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• On the underlying states, the view map-ping is generally surje
tive (onto) butnot inje
tive (one-to-one).

Thus, a view update has many possiblere�e
tions to the main s
hema.The problem of identifying a suitable re-�e
tion is known as the update transla-tion problem or update re�e
tion prob-lem.With a reasonable de�nition of suitabil-ity, it may not be the 
ase that everyview update has a suitable translation.
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The Gold Standard � the Constant-Complement Strategy
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In the 
onstant-
omplement strategy[Ban
ilhon and Spyratos 81℄, [Hegner 03℄,the main s
hema is de
omposed into twomeet-
omplementary views.One is isomorphi
 to the view s
hema and tra
ksits updates exa
tly.The other is held 
onstant for all updates to theview.This results in a unique update strategy, al-though all view updates need not be supported.It 
an be shown [Hegner 03℄ that this strategy ispre
isely that whi
h avoids all update anomalies.
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Consequently, it is quite limited in the view updates whi
h it allows.An example will help illustrate.
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• Given is the following two-relation mains
hema.

The view s
hema to be updated isthe proje
tion of .The natural 
omplement 
onsistsof the proje
tion of and all of .With 
onstant, the allowable up-dates to the view are pre
isely thosewhi
h keep the meet 
onstant.In parti
ular:Deletion of is not allowed.Insertion of is not allowed.

Main S
hema E0

R[AB]1R[BC]

R[C] ⊆ S[C]

R[ABC] S[CD]

On the other hand, 
on
eptually, 
onstant-
omplement view update avoids allupdate anomalies.
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• The 
riti
al features of 
onstant 
om-plement update re�e
tions: reversibil-ity, transitivity, and re�e
tion of up-dates.

Examples of non-admissibility:Deletion of violates re-versibility.Insertion of must mat
h itssubsequent deletion, whi
h fails forthe reason above.Examples whi
h satisfy reversibilitybut violate transitivity exist as well,but are more 
omplex.
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ompletely is very high.
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• There are two prin
ipal approa
hes to extending the 
onstant-
omplementstrategy:

Limited s
ope: automated de
ision or de
ision by one user:Ranked preferen
e of re�e
tions to the main s
hema, usually based uponminimization of 
hange.Broad s
ope: de
ision via the 
ooperation of many users.[Hegner & S
hmidt, ADBIS 2007℄The 
omplement is updated in a negotiation with other users.The 
omplement may in fa
t be represented as an inter
onne
tion ofsmaller views � database 
omponents.In this work, the limited s
ope approa
h, via minimization of 
hange isinvestigated.
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• Consider the update Insert〈R(a2, b2)〉 into W1.

The following alternatives for the re�e
tion are alltuple minimal � no proper subset is a solution.

The following alternative is not tuple minimal.

Most existing approa
hes work only with groundatoms, and so do not provide a formal preferen
eranking on minimal alternatives.Often, the sele
tion pro
ess is left to the user.
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Question: Is there a reasonable way to measure the quality of tuple-minimalalternatives?
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Idea: Exploit the �rst-order properties of the model, rather than just 
ounting thenumber of tuples whi
h are 
hanged.

Model database states as �nite sets of ground atoms. = set of alldatabase states of s
hema .denotes the set of all senten
es in the language of the s
hema .For and , the information 
ontent of relative to :

For = ground atoms in , .For �ner measure of information 
ontent, a larger subset of is used.The general idea is to regard optimal re�e
tions as those whi
h minimize the
hange of information 
ontent, rather than just the number of tuples whi
h are
hanged.To make this 
on
ept useful, some further properties are ne
essary.
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The update di�eren
e (w.r.t. ) for an update is the 
hange ofinformation asso
iated with that update.The positive, negative, and total information di�eren
es for w.r.t. arede�ned as follows:

Observe that if , then the update di�eren
e redu
es to theset of 
hanges (tuples inserted or deleted) by the update.An optimal re�e
tion of a view update is a tuple-minimal re�e
tion to the mains
hema for whi
h the update di�eren
e is least.
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• In the example to the left, if the initial state of E0 isdenoted M00 , then:

ConstSym(M00) = {a0, a1, b0, b1, c0, c1, d0, d1}

For the view update

the set of 
onstants whi
h are allowed in the sen-ten
es de�ning the information of the new state ofis:

Main S
hema E0

R[AB]1R[BC]

R[C] ⊆ S[C]

R[ABC] S[CD]

R[AB]

πAB
View S
hema

W0

a0 b0 c0

a1 b1 c1

c0 d0

c1 d1

a0 b0

a1 b1
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• Consider again the view update Insert〈R(a2, b2)〉.

Consider the re�e
tion to .A basis for the information 
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The re�e
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• Now 
onsider the re�e
tion

Insert〈R(a2, b2, c2), S(c2, d1)〉 to E0.

A basis for the information 
ontent is

This re�e
tion is not optimal, sin
e

but not 
onversely.Inserting adds stri
tly more informationthan inserting .Note that this distin
tion is not possible with sim-ple minimization of the number of atoms whi
h are
hanged.
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hoi
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• Note that all of the other re�e
tions may be realizedas endomorphi
 images of the �rst.

Insert〈R(a2, b2, c2), S(c2, d2)〉

c3/c2, d3/d2

7−→ Insert〈R(a2, b2, c3), S(c2, d3)〉

Insert〈R(a2, b2, c2), S(c2, d2)〉

d0/d2

7−→ Insert〈R(a2, b2, c2), S(c2, d0)〉

Insert〈R(a2, b2, c2), S(c2, d2)〉

c0/c2, d0/d2

7−→ Insert〈R(a2, b2, c0)〉

Note also that the �rst endomorphism may be re-versed, but the others may not.

Main S
hema E0

R[AB]1R[BC]

R[C] ⊆ S[C]

R[ABC] S[CD]

R[AB]

πAB
View S
hema

W0

a0 b0 c0

a1 b1 c1

a2 b2 /c2

c3

c0 d0

c1 d1

/c2 /d2

c3 d3

a0 b0

a1 b1

a2 b2



Endomorphisms of Constants and the Asso
iated DB Mapping
15 / 22

• Note that all of the other re�e
tions may be realizedas endomorphi
 images of the �rst.

Insert〈R(a2, b2, c2), S(c2, d2)〉

c3/c2, d3/d2

7−→ Insert〈R(a2, b2, c3), S(c2, d3)〉

Insert〈R(a2, b2, c2), S(c2, d2)〉

d0/d2

7−→ Insert〈R(a2, b2, c2), S(c2, d0)〉

Insert〈R(a2, b2, c2), S(c2, d2)〉

c0/c2, d0/d2

7−→ Insert〈R(a2, b2, c0)〉

Note also that the �rst endomorphism may be re-versed, but the others may not.

Main S
hema E0

R[AB]1R[BC]

R[C] ⊆ S[C]

R[ABC] S[CD]

R[AB]

πAB
View S
hema

W0

a0 b0 c0

a1 b1 c1

a2 b2 c2

c0 d0

c1 d1

c2 /d2

d0

a0 b0

a1 b1

a2 b2



Endomorphisms of Constants and the Asso
iated DB Mapping
15 / 22

• Note that all of the other re�e
tions may be realizedas endomorphi
 images of the �rst.

Insert〈R(a2, b2, c2), S(c2, d2)〉

c3/c2, d3/d2

7−→ Insert〈R(a2, b2, c3), S(c2, d3)〉

Insert〈R(a2, b2, c2), S(c2, d2)〉

d0/d2

7−→ Insert〈R(a2, b2, c2), S(c2, d0)〉

Insert〈R(a2, b2, c2), S(c2, d2)〉

c0/c2, d0/d2

7−→ Insert〈R(a2, b2, c0)〉

Note also that the �rst endomorphism may be re-versed, but the others may not.

Main S
hema E0

R[AB]1R[BC]

R[C] ⊆ S[C]

R[ABC] S[CD]

R[AB]

πAB
View S
hema

W0

a0 b0 c0

a1 b1 c1

a2 b2 /c2

c0

c0 d0

c1 d1

/c2 /d2

c0 d0

a0 b0

a1 b1

a2 b2



Endomorphisms of Constants and the Asso
iated DB Mapping
15 / 22

• Note that all of the other re�e
tions may be realizedas endomorphi
 images of the �rst.

Insert〈R(a2, b2, c2), S(c2, d2)〉

c3/c2, d3/d2

7−→ Insert〈R(a2, b2, c3), S(c2, d3)〉

Insert〈R(a2, b2, c2), S(c2, d2)〉

d0/d2

7−→ Insert〈R(a2, b2, c2), S(c2, d0)〉

Insert〈R(a2, b2, c2), S(c2, d2)〉

c0/c2, d0/d2

7−→ Insert〈R(a2, b2, c0)〉

• Note also that the �rst endomorphism may be re-versed, but the others may not.

Main S
hema E0

R[AB]1R[BC]

R[C] ⊆ S[C]

R[ABC] S[CD]

R[AB]

πAB
View S
hema

W0

a0 b0 c0

a1 b1 c1

a2 b2 /c2

c3

c0 d0

c1 d1

/c2 /d2

c3 d3

a0 b0

a1 b1

a2 b2



Endomorphisms of Constants and the Asso
iated DB Mapping
16 / 22

• There is a natural algebrai
 stru
ture on the 
olle
tion of re�e
tions of a givenview update.

Let denote the set of all 
onstants whi
h 
an o

ur in the main s
hemaand the views.A 
onstant endomorphism is a fun
tion (subje
t to
ertain typing 
onstraints whi
h will not be elaborated here).Su
h mappings are also 
alled homomorphisms.Su
h an endomorphism indu
es a mapping of tuples via .This, in turn, indu
es a mapping of databases via .For , 
all -invariant if for all .For , 
all at most -variant if it is -invariant.
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Context:

D = XEID relational s
hema (V, γ : D → V) = an SPJ view of D

M1 ∈ DB(D) (γ(M1), N2) = an insertion on V.

Theorem: In the above 
ontext, every insertion whi
h is minimal with respe
t to theinformation 
ontent de�ned by is optimal.Corollary: In the above 
ontext, all minimal insertions, with respe
t to theinformation 
ontent de�ned by , are isomorphi
 upto a renaming of the newly-introdu
ed 
onstant symbols.Question: When do minimal insertions exist?Answer: Not always, the 
hase pro
edure is required to terminate.This may be guaranteed by restri
ting attention to the weakly a
y
li
dependen
ies [Fagin et al 2005℄.
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• A logi
-based te
hnique for measuring the quality of a re�e
tion of a view updatehas been presented.

This te
hnique is stri
tly �ner grained than simply 
ounting the number of tupleswhi
h 
hange.Under 
ommon 
onditions, it has been shown that all optimal updates areisomorphi
 up to a renaming of the new 
onstant symbols whi
h are introdu
ed.When the main s
hema is 
onstrained by XEIDs and the view is SPJ, all optimalsolutions are isomorphi
.Optimal solutions exist in 
ase the 
hase inferen
e pro
edure terminates.
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Optimization of tuple modi�
ation:

The existing approa
h fo
uses upon insertions.Deletions are an easy extension.Modi�
ations almost never have an optimal solution, be
ause they 
annotdistinguish a 
hange from a 
ombination of insertions and deletions.An alternative model is ne
essary for this 
ase.Appli
ation to database 
omponents:Cooperative updates to database 
omponents has been studied [Hegner &S
hmidt 2007 ADBIS℄Methods whi
h 
ombine 
ooperative update with the automated 
hoi
es ofthis paper deserve further investigation.Relationship to work in logi
 programming:
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