# FD Covers and Universal Complements of Simple Projections

Stephen J. Hegner Umeå University Department of Computing Science SE-901 87 Umeå, Sweden hegner@cs.umu.se http://www.cs.umu.se/~hegner



Context: A view  $\Gamma = (\mathbf{V}, \gamma)$  of the schema  $\mathbf{D}$  is defined by a *surjective* function  $\gamma : \text{LDB}(\mathbf{D}) \rightarrow \text{LDB}(\mathbf{V})$ with  $\text{LDB}(\mathbf{X}) = (\text{legal})$  databases of  $\mathbf{X}$ .

View Schema V

Context: A view  $\Gamma = (\mathbf{V}, \gamma)$  of the schema **D** is defined by a *surjective* function  $\gamma : \text{LDB}(\mathbf{D}) \rightarrow \text{LDB}(\mathbf{V})$ with  $\text{LDB}(\mathbf{X}) = (\text{legal})$  databases of **X**.

• Given the state of the main schema and a view update ...



View Schema V

Context: A view  $\Gamma = (\mathbf{V}, \gamma)$  of the schema  $\mathbf{D}$  is defined by a *surjective* function  $\gamma : \text{LDB}(\mathbf{D}) \rightarrow \text{LDB}(\mathbf{V})$ with  $\text{LDB}(\mathbf{X}) = (\text{legal})$  databases of  $\mathbf{X}$ .

- Given the state of the main schema and a view update ...
- there are in general many possible *reflections* of that view update to the main schema.



View Schema V

Context: A view  $\Gamma = (\mathbf{V}, \gamma)$  of the schema  $\mathbf{D}$  is defined by a *surjective* function  $\gamma : \text{LDB}(\mathbf{D}) \rightarrow \text{LDB}(\mathbf{V})$ with  $\text{LDB}(\mathbf{X}) = (\text{legal})$  databases of  $\mathbf{X}$ .

- Given the state of the main schema and a view update ...
- there are in general many possible *reflections* of that view update to the main schema.



View Schema V

Context: A view  $\Gamma = (\mathbf{V}, \gamma)$  of the schema  $\mathbf{D}$  is defined by a *surjective* function  $\gamma : \text{LDB}(\mathbf{D}) \rightarrow \text{LDB}(\mathbf{V})$ with  $\text{LDB}(\mathbf{X}) = (\text{legal})$  databases of  $\mathbf{X}$ .

- Given the state of the main schema and a view update ...
- there are in general many possible *reflections* of that view update to the main schema.



View Schema V

Context: A view  $\Gamma = (\mathbf{V}, \gamma)$  of the schema  $\mathbf{D}$  is defined by a *surjective* function  $\gamma : \text{LDB}(\mathbf{D}) \rightarrow \text{LDB}(\mathbf{V})$ with  $\text{LDB}(\mathbf{X}) = (\text{legal})$  databases of  $\mathbf{X}$ .

- Given the state of the main schema and a view update ...
- there are in general many possible *reflections* of that view update to the main schema.
- Note that there is always at least one.



View Schema V

Context: A view  $\Gamma = (\mathbf{V}, \gamma)$  of the schema  $\mathbf{D}$  is defined by a *surjective* function  $\gamma : \text{LDB}(\mathbf{D}) \rightarrow \text{LDB}(\mathbf{V})$ with  $\text{LDB}(\mathbf{X}) = (\text{legal})$  databases of  $\mathbf{X}$ .

- Given the state of the main schema and a view update ...
- there are in general many possible *reflections* of that view update to the main schema.
- Note that there is always at least one.
- The *view-update problem* is to determine:



View Schema V

Context: A view  $\Gamma = (\mathbf{V}, \gamma)$  of the schema  $\mathbf{D}$  is defined by a *surjective* function  $\gamma : \text{LDB}(\mathbf{D}) \rightarrow \text{LDB}(\mathbf{V})$ with  $\text{LDB}(\mathbf{X}) = (\text{legal})$  databases of  $\mathbf{X}$ .

- Given the state of the main schema and a view update ...
- there are in general many possible *reflections* of that view update to the main schema.
- Note that there is always at least one.
- The *view-update problem* is to determine:
  - which reflections, if any, are suitable; and



View Schema V

Context: A view  $\Gamma = (\mathbf{V}, \gamma)$  of the schema  $\mathbf{D}$  is defined by a *surjective* function  $\gamma : \text{LDB}(\mathbf{D}) \rightarrow \text{LDB}(\mathbf{V})$ with  $\text{LDB}(\mathbf{X}) = (\text{legal})$  databases of  $\mathbf{X}$ .

- Given the state of the main schema and a view update ...
- there are in general many possible *reflections* of that view update to the main schema.
- Note that there is always at least one.
- The *view-update problem* is to determine:
  - which reflections, if any, are suitable; and
  - if there is more than one suitable choice, which is best.



View Schema V

• There is no single "best" solution to the view-update problem.

- There is no single "best" solution to the view-update problem.
- All approaches have advantages and disadvantages.

- There is no single "best" solution to the view-update problem.
- All approaches have advantages and disadvantages.
- In particular, there is a tradeoff between the size of the set of supported view updates and how well-behaved the strategy is.

- There is no single "best" solution to the view-update problem.
- All approaches have advantages and disadvantages.
- In particular, there is a tradeoff between the size of the set of supported view updates and how well-behaved the strategy is.
- This work addresses issues related to the *constant-complement strategy*, which is very well behaved but supports a relative limited set of view updates.

- There is no single "best" solution to the view-update problem.
- All approaches have advantages and disadvantages.
- In particular, there is a tradeoff between the size of the set of supported view updates and how well-behaved the strategy is.
- This work addresses issues related to the *constant-complement strategy*, which is very well behaved but supports a relative limited set of view updates.
- The research thus relates in particular to *closed* update strategies.

Main principle: In a closed update strategy, the view appears to the user as though it is a full, main schema.

- Main principle: In a closed update strategy, the view appears to the user as though it is a full, main schema.
  - This implies in particular the satisfaction of two principles.

- Main principle: In a closed update strategy, the view appears to the user as though it is a full, main schema.
  - This implies in particular the satisfaction of two principles.

- Main principle: In a closed update strategy, the view appears to the user as though it is a full, main schema.
  - This implies in particular the satisfaction of two principles.

No side effects: All changes to the overall database state as a result of a view update are entirely visible within the view itself.

- Main principle: In a closed update strategy, the view appears to the user as though it is a full, main schema.
  - This implies in particular the satisfaction of two principles.

- No side effects: All changes to the overall database state as a result of a view update are entirely visible within the view itself.
  - $\Rightarrow$  The part of the main schema which is not visible from within the view must remain unchanged.

- Main principle: In a closed update strategy, the view appears to the user as though it is a full, main schema.
  - This implies in particular the satisfaction of two principles.

- No side effects: All changes to the overall database state as a result of a view update are entirely visible within the view itself.
  - $\Rightarrow$  The part of the main schema which is not visible from within the view must remain unchanged.

Question: How is a closed update strategy realized?

• The main schema  $\mathbf{E}_1$  is shown to the right.



- The main schema **E**<sub>1</sub> is shown to the right.
- The goal is to update the view  $\Gamma = \Pi_{AB}^{\mathbf{E}_1}$ .  $\gamma = \pi_{AB}^{\mathbf{E}_1}$ .



- The main schema **E**<sub>1</sub> is shown to the right.
- The goal is to update the view  $\Gamma = \Pi_{AB}^{E_1}$ .
- Recapture the part of  $\mathbf{E}_1$  not represented in  $\Gamma$  as a second view  $\Gamma' = \prod_{BC}^{\mathbf{E}_1}$ .



- The main schema **E**<sub>1</sub> is shown to the right.
- The goal is to update the view  $\Gamma = \Pi_{AB}^{E_1}$ .
- Recapture the part of E<sub>1</sub> not represented in Γ as a second view Γ' = Π<sup>E<sub>1</sub></sup><sub>BC</sub>.
- Γ' is a *complement* of Γ since the pair results in a lossless decomposition.



- The main schema **E**<sub>1</sub> is shown to the right.
- The goal is to update the view  $\Gamma = \Pi_{AB}^{E_1}$ .
- Recapture the part of E<sub>1</sub> not represented in Γ as a second view Γ' = Π<sup>E<sub>1</sub></sup><sub>BC</sub>.
- Γ' is a *complement* of Γ since the pair results in a lossless decomposition.



• The overlap  $\Pi_B^{\mathbf{E}_1}$  defines the part of  $\Gamma$  which must remain constant in any update.

- The main schema **E**<sub>1</sub> is shown to the right.
- The goal is to update the view  $\Gamma = \Pi_{AB}^{E_1}$ .
- Recapture the part of E<sub>1</sub> not represented in Γ as a second view Γ' = Π<sup>E<sub>1</sub></sup><sub>BC</sub>.
- Γ' is a *complement* of Γ since the pair results in a lossless decomposition.



- The overlap  $\Pi_B^{\mathbf{E}_1}$  defines the part of  $\Gamma$  which must remain constant in any update.
  - The view  $\Pi_C^{\mathbf{E}_1}$  with no overlap is not a complement because the main schema does not satisfy  $\bowtie[AB, C]$ .

- The main schema **E**<sub>1</sub> is shown to the right.
- The goal is to update the view  $\Gamma = \Pi_{AB}^{E_1}$ .
- Recapture the part of E<sub>1</sub> not represented in Γ as a second view Γ' = Π<sup>E<sub>1</sub></sup><sub>BC</sub>.
- Γ' is a *complement* of Γ since the pair results in a lossless decomposition.



- The overlap  $\Pi_B^{\mathbf{E}_1}$  defines the part of  $\Gamma$  which must remain constant in any update.
  - The view Π<sup>E<sub>1</sub></sup><sub>C</sub> with no overlap is not a complement because the main schema does not satisfy ⋈[AB, C].

Constant-complement update strategy: Updating  $\Gamma$  while keeping the complement  $\Gamma'$  constant.

- The main schema **E**<sub>1</sub> is shown to the right.
- The goal is to update the view  $\Gamma = \Pi_{AB}^{E_1}$ .
- Recapture the part of E<sub>1</sub> not represented in Γ as a second view Γ' = Π<sup>E<sub>1</sub></sup><sub>BC</sub>.
- Γ' is a *complement* of Γ since the pair results in a lossless decomposition.



- The overlap  $\Pi_B^{\mathbf{E}_1}$  defines the part of  $\Gamma$  which must remain constant in any update.
  - The view  $\Pi_C^{\mathbf{E}_1}$  with no overlap is not a complement because the main schema does not satisfy  $\bowtie[AB, C]$ .

Constant-complement update strategy: Updating  $\Gamma$  while keeping the complement  $\Gamma'$  constant.

 Since P = {Γ, Γ'} defines a lossless decomposition, that pair defines the reflections of view updates uniquely.

• ...provided that side effects are interpreted as changes to the complement.



...provided that side effects are interpreted as changes to the complement.
 R[ABC]

Admissibility invariance requires a further condition.



- ...provided that side effects are interpreted as changes to the complement.
  R[ABC]
- Admissibility invariance requires a further condition.
- Fact: Admissibility invariance is guaranteed iff the pair of views  $\{\Gamma, \Gamma'\}$  admits an embedded cover.  $\Box$



- ...provided that side effects are interpreted as changes to the complement.
  R[ABC]
- Admissibility invariance requires a further condition.
- Fact: Admissibility invariance is guaranteed iff the pair of views  $\{\Gamma, \Gamma'\}$  admits an embedded cover.  $\Box$ 
  - A cover of the constraints of the main schema embeds into the two views.



- ...provided that side effects are interpreted as changes to the complement.
  R[ABC]
- Admissibility invariance requires a further condition.
- Fact: Admissibility invariance is guaranteed iff the pair of views  $\{\Gamma, \Gamma'\}$  admits an embedded cover.  $\Box$ 
  - A cover of the constraints of the main schema embeds into the two views.



• There is a more general characterization, not dependent upon constraints, involving commuting congruences.

- ...provided that side effects are interpreted as changes to the complement.
  R[ABC]
- Admissibility invariance requires a further condition.
- Fact: Admissibility invariance is guaranteed iff the pair of views  $\{\Gamma, \Gamma'\}$  admits an embedded cover.  $\Box$ 
  - A cover of the constraints of the main schema embeds into the two views.



• There is a more general characterization, not dependent upon constraints, involving commuting congruences.

Meet complement: A complement which induces admissibility invariance.
Achilles' Heel of the constant-complement strategy: Complements need not be unique.

Achilles' Heel of the constant-complement strategy: Complements need not be unique.

• The reflection of a view update may depend upon the choice of complement.

Achilles' Heel of the constant-complement strategy: Complements need not be unique.

• The reflection of a view update may depend upon the choice of complement.

Example:  $\mathbf{E}_2$  has two relation symbols R[A] and S[A]. R[A] S[A]

- Achilles' Heel of the constant-complement strategy: Complements need not be unique.
  - The reflection of a view update may depend upon the choice of complement.
- Example:  $\mathbf{E}_2$  has two relation symbols R[A] and S[A].
  - The view to be updated is  $\Pi_R^{\mathbf{E}_2}$ .



- Achilles' Heel of the constant-complement strategy: Complements need not be unique.
  - The reflection of a view update may depend upon the choice of complement.

Example:  $\mathbf{E}_2$  has two relation symbols R[A] and S[A].

- The view to be updated is  $\Pi_R^{\mathbf{E}_2}$ .
- The obvious and natural complement is  $\Pi_{S}^{E_{2}}$ .



- Achilles' Heel of the constant-complement strategy: Complements need not be unique.
  - The reflection of a view update may depend upon the choice of complement.

- The view to be updated is  $\Pi_R^{\mathbf{E}_2}$ .
- The obvious and natural complement is  $\Pi_S^{\mathbf{E}_2}$ .
- Another complement:  $\Pi_{R\Delta S}^{\mathbf{E}_2} = (T[A], \pi_{R\Delta S}^{\mathbf{E}_2}).$



- Achilles' Heel of the constant-complement strategy: Complements need not be unique.
  - The reflection of a view update may depend upon the choice of complement.

Example:  $\mathbf{E}_2$  has two relation symbols R[A] and S[A].

- The view to be updated is  $\Pi_R^{\mathbf{E}_2}$ .
- The obvious and natural complement is  $\Pi_S^{\mathbf{E}_2}$ .
- Another complement:  $\Pi_{R\Delta S}^{\mathbf{E}_2} = (T[A], \pi_{R\Delta S}^{\mathbf{E}_2}).$ 
  - $T[x] \Leftrightarrow (R(x) \land (\neg S(x)) \lor ((\neg R(x)) \land \overline{S(x)})).$



- Achilles' Heel of the constant-complement strategy: Complements need not be unique.
  - The reflection of a view update may depend upon the choice of complement.

- The view to be updated is  $\Pi_R^{\mathbf{E}_2}$ .
- The obvious and natural complement is  $\Pi_S^{\mathbf{E}_2}$ .
- Another complement:  $\Pi_{R\Delta S}^{\mathbf{E}_2} = (T[A], \pi_{R\Delta S}^{\mathbf{E}_2}).$ 
  - $T[x] \Leftrightarrow (R(x) \land (\neg S(x)) \lor ((\neg R(x)) \land S(x))).$

Current state of main schema  $\mathbf{E}_2$ :  $M_1 = \{R(\mathbf{a}), S(\mathbf{a}')\}$ .



- Achilles' Heel of the constant-complement strategy: Complements need not be unique.
  - The reflection of a view update may depend upon the choice of complement.

     {R(a), S(a')}

- The view to be updated is  $\Pi_R^{\mathbf{E}_2}$ .
- The obvious and natural complement is  $\Pi_S^{\mathbf{E}_2}$ .
- Another complement:  $\Pi_{R\Delta S}^{\mathbf{E}_2} = (T[A], \pi_{R\Delta S}^{\mathbf{E}_2}).$ 
  - $T[x] \Leftrightarrow (R(x) \land (\neg S(x)) \lor ((\neg R(x)) \land S(x))).$

Current state of main schema  $\mathbf{E}_2$ :  $M_1 = \{R(\mathbf{a}), S(\mathbf{a}')\}$ .

View update:  $u = (\{R(\mathbf{a})\}, \{R(\mathbf{a}), R(\mathbf{a}')\})$  on  $\Pi_R^{\mathbf{E}_2}$ . (Insert  $R(\mathbf{a}')$ ).

R[A] S[A]

 $\pi_R^{\mathbf{E}_2} / \pi_{R\Delta S}^{\mathbf{E}_2}$ 

 $\{R(a), R(a')\} \{T(a), T(a')\}$ 

 $R\Delta S[A]$ 

R[A]

- Achilles' Heel of the constant-complement strategy: Complements need not be unique.
  - The reflection of a view update may depend upon the choice of complement.
     {R(a), R(a'), S(m)}

- The view to be updated is  $\Pi_R^{\mathbf{E}_2}$ .
- The obvious and natural complement is  $\Pi_S^{\mathbf{E}_2}$ .
- Another complement:  $\Pi_{R\Delta S}^{\mathbf{E}_2} = (T[A], \pi_{R\Delta S}^{\mathbf{E}_2}).$ 
  - $T[x] \Leftrightarrow (R(x) \land (\neg S(x)) \lor ((\neg R(x)) \land S(x))).$

Current state of main schema  $\mathbf{E}_2$ :  $M_1 = \{R(\mathbf{a}), S(\mathbf{a}')\}$ .

View update:  $u = (\{R(a)\}, \{R(a), R(a')\})$  on  $\Pi_R^{\mathbf{E}_2}$ . (Insert R(a')).

New state of  $\mathbf{E}_2$ :  $M_2 = \{R(\mathbf{a}), R(\mathbf{a}')\}$  with constant complement  $\Pi_{R\Delta S}^{\mathbf{E}_2}$ .

R[A] S[A]

 $\pi_R^{\mathbf{E}_2} / \pi_{R\Delta S}^{\mathbf{E}_2}$ 

 $\{R(a), R(a')\} \{T(a), T(a')\}$ 

 $R\Delta S[A]$ 

R[A]

- Achilles' Heel of the constant-complement strategy: Complements need not be unique.
  - The reflection of a view update may depend upon the choice of complement.
     {R(a), R(a'), S(a')}

- The view to be updated is  $\Pi_R^{\mathbf{E}_2}$ .
- The obvious and natural complement is  $\Pi_S^{\mathbf{E}_2}$ .
- Another complement:  $\Pi_{R\Delta S}^{\mathbf{E}_2} = (T[A], \pi_{R\Delta S}^{\mathbf{E}_2}).$ •  $T[x] \Leftrightarrow (R(x) \land (\neg S(x)) \lor ((\neg R(x)) \land S(x))).$ 
  - $T[x] \Leftrightarrow (R(x) \land (\neg S(x)) \lor ((\neg R(x)) \land S(x))). \qquad \{R(a), R(a')\}$

Current state of main schema  $\mathbf{E}_2$ :  $M_1 = \{R(\mathbf{a}), S(\mathbf{a}')\}$ .

View update:  $u = (\{R(\mathbf{a})\}, \{R(\mathbf{a}), R(\mathbf{a}')\})$  on  $\Pi_R^{\mathbf{E}_2}$ . (Insert  $R(\mathbf{a}')$ ).

New state of  $\mathbf{E}_2$ :  $M_2 = \{R(\mathbf{a}), R(\mathbf{a}')\}$  with constant complement  $\Pi_{R\Delta S}^{\mathbf{E}_2}$ .

• Note that *admissibility invariance* is satisfied in each case.

R[A] S[A]

 $\pi_{S}^{\mathbf{E}_{2}}$ 

S[A]

 $\pi_R^{\mathbf{E}_2}$ 

R[A]

• It is nevertheless possible to address this Achilles' heel, to some degree.

• It is nevertheless possible to address this Achilles' heel, to some degree. Context: Let  $\mathcal{V}$  be a set of views of a schema **E**, with  $\Gamma \in \mathcal{V}$ .

- It is nevertheless possible to address this Achilles' heel, to some degree. Context: Let  $\mathcal{V}$  be a set of views of a schema **E**, with  $\Gamma \in \mathcal{V}$ .
- Reflection invariance: An update u on  $\Gamma$  exhibits *reflection invariance* with respect to  $\mathcal{V}$  if for any two complements  $\Gamma', \Gamma'' \in \mathcal{V}$ , the constant complement reflections of u with respect to  $\Gamma'$  and with respect to  $\Gamma''$  coincide.

- It is nevertheless possible to address this Achilles' heel, to some degree. Context: Let  $\mathcal{V}$  be a set of views of a schema **E**, with  $\Gamma \in \mathcal{V}$ .
- Reflection invariance: An update u on  $\Gamma$  exhibits *reflection invariance* with respect to  $\mathcal{V}$  if for any two complements  $\Gamma', \Gamma'' \in \mathcal{V}$ , the constant complement reflections of u with respect to  $\Gamma'$  and with respect to  $\Gamma''$  coincide.
- Theorem: In the presence of schemata with order and morphisms which preserve order, all monotonic view updates exhibit reflection invariance.  $\Box$

- It is nevertheless possible to address this Achilles' heel, to some degree. Context: Let  $\mathcal{V}$  be a set of views of a schema **E**, with  $\Gamma \in \mathcal{V}$ .
- Reflection invariance: An update u on  $\Gamma$  exhibits *reflection invariance* with respect to  $\mathcal{V}$  if for any two complements  $\Gamma', \Gamma'' \in \mathcal{V}$ , the constant complement reflections of u with respect to  $\Gamma'$  and with respect to  $\Gamma''$  coincide.
- Theorem: In the presence of schemata with order and morphisms which preserve order, all monotonic view updates exhibit reflection invariance.  $\Box$
- Corollary: This result may be extended to updates which are realizable as certain compositions of monotonic updates.  $\Box$

- It is nevertheless possible to address this Achilles' heel, to some degree. Context: Let  $\mathcal{V}$  be a set of views of a schema **E**, with  $\Gamma \in \mathcal{V}$ .
- Reflection invariance: An update u on  $\Gamma$  exhibits *reflection invariance* with respect to  $\mathcal{V}$  if for any two complements  $\Gamma', \Gamma'' \in \mathcal{V}$ , the constant complement reflections of u with respect to  $\Gamma'$  and with respect to  $\Gamma''$  coincide.
- Theorem: In the presence of schemata with order and morphisms which preserve order, all monotonic view updates exhibit reflection invariance.  $\Box$
- Corollary: This result may be extended to updates which are realizable as certain compositions of monotonic updates.  $\Box$
- Application: Relational views defined by SPJR morphisms.

- It is nevertheless possible to address this Achilles' heel, to some degree. Context: Let  $\mathcal{V}$  be a set of views of a schema **E**, with  $\Gamma \in \mathcal{V}$ .
- Reflection invariance: An update u on  $\Gamma$  exhibits *reflection invariance* with respect to  $\mathcal{V}$  if for any two complements  $\Gamma', \Gamma'' \in \mathcal{V}$ , the constant complement reflections of u with respect to  $\Gamma'$  and with respect to  $\Gamma''$  coincide.
- Theorem: In the presence of schemata with order and morphisms which preserve order, all monotonic view updates exhibit reflection invariance.  $\Box$
- Corollary: This result may be extended to updates which are realizable as certain compositions of monotonic updates.  $\Box$
- Application: Relational views defined by SPJR morphisms.
- Simple example:  $\Pi_{R\Delta S}^{\mathbf{E}_2}$  on the previous slide is ruled out since it is not order preserving.

• The example to the left illustrates a situation with two distinct complements yet reflection invariance.



- The example to the left illustrates a situation with two distinct complements yet reflection invariance.
- The view to be updated is  $\Pi^{\mathbf{E}_3}_{ABC}$ .



- The example to the left illustrates a situation with two distinct complements yet reflection invariance.
- The view to be updated is  $\Pi^{\mathbf{E}_3}_{ABC}$ .
- $\Pi_{BD}^{\mathbf{E}_3}$  is a complement.



- The example to the left illustrates a situation with two distinct complements yet reflection invariance.
- The view to be updated is  $\Pi^{\mathbf{E}_3}_{ABC}$ .
- $\Pi_{BD}^{\mathbf{E}_3}$  is a complement.
- $\Pi_{CD}^{\mathbf{E}_3}$  is also a complement.



- The example to the left illustrates a situation with two distinct complements yet reflection invariance.
- The view to be updated is  $\Pi^{\mathbf{E}_3}_{ABC}$ .
- $\Pi_{BD}^{\mathbf{E}_3}$  is a complement.
- $\Pi_{CD}^{\mathbf{E}_3}$  is also a complement.
- The main schema **E**<sub>3</sub> is symmetric in *B* and *C*, so there is no way to prefer one over the other.



- The example to the left illustrates a situation with two distinct complements yet reflection invariance.
- The view to be updated is  $\Pi^{\mathbf{E}_3}_{ABC}$ .
- $\Pi_{BD}^{\mathbf{E}_3}$  is a complement.
- $\Pi_{CD}^{\mathbf{E}_3}$  is also a complement.
- The main schema **E**<sub>3</sub> is symmetric in *B* and *C*, so there is no way to prefer one over the other.



• These two complements support distinct sets of updates.

- The example to the left illustrates a situation with two distinct complements yet reflection invariance.
- The view to be updated is  $\Pi^{\mathbf{E}_3}_{ABC}$ .
- $\Pi_{BD}^{\mathbf{E}_3}$  is a complement.
- $\Pi_{CD}^{\mathbf{E}_3}$  is also a complement.
- The main schema **E**<sub>3</sub> is symmetric in *B* and *C*, so there is no way to prefer one over the other.



- These two complements support distinct sets of updates.
- The updates which are supported by both complements keep both  $\Pi_B^{\mathbf{E}_3}$  and  $\Pi_C^{\mathbf{E}_3}$  constant.

- The example to the left illustrates a situation with two distinct complements yet reflection invariance.
- The view to be updated is  $\Pi^{\mathbf{E}_3}_{ABC}$ .
- $\Pi_{BD}^{\mathbf{E}_3}$  is a complement.
- $\Pi_{CD}^{\mathbf{E}_3}$  is also a complement.
- The main schema **E**<sub>3</sub> is symmetric in *B* and *C*, so there is no way to prefer one over the other.



- These two complements support distinct sets of updates.
- The updates which are supported by both complements keep both Π<sup>E<sub>3</sub></sup><sub>B</sub> and Π<sup>E<sub>3</sub></sup><sub>C</sub> constant.

Reflection invariance: For such updates, the reflections are the same.

- The example to the left illustrates a situation with two distinct complements yet reflection invariance.
- The view to be updated is  $\Pi^{\mathbf{E}_3}_{ABC}$ .
- $\Pi_{BD}^{\mathbf{E}_3}$  is a complement.
- $\Pi_{CD}^{\mathbf{E}_3}$  is also a complement.
- The main schema **E**<sub>3</sub> is symmetric in *B* and *C*, so there is no way to prefer one over the other.



- These two complements support distinct sets of updates.
- The updates which are supported by both complements keep both Π<sup>E<sub>3</sub></sup><sub>B</sub> and Π<sup>E<sub>3</sub></sup><sub>C</sub> constant.

Reflection invariance: For such updates, the reflections are the same.

• Note that this example is not admissibility invariant.

- The example to the left illustrates a situation with two distinct complements yet reflection invariance.
- The view to be updated is  $\Pi^{\mathbf{E}_3}_{ABC}$ .
- $\Pi_{BD}^{\mathbf{E}_3}$  is a complement.
- $\Pi_{CD}^{\mathbf{E}_3}$  is also a complement.
- The main schema **E**<sub>3</sub> is symmetric in *B* and *C*, so there is no way to prefer one over the other.



- These two complements support distinct sets of updates.
- The updates which are supported by both complements keep both Π<sup>E<sub>3</sub></sup> and Π<sup>E<sub>3</sub></sup> constant.

Reflection invariance: For such updates, the reflections are the same.

- Note that this example is not admissibility invariant.
- Admissibility-invariant examples are possible but a bit more complex.

#### This Research – Conditions for Universal Complements

Context:  $\mathcal{V}$  be a set of views of a schema **E**, with  $\Gamma \in \mathcal{V}$ .

### This Research – Conditions for Universal Complements

Context:  $\mathcal{V}$  be a set of views of a schema **E**, with  $\Gamma \in \mathcal{V}$ .

• Assume that reflection invariance is supported.

• Assume that reflection invariance is supported.

Universal complement: A *universal complement* of  $\Gamma$  in  $\mathcal{V}$  is a complement which supports every constant-complement update on  $\Gamma$  which is supported by some complement in  $\mathcal{V}$ .

• Assume that reflection invariance is supported.

Universal complement: A *universal complement* of  $\Gamma$  in  $\mathcal{V}$  is a complement which supports every constant-complement update on  $\Gamma$  which is supported by some complement in  $\mathcal{V}$ .

Observation: If views are ordered by size (information retained), then a view is a universal complement iff it is a least complement in that ordering.  $\Box$ 

- Assume that reflection invariance is supported.
- Universal complement: A *universal complement* of  $\Gamma$  in  $\mathcal{V}$  is a complement which supports every constant-complement update on  $\Gamma$  which is supported by some complement in  $\mathcal{V}$ .
- Observation: If views are ordered by size (information retained), then a view is a universal complement iff it is a least complement in that ordering. □ Example context: views which are projections of a universal schema.

- Assume that reflection invariance is supported.
- Universal complement: A *universal complement* of  $\Gamma$  in  $\mathcal{V}$  is a complement which supports every constant-complement update on  $\Gamma$  which is supported by some complement in  $\mathcal{V}$ .
- Observation: If views are ordered by size (information retained), then a view is a universal complement iff it is a least complement in that ordering. □
- Example context: views which are projections of a universal schema.
  - universal complement iff least set of attributes (under set inclusion).

• Assume that reflection invariance is supported.

Universal complement: A *universal complement* of  $\Gamma$  in  $\mathcal{V}$  is a complement which supports every constant-complement update on  $\Gamma$  which is supported by some complement in  $\mathcal{V}$ .

Observation: If views are ordered by size (information retained), then a view is a universal complement iff it is a least complement in that ordering.  $\Box$ 

Example context: views which are projections of a universal schema.

• universal complement iff least set of attributes (under set inclusion).

Example: The setting of the previous slide:

 $\mathbf{E}_{3} = (R[ABCD], \{B \to D, C \to D\}), \Pi_{ABC}^{\mathbf{E}_{3}}, \Pi_{BD}^{\mathbf{E}_{3}}, \Pi_{CD}^{\mathbf{E}_{3}}$ illustrates that universal complements need not exist (at least within projections), since  $\Pi_{D}^{\mathbf{E}_{3}} = \Pi_{BD\cap CD}^{\mathbf{E}_{3}}$  is not a complement of  $\Pi_{ABC}^{\mathbf{E}_{3}}$ .

• Assume that reflection invariance is supported.

Universal complement: A *universal complement* of  $\Gamma$  in  $\mathcal{V}$  is a complement which supports every constant-complement update on  $\Gamma$  which is supported by some complement in  $\mathcal{V}$ .

Observation: If views are ordered by size (information retained), then a view is a universal complement iff it is a least complement in that ordering.  $\Box$ 

Example context: views which are projections of a universal schema.

• universal complement iff least set of attributes (under set inclusion).

Example: The setting of the previous slide:

 $\mathbf{E}_{3} = (R[ABCD], \{B \to D, C \to D\}), \Pi_{ABC}^{\mathbf{E}_{3}}, \Pi_{BD}^{\mathbf{E}_{3}}, \Pi_{CD}^{\mathbf{E}_{3}}$ illustrates that universal complements need not exist (at least within projections), since  $\Pi_{D}^{\mathbf{E}_{3}} = \Pi_{BD\cap CD}^{\mathbf{E}_{3}}$  is not a complement of  $\Pi_{ABC}^{\mathbf{E}_{3}}$ .

• Counterexamples exist even when the complement views are limited to those which exhibit admissibility invariance.
Observation: The fundamental invariance properties have very general characterizations which do not even depend upon a specific data model.

Observation: The fundamental invariance properties have very general characterizations which do not even depend upon a specific data model. Admissibility invariance: Commuting congruences, embedded covers.

Question: Does the existence of a universal complement have a similar general characterization?

Question: Does the existence of a universal complement have a similar general characterization?

Answer: Not which is apparent.

Question: Does the existence of a universal complement have a similar general characterization?

Answer: Not which is apparent.

Decisions about limiting the context:

Question: Does the existence of a universal complement have a similar general characterization?

Answer: Not which is apparent.

Decisions about limiting the context:

• Restrict attention to complements which provide admissibility invariance (meet complements, embedded covers).

Question: Does the existence of a universal complement have a similar general characterization?

Answer: Not which is apparent.

Decisions about limiting the context:

- Restrict attention to complements which provide admissibility invariance (meet complements, embedded covers).
- Begin with the classical setting: universal relational schemata constrained by FDs, projective views.

Question: Does the existence of a universal complement have a similar general characterization?

Answer: Not which is apparent.

Decisions about limiting the context:

- Restrict attention to complements which provide admissibility invariance (meet complements, embedded covers).
- Begin with the classical setting: universal relational schemata constrained by FDs, projective views.
- Complements which are projections are called Π-complements.



Example: Schema  $E_4$ :

Goal: Construct a universal  $\Pi$ -complement for  $\Pi^{\mathbf{E}_4}_{ABCE}$ .



### Example: Schema E<sub>4</sub>:

- Goal: Construct a universal  $\Pi$ -complement for  $\Pi^{\mathbf{E}_4}_{ABCE}$ .
  - First consider finding an optimal complement just for the given cover {A → B, B → C, CD → E}.



### Example: Schema E<sub>4</sub>:

- Goal: Construct a universal  $\Pi$ -complement for  $\Pi^{\mathbf{E}_4}_{ABCE}$ .
  - First consider finding an optimal complement just for the given cover {A → B, B → C, CD → E}.
  - The attributes *ABCDEF* \ *ABCE* = *DF* must be in the complement.



### Example: Schema $E_4$ :

- Goal: Construct a universal  $\Pi$ -complement for  $\Pi^{\mathbf{E}_4}_{ABCE}$ .
  - First consider finding an optimal complement just for the given cover {A → B, B → C, CD → E}.
  - The attributes *ABCDEF* \ *ABCE* = *DF* must be in the complement.
  - $CD \rightarrow E$  does not embed into ABCE, so it must embed into the complement.

 $\Rightarrow$  Complement must contain *CDE*.



- Goal: Construct a universal  $\Pi$ -complement for  $\Pi^{\mathbf{E}_4}_{ABCE}$ .
  - First consider finding an optimal complement just for the given cover {A → B, B → C, CD → E}.
  - The attributes *ABCDEF* \ *ABCE* = *DF* must be in the complement.
  - $CD \rightarrow E$  does not embed into ABCE, so it must embed into the complement.
    - ⇒ Complement must contain CDE.
  - The optimal *precomplement* for this fixed cover is thus  $\Pi_{CDEF}^{\mathbf{E}_4}$ .



- Goal: Construct a universal  $\Pi$ -complement for  $\Pi^{\mathbf{E}_4}_{ABCE}$ .
  - First consider finding an optimal complement just for the given cover {A → B, B → C, CD → E}.
  - The attributes *ABCDEF* \ *ABCE* = *DF* must be in the complement.
  - CD → E does not embed into ABCE, so it must embed into the complement.
     ⇒ Complement must contain CDE.
  - The optimal *precomplement* for this fixed cover is thus  $\Pi_{CDEF}^{\mathbf{E}_4}$ .
  - To obtain a complement, the common attributes must form a key for one of the views.



- Goal: Construct a universal  $\Pi$ -complement for  $\Pi^{\mathbf{E}_4}_{ABCE}$ .
  - First consider finding an optimal complement just for the given cover {A → B, B → C, CD → E}.
  - The attributes *ABCDEF* \ *ABCE* = *DF* must be in the complement.
  - CD → E does not embed into ABCE, so it must embed into the complement.
     ⇒ Complement must contain CDE.
  - The optimal *precomplement* for this fixed cover is thus  $\Pi_{CDEF}^{\mathbf{E}_4}$ .
  - To obtain a complement, the common attributes must form a key for one of the views.
    - $\Rightarrow$  Add A to common attributes (only minimal possibility).



- Goal: Construct a universal  $\Pi$ -complement for  $\Pi^{\mathbf{E}_4}_{ABCE}$ .
  - First consider finding an optimal complement just for the given cover {A → B, B → C, CD → E}.
  - The attributes ABCDEF \ ABCE = DF must be in the complement.
  - CD → E does not embed into ABCE, so it must embed into the complement.
     ⇒ Complement must contain CDE.
  - The optimal *precomplement* for this fixed cover is thus  $\Pi_{CDEF}^{\mathbf{E}_4}$ .
  - To obtain a complement, the common attributes must form a key for one of the views.
    - $\Rightarrow$  Add A to common attributes (only minimal possibility).
  - The optimal complement for this fixed cover is thus  $\Pi_{ACDEF}^{E_4}$ .



Context: Universal schema E constrained by FDs  $\mathcal{F}$ .

Context: Universal schema  $\boldsymbol{\mathsf{E}}$  constrained by FDs  $\mathcal{F}.$ 

Strong cover property:  $\mathcal{F}$  has the *strong cover property* if the following two conditions are satisfied.

Context: Universal schema E constrained by FDs  $\mathcal{F}$ .

Strong cover property:  $\mathcal{F}$  has the *strong cover property* if the following two conditions are satisfied.

•  $\mathcal{F}$  has a unique canonical cover.

Context: Universal schema E constrained by FDs  $\mathcal{F}$ .

Strong cover property:  $\mathcal{F}$  has the *strong cover property* if the following two conditions are satisfied.

- ${\mathcal F}$  has a unique canonical cover.
- $\bullet \ \mathcal{F}$  has a unique key.

Context: Universal schema E constrained by FDs  $\mathcal{F}$ .

Strong cover property:  $\mathcal{F}$  has the *strong cover property* if the following two conditions are satisfied.

- $\mathcal{F}$  has a unique canonical cover.
- ${\mathcal F}$  has a unique key.

Theorem: If  $\mathcal{F}$  has the strong cover property, then, then every projection of **E** has a universal meet  $\Pi$ -complement.  $\Box$ 

Context: Universal schema E constrained by FDs  $\mathcal{F}$ .

Strong cover property:  $\mathcal{F}$  has the *strong cover property* if the following two conditions are satisfied.

- $\mathcal{F}$  has a unique canonical cover.
- ${\mathcal F}$  has a unique key.

Theorem: If  $\mathcal{F}$  has the strong cover property, then, then every projection of **E** has a universal meet  $\Pi$ -complement.  $\Box$ 

Observation: The strong cover property is very strong.

Context: Universal schema E constrained by FDs  $\mathcal{F}$ .

Strong cover property:  $\mathcal{F}$  has the *strong cover property* if the following two conditions are satisfied.

- $\mathcal{F}$  has a unique canonical cover.
- $\mathcal{F}$  has a unique key.

Theorem: If  $\mathcal{F}$  has the strong cover property, then, then every projection of **E** has a universal meet  $\Pi$ -complement.  $\Box$ 

Observation: The strong cover property is very strong.

Question: Is there a characterization of universal meet complements with wider applicability?

Context: Universal schema E constrained by FDs  $\mathcal{F}$ .

Strong cover property:  $\mathcal{F}$  has the *strong cover property* if the following two conditions are satisfied.

- $\mathcal{F}$  has a unique canonical cover.
- $\mathcal{F}$  has a unique key.

Theorem: If  $\mathcal{F}$  has the strong cover property, then, then every projection of **E** has a universal meet  $\Pi$ -complement.  $\Box$ 

Observation: The strong cover property is very strong.

Question: Is there a characterization of universal meet complements with wider applicability?

Short answer: There are unfortunately very simple examples with no universal meet complement.

### Some Counterexamples to Straightforward Extensions

Example: Let  $\mathbf{E}_5 = (R[ABCDE], \{A \rightarrow BCE, CE \rightarrow D, CD \rightarrow E\}).$ 

• { $A \rightarrow BCE, CE \rightarrow D, CD \rightarrow E$ } has two canonical covers:  $\mathcal{F}'_{51} = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, CE \rightarrow D, CD \rightarrow E$ }  $\mathcal{F}'_{52} = \{A \rightarrow B, A \rightarrow C, A \rightarrow E, CE \rightarrow D, CD \rightarrow E$ }

- { $A \rightarrow BCE, CE \rightarrow D, CD \rightarrow E$ } has two canonical covers:  $\mathcal{F}'_{51} = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, CE \rightarrow D, CD \rightarrow E$ }  $\mathcal{F}'_{52} = \{A \rightarrow B, A \rightarrow C, A \rightarrow E, CE \rightarrow D, CD \rightarrow E$ }
- $\Pi_{BCDE}^{E_5}$  has two minimal meet  $\Pi$ -complements:  $\Pi_{ABCD}^{E_5}$  and  $\Pi_{ABCE}^{E_5}$ , and so no universal meet  $\Pi$ -complement.

- { $A \rightarrow BCE, CE \rightarrow D, CD \rightarrow E$ } has two canonical covers:  $\mathcal{F}'_{51} = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, CE \rightarrow D, CD \rightarrow E\}$  $\mathcal{F}'_{52} = \{A \rightarrow B, A \rightarrow C, A \rightarrow E, CE \rightarrow D, CD \rightarrow E\}$
- $\Pi_{BCDE}^{E_5}$  has two minimal meet  $\Pi$ -complements:  $\Pi_{ABCD}^{E_5}$  and  $\Pi_{ABCE}^{E_5}$ , and so no universal meet  $\Pi$ -complement.
- Note that the left-hand sides for the two canonical covers are identical, so the equivalence properties for canonical and minimal covers cannot help.

• {
$$A \rightarrow BCE, CE \rightarrow D, CD \rightarrow E$$
} has two canonical covers:  
 $\mathcal{F}'_{51} = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, CE \rightarrow D, CD \rightarrow E\}$   
 $\mathcal{F}'_{52} = \{A \rightarrow B, A \rightarrow C, A \rightarrow E, CE \rightarrow D, CD \rightarrow E\}$ 

- $\Pi_{BCDE}^{E_5}$  has two minimal meet  $\Pi$ -complements:  $\Pi_{ABCD}^{E_5}$  and  $\Pi_{ABCE}^{E_5}$ , and so no universal meet  $\Pi$ -complement.
- Note that the left-hand sides for the two canonical covers are identical, so the equivalence properties for canonical and minimal covers cannot help.

Example: Let  $\mathbf{E}_6 = (R[ABCD], \mathcal{F}_6)$ , with  $\mathcal{F}_6 = \{AB \rightarrow C, C \rightarrow B, D \rightarrow A\}$ .

• {
$$A \rightarrow BCE, CE \rightarrow D, CD \rightarrow E$$
} has two canonical covers:  
 $\mathcal{F}'_{51} = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, CE \rightarrow D, CD \rightarrow E\}$   
 $\mathcal{F}'_{52} = \{A \rightarrow B, A \rightarrow C, A \rightarrow E, CE \rightarrow D, CD \rightarrow E\}$ 

- $\Pi_{BCDE}^{E_5}$  has two minimal meet  $\Pi$ -complements:  $\Pi_{ABCD}^{E_5}$  and  $\Pi_{ABCE}^{E_5}$ , and so no universal meet  $\Pi$ -complement.
- Note that the left-hand sides for the two canonical covers are identical, so the equivalence properties for canonical and minimal covers cannot help.

Example: Let  $\mathbf{E}_6 = (R[ABCD], \mathcal{F}_6)$ , with  $\mathcal{F}_6 = \{AB \rightarrow C, C \rightarrow B, D \rightarrow A\}$ .

 Although *F*<sub>6</sub> is its own unique cover, it has two keys, *BD* and *CD*, and so Π<sup>E<sub>6</sub></sup><sub>ABC</sub> has two minimal meet Π-complements, Π<sup>E<sub>6</sub></sup><sub>ABD</sub> and Π<sup>E<sub>6</sub></sup><sub>ACD</sub>.

 B<sub>1</sub> ↔ B<sub>2</sub> illustrates a simple equivalence, and B<sub>1</sub> and B<sub>2</sub> are simply equivalent.



- $B_1 \leftrightarrow B_2$  illustrates a *simple equivalence*, and  $B_1$  and  $B_2$  are *simply equivalent*.
- $\Pi_{B_1C}^{\mathbf{E}_7}$  and  $\Pi_{B_2C}^{\mathbf{E}_7}$  are *quasi-universal*  $\Pi$ -complements of  $\Pi_{AB_1B_2}^{\mathbf{E}_7}$ .
  - They are equivalent up to a renaming of simply equivalent attributes.



- $B_1 \leftrightarrow B_2$  illustrates a *simple equivalence*, and  $B_1$  and  $B_2$  are *simply equivalent*.
- $\Pi_{B_1C}^{\mathbf{E}_7}$  and  $\Pi_{B_2C}^{\mathbf{E}_7}$  are *quasi-universal*  $\Pi$ -complements of  $\Pi_{AB_1B_2}^{\mathbf{E}_7}$ .
  - They are equivalent up to a renaming of simply equivalent attributes.



Context for the general result: Universal schema E constrained by FDs  $\mathcal{F}.$ 

- $B_1 \leftrightarrow B_2$  illustrates a *simple equivalence*, and  $B_1$  and  $B_2$  are *simply equivalent*.
- $\Pi_{B_1C}^{\mathbf{E}_7}$  and  $\Pi_{B_2C}^{\mathbf{E}_7}$  are *quasi-universal*  $\Pi$ -complements of  $\Pi_{AB_1B_2}^{\mathbf{E}_7}$ .
  - They are equivalent up to a renaming of simply equivalent attributes.



Context for the general result: Universal schema E constrained by FDs  $\mathcal{F}$ .

• Say that  $\mathcal{F}$  has the *strong equivalence-cover property* if the set obtained by replacing equivalent elements by a single representative has the strong cover property
# **Extension to Simple Equivalences**

- $B_1 \leftrightarrow B_2$  illustrates a *simple equivalence*, and  $B_1$  and  $B_2$  are *simply equivalent*.
- $\Pi_{B_1C}^{\mathbf{E}_7}$  and  $\Pi_{B_2C}^{\mathbf{E}_7}$  are *quasi-universal*  $\Pi$ -complements of  $\Pi_{AB_1B_2}^{\mathbf{E}_7}$ .
  - They are equivalent up to a renaming of simply equivalent attributes.



Context for the general result: Universal schema E constrained by FDs  $\mathcal{F}$ .

• Say that  $\mathcal{F}$  has the *strong equivalence-cover property* if the set obtained by replacing equivalent elements by a single representative has the strong cover property

Example:  $\{B_1 \leftrightarrow B_2, B_1 \rightarrow C\}$  becomes  $\{B_1 \rightarrow C\}$ .

# **Extension to Simple Equivalences**

- $B_1 \leftrightarrow B_2$  illustrates a *simple equivalence*, and  $B_1$  and  $B_2$  are *simply equivalent*.
- $\Pi_{B_1C}^{\mathbf{E}_7}$  and  $\Pi_{B_2C}^{\mathbf{E}_7}$  are *quasi-universal*  $\Pi$ -complements of  $\Pi_{AB_1B_2}^{\mathbf{E}_7}$ .
  - They are equivalent up to a renaming of simply equivalent attributes.



Context for the general result: Universal schema E constrained by FDs  $\mathcal{F}$ .

• Say that  $\mathcal{F}$  has the *strong equivalence-cover property* if the set obtained by replacing equivalent elements by a single representative has the strong cover property

Example:  $\{B_1 \leftrightarrow B_2, B_1 \rightarrow C\}$  becomes  $\{B_1 \rightarrow C\}$ .

Theorem: If  $\mathcal{F}$  has the strong equivalence-cover property and is *free of complex triples* (a technical condition usually met in practice), then every  $\Pi$ -view of **E** admits quasi-universal  $\Pi$ -complements.  $\Box$ 

## **Conclusions and Further Directions**

#### Conclusions:

### **Conclusions and Further Directions**

#### Conclusions:

• Conditions for the existence (and construction) of universal complements have been identified.

- Conditions for the existence (and construction) of universal complements have been identified.
- However, the results are substantially limited in two ways.

- Conditions for the existence (and construction) of universal complements have been identified.
- However, the results are substantially limited in two ways. Strength: The conditions which must be met are relatively strong.

- Conditions for the existence (and construction) of universal complements have been identified.
- However, the results are substantially limited in two ways.
  Strength: The conditions which must be met are relatively strong.
  Scope: The results apply only to universal relational schemata constrained by FDs.

- Conditions for the existence (and construction) of universal complements have been identified.
- However, the results are substantially limited in two ways.
  Strength: The conditions which must be met are relatively strong.
  Scope: The results apply only to universal relational schemata constrained by FDs.

### Further Directions:

• Within the context of a more general model (such as view congruences for admissibility invariance and order structure for reflection invariance), identify the fundamental principles which underlie the existence of universal complements.

- Conditions for the existence (and construction) of universal complements have been identified.
- However, the results are substantially limited in two ways.
  Strength: The conditions which must be met are relatively strong.
  Scope: The results apply only to universal relational schemata constrained by FDs.

- Within the context of a more general model (such as view congruences for admissibility invariance and order structure for reflection invariance), identify the fundamental principles which underlie the existence of universal complements.
- Integrate the study of universal complements with the optimal interconnection of database components.