of relational schemata are unique.
- This in turn implies that there is a unique, natural realization for reflecting a view update to the main schema when using the the constant-complement strategy.
- It has also been shown that this natural realization is optimal in terms of information change to the main schema.

Extension to Other Logic-Based Data Models:

Extension to Other Logic-Based Data Models:

- The Nested Relational Model
- The Higher-Order Entity-Relationship Model

Extension to Other Logic-Based Data Models:

- The Nested Relational Model
- The Higher-Order Entity-Relationship Model

Question: To what extent is the $\exists \land +$ context applicable to such models?

Extension to Other Logic-Based Data Models:

- The Nested Relational Model
- The Higher-Order Entity-Relationship Model

Question: To what extent is the $\exists \land +$ context applicable to such models?

Rapprochement with the Order-Based Approach:

Extension to Other Logic-Based Data Models:

- The Nested Relational Model
- The Higher-Order Entity-Relationship Model

Question: To what extent is the $\exists \land +$ context applicable to such models?

Rapprochement with the Order-Based Approach:

• The work of [Hegner 04 AMAI] is not based upon logical models, but rather upon poset-based models.

Question: To what extent can these two approaches be merged?

Extension to Other Logic-Based Data Models:

- The Nested Relational Model
- The Higher-Order Entity-Relationship Model

Question: To what extent is the $\exists \land +$ context applicable to such models?

Rapprochement with the Order-Based Approach:

• The work of [Hegner 04 AMAI] is not based upon logical models, but rather upon poset-based models.

Question: To what extent can these two approaches be merged?

Relationship to the Inversion of Schema Mappings:

Extension to Other Logic-Based Data Models:

- The Nested Relational Model
- The Higher-Order Entity-Relationship Model

Question: To what extent is the $\exists \land +$ context applicable to such models?

Rapprochement with the Order-Based Approach:

• The work of [Hegner 04 AMAI] is not based upon logical models, but rather upon poset-based models.

Question: To what extent can these two approaches be merged?

Relationship to the Inversion of Schema Mappings:

• The work of Fagin and his colleagues on data translation makes use of ideas related to information content.

Question: To what extent are the techniques developed for this work applicable to problems in data translation?