
Guard Independence and
Constraint-Preserving Snapshot Isolation

Stephen J. Hegner
Umeå University

Department of Computing Science
SE-901 87 Umeå, Sweden

hegner@cs.umu.se
http://www.cs.umu.se/~hegner

FoIKS 2014
Eighth International Symposium on

Foundations of Information and Knowledge Systems
Bordeaux, France

3 March 2014

0/25

The ACID Characterization

• The properties which a set of concurrent transactions should exhibit is
often expressed via the acronym ACID:

Atomicity: For each transaction, either the complete result of its execution is
recorded in the database, or else nothing about its results is recorded.

Consistency: The execution of any transaction in isolation preserves the
integrity of the database.

Isolation: The execution of one running transaction must not affect the
execution of another concurrently running transaction.

Durability: The results of the transactions are permanent in the database.
• Atomicity, consistency, and durability are properties of individual

transactions and their execution.
• Isolation describes how transactions interact.
• The focus of this talk is isolation of atomic, consistent, and durable

transactions.
1/25

Serial Execution of Transactions

Serial execution: A set of transactions runs serially if there is no temporal
overlap in their operations.

• Serial execution is considered to define optimal isolation, even though the
result may depend upon the order of execution.

T1 T2 x
Read〈x〉 10000

Cpd〈x , 10%〉 10000

Write〈x〉 11000

Read〈x〉 11000

Wd〈x , 2000〉 11000

Write〈x〉 9000

T1 T2 x
Read〈x〉 10000

Wd〈x , 2000〉 10000

Write〈x〉 8000

Read〈x〉 8000

Cpd〈x , 10%〉 8000

Write〈x〉 8800

• The operations Cpd = compound and Wd = withdraw operate internally
and do not write the database.

2/25

Lost Updates

• If the steps of the transactions are interleaved in certain ways, isolation
may be lost.
• One symptom of poor isolation is lost updates.

T1 T2 x
Read〈x〉 10000

Cpd〈x , 10%〉 10000

Read〈x〉 10000

Wd〈x , 2000〉 10000

Write〈x〉 8000

Write〈x〉 11000

T1 T2 x
Read〈x〉 10000

Wd〈x , 2000〉 10000

Read〈x〉 10000

Cpd〈x , 10%〉 10000

Write〈x〉 11000

Write〈x〉 8000

• In the schedule on the left, the result of T2 is lost.
• In the schedule on the right, the result of T1 is lost.

3/25

The Model of Operations, Transactions, and Schedules

• Model the database schema as a set of updateable objects.
Object-level model of operations: There are two basic operations:

Read: rT〈x〉 denotes that transaction T reads data object x .
Write: wT〈x〉 denotes that transaction T writes data object x .

• In particular, the changes which T makes to x during a write are not
modelled.
• A transaction is then modelled as a sequence of such operations:

Examples: T1: rT1
〈x1〉wT1

〈x1〉rT1
〈x2〉wT1

〈x2〉 T2: rT2
〈x1〉rT2

〈x3〉wT2
〈x3〉wT2

〈x1〉
• A schedule for a set of transactions is an intertwining of their operation

sequences which preserves the local order for each transaction.
Examples: S1 : rT1

〈x1〉wT1
〈x2〉rT1

〈x1〉wT1
〈x2〉rT2

〈x1〉rT2
〈x3〉wT2

〈x3〉wT2
〈x2〉

S2 : rT1
〈x1〉wT1

〈x1〉rT2
〈x1〉rT2

〈x3〉wT2
〈x3〉rT1

〈x2〉wT1
〈x2〉wT2

〈x2〉
• S1 is a serial schedule for {T1,T2}, while S2 is a non-serial schedule.

4/25

The Gold Standard for Isolation: View Serializability

Idea: A schedule is view serializable if it can be obtained by rearranging the
operations of some serial schedule in such a way that:
• The read operations read from the same writer in each case (which

might be the initial database state).
• The final writer of each data object is the same transaction in each

case.
• Such a rearrangement does not change the final result of running the

transactions.
Examples: S1 : rT1

〈x1〉wT1
〈x2〉rT1

〈x1〉wT1
〈x2〉rT2

〈x1〉rT2
〈x3〉wT2

〈x3〉wT2
〈x2〉

S2 : rT1
〈x1〉wT1

〈x1〉rT2
〈x1〉rT2

〈x3〉wT2
〈x3〉rT1

〈x2〉wT1
〈x2〉wT2

〈x2〉
S3 : rT1

〈x1〉rT2
〈x1〉wT1

〈x1〉rT2
〈x3〉wT2

〈x3〉rT1
〈x2〉wT1

〈x2〉wT2
〈x2〉

S4 : rT1
〈x1〉wT1

〈x1〉rT2
〈x1〉rT2

〈x3〉wT2
〈x3〉rT1

〈x2〉wT2
〈x2〉wT1

〈x2〉
• S1 and S2 are view serializable.
• S3 is not view serializable (changed read).
• S4 is not view serializable (changed final write).

5/25

Guaranteeing View Serializability — SS2PL

System requirement: Need a scheduling algorithm which guarantees
view-serializable schedules, not just a test for view serializability.

Strong strict two-phase locking (SS2PL): A lock-based solution.
• Shared (read) locks and exclusive (write) locks are required for all

data access.
• Locks may be acquired at any time.
• All locks held until the transaction commits (ends).

Severe drawback; The locking requirements greatly limit concurrency.
• Querying on a non-indexed attribute would require locking the entire

table until the end of the transaction!
Incorrect claim: Many DBMS textbooks incorrectly assert that SS2PL is

widely used in practice to realize serializable isolation.
• Unknown to many users, the SQL SERIALIZABLE mode of isolation

does not provide view serializability in many systems (e.g., Oracle).
• Even those systems which do implement SS2PL, it is not widely

used due to poor performance.
6/25

Levels of Isolation of Transactions

Question: Isn’t view serializability necessary to guarantee correct results?

Answer: That depends upon what is meant by “correct”.

• Isolation is a matter of degree.

Real-world fact: Lower levels of isolation are used routinely.

• The default level of isolation in many real systems is read committed,
which guarantees that only committed data are read, but little more.

• Many transactions can tolerate such lower isolation levels without
suffering serious consequences.

• The highest level, view serializable, is used only where absolutely
essential, such as in financial transactions.

7/25

Multiversion Concurrency Control

MVCC: Most modern DBMSs employ multiversion concurrency control.
• There may be several versions of a given data object x .
• Rather than requiring locks, concurrency is achieved by allowing

distinct transactions to operate on distinct versions of x .
• Differences must eventually be resolved, but typically not at the

expense of long waits.
• In general, MVCC supports far more concurrency than single-version,

lock-based approaches.

• One of the most common approaches within MVCC for achieving a high
level of isolation with substantial concurrency is called snapshot isolation.

• Because the approach of this research is based upon it, it is worth a
closer look.

8/25

Snapshot Isolation

Stable DB

s1:
DB at time
Start〈T1〉



snapshot

s2:
DB at time
Start〈T2〉



snapshot

T1
executes on
snapshot s1

T2
executes on
snapshot s2

Stable DB

merge


merge

• In snapshot isolation (SI), each transaction operates on a snapshot:
• a (private) copy of the database with values taken at the point in

time at which the transactions begins.
First Committer Wins (FCW): Ti is allowed to commit its local writes to the

stable DB only if no data object x which it writes has been committed,
since its snapshot was created, to the stable DB by another transaction.
• Otherwise, it must abort and start over.

9/25

Advantages of Snapshot Isolation

• SI has some very attractive properties.
High Level of Isolation: Since each transaction operates on a private copy,

isolation is achieved at what appears to be at a relatively high level.
Enhanced concurrency: No locks ⇒ writers do not block readers.

• Readers (almost) never have to wait for writers to finish.
• The attainable level of concurrency is far greater than that of SS2PL.

• For these reasons, SI is widely used in practice.
� Real systems use first updater wins (FUW), and there may be some

blocking when foreign-key constraints are checked, but these are details
which do not distort the main conclusions.

Question: Does SI provide serializable-level isolation?
Answer: That depends upon the definition of serializable.

10/25

Write Skew — Constraint Violation under SI

Fact: SI does not guarantee view-serializable isolation. 2

Example (write skew): x and y represent the balances of two accounts.
Integrity constraint: x + y ≥ 500AC Initial state: x = 300AC, y = 300AC
T1: Withdraw 100AC from x T2: Withdraw 100AC from y .

• Assume that these transactions run concurrently under SI.

• Each transaction run in isolation satisfies the integrity constraint.

• The final state is (x , y) = (200AC, 200AC), which violates the constraint.

• With serial execution, the second transaction will fail.

• Thus, SI does not guarantee view serializability.

11/25

The SQL Standard and Serializability

� SI satisfies the conditions set forth in the SQL standard for the
SERIALIZABLE isolation level.
• The standard defines serializability as the absence of three types of

transaction anomalies.
Apparent reason: The architects of the standard could not think of any

nonserializable behavior which could arise in the absence of violations of
those anomalies.

Consequence: Real systems are free to implement the SERIALIZABLE level of
isolation as SI, and several do so.
• Unfortunately, many users mistakenly believe that SERIALIZABLE

isolation in SQL must mean view serializable.
Opinion/Rant: The definition of SERIALIZABLE in the SQL standard is a

poster child for why good theory is a necessary part of even the most
practical endeavors.

12/25

Serializable Snapshot Isolation

Serializable SI (SSI): Augment SI to achieve true view serializability.
DSG: The approach relies on properties of the direct serialization graph,

whose vertices are committed transactions. The edges are as follows:
rw-edge: Ti

rw−→ Tj Ti reads a data object and Tj is the next writer of
that object.

ww-edge and wr-edge: Similar; details not central here.
Dangerous structure in DSG: Ti

rw−→ Tj
rw−→ Tk (Ti = Tk possible)

occurring in a cycle with {Ti ,Tj} and {Tj ,Tk} concurrent.
Theorem [Fekete et al 2005]: If a schedule for SI is not view serializable, the

DSG must contain a dangerous structure. 2

Optimistic strategy: Serializable SI (SSI):
• It is too expensive to maintain the entire DSG.
• Look for potential dangerous structures (need not be part of a cycle)

and require one transaction to terminate to preserve serializability.
• This requires testing only three transactions at a time.
• But there will be false positives.

13/25

Serializable Snapshot Isolation — Practice and Limitations

Use in PostgreSQL: As of version 9.1, SSI is used to implement
SERIALIZABLE isolation in PostgreSQL.
• Thus, SERIALIZABLE isolation is finally truly view serializability.
• Ordinary SI is still available as REPEATABLE READ isolation.
• Before version 9.1, both isolation levels were implemented as SI.

Question: Why is there a need for anything more?
Answers:

• SSI results in more false positives (with consequent aborts and
reruns) than does ordinary SI.
• For some transaction mixes (particularly interactive and

long-running), this may be a significant or severe drawback.
Question: Is there something in between SI and SSI?
Answer: Yes, constraint-preserving SI (CPSI), the topic of this research.

• Ensures that constraints will be satisfied (no write skew).
• Much simpler algorithm with no false positives.

14/25

Permutation – Nonserializability without Constraint Violation

Example (SI permutation): n ∈ N;
• d0,, d1, …dn−1 data objects.
• τ0, τ1, . . . , τn−1 transactions with
τi : di←d(i+1) mod n.
• The n transactions, run concurrently

under SI, effect a permutation of the
values of the di ’s (shift to the left).

τ0

τ1 τ2

τi

τi+1τn−1

rw〈d1〉
rw〈d2〉

rw〈di+1〉rw〈d0〉
· · ·

· · ·

• τi
rw〈di〉−→ τ(i+1) mod n denotes that τ1 reads di and τ(i+1) mod n writes it.

• This behavior cannot be view serializable since if τi is run first, the old
value of di is lost.
• However, if any transaction (say τi) is removed, the result of running all

transactions concurrently under SI is serializable.
• Run them in this order: τi+1 . . . τn−1τ0 . . . τi−1.

Observation: For any n ∈ N, there is a set of n transaction which, when run
concurrently under SI, results in nonserializable behavior, yet any proper
subset produces serializable behavior under SI.

15/25

Constraint-Preserving Snapshot Isolation

Question: Can such large cycles also occur when the condition to be
preserved is constraint integrity and not full view serializability?

Theorem: Let T = {T1,T2, . . . ,Tm} be a set of transactions running under
SI according to some schedule S. If the DSG is free of two-vertex cycles
of the form

Ti Tj

rw

rw

then the result is guaranteed to satisfy all integrity constraints. 2

Comment: These include all integrity constraints, even those implemented
via triggers, for example.

Comment: The DSG might have larger cycles containing dangerous
structures, but only those of the form identified above can result in
constraint violation.

16/25

Two Types of Reads under SI

• A finer-grained version of the main theorem may be obtained by
distinguishing two types of reads under SI:

Example: Let the database schema have three data objects w , x , and y with
the constraint x + y ≥ 500.
• Transaction T defined by x←x − w .
• y is the guard of the transaction; it must be read in order to verify

that the update will satisfy the integrity constraint.
• w must be read only to determine the update; it is not used in the

checking the integrity constraint.
The value of y when T commits is critical: If the value of the guard y of T

is changed by another concurrent transaction, there is a risk that the
constraint will be violated.

Only the snapshot value of w is important for constraint satisfaction: A
change to the value of w by another concurrent transaction will not
affect whether or not the constraint is satisfied.

17/25

The Guard of a Data Object

Guard of a transaction: The guard of a transaction T is the set of all data
objects which must be read by T in order to verify the integrity
constraints, but which are not written by T .

Example: Data objects: {x , y , z1, z2}; Constraint: x + y ≥ 500.

Transaction Write Set Read Set Guard Set
T1 : x←x − z1; z2←z2 − 10 {x , z2} {y , z1} {y}
T2a : y←y + z2; z1←z1/2 {y , z1} {x , z2} {x}

T2b : y←y + |z2|; z1←z1/2 {y , z1} {z2} ∅
gw-edge Ti

gw−→ Tj in the DSG: Tj writes the guard of Ti .
• Ti

gw−→ Tj ⇒ Ti
rw−→ Tj but not conversely.

T1 T2aT2b

gw〈y〉, rw〈y , z1〉

gw〈x〉, rw〈x , z2〉

gw〈y〉, rw〈y , z1〉

rw〈z2〉

Note: T2a and T2b are alternatives; they cannot run concurrently.
18/25

Guard Independence

Guard independence of two transactions T1 and T2 is the formalization of
the condition that a cycle of the form

Ti Tj

gw

gw

does not exist.
Theorem: Let T = {T1,T2, . . . ,Tm} be a set of transactions running under

SI according to some schedule S. If every pair of concurrent transactions
is guard independent, then the result is guaranteed to satisfy all integrity
constraints. Furthermore, the test is essentially free of false positives. 2

Remark: Cycles of the following three forms are allowed, as long as the
rw-edges do not involve guard objects:

Ti Tj

rw

gw
Ti Tj

gw

rw
Ti Tj

rw

rw

• These would identify a dangerous structure in SSI and result in the
termination of one of the transactions.

19/25

Example of Guard Independence

Example: Data objects: {x , y , z1, z2}; Constraint: x + y ≥ 500.

Transaction Write Set Read Set Guard Set
T1 : x←x − z1; z2←z2 − 10 {x , z2} {y , z1} {y}
T2a : y←y + z2; z1←z1/2 {y , z1} {x , z2} {x}

T2b : y←y + |z2|; z1←z1/2 {y , z1} {z2} ∅

T1 T2aT2b

gw〈y〉, rw〈z1〉

gw〈x〉, rw〈z2〉

gw〈y〉, rw〈z1〉

rw〈z2〉

Note: rw〈α〉 not shown if gw〈α〉 also holds for data object α on an edge.

• T1 and T2b are guard independent, while T1 and T2a are not.

Note: T2a and T2b are alternatives; they cannot run concurrently.
20/25

Theory — Write-Commuting Transactions

• The formal proof of the main result rests upon the notion of
write-commuting transactions.

Definition: A transaction T is consistent if, after reading its initial snapshot
data, its updates result in a database state which satisfies the integrity
constraints.

Write Commute: Two transactions T1 and T2 write commute if they run
concurrently and, whenever each is consistent (possibly reading different
initial snapshots), they may commit in either order without violating any
integrity constraints.

Observation: If all concurrent transactions write commute, there can be no
constraint violations provide each transaction is consistent in isolation. 2

Theorem: Guard independence implies write commutativity. 2

21/25

Example of Write Commutativity

Example: Data objects: {x , y , z1, z2}; Constraint: x + y ≥ 500.

Transaction Write Set Read Set Guard Set
T1 : x←x − z1; z2←z2 − 10 {x , z2} {y , z1} {y}
T2a : y←y + z2; z1←z1/2 {y , z1} {x , z2} {x}

T2b : y←y + |z2|; z1←z1/2 {y , z1} {z2} ∅

• T1 and T2a do not write commute:
• Consider: x = y = 300, z1 = 100, z2 = −100 initially, and the two

read the same snapshot.
• T1 and T2b write commute:
• T2b always succeeds, and it can only “improve” the likelihood of the

constraint being satisfied after it commits.
• Thus, if T1 succeeds in isolation, there can be no constraint

violation if it commits after T2b .
• Since T1 and T2b have disjoint write sets, the result of T1

committing before T2b is the same as committing afterwards.
22/25

Essentially Free of False Positives

Question: What does essentially free of false positives mean?

Ti Tj

gw〈x〉

gw〈y〉

Answer: Some changes of the data objects x and y would result in a
constraint violation.

• Since only an object-level model of operations is employed, information
about which changes are made is not used to determine correctness.

• However, in contrast to the situation for ordinary SSI, the presence of
other concurrent transactions is not necessary for a violation of the
isolation condition to be possible.

23/25

Compound Data Objects as Views

Data objects as views: In the paper, data objects are modelled as views on
the main schema.
• This provides a powerful mathematical framework for modelling the

necessary ideas.
• Traditional row objects (a single row of a relation, identified by primary

key) are modelled as the selection operation on that row.
Example: If R is a relation with single key attribute K , then σK=k0(R) is the

view which models the data object whose key value is a.
• The advantage of the view model is that it also allows modelling of data

objects other than view.
Example: If R [ABC] is constrained by the FD K → AB, then it is governed

by the join dependency 1 [KA,KB].
• In this case, the data objects defined by the projections
πKA(σK=k0(R)) and πKB(σK=k0(R)) may be updated by separate
transactions if only A and B, and not K , are modified.

24/25

Conclusions and Further Directions

Conclusions:
New Isolation Level: A new isolation level, constraint-preserving snapshot

isolation (CPSI), has been investigated.
SI < CPSI < Ser: It is at a strictly higher level than snapshot isolation,

and a strictly lower level than view serializability.
• The test for adherence is much simpler than that for serializable

snapshot isolation, with far less risk of false positives.
Further Directions:
Implementation and performance studies: It would be very useful to see how

this approach fares in various situations.
Extension to a value-level model: Work is underway to extend the approach

to a value-level model, in which the transaction manager has simple
information about the nature of the updates which the transactions
perform.
• This type of extension is critical for interactive transactions, in which

abort and rerun is not an acceptable strategy for resolving conflicts.
25/25

