Semantic Bijectivity and the Uniqueness of Constant-Complement Updates in the Relational Context

Stephen J. Hegner
Umeå University
Department of Computing Science
Sweden

The Update Problem for Database Views

- On the underlying states, the view mapping is generally surjective (onto) but not injective (one-to-one).

The Update Problem for Database Views

- On the underlying states, the view mapping is generally surjective (onto) but not injective (one-to-one).
- Thus, a view update has many possible reflections to the main schema.

The Update Problem for Database Views

- On the underlying states, the view mapping is generally surjective (onto) but not injective (one-to-one).
- Thus, a view update has many possible reflections to the main schema.
- The problem of identifying a suitable reflection is known as the update translation problem or update reflection problem.

The Update Problem for Database Views

- On the underlying states, the view mapping is generally surjective (onto) but not injective (one-to-one).
- Thus, a view update has many possible reflections to the main schema.
- The problem of identifying a suitable reflection is known as the update translation problem or update reflection problem.
- With a reasonable definition of suitability, it may not be the case that every view update has a suitable translation.

Main Schema

The Gold Standard - the Constant-Complement Strategy

Main Schema

The Gold Standard - the Constant-Complement Strategy

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two meet-complementary views.

Main Schema

The Gold Standard - the Constant-Complement Strategy

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two meet-complementary views.
- One is isomorphic to the view schema and tracks its updates exactly.

Main Schema

The Gold Standard - the Constant-Complement Strategy

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two meet-complementary views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.

Main Schema

The Gold Standard - the Constant-Complement Strategy

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two meet-complementary views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.
- Although it is somewhat limited in the view updates which it allows, they are supported in an optimal manner.

Main Schema

The Gold Standard - the Constant-Complement Strategy

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two meet-complementary views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.
- Although it is somewhat limited in the view updates which it allows, they are supported in an

Main Schema
 optimal manner.

- It can be shown [Hegner 03] that this strategy is precisely that which avoids all update anomalies.

The Gold Standard - the Constant-Complement Strategy

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two meet-complementary views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.
- Although it is somewhat limited in the view updates which it allows, they are supported in an

Main Schema
 optimal manner.

- It can be shown [Hegner 03] that this strategy is precisely that which avoids all update anomalies.
- However, this is complicated by the complement uniqueness problem.

The Gold Standard - the Constant-Complement Strategy

- In the constant-complement strategy [Bancilhon and Spyratos 81], [Hegner 04 AMAI], the main schema is decomposed into two meet-complementary views.
- One is isomorphic to the view schema and tracks its updates exactly.
- The other is held constant for all updates to the view.
- Although it is somewhat limited in the view updates which it allows, they are supported in an

Main Schema
 optimal manner.

- It can be shown [Hegner 03] that this strategy is precisely that which avoids all update anomalies.
- However, this is complicated by the complement uniqueness problem.
- Some examples will help illustrate these ideas.

The Idea of Constant-Complement by Example

- Consider the classical example to the right.

Main Schema \mathbf{E}_{1} Constraint: $\bowtie[A B, B C]$

View Schema
$\mathbf{W}_{A B}$

The Idea of Constant-Complement by Example

- Consider the classical example to the right.
- A natural complement to the $A B$-projection is the $B C$-projection.

Main Schema \mathbf{E}_{1} Constraint: $\bowtie[A B, B C]$

View Schema Complement $\mathbf{W}_{A B} \quad$ Schema $\mathbf{W}_{B C}$

The Idea of Constant-Complement by Example

- Consider the classical example to the right.
- A natural complement to the $A B$-projection is the $B C$-projection.
- The decomposed schema $\mathbf{W}_{A B} \otimes \mathbf{W}_{B C}$ has relation symbols $\left.R_{[} A B\right]$ and $R_{2}[B C]$; the legal database are all states which are join compatible on B.

Main Schema \mathbf{E}_{1} Constraint: $\bowtie[A B, B C]$

View Schema Complement $\mathbf{W}_{A B} \quad$ Schema $\mathbf{W}_{B C}$

The Idea of Constant-Complement by Example

- Consider the classical example to the right.
- A natural complement to the $A B$-projection is the $B C$-projection.
- The decomposed schema $\mathbf{W}_{A B} \otimes \mathbf{W}_{B C}$ has relation symbols $\left.R_{[} A B\right]$ and $R_{2}[B C]$; the legal database are all states which are join compatible on B.
- The decomposition mapping $\mathbf{W}_{1} \rightarrow \mathbf{W}_{A B} \otimes \mathbf{W}_{B C}$, and is always bijective for complements.

Main Schema \mathbf{E}_{1} Constraint: $\bowtie[A B, B C]$

View Schema Complement
$\mathbf{W}_{A B} \quad$ Schema $\mathbf{W}_{B C}$

The Idea of Constant-Complement by Example

- Consider the classical example to the right.
- A natural complement to the $A B$-projection is the $B C$-projection.
- The decomposed schema $\mathbf{W}_{A B} \otimes \mathbf{W}_{B C}$ has relation symbols $\left.R_{[} A B\right]$ and $R_{2}[B C]$; the legal database are all states which are join compatible on B.
- The decomposition mapping $\mathbf{W}_{1} \rightarrow \mathbf{W}_{A B} \otimes \mathbf{W}_{B C}$, and is always bijective for complements.
- The reconstruction mapping $\mathbf{W}_{A B} \otimes \mathbf{W}_{B C} \rightarrow \mathbf{W}_{1}$ is the inverse of the decomposition mapping. It is the natural join in this case.

Main Schema \mathbf{E}_{1} Constraint: $\bowtie[A B, B C]$

View Schema Complement
$\mathbf{W}_{A B} \quad$ Schema $\mathbf{W}_{B C}$

The Idea of Constant-Complement by Example

- Consider the classical example to the right.
- A natural complement to the $A B$-projection is the $B C$-projection.
- The decomposed schema $\mathbf{W}_{A B} \otimes \mathbf{W}_{B C}$ has relation symbols $\left.R_{[} A B\right]$ and $R_{2}[B C]$; the legal database are all states which are join compatible on B.
- The decomposition mapping $\mathbf{W}_{1} \rightarrow \mathbf{W}_{A B} \otimes \mathbf{W}_{B C}$, and is always bijective for complements.
- The reconstruction mapping $\mathbf{W}_{A B} \otimes \mathbf{W}_{B C} \rightarrow \mathbf{W}_{1}$ is the inverse of the decomposition mapping. It is the natural join in this case.
- The view which is the projection on B is the meet of $\mathbf{W}_{A B}$ and $\mathbf{W}_{B C}$, and is precisely that which must be held constant under a constant-complement update.

Main Schema \mathbf{E}_{1} Constraint: $\bowtie[A B, B C]$

View Schema Complement $\mathbf{W}_{A B} \quad$ Schema $\mathbf{W}_{B C}$

The Problem of Complement Uniqueness

- Given is the following two-relation main schema.

Main Schema \mathbf{E}_{0} No dependencies
$R[A] \quad S[A]$

The Problem of Complement Uniqueness

- Given is the following two-relation main schema.

Main Schema \mathbf{E}_{0} No dependencies
$R[A]$
$S[A]$
a_{0}
a_{0}
a_{1}
a_{2}

The Problem of Complement Uniqueness

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_{0} to be updated is that which preserves $R[A]$ but discards $S[A]$.

Main Schema \mathbf{E}_{0}
No dependencies

View Schema W_{0}

The Problem of Complement Uniqueness

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_{0} to be updated is that which preserves $R[A]$ but discards $S[A]$.
- The natural complement \mathbf{W}_{1} is the schema which preserves $S[A]$ but discards $R[A]$.

Main Schema \mathbf{E}_{0}
No dependencies

The Problem of Complement Uniqueness

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_{0} to be updated is that which preserves $R[A]$ but discards $S[A]$.
- The natural complement \mathbf{W}_{1} is the schema which preserves $S[A]$ but discards $R[A]$.
- With \mathbf{W}_{1} constant, all updates to $R[A]$ are allowed.

Main Schema \mathbf{E}_{0}
No dependencies

The Problem of Complement Uniqueness

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_{0} to be updated is that which preserves $R[A]$ but discards $S[A]$.
- The natural complement \mathbf{W}_{1} is the schema which preserves $S[A]$ but discards $R[A]$.
- With \mathbf{W}_{1} constant, all updates to $R[A]$ are allowed.
- Clearly, this is the only reasonable update strategy for \mathbf{W}_{0}.

Main Schema \mathbf{E}_{0}
No dependencies

The Problem of Complement Uniqueness

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_{0} to be updated is that which preserves $R[A]$ but discards $S[A]$.
- The natural complement \mathbf{W}_{1} is the schema which preserves $S[A]$ but discards $R[A]$.
- With \mathbf{W}_{1} constant, all updates to $R[A]$ are allowed.
- Clearly, this is the only reasonable update strategy for \mathbf{W}_{0}.
- However, \mathbf{W}_{1} does not define the only complement.

Main Schema \mathbf{E}_{0}
No dependencies

The Problem of Complement Uniqueness

- Given is the following two-relation main schema.
- The view schema \mathbf{W}_{0} to be updated is that which preserves $R[A]$ but discards $S[A]$.
- The natural complement \mathbf{W}_{1} is the schema which preserves $S[A]$ but discards $R[A]$.
- With \mathbf{W}_{1} constant, all updates to $R[A]$ are allowed.
- Clearly, this is the only reasonable update strategy for \mathbf{W}_{0}.
- However, \mathbf{W}_{1} does not define the only complement.
- Without further restrictions, complements are almost never unique.

Main Schema \mathbf{E}_{0}
No dependencies

An Alternate Complement

- The main schema is unchanged.

Main Schema \mathbf{E}_{0} No dependencies
$R[A] \quad S[A]$

An Alternate Complement

- The main schema is unchanged.
- The view schema \mathbf{W}_{0} to be updated is also the same.

An Alternate Complement

- The main schema is unchanged.
- The view schema \mathbf{W}_{0} to be updated is also the same.
- An alternative complement \mathbf{W}_{2} is defined by the symmetric difference:

$$
T[A]=(R[A] \backslash S[A]) \cup(S[A] \backslash R[A])
$$

Main Schema \mathbf{E}_{0}
No dependencies

An Alternate Complement

- The main schema is unchanged.
- The view schema \mathbf{W}_{0} to be updated is also the same.
- An alternative complement \mathbf{W}_{2} is defined by the symmetric difference:

$$
T[A]=(R[A] \backslash S[A]) \cup(S[A] \backslash R[A])
$$

- With this alternative complement, the update strategy is different $-S[A]$ is altered.

Main Schema \mathbf{E}_{0}
No dependencies

An Alternate Complement

- The main schema is unchanged.
- The view schema \mathbf{W}_{0} to be updated is also the same.
- An alternative complement \mathbf{W}_{2} is defined by the symmetric difference:

$$
T[A]=(R[A] \backslash S[A]) \cup(S[A] \backslash R[A])
$$

- With this alternative complement, the update strategy is different $-S[A]$ is altered.
- Clearly, this is not a desirable complement.

Main Schema \mathbf{E}_{0}
No dependencies

An Alternate Complement

- The main schema is unchanged.
- The view schema \mathbf{W}_{0} to be updated is also the same.
- An alternative complement \mathbf{W}_{2} is defined by the symmetric difference:

$$
T[A]=(R[A] \backslash S[A]) \cup(S[A] \backslash R[A])
$$

- With this alternative complement, the update strategy is different - $S[A]$ is altered.
- Clearly, this is not a desirable complement.

Question: How can these two complements be distinguished formally?

Main Schema \mathbf{E}_{0}
No dependencies

A Partial Solution Based upon Monotonicity

- Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.

A Partial Solution Based upon Monotonicity

- Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.
- In earlier work [Hegner04 AMAI], it was shown that order-realizable update translations are unique when both view mappings are monotonic and the decomposition mapping is an order isomorphism.

A Partial Solution Based upon Monotonicity

- Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.
- In earlier work [Hegner04 AMAI], it was shown that order-realizable update translations are unique when both view mappings are monotonic and the decomposition mapping is an order isomorphism.
- An order-realizable update is one which is realizable as a sequence of legal insertions and deletions.

A Partial Solution Based upon Monotonicity

- Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.
- In earlier work [Hegner04 AMAI], it was shown that order-realizable update translations are unique when both view mappings are monotonic and the decomposition mapping is an order isomorphism.
- An order-realizable update is one which is realizable as a sequence of legal insertions and deletions.
- In the example to the right, no update to $\mathbf{W}_{A B}$ with $\mathbf{W}_{B C}$ constant is order realizable.

Main Schema \mathbf{E}_{1}
$B \rightarrow A$

View Schema Complement
$\mathbf{W}_{A B}$ Schema $\mathbf{W}_{B C}$

A Partial Solution Based upon Monotonicity

- Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.
- In earlier work [Hegner04 AMAI], it was shown that order-realizable update translations are unique when both view mappings are monotonic and the decomposition mapping is an order isomorphism.
- An order-realizable update is one which is realizable as a sequence of legal insertions and deletions.
- In the example to the right, no update to $\mathbf{W}_{A B}$ with $\mathbf{W}_{B C}$ constant is order realizable.
- The only allowable updates to $\mathbf{W}_{A B}$ keep the meet $R[B]$ constant.

Main Schema \mathbf{E}_{1}
$B \rightarrow A$

View Schema Complement
$\mathbf{W}_{A B}$ Schema $\mathbf{W}_{B C}$

A Partial Solution Based upon Monotonicity

- Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.
- In earlier work [Hegner04 AMAI], it was shown that order-realizable update translations are unique when both view mappings are monotonic and the decomposition mapping is an order isomorphism.
- An order-realizable update is one which is realizable as a sequence of legal insertions and deletions.
- In the example to the right, no update to $\mathbf{W}_{A B}$ with $\mathbf{W}_{B C}$ constant is order realizable.
- The only allowable updates to $\mathbf{W}_{A B}$ keep the meet $R[B]$ constant.
- Thus, the only possible updates are those which change the A value of a tuple, and these are not order realizable.

Main Schema \mathbf{E}_{1}
$B \rightarrow A$

View Schema Complement
$\mathbf{W}_{A B}$ Schema $\mathbf{W}_{B C}$

A Partial Solution Based upon Monotonicity

- Note that the symmetric difference mapping is not monotonic with respect to the natural order of database states.
- In earlier work [Hegner04 AMAI], it was shown that order-realizable update translations are unique when both view mappings are monotonic and the decomposition mapping is an order isomorphism.
- An order-realizable update is one which is realizable as a sequence of legal insertions and deletions.
- In the example to the right, no update to $\mathbf{W}_{A B}$ with $\mathbf{W}_{B C}$ constant is order realizable.
- The only allowable updates to $\mathbf{W}_{A B}$ keep the meet $R[B]$ constant.
- Thus, the only possible updates are those which change the A value of a tuple, and these are not order realizable.

Main Schema \mathbf{E}_{1}
$B \rightarrow A$

View Schema Complement
$\mathbf{W}_{A B}$ Schema $\mathbf{W}_{B C}$

The Substitution Mapping of a Database Morphism

- Let WFS(D) denote the set of all well-formed sentences in the language of the relational database schema \mathbf{D}.

The Substitution Mapping of a Database Morphism

- Let WFS(D) denote the set of all well-formed sentences in the language of the relational database schema \mathbf{D}.
- A database mapping $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ between relational schemata is represented as a logical interpretation Subst $\langle f,-\rangle: \mathrm{WFS}\left(\mathbf{D}_{2}\right) \rightarrow \mathrm{WFS}\left(\mathbf{D}_{1}\right)$.

The Substitution Mapping of a Database Morphism

- Let $\mathrm{WFS}(\mathbf{D})$ denote the set of all well-formed sentences in the language of the relational database schema \mathbf{D}.
- A database mapping $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ between relational schemata is represented as a logical interpretation Subst $\langle f,-\rangle: \mathrm{WFS}\left(\mathbf{D}_{2}\right) \rightarrow \mathrm{WFS}\left(\mathbf{D}_{1}\right)$.
Example: The projection $\pi_{A B}: R[A B C] \rightarrow S[A B]$ is represented by the formula $\left(\exists x_{3}\right)\left(R\left(x_{1}, x_{2}, x_{3}\right)\right)$ in the relational calculus.

The Substitution Mapping of a Database Morphism

- Let WFS(D) denote the set of all well-formed sentences in the language of the relational database schema \mathbf{D}.
- A database mapping $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ between relational schemata is represented as a logical interpretation Subst $\langle f,-\rangle: \mathrm{WFS}\left(\mathbf{D}_{2}\right) \rightarrow \mathrm{WFS}\left(\mathbf{D}_{1}\right)$.
Example: The projection $\pi_{A B}: R[A B C] \rightarrow S[A B]$ is represented by the formula $\left(\exists x_{3}\right)\left(R\left(x_{1}, x_{2}, x_{3}\right)\right)$ in the relational calculus.
Subst $\langle f,-\rangle:(\exists y)\left(S\left(a_{1}, y\right) \wedge S\left(a_{2}, y\right)\right) \mapsto\left(\exists x_{3}\right)(\exists y)\left(R\left(a_{1}, y, x_{3}\right) \wedge R\left(a_{2}, y, x_{3}\right)\right)$.

The Substitution Mapping of a Database Morphism

- Let WFS(D) denote the set of all well-formed sentences in the language of the relational database schema \mathbf{D}.
- A database mapping $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ between relational schemata is represented as a logical interpretation Subst $\langle f,-\rangle: \mathrm{WFS}\left(\mathbf{D}_{2}\right) \rightarrow \mathrm{WFS}\left(\mathbf{D}_{1}\right)$.
Example: The projection $\pi_{A B}: R[A B C] \rightarrow S[A B]$ is represented by the formula $\left(\exists x_{3}\right)\left(R\left(x_{1}, x_{2}, x_{3}\right)\right)$ in the relational calculus. Subst $\langle f,-\rangle:(\exists y)\left(S\left(a_{1}, y\right) \wedge S\left(a_{2}, y\right)\right) \mapsto\left(\exists x_{3}\right)(\exists y)\left(R\left(a_{1}, y, x_{3}\right) \wedge R\left(a_{2}, y, x_{3}\right)\right)$.
- Let WFS $(\mathbf{D}, \exists \wedge+)$ denote the subset of $\mathrm{WFS}(\mathbf{D})$ consisting of all positive conjunctive sentences (no disjunction, no negation).

The Substitution Mapping of a Database Morphism

- Let $\mathrm{WFS}(\mathbf{D})$ denote the set of all well-formed sentences in the language of the relational database schema \mathbf{D}.
- A database mapping $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ between relational schemata is represented as a logical interpretation Subst $\langle f,-\rangle: \mathrm{WFS}\left(\mathbf{D}_{2}\right) \rightarrow \mathrm{WFS}\left(\mathbf{D}_{1}\right)$.
Example: The projection $\pi_{A B}: R[A B C] \rightarrow S[A B]$ is represented by the formula $\left(\exists x_{3}\right)\left(R\left(x_{1}, x_{2}, x_{3}\right)\right)$ in the relational calculus.
Subst $\langle f,-\rangle:(\exists y)\left(S\left(a_{1}, y\right) \wedge S\left(a_{2}, y\right)\right) \mapsto\left(\exists x_{3}\right)(\exists y)\left(R\left(a_{1}, y, x_{3}\right) \wedge R\left(a_{2}, y, x_{3}\right)\right)$.
- Let WFS ($\mathbf{D}, \exists \wedge+$) denote the subset of WFS($\mathbf{D})$ consisting of all positive conjunctive sentences (no disjunction, no negation).
- The morphism $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ is of class $\exists \wedge+$ if for every $\varphi \in \operatorname{WFS}\left(\mathbf{D}_{2},\right)$, Subst $\langle f,-\rangle(\varphi)$ is equivalent to a sentence in $\operatorname{WFS}\left(\mathbf{D}_{1}, \exists \wedge+\right)$.

The Substitution Mapping of a Database Morphism

- Let $\mathrm{WFS}(\mathbf{D})$ denote the set of all well-formed sentences in the language of the relational database schema \mathbf{D}.
- A database mapping $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ between relational schemata is represented as a logical interpretation Subst $\langle f,-\rangle: \mathrm{WFS}\left(\mathbf{D}_{2}\right) \rightarrow \mathrm{WFS}\left(\mathbf{D}_{1}\right)$.
Example: The projection $\pi_{A B}: R[A B C] \rightarrow S[A B]$ is represented by the formula $\left(\exists x_{3}\right)\left(R\left(x_{1}, x_{2}, x_{3}\right)\right)$ in the relational calculus.
Subst $\langle f,-\rangle:(\exists y)\left(S\left(a_{1}, y\right) \wedge S\left(a_{2}, y\right)\right) \mapsto\left(\exists x_{3}\right)(\exists y)\left(R\left(a_{1}, y, x_{3}\right) \wedge R\left(a_{2}, y, x_{3}\right)\right)$.
- Let WFS ($\mathbf{D}, \exists \wedge+$) denote the subset of WFS($\mathbf{D})$ consisting of all positive conjunctive sentences (no disjunction, no negation).
- The morphism $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ is of class $\exists \wedge+$ if for every $\varphi \in \operatorname{WFS}\left(\mathbf{D}_{2},\right)$, Subst $\langle f,-\rangle(\varphi)$ is equivalent to a sentence in $\mathrm{WFS}\left(\mathbf{D}_{1}, \exists \wedge+\right)$.
- Every SPJ-mapping (select-project-join) is of class $\exists \wedge+$.

The Substitution Mapping of a Database Morphism

- Let $\mathrm{WFS}(\mathbf{D})$ denote the set of all well-formed sentences in the language of the relational database schema \mathbf{D}.
- A database mapping $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ between relational schemata is represented as a logical interpretation Subst $\langle f,-\rangle: \mathrm{WFS}\left(\mathbf{D}_{2}\right) \rightarrow \mathrm{WFS}\left(\mathbf{D}_{1}\right)$.
Example: The projection $\pi_{A B}: R[A B C] \rightarrow S[A B]$ is represented by the formula $\left(\exists x_{3}\right)\left(R\left(x_{1}, x_{2}, x_{3}\right)\right)$ in the relational calculus.
Subst $\langle f,-\rangle:(\exists y)\left(S\left(a_{1}, y\right) \wedge S\left(a_{2}, y\right)\right) \mapsto\left(\exists x_{3}\right)(\exists y)\left(R\left(a_{1}, y, x_{3}\right) \wedge R\left(a_{2}, y, x_{3}\right)\right)$.
- Let WFS ($\mathbf{D}, \exists \wedge+$) denote the subset of WFS($\mathbf{D})$ consisting of all positive conjunctive sentences (no disjunction, no negation).
- The morphism $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ is of class $\exists \wedge+$ if for every $\varphi \in \operatorname{WFS}\left(\mathbf{D}_{2},\right)$, Subst $\langle f,-\rangle(\varphi)$ is equivalent to a sentence in $\mathrm{WFS}\left(\mathbf{D}_{1}, \exists \wedge+\right)$.
- Every SPJ-mapping (select-project-join) is of class $\exists \wedge+$.
- These are also called conjunctive queries.

Semantic Bijectivity

- $\equiv_{\text {D }}$ denotes semantic equivalence of sentences in WFS(D) on the databases which satisfy all integrity constraints.

Semantic Bijectivity

- $\equiv_{\text {D }}$ denotes semantic equivalence of sentences in WFS(D) on the databases which satisfy all integrity constraints.
Definition: The database mapping $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ of class $\exists \wedge+$ is semantically bijective for $\exists \wedge+$ if Subst $\langle f,-\rangle$ induces a bijection

$$
\operatorname{WFS}\left(\mathbf{D}_{2}, \exists \wedge+\right) / \equiv_{\mathbf{D}_{2}} \longleftrightarrow \operatorname{WFS}\left(\mathbf{D}_{1}, \exists \wedge+\right) / \equiv_{\mathbf{D}_{1}} .
$$

Semantic Bijectivity

- \equiv_{D} denotes semantic equivalence of sentences in $\operatorname{WFS}(\mathbf{D})$ on the databases which satisfy all integrity constraints.
Definition: The database mapping $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ of class $\exists \wedge+$ is semantically bijective for $\exists \wedge+$ if Subst $\langle f,-\rangle$ induces a bijection

$$
\operatorname{WFS}\left(\mathbf{D}_{2}, \exists \wedge+\right) / \equiv_{\mathbf{D}_{2}} \longleftrightarrow \operatorname{WFS}\left(\mathbf{D}_{1}, \exists \wedge+\right) / \equiv_{\mathbf{D}_{1}} .
$$

Fact (Semantic bijectivity is stronger than ordinary bijectivity): Every semantic bijection for $\exists \wedge+$ is also a bijection $f: \operatorname{LDB}\left(\mathbf{D}_{1}\right) \rightarrow \operatorname{LDB}\left(\mathbf{D}_{2}\right)$ on the legal database states (those which satisfy the integrity constraints.)

Semantic Bijectivity

- \equiv_{D} denotes semantic equivalence of sentences in $\operatorname{WFS}(\mathbf{D})$ on the databases which satisfy all integrity constraints.
Definition: The database mapping $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ of class $\exists \wedge+$ is semantically bijective for $\exists \wedge+$ if Subst $\langle f,-\rangle$ induces a bijection

$$
\operatorname{WFS}\left(\mathbf{D}_{2}, \exists \wedge+\right) / \equiv_{\mathbf{D}_{2}} \longleftrightarrow \operatorname{WFS}\left(\mathbf{D}_{1}, \exists \wedge+\right) / \equiv_{\mathbf{D}_{1}} .
$$

Fact (Semantic bijectivity is stronger than ordinary bijectivity): Every semantic bijection for $\exists \wedge+$ is also a bijection $f: \operatorname{LDB}\left(\mathbf{D}_{1}\right) \rightarrow \operatorname{LDB}\left(\mathbf{D}_{2}\right)$ on the legal database states (those which satisfy the integrity constraints.)
Proposition: Let $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ be of class $\exists \wedge+$ and a bijection on database states.
Then it is a semantic bijection iff its inverse is also of class $\exists \wedge+$.

Semantic Bijectivity

- \equiv_{D} denotes semantic equivalence of sentences in WFS(D) on the databases which satisfy all integrity constraints.
Definition: The database mapping $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ of class $\exists \wedge+$ is semantically bijective for $\exists \wedge+$ if Subst $\langle f,-\rangle$ induces a bijection

$$
\operatorname{WFS}\left(\mathbf{D}_{2}, \exists \wedge+\right) / \equiv_{\mathbf{D}_{2}} \longleftrightarrow \operatorname{WFS}\left(\mathbf{D}_{1}, \exists \wedge+\right) / \equiv_{\mathbf{D}_{1}} .
$$

Fact (Semantic bijectivity is stronger than ordinary bijectivity): Every semantic bijection for $\exists \wedge+$ is also a bijection $f: \operatorname{LDB}\left(\mathbf{D}_{1}\right) \rightarrow \operatorname{LDB}\left(\mathbf{D}_{2}\right)$ on the legal database states (those which satisfy the integrity constraints.)
Proposition: Let $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ be of class $\exists \wedge+$ and a bijection on database states. Then it is a semantic bijection iff its inverse is also of class $\exists \wedge+$.
Theorem (Uniqueness of complements): A view whose morphism is of class $\exists \wedge+$ can have only one complement of class $\exists \wedge+$ for which the decomposition mapping is semantically bijective for $\exists \wedge+$. \square

Examples illustrating Uniqueness of Complements

- In the classical example to the right, all mappings are of class $\exists \wedge+$.
- Therefore, $\Pi_{B C}$ is the only complement of $\Pi_{A B}$ for which the reconstruction mapping is also of class $\exists \wedge+$.

Main Schema \mathbf{E}_{1} $B \rightarrow A$

View Schema Complement $\mathbf{W}_{A B} \quad$ Schema $\mathbf{W}_{B C}$

Examples illustrating Uniqueness of Complements

- In the classical example to the right, all mappings are of class $\exists \wedge+$.
- Therefore, $\Pi_{B C}$ is the only complement of $\Pi_{A B}$ for which the reconstruction mapping is also of class $\exists \wedge+$.
- Likewise for the second example, now to the right.

Main Schema \mathbf{E}_{0}
No dependencies

	Complement	
View	Schemat	
\mathbf{W}_{0}	Schema	
	\mathbf{W}_{1}	

Examples illustrating Uniqueness of Complements

- In the classical example to the right, all mappings are of class $\exists \wedge+$.
- Therefore, $\Pi_{B C}$ is the only complement of $\Pi_{A B}$ for which the reconstruction mapping is also of class $\exists \wedge+$.
- Likewise for the second example, now to the right.
- In the third example, the view mapping for \mathbf{W}_{2} is not of class $\exists \wedge+$:

$$
T(x) \Leftrightarrow(R[x] \wedge \neg S(x)) \vee(S(x) \wedge \neg R(x))
$$

- In particular, this complement does not define a reconstruction mapping of class $\exists \wedge+$.

Main Schema \mathbf{E}_{0} No dependencies

Examples illustrating Uniqueness of Complements

- In the classical example to the right, all mappings are of class $\exists \wedge+$.
- Therefore, $\Pi_{B C}$ is the only complement of $\Pi_{A B}$ for which the reconstruction mapping is also of class $\exists \wedge+$.
- Likewise for the second example, now to the right.
- In the third example, the view mapping for W_{2} is not of class $\exists \wedge+$:

$$
T(x) \Leftrightarrow(R[x] \wedge \neg S(x)) \vee(S(x) \wedge \neg R(x))
$$

- In particular, this complement does not define a reconstruction mapping of class $\exists \wedge+$.
- The complement defined by \mathbf{W}_{1} is the only one for \mathbf{W}_{0} which defines a reconstruction of class $\exists \wedge+$.

Main Schema \mathbf{E}_{0}
No dependencies

$\begin{array}{cc} & \\ \text { View Schemamplement } \\ \mathbf{W}_{0} & \mathbf{W}_{1}\end{array}$

Guaranteeing Semantic Bijectivity

Question: Are there conditions which may be imposed on a schema \mathbf{D}_{1} which guarantee that every bijective morphism $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ of class $\exists \wedge+$ is semantically bijective?

Guaranteeing Semantic Bijectivity

Question: Are there conditions which may be imposed on a schema \mathbf{D}_{1} which guarantee that every bijective morphism $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ of class $\exists \wedge+$ is semantically bijective?
Theorem: If \mathbf{D}_{1} admits universal models, then every such bijective morphism of class $\exists \wedge+$ is semantically bijective.

Guaranteeing Semantic Bijectivity

Question: Are there conditions which may be imposed on a schema \mathbf{D}_{1} which guarantee that every bijective morphism $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ of class $\exists \wedge+$ is semantically bijective?
Theorem: If \mathbf{D}_{1} admits universal models, then every such bijective morphism of class $\exists \wedge+$ is semantically bijective.

Theorem (Chase generates universal models): Suppose that \mathbf{D}_{1} is constrained by classical database dependencies: EGDs (equality-generating dependencies) and TGDs (tuple-generating dependencies, possibly embedded). If the classical chase inference procedure terminates when applied to every M which is a subset of a legal database, then \mathbf{D}_{1} admits universal models.

Guaranteeing Semantic Bijectivity

Question: Are there conditions which may be imposed on a schema \mathbf{D}_{1} which guarantee that every bijective morphism $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ of class $\exists \wedge+$ is semantically bijective?
Theorem: If \mathbf{D}_{1} admits universal models, then every such bijective morphism of class $\exists \wedge+$ is semantically bijective.
Theorem (Chase generates universal models): Suppose that \mathbf{D}_{1} is constrained by classical database dependencies: EGDs (equality-generating dependencies) and TGDs (tuple-generating dependencies, possibly embedded). If the classical chase inference procedure terminates when applied to every M which is a subset of a legal database, then \mathbf{D}_{1} admits universal models.
Fact: The chase procedure always terminates when restricted to EGDs and the weakly acyclic TGDs [Fagin et al TCS 2005].

Guaranteeing Semantic Bijectivity

Question: Are there conditions which may be imposed on a schema \mathbf{D}_{1} which guarantee that every bijective morphism $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ of class $\exists \wedge+$ is semantically bijective?
Theorem: If \mathbf{D}_{1} admits universal models, then every such bijective morphism of class $\exists \wedge+$ is semantically bijective.
Theorem (Chase generates universal models): Suppose that \mathbf{D}_{1} is constrained by classical database dependencies: EGDs (equality-generating dependencies) and TGDs (tuple-generating dependencies, possibly embedded). If the classical chase inference procedure terminates when applied to every M which is a subset of a legal database, then \mathbf{D}_{1} admits universal models.
Fact: The chase procedure always terminates when restricted to EGDs and the weakly acyclic TGDs [Fagin et al TCS 2005].
Bottom Line: If the main schema is constrained by EGDs and weakly acyclic TGDs, and all view mappings are of class $\exists \wedge+$, then view complements are unique.

Constant-Complement Update and Information Change

- For M a database regarded as a set of ground atoms, the information content of M relative to $\exists \wedge+$ is:

$$
\operatorname{Info}\langle M\rangle=\{\varphi \in \operatorname{WFS}(\mathbf{D}, \exists \wedge+) \mid M \models \varphi\}
$$

Constant-Complement Update and Information Change

- For M a database regarded as a set of ground atoms, the information content of M relative to $\exists \wedge+$ is:

$$
\operatorname{Info}\langle M\rangle=\{\varphi \in \operatorname{WFS}(\mathbf{D}, \exists \wedge+) \mid M \models \varphi\}
$$

- For an update $\left(M_{1}, M_{2}\right)$, the information change is:

$$
\Delta\left\langle M_{1}, M_{2}\right\rangle=\left(\operatorname{Info}\left\langle M_{2}\right\rangle \backslash \operatorname{Info}\left\langle M_{1}\right\rangle\right) \cup\left(\operatorname{Info}\left\langle M_{1}\right\rangle \backslash \operatorname{Info}\left\langle M_{2}\right\rangle\right)
$$

Constant-Complement Update and Information Change

- For M a database regarded as a set of ground atoms, the information content of M relative to $\exists \wedge+$ is:

$$
\operatorname{Info}\langle M\rangle=\{\varphi \in \operatorname{WFS}(\mathbf{D}, \exists \wedge+) \mid M \models \varphi\}
$$

- For an update (M_{1}, M_{2}), the information change is:

$$
\Delta\left\langle M_{1}, M_{2}\right\rangle=\left(\operatorname{Info}\left\langle M_{2}\right\rangle \backslash \operatorname{Info}\left\langle M_{1}\right\rangle\right) \cup\left(\operatorname{Info}\left\langle M_{1}\right\rangle \backslash \operatorname{Info}\left\langle M_{2}\right\rangle\right)
$$

Theorem (Constant-complement view update implies least information change):

- Γ_{1} a view of class $\exists \wedge+$.
- $\left(N_{1}, N_{2}\right)$ an update on view Γ_{1}.
- Γ_{2} the unique complement of Γ_{1} which is also of class $\exists \wedge+$.
- The decomposition morphism is semantically bijective.

Then the update (M_{1}, M_{2}) on the main schema which is defined by constant-complement Γ_{2} has the least information change over all possible reflections.

Conclusions

- It has been shown that under suitable conditions which include common database dependencies and views defined by SPJ-mappings, complements of relational schemata are unique.

Conclusions

- It has been shown that under suitable conditions which include common database dependencies and views defined by SPJ-mappings, complements of relational schemata are unique.
- This in turn implies that there is a unique, natural realization for reflecting a view update to the main schema when using the the constant-complement strategy.

Conclusions

- It has been shown that under suitable conditions which include common database dependencies and views defined by SPJ-mappings, complements of relational schemata are unique.
- This in turn implies that there is a unique, natural realization for reflecting a view update to the main schema when using the the constant-complement strategy.
- It has also been shown that this natural realization is optimal in terms of information change to the main schema.

Further Directions

Extension to Other Logic-Based Data Models:

Further Directions

Extension to Other Logic-Based Data Models:

- The Nested Relational Model
- The Higher-Order Entity-Relationship Model

Further Directions

Extension to Other Logic-Based Data Models:

- The Nested Relational Model
- The Higher-Order Entity-Relationship Model

Question: To what extent is the $\exists \wedge+$ context applicable to such models?

Further Directions

Extension to Other Logic-Based Data Models:

- The Nested Relational Model
- The Higher-Order Entity-Relationship Model

Question: To what extent is the $\exists \wedge+$ context applicable to such models?
Rapprochement with the Order-Based Approach:

Further Directions

Extension to Other Logic-Based Data Models:

- The Nested Relational Model
- The Higher-Order Entity-Relationship Model

Question: To what extent is the $\exists \wedge+$ context applicable to such models?
Rapprochement with the Order-Based Approach:

- The work of [Hegner 04 AMAI$]$ is not based upon logical models, but rather upon poset-based models.
Question: To what extent can these two approaches be merged?

Further Directions

Extension to Other Logic-Based Data Models:

- The Nested Relational Model
- The Higher-Order Entity-Relationship Model

Question: To what extent is the $\exists \wedge+$ context applicable to such models?
Rapprochement with the Order-Based Approach:

- The work of [Hegner 04 AMAI$]$ is not based upon logical models, but rather upon poset-based models.
Question: To what extent can these two approaches be merged?

Relationship to the Inversion of Schema Mappings:

Further Directions

Extension to Other Logic-Based Data Models:

- The Nested Relational Model
- The Higher-Order Entity-Relationship Model

Question: To what extent is the $\exists \wedge+$ context applicable to such models?

Rapprochement with the Order-Based Approach:

- The work of [Hegner 04 AMAI$]$ is not based upon logical models, but rather upon poset-based models.
Question: To what extent can these two approaches be merged?

Relationship to the Inversion of Schema Mappings:

- The work of Fagin and his colleagues on data translation makes use of ideas related to information content.

Question: To what extent are the techniques developed for this work applicable to problems in data translation?

