Optimal Reflection of Bidirectional View Updates using Information-Based Distance Measures

Stephen J. Hegner
Umeå University
Department of Computing Science
Sweden

The Update Problem for Database Views

- On the underlying states, the view mapping is generally surjective (onto) but not injective (one-to-one).

The Update Problem for Database Views

- On the underlying states, the view mapping is generally surjective (onto) but not injective (one-to-one).
- Thus, a view update has many possible reflections to the main schema.

The Update Problem for Database Views

- On the underlying states, the view mapping is generally surjective (onto) but not injective (one-to-one).
- Thus, a view update has many possible reflections to the main schema.
- The problem of identifying a suitable reflection is known as the update translation problem or update reflection problem.

The Update Problem for Database Views

- On the underlying states, the view mapping is generally surjective (onto) but not injective (one-to-one).
- Thus, a view update has many possible reflections to the main schema.
- The problem of identifying a suitable reflection is known as the update translation problem or update reflection problem.
- With a reasonable definition of suitability, it may not be the case that every view update has a suitable translation.

Main Schema

- The Constant-Complement Strategy:
- Methods Based upon the Relational Algebra:
- Optimization of Distance Change:

Three Main Approaches to the View Update Problem

- The Constant-Complement Strategy:
- Formalizes notion of encapsulated schema perfectly.
- All view updates are reversible and composable.
- Strong requirements; relatively few updates supported.
- Methods Based upon the Relational Algebra:
- Optimization of Distance Change:

Three Main Approaches to the View Update Problem

- The Constant-Complement Strategy:
- Formalizes notion of encapsulated schema perfectly.
- All view updates are reversible and composable.
- Strong requirements; relatively few updates supported.
- Methods Based upon the Relational Algebra:
- Simple to understand and intuitive.
- A large collection of special cases.
- Lacks a unifying theory.
- Optimization of Distance Change:

Three Main Approaches to the View Update Problem

- The Constant-Complement Strategy:
- Formalizes notion of encapsulated schema perfectly.
- All view updates are reversible and composable.
- Strong requirements; relatively few updates supported.
- Methods Based upon the Relational Algebra:
- Simple to understand and intuitive.
- A large collection of special cases.
- Lacks a unifying theory.
- Optimization of Distance Change:
- Minimize distance between old and new states of main schema.
- Intuitively appealing.
- Challenge is to identify a suitable notion of distance.

Three Main Approaches to the View Update Problem

- The Constant-Complement Strategy:
- Formalizes notion of encapsulated schema perfectly.
- All view updates are reversible and composable.
- Strong requirements; relatively few updates supported.
- Methods Based upon the Relational Algebra:
- Simple to understand and intuitive.
- A large collection of special cases.
- Lacks a unifying theory.
- Optimization of Distance Change:
- Minimize distance between old and new states of main schema.
- Intuitively appealing.
- Challenge is to identify a suitable notion of distance.
- Focus of this talk.

Typical Characterization of Distance

- Given is the two-relation main schema \mathbf{E}_{0}.

> | Main Schema \mathbf{E}_{0} | |
| :---: | :---: |
| $R: B \rightarrow C$ | $R[C] \subseteq S[C]$ |
| $R[A B C]$ | $S[C D]$ |

Typical Characterization of Distance

- Given is the two-relation main schema \mathbf{E}_{0}.
- View schema $\mathbf{W}_{0}: A B$ projection of R.

Main Schema \mathbf{E}_{0}	
$R: B \rightarrow C$	$R[C] \subseteq S[C]$
$R[A B C]$	$S[C D]$
$\pi_{A B}$	
\downarrow	
$R^{\prime}[A B]$	

View Schema \mathbf{W}_{0}

Typical Characterization of Distance

- Given is the two-relation main schema \mathbf{E}_{0}.
- View schema $\mathbf{W}_{0}: A B$ projection of R.
Main Schema \mathbf{E}_{0}
$R: B \rightarrow C$
$R[C] \subseteq S[C]$
$R[A B C]$

$\pi_{A B} |$| | $S[C D]$ |
| :---: | :---: |

$\mathrm{a}_{0} \mathrm{~b}_{0} \mathrm{c}_{0}$	$\mathrm{c}_{0} \mathrm{~d}_{0}$
$\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{c}_{1}$	$\mathrm{c}_{1} \mathrm{~d}_{1}$
$R^{\prime}[A B]$	$\mathrm{c}_{4} \mathrm{~d}_{4}$

View Schema \mathbf{W}_{0}

Typical Characterization of Distance

- Given is the two-relation main schema \mathbf{E}_{0}.
- View schema $\mathbf{W}_{0}: A B$ projection of R.

View Schema \mathbf{W}_{0}

Typical Characterization of Distance

- Given is the two-relation main schema \mathbf{E}_{0}.
- View schema $\mathbf{W}_{0}: A B$ projection of R.
- Desired view update: replace $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ with $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$.

Typical Characterization of Distance

- Given is the two-relation main schema \mathbf{E}_{0}.
- View schema \mathbf{W}_{0} : $A B$ projection of R.
- Desired view update: replace $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ with $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$.
- The reflection shown is tuple minimal - no subset realizes the update. (A non-numerical distance)

Main Schema \mathbf{E}_{0}

Typical Characterization of Distance

- Given is the two-relation main schema \mathbf{E}_{0}.
- View schema \mathbf{W}_{0} : $A B$ projection of R.
- Desired view update: replace $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ with $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$.
- The reflection shown is tuple minimal - no subset realizes the update. (A non-numerical distance)
- This alternate reflection is count minimal as well as tuple minimal - there is no reflection involving fewer tuples. (A numerical distance)

Typical Characterization of Distance

- Given is the two-relation main schema \mathbf{E}_{0}.
- View schema \mathbf{W}_{0} : $A B$ projection of R.
- Desired view update: replace $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ with $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$.
- The reflection shown is tuple minimal - no subset realizes the update. (A non-numerical distance)
- This alternate reflection is count minimal as well as tuple minimal - there is no reflection involving fewer tuples. (A numerical distance)
- It is even term minimal - the fewest number

Main Schema $\mathbf{E}_{0}$$R: B \rightarrow C \quad R[C] \subseteq S[C]$	
$R[A B C]$	$S[C D]$
	$c_{0} \mathrm{~d}_{0}$ $\mathrm{c}_{1} \mathrm{~d}_{1}$ $\mathrm{c}_{4} \mathrm{~d}_{4}$
$\begin{array}{ll} R^{\prime}[A B] & \begin{array}{l} \mathrm{a}_{0} \mathrm{~b}_{0} \\ \mathrm{a}_{-} \mathrm{b}_{1} \\ \mathrm{a}_{1} \mathrm{~b}_{2} \end{array} \end{array}$	

View Schema \mathbf{W}_{0} of terms in tuples have been changed. (A numerical distance)

Typical Characterization of Distance

- Given is the two-relation main schema \mathbf{E}_{0}.
- View schema \mathbf{W}_{0} : $A B$ projection of R.
- Desired view update: replace $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ with $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$.
- The reflection shown is tuple minimal - no subset realizes the update. (A non-numerical distance)
- This alternate reflection is count minimal as well as tuple minimal - there is no reflection involving fewer tuples. (A numerical distance)
- It is even term minimal - the fewest number

Main Schema \mathbf{E}_{0}	
$R: B \rightarrow C \quad R[$	$C] \subseteq S[C]$
$R[A B C]$	$S[C D]$
	$\begin{array}{ll}c_{0} & d_{0} \\ c_{1} d_{1} \\ c_{4} & d_{4}\end{array}$
$\begin{array}{ll} R^{\prime}[A B] & \begin{array}{l} \mathrm{a}_{0} \mathrm{~b}_{0} \\ \mathrm{a}_{-} \mathrm{b}_{1} \\ \mathrm{a}_{1} \mathrm{~b}_{2} \end{array} \end{array}$	

View Schema \mathbf{W}_{0} of terms in tuples have been changed. (A numerical distance)

- More sophisticated notions of distance between tuples have been proposed ([Hutchinson 1997] [Nienhuys-Cheng 1997]).

Typical Characterization of Distance

- Given is the two-relation main schema \mathbf{E}_{0}.
- View schema \mathbf{W}_{0} : $A B$ projection of R.
- Desired view update: replace $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ with $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$.
- The reflection shown is tuple minimal - no subset realizes the update. (A non-numerical distance)
- This alternate reflection is count minimal as well as tuple minimal - there is no reflection involving fewer tuples. (A numerical distance)
- It is even term minimal - the fewest number

Main Schema \mathbf{E}_{0}	
$R: B \rightarrow C \quad R[C]$	C] $\subseteq S[C]$
$R[A B C]$	$S[C D]$
$\pi_{A B} \left\lvert\, \begin{aligned} & \text { arn } \\ & \mathrm{a}_{0} \mathrm{~b}_{0} \mathrm{c}_{0} \\ & \mathrm{a}_{1} \mathrm{~b}_{1} \varepsilon_{1} \\ & \mathrm{a}_{1} \mathrm{~b}_{2} \mathrm{c}_{1}\end{aligned}\right.$	$\begin{array}{ll}c_{0} & d_{0} \\ c_{1} d_{1} \\ c_{4} & d_{4}\end{array}$
$\begin{array}{ll} \downarrow & \begin{array}{l} \downarrow \\ R_{0}^{\prime} \mathrm{b}_{0} \\ \mathrm{a}_{2} \\ \mathrm{a}_{-} \mathrm{b}_{1} \\ \mathrm{a}_{1} \mathrm{~b}_{2} \end{array} \end{array}$	

View Schema \mathbf{W}_{0} of terms in tuples have been changed. (A numerical distance)

- More sophisticated notions of distance between tuples have been proposed ([Hutchinson 1997] [Nienhuys-Cheng 1997]).
- These may in turn be used in formulas to compute a numerical distance between sets of tuples (Eiter-Mannila 1997]).

Typical Characterization of Distance

- Given is the two-relation main schema \mathbf{E}_{0}.
- View schema $\mathbf{W}_{0}: A B$ projection of R.
- Desired view update: replace $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ with $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$.
- The reflection shown is tuple minimal - no subset realizes the update. (A non-numerical distance)
- This alternate reflection is count minimal as well as tuple minimal - there is no reflection involving fewer tuples. (A numerical distance)
- It is even term minimal - the fewest number

View Schema \mathbf{W}_{0} of terms in tuples have been changed. (A numerical distance)

- More sophisticated notions of distance between tuples have been proposed ([Hutchinson 1997] [Nienhuys-Cheng 1997]).
- These may in turn be used in formulas to compute a numerical distance between sets of tuples (Eiter-Mannila 1997]).
- Question: Are such syntactic notions of distance always the best choice?

Information Content

Idea: Exploit the first-order properties of the model, rather than just counting and summing syntactic differences.

Information Content

Idea: Exploit the first-order properties of the model, rather than just counting and summing syntactic differences.

- WFS ($\mathbf{D}, \exists \wedge+$) denotes the set of all Boolean conjunctive queries on the database schema D: $\quad \exists \wedge$ ((8) ($)$
Examples: $R\left(\mathrm{a}_{0}, \mathrm{~b}_{0}, \mathrm{c}_{0}\right), \quad(\exists y)(\exists z)\left(R\left(\mathrm{a}_{0}, y, z\right) \wedge S\left(y, \mathrm{~d}_{0}\right)\right)$

Information Content

Idea: Exploit the first-order properties of the model, rather than just counting and summing syntactic differences.

- WFS $(\mathbf{D}, \exists \wedge+)$ denotes the set of all Boolean conjunctive queries on the database schema D: $\quad \exists \wedge$ ($\forall \bigotimes(\bigotimes)$
Examples: $R\left(\mathrm{a}_{0}, \mathrm{~b}_{0}, \mathrm{c}_{0}\right), \quad(\exists y)(\exists z)\left(R\left(\mathrm{a}_{0}, y, z\right) \wedge S\left(y, \mathrm{~d}_{0}\right)\right)$
- $\operatorname{WFS}(\mathbf{D}, \exists \wedge+, K)=\Upsilon_{K}^{\mathbf{D}}=$ subset of $\operatorname{WFS}(\mathbf{D}, \exists \wedge+)$ involving only the constants in K.

Information Content

Idea: Exploit the first-order properties of the model, rather than just counting and summing syntactic differences.

- WFS $(\mathbf{D}, \exists \wedge+)$ denotes the set of all Boolean conjunctive queries on the database schema D: $\quad \exists \wedge$ (\triangle (ℓ
Examples: $R\left(\mathrm{a}_{0}, \mathrm{~b}_{0}, \mathrm{c}_{0}\right), \quad(\exists y)(\exists z)\left(R\left(\mathrm{a}_{0}, y, z\right) \wedge S\left(y, \mathrm{~d}_{0}\right)\right)$
- $\operatorname{WFS}(\mathbf{D}, \exists \wedge+, K)=\Upsilon_{K}^{\mathbf{D}}=$ subset of $\operatorname{WFS}(\mathbf{D}, \exists \wedge+)$ involving only the constants in K.
- The information content of database M relative to $\Upsilon_{K}^{\mathrm{D}}$:

$$
\operatorname{Info}\left\langle M, \Upsilon_{K}^{\mathrm{D}}\right\rangle=\left\{\varphi \in \Upsilon_{K}^{\mathrm{D}} \mid M \vDash \varphi\right\}
$$

Information Content

Idea: Exploit the first-order properties of the model, rather than just counting and summing syntactic differences.

- WFS $(\mathbf{D}, \exists \wedge+)$ denotes the set of all Boolean conjunctive queries on the database schema D: $\quad \exists \wedge$ (\triangle (ℓ
Examples: $R\left(\mathrm{a}_{0}, \mathrm{~b}_{0}, \mathrm{c}_{0}\right), \quad(\exists y)(\exists z)\left(R\left(\mathrm{a}_{0}, y, z\right) \wedge S\left(y, \mathrm{~d}_{0}\right)\right)$
- $\operatorname{WFS}(\mathbf{D}, \exists \wedge+, K)=\Upsilon_{K}^{\mathbf{D}}=$ subset of $\operatorname{WFS}(\mathbf{D}, \exists \wedge+)$ involving only the constants in K.
- The information content of database M relative to $\Upsilon_{K}^{\mathrm{D}}$:

$$
\operatorname{Info}\left\langle M, \Upsilon_{K}^{\mathrm{D}}\right\rangle=\left\{\varphi \in \Upsilon_{K}^{\mathrm{D}} \mid M \vDash \varphi\right\}
$$

Example: $\quad M=\left\{R\left(\mathrm{a}_{0}, \mathrm{~b}_{0}, \mathrm{c}_{0}\right), R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{2}\right), S\left(\mathrm{c}_{0}, \mathrm{~d}_{0}\right), S\left(\mathrm{c}_{1}, \mathrm{~d}_{1}\right), S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right), S\left(\mathrm{c}_{2}, \mathrm{~d}_{2}\right)\right\}$

$$
K=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{4}, \mathrm{~d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{4}\right\}
$$

$\operatorname{Info}\left\langle M, \Upsilon_{K}^{\mathrm{E}_{0}}\right\rangle=$
$\left\{R\left(\mathrm{a}_{0}, \mathrm{~b}_{0}, \mathrm{c}_{0}\right), S\left(\mathrm{c}_{0}, \mathrm{~d}_{0}\right), S\left(\mathrm{c}_{1}, \mathrm{~d}_{1}\right), S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right),(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right)\right\}^{+}$

Distance Measure Based upon Information Content

- The update difference for an update $\left(M_{1}, M_{2}\right)$ on the main schema relative to K :

$$
\begin{aligned}
\Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle & =\operatorname{Info}\left\langle M_{2}, \Upsilon_{K}^{\mathrm{D}}\right\rangle \backslash \operatorname{Info}\left\langle M_{1}, \Upsilon_{K}^{\mathrm{D}}\right\rangle \\
\Delta^{-}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle & =\operatorname{Info}\left\langle M_{1}, \Upsilon_{K}^{\mathrm{D}}\right\rangle \operatorname{Info}\left\langle M_{2}, \Upsilon_{K}^{\mathrm{D}}\right\rangle \\
\Delta\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle & =\Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle \cup \Delta^{-}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle
\end{aligned}
$$

Distance Measure Based upon Information Content

- The update difference for an update (M_{1}, M_{2}) on the main schema relative to K :

$$
\begin{aligned}
\Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle & =\operatorname{Info}\left\langle M_{2}, \Upsilon_{K}^{\mathrm{D}}\right\rangle \backslash \operatorname{Info}\left\langle M_{1}, \Upsilon_{K}^{\mathrm{D}}\right\rangle \\
\Delta^{-}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle & =\operatorname{Info}\left\langle M_{1}, \Upsilon_{K}^{\mathrm{D}}\right\rangle \operatorname{Info}\left\langle M_{2}, \Upsilon_{K}^{\mathrm{D}}\right\rangle \\
\Delta\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle & =\Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle \cup \Delta^{-}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle
\end{aligned}
$$

- The distance is thus not a number but rather the set of Boolean conjunctive queries whose values have changed as a result of the update.
- K consists of all constant symbols which occur in:
$M_{1}=$ Old state of the main schema
$N_{1}=$ Old state of the view schema $\quad N_{2}=$ New state of the view schema
$\gamma=$ View-definition formula
Constr $(\mathbf{D})=$ Constraints on the main schema
but not any additional new constants occurring only in:
$M_{2}=$ New state of the main schema

Distance Measure Based upon Information Content

- The update difference for an update (M_{1}, M_{2}) on the main schema relative to K :

$$
\begin{aligned}
\Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle & =\operatorname{Info}\left\langle M_{2}, \Upsilon_{K}^{\mathrm{D}}\right\rangle \backslash \operatorname{Info}\left\langle M_{1}, \Upsilon_{K}^{\mathrm{D}}\right\rangle \\
\Delta^{-}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle & =\operatorname{Info}\left\langle M_{1}, \Upsilon_{K}^{\mathrm{D}}\right\rangle \operatorname{Info}\left\langle M_{2}, \Upsilon_{K}^{\mathrm{D}}\right\rangle \\
\Delta\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle & =\Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle \cup \Delta^{-}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle
\end{aligned}
$$

- The distance is thus not a number but rather the set of Boolean conjunctive queries whose values have changed as a result of the update.
- K consists of all constant symbols which occur in:
$M_{1}=$ Old state of the main schema
$N_{1}=$ Old state of the view schema $\quad N_{2}=$ New state of the view schema
$\gamma=$ View-definition formula $\quad \operatorname{Constr}(\mathbf{D})=$ Constraints on the main schema
but not any additional new constants occurring only in:
$M_{2}=$ New state of the main schema
- Admissible/optimal reflection of a view update: a reflection to the main schema for which the update difference is minimal/least and which is tuple minimal.

Examples of Information-Based Reflection of View Update

Example:

View Schema \mathbf{W}_{0}

Examples of Information-Based Reflection of View Update

Example: The insertion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view.

Examples of Information-Based Reflection of View Update

Example: The insertion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view.

- Optimal for insertions to the main schema.

Main Schema \mathbf{E}_{0}
$R: B \rightarrow C \quad R[C] \subseteq S[C]$

$R[A B C]$	$S\lceil C D\rceil$
$\mathrm{a}_{0} \mathrm{~b}_{0} \mathrm{c}_{0}$	$\mathrm{c}_{0} \mathrm{~d}_{0}$
$\sim_{1 B} \quad \begin{array}{llll} \\ \mathrm{a}_{1} & \mathrm{~b}_{1} & \mathrm{c}_{1}\end{array}$	$\mathrm{c}_{1} \mathrm{~d}_{1}$
$\pi_{A B} \quad \mathrm{a}_{1} \mathrm{~b}_{2} \overline{\mathrm{c}}_{2}$	$\mathrm{c}_{4} \mathrm{~d}_{4}$
	$\bar{c}_{2} \mathrm{~d}_{2}$
$R^{\prime}[A B] \mathrm{a}_{1} \mathrm{~b}_{1}$	
$\mathrm{a}_{1} \mathrm{~b}_{2}$	

View Schema \mathbf{W}_{0}

Examples of Information-Based Reflection of View Update

Example: The insertion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view.

- Optimal for insertions to the main schema.
- $K=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{4}, \mathrm{~d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{4}, \bar{c}_{2}, \overline{\phi_{2}}\right\}$.

Main Schema \mathbf{E}_{0}
$R: B \rightarrow C \quad R[C] \subseteq S[C]$

$R[A B C]$	$S\lceil C D\rceil$
$\mathrm{a}_{0} \mathrm{~b}_{0} \mathrm{c}_{0}$	$\mathrm{c}_{0} \mathrm{~d}_{0}$
$\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{c}_{1}$	$\mathrm{c}_{1} \mathrm{~d}_{1}$
$\pi_{A B} \quad \mathrm{a}_{1} \mathrm{~b}_{2} \overline{\mathrm{c}}_{2}$	$\mathrm{c}_{4} \mathrm{~d}_{4}$
$\downarrow \quad \mathrm{a}_{0} \mathrm{~b}_{0}$	$\overline{\mathrm{c}}_{2} \mathrm{~d}_{2}$
$R^{\prime}[A B] \mathrm{a}_{1} \mathrm{~b}_{1}$	
$a_{1} b_{2}$	

View Schema \mathbf{W}_{0}

Examples of Information-Based Reflection of View Update

Example: The insertion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view.

- Optimal for insertions to the main schema.
- $K=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{4}, \mathrm{~d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{4}, \bar{c}_{2}, \overline{\phi_{2}}\right\}$.
- $\Delta\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=\Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=$ $\left(M_{1} \cup\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right)\right\}\right)^{+}$.

Main Schema \mathbf{E}_{0}
$R: B \rightarrow C \quad R[C] \subseteq S[C]$

View Schema \mathbf{W}_{0}

Examples of Information-Based Reflection of View Update

Example: The insertion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view.

- Optimal for insertions to the main schema.
- $K=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{4}, \mathrm{~d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{4}, \bar{c}_{2}, \overline{\phi_{2}}\right\}$.
- $\Delta\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=\Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=$

$$
\left(M_{1} \cup\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right)\right\}\right)^{+} .
$$

- Changing constant names \leadsto another optimal solution.

Main Schema \mathbf{E}_{0}

View Schema \mathbf{W}_{0}

Examples of Information-Based Reflection of View Update

Example: The insertion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view.

- Optimal for insertions to the main schema.
- $K=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{4}, \mathrm{~d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{4}, \bar{c}_{2}, \overline{\phi_{2}}\right\}$.
- $\Delta\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=\Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=$

$$
\left(M_{1} \cup\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right)\right\}\right)^{+} .
$$

- Changing constant names \leadsto another optimal solution. Example:

Main Schema \mathbf{E}_{0}

View Schema \mathbf{W}_{0}

Examples of Information-Based Reflection of View Update

Example: The insertion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view.

- Optimal for insertions to the main schema.
- $K=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{4}, \mathrm{~d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{4}, \bar{c}_{2}, \overline{\phi_{2}}\right\}$.
- $\Delta\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=\Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=$

$$
\left(M_{1} \cup\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right)\right\}\right)^{+} .
$$

- Changing constant names \leadsto another optimal solution.

Example: The deletion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ from the view.

Main Schema \mathbf{E}_{0}

View Schema \mathbf{W}_{0}

Examples of Information-Based Reflection of View Update

Example: The insertion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view.

- Optimal for insertions to the main schema.
- $K=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{4}, \mathrm{~d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{4}, \bar{c}_{2}, \overline{\phi_{2}}\right\}$.
- $\Delta\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=\Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=$ $\left(M_{1} \cup\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right)\right\}\right)^{+}$.
- Changing constant names \leadsto another optimal solution.

Example: The deletion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ from the view.

- The solution shown is optimal for deletions to the main schema.

Main Schema \mathbf{E}_{0}
$R: B \rightarrow C \quad R[C] \subseteq S[C]$

View Schema \mathbf{W}_{0}

Examples of Information-Based Reflection of View Update

Example: The insertion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view.

- Optimal for insertions to the main schema.
- $K=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{4}, \mathrm{~d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{4}, \bar{c}_{2}, \overline{\phi_{2}}\right\}$.
- $\Delta\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=\Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=$ $\left(M_{1} \cup\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right)\right\}\right)^{+}$.
- Changing constant names \leadsto another optimal solution.

Example: The deletion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ from the view.

- The solution shown is optimal for deletions to the main schema.

View Schema \mathbf{W}_{0}

- $K=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{4}, \mathrm{~d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{4}\right\}$.

Examples of Information-Based Reflection of View Update

Example: The insertion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view.

- Optimal for insertions to the main schema.
- $K=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{4}, \mathrm{~d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{4}, \bar{c}_{2}, \overline{\phi_{2}}\right\}$.
- $\Delta\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=\Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=$ $\left(M_{1} \cup\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right)\right\}\right)^{+}$.
- Changing constant names \leadsto another optimal solution.

Example: The deletion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ from the view.

- The solution shown is optimal for deletions to the main schema.

Main Schema \mathbf{E}_{0}
$R: B \rightarrow C \quad R[C] \subseteq S[C]$

View Schema \mathbf{W}_{0}

- $K=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{4}, \mathrm{~d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{4}\right\}$.
- An explicit representation of $\Delta\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=\Delta^{-}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle$ is complex.

Examples of Information-Based Reflection of View Update

Example: The insertion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view.

- Optimal for insertions to the main schema.
- $K=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{4}, \mathrm{~d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{4}, \bar{c}_{2}, \overline{\phi_{2}}\right\}$.
- $\Delta\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=\Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=$ $\left(M_{1} \cup\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right)\right\}\right)^{+}$.
- Changing constant names \leadsto another optimal solution.

Example: The deletion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ from the view.

- The solution shown is optimal for deletions to the main schema.

View Schema \mathbf{W}_{0}

- $K=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{4}, \mathrm{~d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{4}\right\}$.
- An explicit representation of $\Delta\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=\Delta^{-}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle$ is complex.
- However, it is easy to see that $\operatorname{lnfo}\left\langle M_{2}, \Upsilon_{K}^{\mathrm{D}}\right\rangle$ is preserved and nothing more.

Examples of Information-Based Reflection of View Update

Example: The insertion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view.

- Optimal for insertions to the main schema.
- $K=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{4}, \mathrm{~d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{4}, \bar{c}_{2}, \overline{\phi_{2}}\right\}$.
- $\Delta\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=\Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=$ $\left(M_{1} \cup\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right)\right\}\right)^{+}$.
- Changing constant names \leadsto another optimal solution.

Example: The deletion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ from the view.

- The solution shown is optimal for deletions to the main schema.
- $K=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{4}, \mathrm{~d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{4}\right\}$.
- An explicit representation of $\Delta\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=\Delta^{-}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle$ is complex.
- However, it is easy to see that $\operatorname{Info}\left\langle M_{2}, \Upsilon_{K}^{\mathbf{D}}\right\rangle$ is preserved and nothing more.
- A general theory of optimality for monotonic reflections: [Hegner 2008-2009].

Examples of Information-Based Reflection of View Update

Example: The insertion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view.

- Optimal for insertions to the main schema.
- $K=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{4}, \mathrm{~d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{4}, \bar{c}_{2}, \overline{\phi_{2}}\right\}$.
- $\Delta\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=\Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=$ $\left(M_{1} \cup\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right)\right\}\right)^{+}$.
- Changing constant names \leadsto another optimal solution.

Example: The deletion of $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ from the view.

- The solution shown is optimal for deletions to the main schema.

Main Schema \mathbf{E}_{0}
$R: B \rightarrow C \quad R[C] \subseteq S[C]$
$R[A B C] \quad S[C D]$

$\pi_{A B} \quad a_{1}-b_{1} c_{1} \quad c_{1} d_{1}$ $\mathrm{c}_{4} \mathrm{~d}_{4}$

- $K=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{4}, \mathrm{~d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{4}\right\}$.
- An explicit representation of $\Delta\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle=\Delta^{-}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle$ is complex.
- However, it is easy to see that $\operatorname{Info}\left\langle M_{2}, \Upsilon_{K}^{\mathbf{D}}\right\rangle$ is preserved and nothing more.
- A general theory of optimality for monotonic reflections: [Hegner 2008-2009].

Goal of this work: Extend this theory to non-monotonic reflections (involving both insertion and deletion).

The Problem of Non-Monotonic Updates and Collateral Change

Example: Consider again the insertion of $\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view with the insertion-optimal solution.

Main Schema \mathbf{E}_{0}

The Problem of Non-Monotonic Updates and Collateral Change

Example: Consider again the insertion of $\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view with the insertion-optimal solution.

- $\varphi=(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right) \wedge S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$

$$
\in \Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle
$$

Main Schema \mathbf{E}_{0}

The Problem of Non-Monotonic Updates and Collateral Change

Example: Consider again the insertion of $\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view with the insertion-optimal solution.

- $\varphi=(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right) \wedge S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$ $\in \Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle$.
- If $S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$ is deleted, φ will not be added.

Main Schema \mathbf{E}_{0}

$R: B \rightarrow C$	$] \subseteq S[C]$
$R[A B C]$	$S\lceil C D\rceil$
$\pi_{A B} \left\lvert\, \begin{array}{llll}\mathrm{a}_{0} & \mathrm{~b}_{0} & \mathrm{c}_{0} \\ \mathrm{a}_{1} & \mathrm{~b}_{1} & \mathrm{c}_{1} \\ \mathrm{a}_{1} & \mathrm{~b}_{2} & \bar{c}_{2}\end{array}\right.$	$\begin{array}{ll} \mathrm{c}_{0} & \mathrm{~d}_{0} \\ \mathrm{c}_{1} & \mathrm{~d}_{1} \\ \mathrm{c}_{4} & \mathrm{~d}_{4} \\ \overline{\mathrm{c}}_{2} & \overline{\mathrm{~d}}_{2} \end{array}$
$\begin{array}{cl} \downarrow & \mathrm{a}_{0} \mathrm{~b}_{0} \\ R^{\prime}[A B] \\ \mathrm{a}_{1} \mathrm{~b}_{1} \\ \mathrm{a}_{1} \mathrm{~b}_{2} \end{array}$	

View Schema \mathbf{W}_{0}

The Problem of Non-Monotonic Updates and Collateral Change

Example: Consider again the insertion of $\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view with the insertion-optimal solution.

- $\varphi=(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right) \wedge S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$

$$
\in \Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle
$$

- If $S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$ is deleted, φ will not be added.
- But deleting $S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$ does not make the solution better in any reasonable way.

The Problem of Non-Monotonic Updates and Collateral Change

Example: Consider again the insertion of $\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view with the insertion-optimal solution.

- $\varphi=(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right) \wedge S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$

$$
\in \Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle
$$

- If $S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$ is deleted, φ will not be added.
- But deleting $S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$ does not make the solution better in any reasonable way.
- φ is called a collateral change.

Main Schema \mathbf{E}_{0}
$R: B \rightarrow C \quad R[C] \subseteq S[C]$

$R[A B C]$	$S\lceil C D\rceil$
$\mathrm{a}_{0} \mathrm{~b}_{0} \mathrm{c}_{0}$	$\mathrm{c}_{0} \mathrm{~d}_{0}$
$\pi_{A B} \quad \mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{c}_{1}$	$\mathrm{c}_{1} \mathrm{~d}_{1}$
$\pi_{A B} \quad \mathrm{a}_{1} \mathrm{~b}_{2} \overline{\mathrm{c}}_{2}$	$\mathrm{C}_{4}-{ }_{4}$
$\downarrow \quad \mathrm{a}_{0} \mathrm{~b}_{0}$	
$R^{\prime}[A B] \mathrm{a}_{1} \mathrm{~b}_{1}$	
$\mathrm{a}_{1} \mathrm{~b}_{2}$	

View Schema \mathbf{W}_{0}

The Problem of Non-Monotonic Updates and Collateral Change

Example: Consider again the insertion of $\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view with the insertion-optimal solution.

- $\varphi=(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right) \wedge S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$

$$
\in \Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle
$$

- If $S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$ is deleted, φ will not be added.
- But deleting $S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$ does not make the solution better in any reasonable way.
- φ is called a collateral change.
- With monotonic view updates (insertions and deletions), collateral change can be avoided by requiring that the reflection be of the same type as the view update.

The Problem of Non-Monotonic Updates and Collateral Change

Example: Consider again the insertion of $\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view with the insertion-optimal solution.

- $\varphi=(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right) \wedge S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$

$$
\in \Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle
$$

- If $S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$ is deleted, φ will not be added.
- But deleting $S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$ does not make the solution better in any reasonable way.
- φ is called a collateral change.
- With monotonic view updates (insertions and deletions), collateral change can be avoided by requiring that the reflection be of the same type as the view update.
- For view updates which are not monotonic, a more general technique for avoiding collateral change is necessary.

The Problem of Non-Monotonic Updates and Collateral Change

Example: Consider again the insertion of $\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ into the view with the insertion-optimal solution.

- $\varphi=(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right) \wedge S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$

$$
\in \Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle
$$

- If $S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$ is deleted, φ will not be added.
- But deleting $S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$ does not make the solution better in any reasonable way.
- φ is called a collateral change.
- With monotonic view updates (insertions and deletions), collateral change can be avoided by requiring that the reflection be of the same type as the view update.
- For view updates which are not monotonic, a more general technique for avoiding collateral change is necessary.
- The approach is to characterize $\Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle$ and $\Delta^{-}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle$ via generators, and then place minimal/least constraints on these generators.

Update Generators

Idea: A generator for the update $\left(M_{1}, M_{2}\right)$ on the schema \mathbf{D} is a pair $\left\langle G_{+}, G_{+}\right\rangle$with the following properties:

Update Generators

Idea: A generator for the update $\left(M_{1}, M_{2}\right)$ on the schema \mathbf{D} is a pair $\left\langle G_{+}, G_{+}\right\rangle$with the following properties:
(1) $G_{+} \subseteq \Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle$ generates the added information.

Update Generators

Idea: A generator for the update $\left(M_{1}, M_{2}\right)$ on the schema \mathbf{D} is a pair $\left\langle G_{+}, G_{+}\right\rangle$with the following properties:
(1) $G_{+} \subseteq \Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle$ generates the added information.
(2) $G_{+} \subseteq \operatorname{Info}\left\langle M_{1}, \Upsilon_{K}^{\mathbf{D}}\right\rangle \backslash \Delta^{-}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle$ generates the retained information.

Update Generators

Idea: A generator for the update $\left(M_{1}, M_{2}\right)$ on the schema \mathbf{D} is a pair $\left\langle G_{+}, G_{+}\right\rangle$with the following properties:
(1) $G_{+} \subseteq \Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle$ generates the added information.
(2) $G_{+} \subseteq \operatorname{lnfo}\left\langle M_{1}, \Upsilon_{K}^{\mathrm{D}}\right\rangle \backslash \Delta^{-}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle$ generates the retained information.
(3) $G_{+} \cup G_{+} \equiv_{\mathrm{D}} M_{2}\left(G_{+} \cup G_{+}\right.$defines the new state).

Update Generators

Idea: A generator for the update $\left(M_{1}, M_{2}\right)$ on the schema \mathbf{D} is a pair $\left\langle G_{+}, G_{+}\right\rangle$with the following properties:
(1) $G_{+} \subseteq \Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle$ generates the added information.
(2) $G_{+} \subseteq \operatorname{lnfo}\left\langle M_{1}, \Upsilon_{K}^{\mathrm{D}}\right\rangle \backslash \Delta^{-}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle$ generates the retained information.
(3) $G_{+} \cup G_{+} \equiv_{\mathrm{D}} M_{2}\left(G_{+} \cup G_{+}\right.$defines the new state).

Ordering: $\left\langle G_{+}^{1}, G_{+}^{1}\right\rangle \sqsubseteq_{\mathrm{D}}\left\langle G_{+}^{2}, G_{+}^{2}\right\rangle$ iff

Update Generators

Idea: A generator for the update $\left(M_{1}, M_{2}\right)$ on the schema \mathbf{D} is a pair $\left\langle G_{+}, G_{+}\right\rangle$with the following properties:
(1) $G_{+} \subseteq \Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle$ generates the added information.
(2) $G_{+} \subseteq \operatorname{lnfo}\left\langle M_{1}, \Upsilon_{K}^{\mathbf{D}}\right\rangle \backslash \Delta^{-}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle$ generates the retained information.
(3) $G_{+} \cup G_{+} \equiv_{\mathrm{D}} M_{2}\left(G_{+} \cup G_{+}\right.$defines the new state).

Ordering: $\left\langle G_{+}^{1}, G_{+}^{1}\right\rangle \sqsubseteq_{\mathbf{D}}\left\langle G_{+}^{2}, G_{+}^{2}\right\rangle$ iff
(1) $G_{+}^{2} \models_{\mathrm{D}} G_{+}^{1}\left(G_{+}^{1}\right.$ is weaker than G_{+}^{2} - want to minimize $\left.G_{+}\right)$.

Update Generators

Idea: A generator for the update $\left(M_{1}, M_{2}\right)$ on the schema \mathbf{D} is a pair $\left\langle G_{+}, G_{+}\right\rangle$with the following properties:
(1) $G_{+} \subseteq \Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle$ generates the added information.
(2) $G_{+} \subseteq \operatorname{lnfo}\left\langle M_{1}, \Upsilon_{K}^{\mathbf{D}}\right\rangle \backslash \Delta^{-}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle$ generates the retained information.
(3) $G_{+} \cup G_{+} \equiv_{\mathrm{D}} M_{2}\left(G_{+} \cup G_{+}\right.$defines the new state).

Ordering: $\left\langle G_{+}^{1}, G_{+}^{1}\right\rangle \sqsubseteq_{\mathbf{D}}\left\langle G_{+}^{2}, G_{+}^{2}\right\rangle$ iff
(1) $G_{+}^{2} \models_{\mathbf{D}} G_{+}^{1}\left(G_{+}^{1}\right.$ is weaker than G_{+}^{2} - want to minimize $\left.G_{+}\right)$.
(2) $G_{\neq}^{1} \vDash_{\mathbf{D}} G_{+}^{2}\left(G_{+}^{2}\right.$ is stronger than $G_{+}^{1}-$ want to maximize $\left.G_{+}\right)$.

Update Generators

Idea: A generator for the update $\left(M_{1}, M_{2}\right)$ on the schema \mathbf{D} is a pair $\left\langle G_{+}, G_{+}\right\rangle$with the following properties:
(1) $G_{+} \subseteq \Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle$ generates the added information.
(2) $G_{+} \subseteq \operatorname{lnfo}\left\langle M_{1}, \Upsilon_{K}^{\mathrm{D}}\right\rangle \backslash \Delta^{-}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle$ generates the retained information.
(3) $G_{+} \cup G_{+} \equiv_{\mathrm{D}} M_{2}\left(G_{+} \cup G_{+}\right.$defines the new state).

Ordering: $\left\langle G_{+}^{1}, G_{+}^{1}\right\rangle \sqsubseteq_{\mathbf{D}}\left\langle G_{+}^{2}, G_{+}^{2}\right\rangle$ iff
(1) $G_{+}^{2} \models_{\mathbf{D}} G_{+}^{1}\left(G_{+}^{1}\right.$ is weaker than G_{+}^{2} - want to minimize $\left.G_{+}\right)$.
(2) $G_{\neq}^{1} \vDash_{\mathbf{D}} G_{+}^{2}\left(G_{\neq}^{2}\right.$ is stronger than $G_{+}^{1}-$ want to maximize $\left.G_{+}\right)$.

- Roughly, $\vDash_{\mathbf{D}}$ is semantic entailment in the context of the constraints Constr (\mathbf{D}) of \mathbf{D}.
- Thus $\sqsubseteq_{\mathbf{D}}$ is a preorder (and a partial order on the associated equivalence classes).

Update Generators

Idea: A generator for the update $\left(M_{1}, M_{2}\right)$ on the schema \mathbf{D} is a pair $\left\langle G_{+}, G_{+}\right\rangle$with the following properties:
(1) $G_{+} \subseteq \Delta^{+}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathbf{D}}\right\rangle$ generates the added information.
(2) $G_{+} \subseteq \operatorname{lnfo}\left\langle M_{1}, \Upsilon_{K}^{\mathrm{D}}\right\rangle \backslash \Delta^{-}\left\langle\left(M_{1}, M_{2}\right), \Upsilon_{K}^{\mathrm{D}}\right\rangle$ generates the retained information.
(3) $G_{+} \cup G_{+} \equiv_{\mathrm{D}} M_{2}\left(G_{+} \cup G_{+}\right.$defines the new state).

Ordering: $\left\langle G_{+}^{1}, G_{+}^{1}\right\rangle \sqsubseteq_{\mathbf{D}}\left\langle G_{+}^{2}, G_{+}^{2}\right\rangle$ iff
(1) $G_{+}^{2} \models_{\mathrm{D}} G_{+}^{1}\left(G_{+}^{1}\right.$ is weaker than $G_{+}^{2}-$ want to minimize $\left.G_{+}\right)$.
(2) $G_{\neq}^{1} \models_{\mathbf{D}} G_{+}^{2}\left(G_{\neq}^{2}\right.$ is stronger than $G_{+}^{1}-$ want to maximize $\left.G_{+}\right)$.

- Roughly, $\vDash_{\mathbf{D}}$ is semantic entailment in the context of the constraints Constr (\mathbf{D}) of \mathbf{D}.
- Thus $\sqsubseteq_{\mathbf{D}}$ is a preorder (and a partial order on the associated equivalence classes).
- Admissibility and optimality are defined in terms of this ordering.
- Admissible $=$ minimal in the ordering.
- Optimal $=$ least in the ordering.

Example of Update Generator

Example: For the insertion-only reflection of the insertion of ($\mathrm{a}_{1}, \mathrm{~b}_{2}$) into the view:

$$
\begin{aligned}
& G_{+}=\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right\}\right. \\
& \left.G_{+}=M_{1} \quad \text { (original state of } \mathbf{E}_{0}\right)
\end{aligned}
$$

Main Schema \mathbf{E}_{0}

$$
\begin{aligned}
& R: B \rightarrow C \quad R[C] \subseteq S[C]
\end{aligned}
$$

$$
\begin{aligned}
& \text { View Schema } \mathbf{W}_{0}
\end{aligned}
$$

Example of Update Generator

Example: For the insertion-only reflection of the insertion of (a_{1}, b_{2}) into the view:

$$
\begin{aligned}
& G_{+}=\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right\}\right. \\
& G_{+}=M_{1}\left(\text { original state of } \mathbf{E}_{0}\right)
\end{aligned}
$$

- For the solution in which $S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$ is also deleted:

$$
\begin{aligned}
G_{+}^{\prime} & =\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right\}\right. \\
G_{+}^{\prime} & =M_{1} \backslash\left\{S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)\right\}
\end{aligned}
$$

Example of Update Generator

Example: For the insertion-only reflection of the insertion of (a_{1}, b_{2}) into the view:

$$
\begin{aligned}
& G_{+}=\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right\}\right. \\
& G_{+}=M_{1} \quad\left(\text { original state of } \mathbf{E}_{0}\right)
\end{aligned}
$$

- For the solution in which $S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$ is also deleted:

$$
\begin{aligned}
G_{+}^{\prime} & =\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right\}\right. \\
G_{+}^{\prime} & =M_{1} \backslash\left\{S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)\right\}
\end{aligned}
$$

- Since $\left\langle G_{+}, G_{+}\right\rangle \zeta_{\mathbf{D}}\left\langle G_{+}^{\prime}, G_{+}^{\prime}\right\rangle$, the insertion-only solution is preferred, as desired.
- The collateral change entails in a suboptimal reflection.

Example of Update Generator

Example: For the insertion-only reflection of the insertion of (a_{1}, b_{2}) into the view:

$$
\begin{aligned}
& G_{+}=\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right\}\right. \\
& G_{+}=M_{1} \quad\left(\text { original state of } \mathbf{E}_{0}\right)
\end{aligned}
$$

- For the solution in which $S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$ is also deleted:

$$
\begin{aligned}
G_{+}^{\prime} & =\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right\}\right. \\
G_{+}^{\prime} & =M_{1} \backslash\left\{S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)\right\}
\end{aligned}
$$

- Since $\left\langle G_{+}, G_{+}\right\rangle \zeta_{\mathbf{D}}\left\langle G_{+}^{\prime}, G_{+}^{\prime}\right\rangle$, the insertion-only solution is preferred, as desired.
- The collateral change entails in a suboptimal reflection.
- This is a simplification; technical details have been ignored.

Example of Update Generator

Example: For the insertion-only reflection of the insertion of (a_{1}, b_{2}) into the view:

$$
\begin{aligned}
& G_{+}=\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right)_{\wedge} S(z, w)\right\}\right. \\
& G_{+}=M_{1} \quad\left(\text { original state of } \mathbf{E}_{0}\right)
\end{aligned}
$$

- For the solution in which $S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)$ is also deleted:

$$
\begin{aligned}
G_{+}^{\prime} & =\left\{(\exists z)(\exists w)\left(R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, z\right) \wedge S(z, w)\right\}\right. \\
G_{+}^{\prime} & =M_{1} \backslash\left\{S\left(\mathrm{c}_{4}, \mathrm{~d}_{4}\right)\right\}
\end{aligned}
$$

Main Schema \mathbf{E}_{0}	
$R: B \rightarrow C \quad R[C] \subseteq S[C]$	
$R[A B C]$	$S\lceil C D\rceil$
$\mathrm{a}_{0} \mathrm{~b}_{0} \mathrm{c}_{0}$	$\mathrm{c}_{0} \mathrm{~d}_{0}$
$\pi_{1 B} \quad \mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{c}_{1}$	$\mathrm{c}_{1} \mathrm{~d}_{1}$
$\pi_{A B} \quad \mathrm{a}_{1} \mathrm{~b}_{2} \overline{\mathrm{c}}_{2}$	$\mathrm{C}_{4} \mathrm{Cd}_{4}$
$\downarrow \quad \mathrm{a}_{0} \mathrm{~b}_{0}$	
$R^{\prime}[A B] \mathrm{a}_{1} \mathrm{~b}_{1}$	
$a_{1} b_{2}$	
View Sc	ema \mathbf{W}_{0}

- Since $\left\langle G_{+}, G_{+}\right\rangle \zeta_{\mathbf{D}}\left\langle G_{+}^{\prime}, G_{+}^{\prime}\right\rangle$, the insertion-only solution is preferred, as desired.
- The collateral change entails in a suboptimal reflection.
- This is a simplification; technical details have been ignored.
- Constraints on D: Horn with finite chase. (Implies finite initial-model property.)
- G_{+}and G_{f} are ideals: closed under implication in the context of Constr(\mathbf{D}).

Least-Insertion Optimality

Theorem: Under suitable conditions, every view update has a reflection which is insertion optimal in the sense that G_{+}is least. \square

Least-Insertion Optimality

Theorem: Under suitable conditions, every view update has a reflection which is insertion optimal in the sense that G_{+}is least.

- Illustrate with the first update example.

Main Schema \mathbf{E}_{0}		
$R: B \rightarrow C$		$C] \subseteq S[C]$
$R[A B C]$		$S[C D]$
	$\mathrm{a}_{0} \mathrm{~b}_{0} \mathrm{c}_{0}$	$\mathrm{c}_{0} \mathrm{~d}_{0}$
$\pi_{A B}$	$\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{c}_{1}$	$\mathrm{c}_{1} \mathrm{~d}_{1}$
$\pi_{A B}$		$\mathrm{c}_{4} \mathrm{~d}_{4}$
] $a_{0} b_{0}$	

View Schema \mathbf{W}_{0}

Least-Insertion Optimality

Theorem: Under suitable conditions, every view update has a reflection which is insertion optimal in the sense that G_{+}is least.

- Illustrate with the first update example.
- Change $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ to $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$.

Least-Insertion Optimality

Theorem: Under suitable conditions, every view update has a reflection which is insertion optimal in the sense that G_{+}is least.

- Illustrate with the first update example.
- Change $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ to $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$.

Idea: First delete $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ with least reflection,

View Schema \mathbf{W}_{0}

Least-Insertion Optimality

Theorem: Under suitable conditions, every view update has a reflection which is insertion optimal in the sense that G_{+}is least.

- Illustrate with the first update example.
- Change $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ to $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$.

Idea: First delete $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ with least reflection, then insert $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ with minimal new information.

- There are details which must be solved to make this idea work, including:

Main Schema \mathbf{E}_{0}
$R: B \rightarrow C \quad R[C] \subseteq S[C]$

$R[A B C]$	$S[C D]$
$\pi_{A B} \left\lvert\, \begin{aligned} & \mathrm{a}_{0} \mathrm{~b}_{0} \mathrm{c}_{0} \\ & \mathrm{a}_{0} \\ & \mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{c}_{1} \\ & \mathrm{a}_{1} \mathrm{~b}_{2} \mathrm{c}_{2} \end{aligned}\right.$	$\begin{aligned} & \mathrm{c}_{0} \mathrm{~d}_{0} \\ & \mathrm{c}_{1} \mathrm{~d}_{1} \\ & \mathrm{c}_{4} \mathrm{~d}_{4} \end{aligned}$
$\begin{array}{ll} \downarrow \\ R^{\prime}[A B] & \begin{array}{l} \mathrm{a}_{0} \mathrm{~b}_{0} \\ \mathrm{a}_{-1} \mathrm{~b}_{1} \\ \mathrm{a}_{1} \mathrm{~b}_{2} \end{array} \end{array}$	$\mathrm{c}_{2} \mathrm{~d}_{2}$

View Schema \mathbf{W}_{0}

Least-Insertion Optimality

Theorem: Under suitable conditions, every view update has a reflection which is insertion optimal in the sense that G_{+}is least.

- Illustrate with the first update example.
- Change $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ to $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$.

Idea: First delete $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ with least reflection, then insert $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ with minimal new information.

- There are details which must be solved to make this idea work, including:

Main Schema \mathbf{E}_{0}

$$
R: B \rightarrow C \quad R[C] \subseteq S[C]
$$

$R[A B C]$		$S[C D]$
$\pi_{A B}$	$\mathrm{a}_{0} \mathrm{~b}_{0} \mathrm{c}_{0}$	$\mathrm{c}_{0} \mathrm{~d}_{0}$
	$a a_{1} b_{1} \varepsilon_{1}$	$\mathrm{c}_{1} \mathrm{~d}_{1}$
	$\mathrm{a}_{1} \mathrm{~b}_{2} \mathrm{c}_{2}$	$\mathrm{c}_{4} \mathrm{~d}_{4}$
		$\mathrm{c}_{2} \mathrm{~d}_{2}$
$R^{\prime}[A B] \begin{aligned} & a_{0} \mathrm{~b}_{0} \\ & a_{4} \mathrm{~b}_{1} \\ & \mathrm{a}_{1} \mathrm{~b}_{2}\end{aligned}$		

View Schema \mathbf{W}_{0}

Legal deletion: The state obtained by deletion in the view may not satisfy the integrity constraints, and so not correspond to a legal state in the main schema.

Least-Insertion Optimality

Theorem: Under suitable conditions, every view update has a reflection which is insertion optimal in the sense that G_{+}is least.

- Illustrate with the first update example.
- Change $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ to $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$.

Idea: First delete $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ with least reflection, then insert $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ with minimal new information.

- There are details which must be solved to make this idea work, including:

Least-Insertion Optimality

Theorem: Under suitable conditions, every view update has a reflection which is insertion optimal in the sense that G_{+}is least.

- Illustrate with the first update example.
- Change $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ to $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$.

Idea: First delete $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ with least reflection, then insert $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ with minimal new information.

- There are details which must be solved to make this idea work, including:

Optimal deletion: There may not be a least reflection of a deletion.

Least-Insertion Optimality

Theorem: Under suitable conditions, every view update has a reflection which is insertion optimal in the sense that G_{+}is least.

- Illustrate with the first update example.
- Change $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ to $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$.

Idea: First delete $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ with least reflection, then insert $R^{\prime}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ with minimal new information.

- There are details which must be solved to make this idea work, including:

$$
\begin{aligned}
& \text { Main Schema } \mathbf{E}_{0} \\
& R: B \rightarrow C \quad R[C] \subseteq S[C] \\
& \begin{array}{cc}
R[A B C] & S[C D] \\
& \mathrm{a}_{0} \mathrm{~b}_{0} \mathrm{c}_{0} \\
\mathrm{c}_{0} \mathrm{~d}_{0}
\end{array} \\
& \pi_{A B} \left\lvert\, \begin{array}{ll}
a_{1}-b_{1} c_{1} & c_{1} d_{1} \\
\mathrm{a}_{1} \mathrm{~b}_{2} \mathrm{c}_{2} & \mathrm{c}_{4} \mathrm{~d}_{4}
\end{array}\right. \\
& \mathrm{c}_{2} \mathrm{~d}_{2} \\
& R^{\prime}[A B] \begin{array}{l}
a_{0} \mathrm{~b}_{0} \\
a_{4} \mathrm{~b}_{1} \\
\mathrm{a}_{1} \mathrm{~b}_{2}
\end{array} \\
& \text { View Schema } \mathbf{W}_{0}
\end{aligned}
$$

Legal deletion: The state obtained by deletion in the view may not satisfy the integrity constraints, and so not correspond to a legal state in the main schema.
Solution: Finite initial model property ensures an extendible a "skeleton" in the main schema.

Optimal deletion: There may not be a least reflection of a deletion.
Solution: View must define a unit-head pair. (No rules with more than one antecedent) [Hegner 2009]

Deletion Optimality

- The example under consideration is not deletion optimal for information.

Main Schema \mathbf{E}_{0}

View Schema \mathbf{W}_{0}

Deletion Optimality

- The example under consideration is not deletion optimal for information.
- The reflection shown preserves more information (but adds more as well).
Preserves: $(\exists y)\left(R\left(\mathrm{a}_{1}, y, \mathrm{c}_{1}\right)\right) \quad$ Adds: $R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{1}\right)$

Deletion Optimality

- The example under consideration is not deletion optimal for information.
- The reflection shown preserves more information (but adds more as well).
Preserves: $(\exists y)\left(R\left(\mathrm{a}_{1}, y, \mathrm{c}_{1}\right)\right) \quad$ Adds: $R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{1}\right)$
- It is in fact deletion optimal for information in the sense that G_{f} is greatest.

Main Schema \mathbf{E}_{0}

Deletion Optimality

- The example under consideration is not deletion optimal for information.
- The reflection shown preserves more information (but adds more as well).
Preserves: $(\exists y)\left(R\left(\mathrm{a}_{1}, y, \mathrm{c}_{1}\right)\right) \quad$ Adds: $R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{1}\right)$
- It is in fact deletion optimal for information in the sense that G_{+}is greatest.
- Such optimality is not achievable in general. Consider deleting $R^{\prime}\left(\mathrm{a}_{0}, \mathrm{~b}_{0}\right)$ as well.

Main Schema \mathbf{E}_{0}
$R: B \rightarrow C \quad R[C] \subseteq S[C]$

$R[A B C]$	$S[C D]$
$\begin{array}{l\|lll} & \mathrm{a}_{0} \mathrm{~b}_{0} \mathrm{c}_{0} \\ \pi_{A B} & \mathrm{a}_{1} \mathrm{~b}_{1} & \mathrm{c}_{1} \end{array}$	$\begin{aligned} & \mathrm{c}_{0} \mathrm{~d}_{0} \\ & \mathrm{c}_{1} \mathrm{~d}_{1} \\ & \mathrm{c}_{4} \mathrm{~d}_{4} \end{aligned}$
$\begin{array}{ll} R^{\prime}[A B] & \begin{array}{ll} \mathrm{a}_{0} \\ \mathrm{a}_{0} \mathrm{~b}_{1} \\ \mathrm{a}_{1} \mathrm{~b}_{2} \end{array} \end{array}$	

View Schema \mathbf{W}_{0}

Deletion Optimality

- The example under consideration is not deletion optimal for information.
- The reflection shown preserves more information (but adds more as well).
Preserves: $(\exists y)\left(R\left(\mathrm{a}_{1}, y, \mathrm{c}_{1}\right)\right) \quad$ Adds: $R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{1}\right)$
- It is in fact deletion optimal for information in the sense that G_{f} is greatest.
- Such optimality is not achievable in general. Consider deleting $R^{\prime}\left(\mathrm{a}_{0}, \mathrm{~b}_{0}\right)$ as well.

Main Schema \mathbf{E}_{0}
$R: B \rightarrow C \quad R[C] \subseteq S[C]$

View Schema \mathbf{W}_{0}

- There are two incomparable reflections which minimize G_{f}. This one preserves $(\exists x)(\exists y)\left(R\left(x, y, \mathrm{c}_{0}\right)\right.$. This one preserves $(\exists x)(\exists y)\left(R\left(x, y, c_{1}\right)\right.$.

Deletion Optimality

- The example under consideration is not deletion optimal for information.
- The reflection shown preserves more information (but adds more as well).
Preserves: $(\exists y)\left(R\left(\mathrm{a}_{1}, y, \mathrm{c}_{1}\right)\right) \quad$ Adds: $R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{1}\right)$
- It is in fact deletion optimal for information in the sense that G_{f} is greatest.
- Such optimality is not achievable in general. Consider deleting $R^{\prime}\left(\mathrm{a}_{0}, \mathrm{~b}_{0}\right)$ as well.

Main Schema \mathbf{E}_{0}
$R: B \rightarrow C \quad R[C] \subseteq S[C]$

View Schema \mathbf{W}_{0}

- There are two incomparable reflections which minimize G_{f}. This one preserves $(\exists x)(\exists y)\left(R\left(x, y, \mathrm{c}_{0}\right)\right.$. This one preserves $(\exists x)(\exists y)\left(R\left(x, y, \mathrm{c}_{1}\right)\right.$.

Deletion Optimality

- The example under consideration is not deletion optimal for information.
- The reflection shown preserves more information (but adds more as well).
Preserves: $(\exists y)\left(R\left(\mathrm{a}_{1}, y, \mathrm{c}_{1}\right)\right) \quad$ Adds: $R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{1}\right)$
- It is in fact deletion optimal for information in the sense that G_{f} is greatest.
- Such optimality is not achievable in general. Consider deleting $R^{\prime}\left(\mathrm{a}_{0}, \mathrm{~b}_{0}\right)$ as well.
- There are two incomparable reflections which minimize G_{f}. This one preserves $(\exists x)(\exists y)\left(R\left(x, y, \mathrm{c}_{0}\right)\right.$. This one preserves $(\exists x)(\exists y)\left(R\left(x, y, \mathrm{c}_{1}\right)\right.$.
- Deletion optimality is possible only when the view update corresponds to changes in fields of tuples.

Deletion Optimality

- The example under consideration is not deletion optimal for information.
- The reflection shown preserves more information (but adds more as well).
Preserves: $(\exists y)\left(R\left(\mathrm{a}_{1}, y, \mathrm{c}_{1}\right)\right) \quad$ Adds: $R\left(\mathrm{a}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{1}\right)$
- It is in fact deletion optimal for information in the sense that G_{+}is greatest.
- Such optimality is not achievable in general. Consider deleting $R^{\prime}\left(\mathrm{a}_{0}, \mathrm{~b}_{0}\right)$ as well.

Main Schema \mathbf{E}_{0}		
$R: B \rightarrow C \quad R[$] $\subseteq S[C]$
$R[A B C]$		$S[C D]$
$\pi_{A B} \left\lvert\, \begin{aligned} & \text { a } \\ & \text { a } \\ & \text { a }\end{aligned}\right.$	$\mathrm{a}_{0} \mathrm{~b}_{-} c_{0}$	$\mathrm{c}_{0} \mathrm{~d}_{0}$
	$a_{1} a_{1} b_{1} c_{2} c_{1}$	$c_{1} \mathrm{~d}_{1}$ $\mathrm{c}_{4} \mathrm{~d}_{4}$
$R^{\prime}[A B]$	B] $\mathrm{a}_{0} \mathrm{~b}_{0}$	
] $\mathrm{a}_{\mathrm{a}} \mathrm{b}_{1}$	
	$\mathrm{a}_{1} \mathrm{~b}_{2}$	
View Schema \mathbf{W}_{0}		

- There are two incomparable reflections which minimize G_{f}. This one preserves $(\exists x)(\exists y)\left(R\left(x, y, c_{0}\right)\right.$. This one preserves $(\exists x)(\exists y)\left(R\left(x, y, c_{1}\right)\right.$.
- Deletion optimality is possible only when the view update corresponds to changes in fields of tuples.
- The insertion optimal realization of the previous slides is, however, deletion optimal for tuples.

Conclusions and Further Directions

Conclusions:

- The idea of a semantically motivated distance between databases based upon Boolean conjunctive queries has been applied to non-monotonic queries.

Conclusions and Further Directions

Conclusions:

- The idea of a semantically motivated distance between databases based upon Boolean conjunctive queries has been applied to non-monotonic queries.
- Under suitable conditions, reflections to view updates which are insertion-optimal as well as deletion-optimal for tuples are shown to exist.

Conclusions and Further Directions

Conclusions:

- The idea of a semantically motivated distance between databases based upon Boolean conjunctive queries has been applied to non-monotonic queries.
- Under suitable conditions, reflections to view updates which are insertion-optimal as well as deletion-optimal for tuples are shown to exist.

Further Directions:

- Classification of reflection type along tuple update versus delete-insert lines.

Conclusions and Further Directions

Conclusions:

- The idea of a semantically motivated distance between databases based upon Boolean conjunctive queries has been applied to non-monotonic queries.
- Under suitable conditions, reflections to view updates which are insertion-optimal as well as deletion-optimal for tuples are shown to exist.

Further Directions:

- Classification of reflection type along tuple update versus delete-insert lines.
- Integration of this measure with more traditional syntactic ones.

