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The Relational Model of Data

• In the relational model, the data are stored in tables.

FName MInit LName SSN BDate Address Sex Salary Super_SSN DNo
John B Smith 123456789 1965-01-09 731 Fondren, Houston, TX M 30000 333445555 5

Franklin T Wong 333445555 1955-12-08 638 Voss, Houston, TX M 40000 888665555 5
Alicia J Zeyala 999887777 1968-01-19 3321 Castle, Spring, TX F 25000 987654321 4

Employee

Attributes: The columns are defined by attributes, shown in green .
Domain: The domain of each attribute is the set of possible values.

• Dom(Sex) = {M,F}.
• Dom(SSN) = strings of exactly 9 digits.
• Dom(BDate) = dates in YYYY-MM-DD format.

Operations; In general, the only intra-domain operations supported are
simple comparison (including equality).
Examples: 333445555 < 888665555; 1955-12-08 < 1965-01-09.
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The Idea of Multigranular Attributes

Place Time Births
Concepción_cdd Y2016Q1 b1

Concepción_cmn Y2016Q1 b2

Concepción_prv Y2016Q1 b3

Concepción_cmn Y2016 b4

Spatio-temporal
attributes

Thematic
attributes

cdd = ciudad/city
cmn = comuna/county

prv = provincia/province

Granules: The domain values are called granules.
Granular order: The granules of spatial and temporal attributes have

inherent order structure.
Spatial containment:

Concepción_cdd v Concepción_cmn v Concepción_prv
Temporal interval containment: Y2016Q1 v Y2016
Typical constraints: Functional dependency (FD) {Place,Time} → Births,

births monotonic w.r.t. space/time, so b1 ≤ b2 ≤ b3, b2 ≤ b4.
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Lattice-Like Operations on Granules

Place Time Births
Arauco_prv Y2016Q1 b1

BíoBío_prv Y2016Q1 b2

Concepción_prv Y2016Q1 b3

Ñuble_prv Y2016Q1 b4

BíoBío_rgn Y2016Q1 b5

Join: The four provinces join to the region.
BíoBío_rgn =

⊔
{Arauco_prv ,BíoBío_prv ,Concepción_prv ,Ñuble_prv} .

Meet: Distinct provinces are disjoint (six possibilities in all).d
{Arauco_prv ,BíoBío_prv} = ⊥

Disjoint Join: The four provinces join disjointly to the region.
BíoBío_rgn =

⊔
⊥ {Arauco_prv ,BíoBío_prv ,Concepción_prv ,Ñuble_prv}

Consequence:
∑4

i=1 bi = b5.
Observation: These lattice-like operations are partial.
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Granularities — Organizing Granules

>

Chile

SenConst Region

District Province NatlPark

CityCounty

ElecConst

ElecTable

Electoral Administrative

>

Year

Quarter

Month

Week

Day

• The granules of each attribute are partitioned into a hierarchy of
granularities.

Order: G1 ≤ G2 ⇔ ((∀g1 ∈ Granules〈G1〉)(∃g2 ∈ Granules〈G2〉)(g1 v g2)).
Disjointness: Distinct granules of the same granularity are disjoint.
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Formalizing Granularity Schemata

Granularity schema: S = (Glty〈S〉,Gnle〈S〉,ΠGnle〈S〉)
Granularity preorder: Glty〈S〉 = (Glty〈S〉,≤Glty〈S 〉,>Glty〈S 〉)

Granule preorder: Gnle〈S〉 = (Granules〈S〉,vS ,>S ,⊥S )

Granule partition: ΠGnle〈S〉 = {Granules〈S|G〉 | G ∈ Glty〈S〉}
of Granules6⊥〈S〉

Additional properties:
The top granularity consists only of the top granules:

Granules〈S|>Glty〈S〉〉 = [>S ]S ([-]S = equivalence class under vS)
Distinct granules of the same granularity are never equivalent:

(g1 6= g2 ∈ Granules〈S|G〉) ⇒ ([g1]S 6= [g1]S))
Distinct granules of the same granularity have nothing in common:

(g1 6= g2 ∈ Granules〈S|G〉) ⇒ (GLBGnle〈S〉〈{g1, g2}〉 = ⊥S)

Granularity order and granule order: (G1 ≤Glty〈S〉 G2) ⇔
((∀g1 ∈ Granules〈S|G1〉)(∃g2 ∈ Granules〈S|G2〉)(g1 vS g2))
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Equivalence of Granularities
>

Chile

SenConst Region

District Province NatlPark

CityCounty

ElecConst

ElecTable

Electoral Administrative

Question: Why not make the granularity order partial?
Answer: Some distinct granularities might become identical (with respect to

granules) at other points in time.
Near partial order: Require the order instead to be near partial:

(G1 ≤Glty〈S〉 G2 ≤Glty〈S〉 G1) ⇒ (G1
∼= G2).
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Formalization of Granule Structure

• A granule structure is a model for the constraints imposed by the
granularity schema.

• σ = (Dom〈σ〉,GnletoDomσ)

Domain: Dom〈σ〉 is a (not necessarily finite) set.
Granule semantics function: GnletoDomσ : Granules〈S〉 → 2Dom〈σ〉.
⊥S maps to ∅: GnletoDomS(⊥S) = ∅.
Granule subsumption maps to set inclusion:

(g1 vS g2) ⇒ (GnletoDomσ(g1) ⊆ GnletoDomσ(g2)).
Distinct granules of the same granularity are disjoint:

(∀G ∈ Glty〈S〉 \ {>Glty〈S〉})(∀g1, g2 ∈ Granules〈S|G〉)
(g1 6= g2) ⇒ (GnletoDomσ(g1) ∩ GnletoDomσ(g2) = ∅).

Two granules have the same semantics iff they are equivalent under vS:
(GnletoDomσ(g1) = GnletoDomσ(g2)) ⇔ [g1]S = [g2]S .
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Examples of Granule Structure

Example: σPlace for the granularity schema of space.
• Dom〈σ〉 = R2.
• GnletoDomPlace(Some_entity)

= the geographic region defining that entity.
Example: σTime for the granularity schema of time.

• Model all days starting with 1970-01-01.
• Dom〈σ〉 = N.

Number days consecutively with 1970-01-01 day zero:
GnletoDomTime(yyyy-mm-dd) =

{number of days yyyy-mm-dd is after 1970-01-01}.
All other granules consist of a set of days:

GnletoDomTime(X) =
⋃
{GnletoDomTime(d) | d ∈ X}.

Common properties:
Subsumption: Recaptures the usual notion of spatial/temporal subsumption.
Disjointness: Recaptures the notion for granules of the same granularity only.
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Canonical Primitive Rules and Their Semantics

Question: How are constraints which are not part of the basic granularity
schema modelled?

Rules: All additional constraints are expressed in terms of rules.
Examples: • Disjointness of granules of different granularities.

• Join constraints: g vS
⊔

S
S; g =

⊔
S

S; g =
⊔
⊥

S
S;

Canonical primitive rules: All rules are defined in terms of those which are of
the following two forms.
Basic subsumption rule: g vS

⊔
S

S. (S finite and nonempty)
Convention: Regard g vS g ′ as g vS

⊔
S
{g ′}.

Basic disjointness rule:
d

S
{g1, g2} = ⊥S

Semantics: The semantics of these rules are defined with respect to a
granule structure σ using:

⊔
7→

⋃ d
7→

⋂
v7→⊆ =7→=.

• σ ∈ ModelsOf〈g vS
⊔

S
S〉 iff GnletoDomS(g) ⊆

⋃
s∈S GnletoDomS(s).

• σ ∈ ModelsOf〈
d

S
{g1, g2} = ⊥S〉 iff

GnletoDomS(g1) ∩ GnletoDomS(g2) = ∅.
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Basic Rules and Their Semantics

Basic join rule: g =
⊔

S
S is defined as the conjunction

(g vS
⊔

S
S)∧(∧s∈S(s vS g)).

Basic disjoint join rule: g =
⊔
⊥

S
S is defined as the conjunction
(g =

⊔
S

S)∧(∧s1 6=s2∈S(
d

S
{s1, s2} = ⊥S)).

Basic disjoint subsumption rule: g vS
⊔
⊥

S
S is defined as the conjunction

(g vS
⊔

S
S)∧(∧s1 6=s2∈S(

d
S
{s1, s2} = ⊥S)).

• These rules, together with the canonical primitive rules:

• g vS
⊔

S
S

• g vS g ′

•
d

S
{g1, g2} = ⊥S

are the only ones used in this work.
BaRules〈S〉: This combined collection is denoted BaRules〈S〉.
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Expression of Constraints

Question: How are constraints expressed in a multigranular attribute?

Two solutions:

Definition by structure: Choose a single granule structure σ, and then
take exactly those constraints which hold in σ to be the true ones.

Definition by constraint satisfaction: Given a set Φ of constraints, the
set of all constraints which hold are precisely those which hold in
every structure in which Φ is satisfied.

• The choice depends upon the multigranular attribute.

• Definition by structure works best for Time.

• Definition by constraint satisfaction works best for Place.
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Definition by Structure

Idea of definition by structure: The constrained granularity schema S is
modelled as a single structure σS.
True rules: The rules which are true are precisely those of

ModelsOf〈σS〉.
False rules: All other rules are taken to be false.
Complete information: There is complete information about which rules

are true and which are false.

Example: The granular attribute Time is well suited
to definition by structure.

Man made: With a formal, mathematical structure.
Complete information: It is an exact model, not a

partial one.
• Recall model from Slide 8.

>

Year

Quarter

Month

Week

Day

12/24



Recall Structure of Granular Attribute Time

Example: σTime for the granularity schema of time.
• Model all days starting with 1970-01-01.
• Dom〈σ〉 = N.

>

Year

Quarter

Month

Week

Day

Number days consecutively with 1970-01-01 day zero:
GnletoDomTime(yyyy-mm-dd) =

{number of days yyyy-mm-dd is after 1970-01-01}.
All other granules consist of a set of days:

GnletoDomTime(X) =
⋃
{GnletoDomTime(d) | d ∈ X}.
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Limitations of Definition by Structure

Possibilities: for single structure σPlace:
• Dom〈σPlace〉 = R2.
• Dom〈σPlace〉 =

a huge set of polygons.
Problems:

• Extremely costly to support.
• Some arbitrary choices necessary.

• ElecTable (mesa electoral).

>

Chile

SenConst Region

District Province NatlPark

CityCounty

ElecConst

ElecTable

Electoral Administrative

Observation: The above proposals embody much more information than
necessary.

• Only need knowledge of subsumption, disjointness, and join.
• Detailed topography is extraneous.
• ElecTable problem can be solved easily if topography not used.

Solution: Use definition by constraint satisfaction.
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Definition by Constraint Satisfaction

Idea of definition by constraint satisfaction: The constrained granularity
schema S is modelled using a set Constr(S) of rules (which include the
built-in rules of the schema).

Models: Every σ ∈ ModelsOf〈Constr(S)〉 is a possible alternative for the
structure.

True rules: The rules ϕ which are true are precisely those for which
Constr(S) |=S ϕ.

Incomplete information: Little or no information about which rules are false.
Use (partial) CWA to fix incomplete information? Take (some of) those

rules which cannot be proven true to be false.
Example of default reasoning from AI 1 course: CWA does not always work.

• Knowledge base is A∨B.
• A∨B 6|= A; A∨B 6|= B;
• But {A∨B,¬A,¬B} is not satisfiable.

Good news: It works here, for rules in the multigranular framework.
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Armstrong Models

Context: A set S of sentences (constraints).
Armstrong model: A structure σ is an Armstrong model (relative to S) for a

consistent set Φ ⊆ S if σ is a model of those constraints of S which are
implied by Φ and no others.

Observation: A∨B has no Armstrong model with
C = propositional sentences.

Original setting of Armstrong: S = functional dependencies.
• The ideas work in very general settings [Fagin82].

Theorem: BaRules〈S〉 admits Armstrong models. 2

Utility: Any sentence in C which is not implied by Φ may be taken to be
false without creating a contradiction.

CWA: The (possibly partial) closed-world assumption may be applied to
BaRules〈S〉 without risk of inconsistency.
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Negating Rules

• A canonical primitive rule consists of only only one conjunct.
• g vS

⊔
S

S. (S finite and nonempty)
•

d
S
{g1, g2} = ⊥S

• Other basic rules are formed as conjuncts of canonical primitive ones.
Example: g =

⊔
⊥

S
S is defined as the conjunction

(g vS
⊔

S
S)∧(∧s∈S(s vS g))∧(∧s1 6=s2∈S(

d
S
{s1, s2} = ⊥S)).

Theory: Such compound rules may be negated safely.
Practical problem: It will not be known which of the conjuncts are false.

¬(ϕ1∧ϕ2∧ . . . ∧ϕn) ≡ (¬ϕ1)∨(¬ϕ2)∨ . . . ∨(¬ϕn)

Policy: Only canonical primitive rules may be negated.
• For rules defined by conjunction, it must be stated explicitly which

conjuncts are false.
Form of constraints: 〈Constr〈S〉, cwa〈S〉〉.

• Constr〈S〉 consists of basic rules.
• cwa〈S〉 consists of canonical primitive rules (negations to hold).
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Satisfiability

Recall context: 〈Constr〈S〉, cwa〈S〉〉.

Question: How to determine whether even Constr〈S〉 is satisfiable.

 This problem is NP-very hard.

Mathematically: Reduces to whether the rules can be embedded into a
Boolean algebra (or a distributive lattice).
• The issue is distributivity of the operations.

Practical cop out: For real spatial and temporal attributes, there is always an
underlying “real” model which satisfies the conditions.
• For the spatial example, use an R2 model of the actual geographical

regions.
• This model suffices to provide “proof” of distributivity, even if it is

too complex to be used in practice.
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Bigranular Rules

Terminology for a rule:
g vS /=

⊔
?

S
SHead Body

Observation: Most join rules which occur in practice are bigranular.
Bigranular rule: of type 〈G1,G2〉 (with G1 6= G2).

• The body S ⊆ Granules〈S|G1〉 and the head g ∈ Granules〈S|G2〉.
Examples: • Every province is the disjoint join of counties.

• Every park is contained in a minimal set of provinces.
Always disjoint join:

⊔
?

S
=

⊔
⊥

S
for a bigranular rule.

Preliminary observation: In the case of bigranularity
S = {g1 ∈ Granules〈S|G1〉 |

d
S
{g1, g} 6= ⊥S}.

• In other words, the body can be determined from the head if complete
information about nondisjointness is known.
• It is not necessary to store the entire rule explicitly.
• Store only the head and the rule existence.

� This is almost true, but must be formulated more carefully.
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Resolvability

Context: 〈Constr〈S〉, cwa〈S〉〉.
Notation: AllConstr〈S〉 = Constr〈S〉 ∪ {¬ϕ | ϕ ∈ cwa〈S〉}.
Resolvability: Say that ϕ ∈ BaRules〈S〉 is resolvable from AllConstr〈S〉 if

the truth value of ϕ can be determined from AllConstr〈S〉.
• Either AllConstr〈S〉 |=S ϕ or else AllConstr〈S〉 |=S ¬ϕ must hold.

Disjointness resolvability: A pair 〈G1,G2〉 of granularities is disjointness
resolvable if (

d
S
{g1, g2} = ⊥S) is resolvable for every

〈g1, g2〉 ∈ Granules〈S|G1〉 × Granules〈S|G2〉.
• In other words, it is always known whether two granules are disjoint.
• There is no incomplete information on disjointness.

Theorem: For a 〈G1,G2〉-bigranular rule of the form
(g vS

⊔
⊥

S
S) or (g =

⊔
⊥

S
S),

the set S is uniquely determined by g via
S = {g1 ∈ Granules〈S|Ga〉 | AllConstr〈S〉 |=S

d
S
{g1, g} 6= ⊥S},

provided that 〈G1,G2〉 is disjointness resolvable. 2
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Order Properties of Granularity Pairs

Usual granularity order G1 ≤Φ
S G2: Every

g1 ∈ Granules〈S〉G1 is subsumed by
some g2 ∈ Granules〈S|G2〉.

Shown as −−<.
Combined order G1 ≤EΦ

S G2:
G1 is a refined partitioning of G2.
• g2 =

⊔
⊥

S
S plus

• Every g1 ∈ Granules〈S|G1〉 used
in some join.

Strong inequality join order G1 4Φ
S G2:

Every g2 ∈ Granules〈S|G2〉 is covered
by granules of G1: g2 vS

⊔
S

S.
Subgranularity order G1 FΦ

S G2:
Granules〈S|G1〉 ⊆ Granules〈S|G2〉.

>

Chile

SenConst Region

District Province NatlPark

CityCounty

ElecConst

ElecTable
F

≤E≤E
≤E ≤E≤E

≤E ≤E

≤E

≤E

45

45

4

4

Electoral Administrative
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Implementation Strategy

Development philosophy: Base the design on good theory.
• Develop theory first.

Underlying system: PostgreSQL open-source DBMS.
Stage 1: Initial support for the following:

Lookup of properties of granules: Granularity membership,
subsumption, (non)disjointness.

Support for join rules: Focus on those defined implicitly by granularity
order relationships, particularly combined order.

Dataset: Use publicly available data on the Chilean electoral system.
Added relations: All support implemented by adding relations; no

augmentation of the DBMS itself.
Stage 2: Develop the following.

Query language supporting multigranular aggregation:
Preprocessor for the augmented query language:
Possibly a true PostgreSQL addon:
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Other Completed Features Not Discussed

Place Time Births
Arauco_prv Y2016Q1 b1

BíoBío_prv Y2016Q1 b2

Concepción_prv Y2016Q1 b3

Ñuble_prv Y2016Q1 b4

BíoBío_rgn Y2016Q1 b5

Spatio-temporal
attributes

Thematic
attributes

Thematic attributes: Such attributes are also multigranular, with the
granularities corresponding to levels of precision.
Aggregation: A thematic attribute includes aggregation operators.
Tolerance: Expresses how much distinct aggregations (at different

granularities of the spatio-temporal data) may differ.

BíoBío_rgn =
⊔
⊥ {Arauco_prv ,BíoBío_prv ,Concepción_prv ,Ñuble_prv}

Consequence:
∑4

i=1 bi = b5 (within tolerance).
TMCDs: Used to express the above type of constraints, which arise when

integrating multigranular data.
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The End

Tack för er uppmärksamhet!

Thank you for your attention.

Frågor?

Questions?
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