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The View-Update Problem

Context: A view ' = (V,~) of the schema D is Main Schema D

defined by a surjective function
~:LDB(D) — LDB(V)
with LDB(X) = (legal) databases of X.
e Given the state of the main schema and a view
update ...

e there are in general many possible reflections of
that view update to the main schema.

View Schema V

e Note that there is always at least one.
e The view-update problem is to determine:
e which reflections, if any, are suitable; and
e if there is more than one suitable choice,
which is best.
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e In particular, there is a tradeoff between the size of the set of supported
view updates and how well-behaved the strategy is.

e This work addresses issues related to the constant-complement strategy,
which is very well behaved but supports a relative limited set of view
updates.

e The research thus relates in particular to closed update strategies.
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Closed Update Strategies

Main principle: In a closed update strategy, the view appears to the user as
though it is a full, main schema.

e This implies in particular the satisfaction of two principles.

Admissibility invariance: Whether or not a given view update is allowed
depends only upon the state of the view, and not otherwise upon the
state of the main schema.

No side effects: All changes to the overall database state as a result of
a view update are entirely visible within the view itself.

= The part of the main schema which is not visible from within
the view must remain unchanged.

Question: How is a closed update strategy realized?
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right.
e The goal is to update the view [ = I'If\ls. N
e Recapture the part of E; not represented
in I as a second view ' = I'IEB:‘C.

r ¥ r/
e [ is a complement of T since the pair R[AB] (R[B]) RIBC]
results in a lossless decomposition.
e The overlap I'IEB1 defines the part of [ which must remain constant in any
update.

e The view I_I'é1 with no overlap is not a complement because the
main schema does not satisfy X[AB, C].
Constant-complement update strategy: Updating [ while keeping the
complement I’ constant.
e Since P = {I, I’} defines a lossless decomposition, that pair defines
the reflections of view updates uniquely.
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Admiissibility Invariance

Freedom from side effects is provided, by construction, with the
constant-complement strategy...
e ...provided that side effects are interpreted as changes to the

complement. RIABC]
Admissibility invariance requires a further

condition.

Fact: Admissibility invariance is guaranteed
iff the pair of views {I', "} admits an ) = Tpgc
embedded cover. O

e A cover of the constraints of the r - r
main schema embeds into the two G[AB] G[BD R[B@
views.

e There is a more general characterization, not dependent upon
constraints, involving commuting congruences.

Meet complement: A complement which induces admissibility invariance.
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Achilles” Heel of the constant-complement strategy: Complements need not

be unique.

e The reflection of a view update may depend upon the choice of

complement. (R(a), R(a'), SteT)
Example: E has two relation symbols R[A] and S[A]. R[A] S[A]

e The view to be updated is I'I%. . .
2 2

e The obvious and natural complement is |'|§2. "R 'S
e Another complement: I'IRAS = (T[A], WRAS) RI[A] S[A]

o T1 & (ROONSCOMERONSON).  (rapmn (s
Current state of main schema Ep: My = {R(a), S(a/)}.

View update: u = ({R(a)}, {R(a), R(a')}) on MZ. (Insert R(a)).

New state of Ex: My = {R(a), R(a')} with constant complement I_IERQAS.

o Note that admissib/'/itK invariance is satisfied in each case.
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e It is nevertheless possible to address this Achilles’ heel, to some degree.
Context: Let V be a set of views of a schema E, with [ € V.

Reflection invariance: An update u on I exhibits reflection invariance with
respect to V if for any two complements [, [ € V), the constant
complement reflections of u with respect to [’ and with respect to "
coincide.

Theorem: In the presence of schemata with order and morphisms which
preserve order, all monotonic view updates exhibit reflection invariance. O

Corollary: This result may be extended to updates which are realizable as
certain compositions of monotonic updates. O

Application: Relational views defined by SPJR morphisms.
Simple example: I'IERZAS on the previous slide is ruled out since it is not order

preserving.
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Example of Reflection Invariance

situation with two distinct complements
yet reflection invariance.

e The example to the left illustrates a R[ABCD]
( B—-D C— D)

e The view to be updated is H,E\3sc-
° FIEB3D is a complement.
° I_I'é:"D is also a complement.

e The main schema E3 is symmetric in B
and C, so there is no way to prefer one
over the other.

e These two complements support distinct sets of updates.

. E
e The updates which are supported by both complements keep both I’
and I_I'é3 constant.

Reflection invariance: For such updates, the reflections are the same.
e Note that this example is not admissibility invariant.

e Admissibility-invariant examples are possible but a bit more complex.
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Context: V be a set of views of a schema E, with [ € V.
e Assume that reflection invariance is supported.

Universal complement: A universal complement of [ in V is a complement
which supports every constant-complement update on ' which is
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Example: The setting of the previous slide:

Es = (R[ABCD), {B — D, C — D}), NS, N5, NE,
illustrates that universal complements need not exist (at least within
projections), since I'IE)3 = n?DmCD is not a complement of I_IE:"BC.

e Counterexamples exist even when the complement views are limited to
those which exhibit admissibility invariance.
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Observation: The fundamental invariance properties have very general
characterizations which do not even depend upon a specific data model.
Admissibility invariance: Commuting congruences, embedded covers.
Reflection invariance: Order-based properties.

Question: Does the existence of a universal complement have a similar
general characterization?

Answer: Not which is apparent.

Decisions about limiting the context:
e Restrict attention to complements which provide admissibility
invariance (meet complements, embedded covers).
e Begin with the classical setting: universal relational schemata
constrained by FDs, projective views.

e Complements which are projections are called lN-complements.
10/15
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it must embed into the complement.
= Complement must contain CDE.

e The optimal precomplement for this fixed cover is thus I'I'é‘bEF.

e To obtain a complement, the common attributes must form a key for one
of the views.

= Add A to common attributes (only minimal possibility).

e The optimal complement for this fixed cover is thus I'IE\“CDEF.
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Strong cover property: F has the strong cover property if the following two
conditions are satisfied.
e F has a unique canonical cover.
e F has a unique key.

Theorem: If F has the strong cover property, then, then every projection of
E has a universal meet 1-complement. O

Observation: The strong cover property is very strong.

Question: Is there a characterization of universal meet complements with
wider applicability?

Short answer: There are unfortunately very simple examples with no

universal meet complement.
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e Note that the left-hand sides for the two canonical covers are identical, so
the equivalence properties for canonical and minimal covers cannot help.

Example: Let Eg = (R[ABCD], Fs), with 76 = {AB — C,C — B, D — A}.

) Although Fe is its own unique cover, it has two keys BD and CD, and
SO HABC has two minimal meet 1-complements, HABD and FIACD
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By and B, are simply equivalent.

° FI?IC and I_IE;C are quasi-universal
M-complements of I'I/'i7B1 B,
e They are equivalent up to a renaming of
simply equivalent attributes.

Context for the general result: Universal schema E constrained by FDs F.

e Say that F has the strong equivalence-cover property if the set obtained
by replacing equivalent elements by a single representative has the strong
cover property

Example: {B; <+ B, B; — C} becomes {B; — C}.

Theorem: If F has the strong equivalence-cover property and is free of
complex triples (a technical condition usually met in practice), then every
lM-view of E admits quasi-universal IN-complements. O
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Strength: The conditions which must be met are relatively strong.
Scope: The results apply only to universal relational schemata
constrained by FDs.

Further Directions:

e Within the context of a more general model (such as view congruences
for admissibility invariance and order structure for reflection invariance),
identify the fundamental principles which underlie the existence of
universal complements.

e Integrate the study of universal complements with the optimal
interconnection of database components.
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