
FD Covers and Universal Complements

of Simple Projections

Stephen J. Hegner
Ume̊a University

Department of Computing Science
SE-901 87 Ume̊a, Sweden

hegner@cs.umu.se

http://www.cs.umu.se/~hegner

0/15



The View-Update Problem

Context: A view Γ = (V, γ) of the schema D is
defined by a surjective function

γ : LDB(D)→ LDB(V)
with LDB(X) = (legal) databases of X.

• Given the state of the main schema and a view
update ...

• there are in general many possible reflections of
that view update to the main schema.

• Note that there is always at least one.

• The view-update problem is to determine:

• which reflections, if any, are suitable; and

• if there is more than one suitable choice,
which is best.
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Approaches to the View-Update Problem

• There is no single “best” solution to the view-update problem.

• All approaches have advantages and disadvantages.

• In particular, there is a tradeoff between the size of the set of supported
view updates and how well-behaved the strategy is.

• This work addresses issues related to the constant-complement strategy,
which is very well behaved but supports a relative limited set of view
updates.

• The research thus relates in particular to closed update strategies.
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Closed Update Strategies

Main principle: In a closed update strategy, the view appears to the user as
though it is a full, main schema.

• This implies in particular the satisfaction of two principles.

Admissibility invariance: Whether or not a given view update is allowed
depends only upon the state of the view, and not otherwise upon the
state of the main schema.

No side effects: All changes to the overall database state as a result of
a view update are entirely visible within the view itself.

⇒ The part of the main schema which is not visible from within
the view must remain unchanged.

Question: How is a closed update strategy realized?
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Realizing Closed Update Strategies – Constant Complement

• The main schema E1 is shown to the
right.

• The goal is to update the view Γ = ΠE1
AB .

• Recapture the part of E1 not represented
in Γ as a second view Γ′ = ΠE1

BC .

• Γ′ is a complement of Γ since the pair
results in a lossless decomposition.

R[ABC ]
B → C

• The overlap ΠE1
B defines the part of Γ which must remain constant in any

update.

• The view ΠE1
C with no overlap is not a complement because the

main schema does not satisfy 1 [AB,C ].

Constant-complement update strategy: Updating Γ while keeping the
complement Γ′ constant.

• Since P = {Γ, Γ′} defines a lossless decomposition, that pair defines
the reflections of view updates uniquely.
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Admissibility Invariance

Freedom from side effects is provided, by construction, with the
constant-complement strategy...

• ...provided that side effects are interpreted as changes to the
complement.

Admissibility invariance requires a further
condition.

Fact: Admissibility invariance is guaranteed
iff the pair of views {Γ, Γ′} admits an
embedded cover. 2

• A cover of the constraints of the
main schema embeds into the two
views.

• There is a more general characterization, not dependent upon
constraints, involving commuting congruences.

Meet complement: A complement which induces admissibility invariance.
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The Achilles’ Heel of Constant Complement

Achilles’ Heel of the constant-complement strategy: Complements need not
be unique.

• The reflection of a view update may depend upon the choice of
complement.

Example: E2 has two relation symbols R[A] and S [A].

• The view to be updated is ΠE2
R .

• The obvious and natural complement is ΠE2
S .

• Another complement: ΠE2
R∆S = (T [A], πE2

R∆S).

• T [x ]⇔ (R(x)∧(¬S(x))∨((¬R(x))∧S(x))).

R[A] S [A]

R[A]

πE2
R

S [A]

πE2
S

R∆S [A]

πE2
R∆S

{R(a),S(a′)}

{R(a)} {T (a),T (a′)}

{R(a),S(a′)}

{R(a),R(a′)} {T (a),T (a′)}

{R(a),R(a′),�
��S(a′)}

{R(a),R(a′)} {T (a),T (a′)}

{R(a),R(a′),�
��S(a′)}

{R(a),R(a′)} {���S(a′)}

Current state of main schema E2: M1 = {R(a),S(a′)}.
View update: u = ({R(a)}, {R(a),R(a′)}) on ΠE2

R . (Insert R(a′)).

New state of E2: M2 = {R(a),R(a′)} with constant complement ΠE2
R∆S .

• Note that admissibility invariance is satisfied in each case.
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Reflection Invariance

• It is nevertheless possible to address this Achilles’ heel, to some degree.

Context: Let V be a set of views of a schema E, with Γ ∈ V.

Reflection invariance: An update u on Γ exhibits reflection invariance with
respect to V if for any two complements Γ′, Γ′′ ∈ V, the constant
complement reflections of u with respect to Γ′ and with respect to Γ′′

coincide.

Theorem: In the presence of schemata with order and morphisms which
preserve order, all monotonic view updates exhibit reflection invariance. 2

Corollary: This result may be extended to updates which are realizable as
certain compositions of monotonic updates. 2

Application: Relational views defined by SPJR morphisms.

Simple example: ΠE2
R∆S on the previous slide is ruled out since it is not order

preserving.
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Example of Reflection Invariance

• The example to the left illustrates a
situation with two distinct complements
yet reflection invariance.

• The view to be updated is ΠE3
ABC .

• ΠE3
BD is a complement.

• ΠE3
CD is also a complement.

• The main schema E3 is symmetric in B
and C , so there is no way to prefer one
over the other.

R[ABCD]
B → D C → D

• These two complements support distinct sets of updates.

• The updates which are supported by both complements keep both ΠE3
B

and ΠE3
C constant.

Reflection invariance: For such updates, the reflections are the same.

• Note that this example is not admissibility invariant.

• Admissibility-invariant examples are possible but a bit more complex.
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This Research – Conditions for Universal Complements

Context: V be a set of views of a schema E, with Γ ∈ V.

• Assume that reflection invariance is supported.

Universal complement: A universal complement of Γ in V is a complement
which supports every constant-complement update on Γ which is
supported by some complement in V.

Observation: If views are ordered by size (information retained), then a view
is a universal complement iff it is a least complement in that ordering. 2

Example context: views which are projections of a universal schema.

• universal complement iff least set of attributes (under set inclusion).

Example: The setting of the previous slide:
E3 = (R[ABCD], {B → D,C → D}), ΠE3

ABC , ΠE3
BD , ΠE3

CD
illustrates that universal complements need not exist (at least within
projections), since ΠE3

D = ΠE3
BD∩CD is not a complement of ΠE3

ABC .

• Counterexamples exist even when the complement views are limited to
those which exhibit admissibility invariance.
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Approach to Universal Complements

Observation: The fundamental invariance properties have very general
characterizations which do not even depend upon a specific data model.

Admissibility invariance: Commuting congruences, embedded covers.

Reflection invariance: Order-based properties.

Question: Does the existence of a universal complement have a similar
general characterization?

Answer: Not which is apparent.

Decisions about limiting the context:

• Restrict attention to complements which provide admissibility
invariance (meet complements, embedded covers).

• Begin with the classical setting: universal relational schemata
constrained by FDs, projective views.

• Complements which are projections are called Π-complements.
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The Construction for a Single Cover

Example: Schema E4:

Goal: Construct a universal Π-complement
for ΠE4

ABCE .

• First consider finding an optimal
complement just for the given cover
{A→ B,B → C ,CD → E}.
• The attributes ABCDEF \ ABCE = DF

must be in the complement.

• CD → E does not embed into ABCE , so
it must embed into the complement.

⇒ Complement must contain CDE .

R[ABCDEF ]
A→ B B → C CD → E

• The optimal precomplement for this fixed cover is thus ΠE4
CDEF .

• To obtain a complement, the common attributes must form a key for one
of the views.

⇒ Add A to common attributes (only minimal possibility).

• The optimal complement for this fixed cover is thus ΠE4
ACDEF .
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The Strong Cover Property

Context: Universal schema E constrained by FDs F .

Strong cover property: F has the strong cover property if the following two
conditions are satisfied.

• F has a unique canonical cover.

• F has a unique key.

Theorem: If F has the strong cover property, then, then every projection of
E has a universal meet Π-complement. 2

Observation: The strong cover property is very strong.

Question: Is there a characterization of universal meet complements with
wider applicability?

Short answer: There are unfortunately very simple examples with no
universal meet complement.
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Some Counterexamples to Straightforward Extensions

Example: Let E5 = (R[ABCDE ], {A→ BCE ,CE → D,CD → E}).

• {A→ BCE ,CE → D,CD → E} has two canonical covers:
F ′

51 = {A→ B,A→ C ,A→ D,CE → D,CD → E}
F ′

52 = {A→ B,A→ C ,A→ E ,CE → D,CD → E}

• ΠE5
BCDE has two minimal meet Π-complements: ΠE5

ABCD and ΠE5
ABCE , and

so no universal meet Π-complement.

• Note that the left-hand sides for the two canonical covers are identical, so
the equivalence properties for canonical and minimal covers cannot help.

Example: Let E6 = (R[ABCD],F6), with F6 = {AB → C ,C → B,D → A}.

• Although F6 is its own unique cover, it has two keys, BD and CD, and
so ΠE6

ABC has two minimal meet Π-complements, ΠE6
ABD and ΠE6

ACD .
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Extension to Simple Equivalences

• B1 ↔ B2 illustrates a simple equivalence, and
B1 and B2 are simply equivalent.

• ΠE7
B1C

and ΠE7
B2C

are quasi-universal

Π-complements of ΠE7
AB1B2

.

• They are equivalent up to a renaming of
simply equivalent attributes.

R[AB1B2C ]
B1 ↔ B2 B1 → C

Context for the general result: Universal schema E constrained by FDs F .

• Say that F has the strong equivalence-cover property if the set obtained
by replacing equivalent elements by a single representative has the strong
cover property

Example: {B1 ↔ B2,B1 → C} becomes {B1 → C}.

Theorem: If F has the strong equivalence-cover property and is free of
complex triples (a technical condition usually met in practice), then every
Π-view of E admits quasi-universal Π-complements. 2
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Conclusions and Further Directions

Conclusions:

• Conditions for the existence (and construction) of universal complements
have been identified.

• However, the results are substantially limited in two ways.

Strength: The conditions which must be met are relatively strong.

Scope: The results apply only to universal relational schemata
constrained by FDs.

Further Directions:

• Within the context of a more general model (such as view congruences
for admissibility invariance and order structure for reflection invariance),
identify the fundamental principles which underlie the existence of
universal complements.

• Integrate the study of universal complements with the optimal
interconnection of database components.
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