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The Update Problem for Database Views
1 / 12

• On the underlying states, the view map-ping is generally surjetive (onto) butnot injetive (one-to-one).

Thus, a view update has many possiblere�etions to the main shema.The problem of identifying a suitable re-�etion is known as the update transla-tion problem or update re�etion prob-lem.With a reasonable de�nition of suitabil-ity, it may not be the ase that everyview update has a suitable translation.
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Three Main Approahes to the View Update Problem
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• The Constant-Complement Strategy:

Formalizes notion of enapsulated shema perfetly.All view updates are reversible and omposable.Strong requirements; relatively few updates supported.

• Methods Based upon the Relational Algebra:

Simple to understand and intuitive.A large olletion of speial ases.Laks a unifying theory.

• Optimization of Distane Change:

Minimize distane between old and new states of main shema.Intuitively appealing.Challenge is to identify a suitable notion of distane.Fous of this talk.
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Typial Charaterization of Distane

3 / 12
• Given is the two-relation main shema E0.

View shema : projetion of .Desired view update: replae 1p q with 1p q.The re�etion shown is tuple minimal � no subset re-alizes the update. (A non-numerial distane)This alternate re�etion is ount minimal as well astuple minimal � there is no re�etion involving fewertuples. (A numerial distane)It is even term minimal � the fewest numberof terms in tuples have been hanged. (A numerial distane)

Main Shema E0

R : B Ñ C RrCs � SrCs
RrABCs SrCDs

More sophistiated notions of distane between tuples have been proposed([Huthinson 1997℄ [Nienhuys-Cheng 1997℄).These may in turn be used in formulas to ompute a numerial distane between setsof tuples (Eiter-Mannila 1997℄).Question: Are suh syntati notions of distane always the best hoie?
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Idea: Exploit the �rst-order properties of the model, rather than just ounting andsumming syntati di�erenes.

p D^�q denotes the set of all Boolean onjuntive queries on the databaseshema : D ^ � _Examples: p q, pD qpD qp p q^ p qqp D^� q � = subset of p D^�q involving only the onstants in.The information ontent of database relative to :x y � t P | ( uExample: � t p q p q p q p q p q p qu� t ux y �t p q p q p q p q pD qpD qp p q^ p qqu�
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• The update di�erene for an update pM1, M2q on the main shema relative to K:
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The distane is thus not a number but rather the set of Boolean onjuntive querieswhose values have hanged as a result of the update.onsists of all onstant symbols whih our in:� Old state of the main shema� Old state of the view shema � New state of the view shema� View-de�nition formula p q � Constraints on the main shemabut not any additional new onstants ourring only in:� New state of the main shemaAdmissible/optimal re�etion of a view update: a re�etion to the main shema forwhih the update di�erene is minimal/least and whih is tuple minimal.
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Example:

Optimal for insertions to the main shema.� t / / u.xp q y � �xp q y �p Y tpD qpD qp p q^ p qquq�.Changing onstant names another optimal solution.Example:

Main Shema E0

R : B Ñ C RrCs � SrCs
RrABCs SrCDs

R1rABs
πAB

View Shema W0

a0 b0 c0

a1 b1 c1

c0 d0

c1 d1

c4 d4

a0 b0

a1 b1

The solution shown is optimal for deletions to the main shema.� t u.An expliit representation of xp q y � �xp q y is omplex.However, it is easy to see that x y is preserved and nothing more.A general theory of optimality for monotoni re�etions: [Hegner 2008-2009℄.Goal of this work: Extend this theory to non-monotoni re�etions (involving bothinsertion and deletion).
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� � �xp q y generates the added information.�� � x yz �xp q y generates the retained information.� Y �� � ( � Y �� de�nes the new state).Ordering: x � ��y � x � ��y i�� ( � ( � is weaker than � � want to minimize �).�� ( �� ( �� is stronger than �� � want to maximize ��).Roughly, ( is semanti entailment in the ontext of the onstraints p qof .Thus � is a preorder (and a partial order on the assoiated equivalene lasses).Admissibility and optimality are de�ned in terms of this ordering.Admissible = minimal in the ordering.Optimal = least in the ordering.
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Example: For the insertion-only re�etion of the insertionof pa1, b2q into the view:

G� � tpDzqpDwqpRpa1, b2, zq^Spz, wqu

G �� � M1 (original state of E0)

For the solution in whih p q is also deleted:1� � tpD qpD qp p q^ p qu1�� � zt p qu

Main Shema E0

R : B Ñ C RrCs � SrCs
RrABCs SrCDs

R1rABs
πAB

View Shema W0

a0 b0

a1 b1

a1 b2

a0 b0 c0

a1 b1 c1

a1 b2 c̄2

c0 d0

c1 d1

c4 d4

c̄2 d̄2

Sine x � ��y � x 1� 1��y, the insertion-only solution is preferred, as desired.The ollateral hange entails in a suboptimal re�etion.This is a simpli�ation; tehnial details have been ignored.Constraints on : Horn with �nite hase. (Implies �nite initial-model property.)� and �� are ideals: losed under impliation in the ontext of p q.
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Theorem: Under suitable onditions, every view update hasa re�etion whih is insertion optimal in the sense that

G� is least. 2

Illustrate with the �rst update example.Change 1p q to 1p q.Idea: First delete 1p q with least re�etion,

There are details whih must be solved to make thisidea work, inluding:Legal deletion: The state obtained by deletion in the view may not satisfy the integrityonstraints, and so not orrespond to a legal state in the main shema.Solution:Finite initial model property ensures an extendible a �skeleton� in the mainshema.Optimal deletion: There may not be a least re�etion of a deletion.Solution: View must de�ne a unit-head pair. (No rules with more than oneanteedent) [Hegner 2009℄
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• There are details whih must be solved to make thisidea work, inluding:
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a1 b2Legal deletion: The state obtained by deletion in the view may not satisfy the integrityonstraints, and so not orrespond to a legal state in the main shema.Solution:Finite initial model property ensures an extendible a �skeleton� in the mainshema.Optimal deletion: There may not be a least re�etion of a deletion.Solution: View must de�ne a unit-head pair. (No rules with more than oneanteedent) [Hegner 2009℄



Deletion Optimality

11 / 12
• The example under onsideration is not deletion optimalfor information.

The re�etion shown preserves more information (butadds more as well).Preserves: pD qp p qq Adds: p qIt is in fat deletion optimal for information in the sensethat �� is greatest.Suh optimality is not ahievable in general. Considerdeleting 1p q as well.
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There are two inomparable re�etions whih minimize ��.This one preserves pD qpD qp p q. This one preserves pD qpD qp p q.Deletion optimality is possible only when the view update orresponds to hanges in�elds of tuples.The insertion optimal realization of the previous slides is, however, deletion optimalfor tuples.
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Conlusions:

• The idea of a semantially motivated distane between databases based uponBoolean onjuntive queries has been applied to non-monotoni queries.

Under suitable onditions, re�etions to view updates whih are insertion-optimal aswell as deletion-optimal for tuples are shown to exist.Further Diretions:Classi�ation of re�etion type along tuple update versus delete-insert lines.Integration of this measure with more traditional syntati ones.
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