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e On the underlying states, the view map- Main Schema
ping is generally surjective (onto) but
not injective (one-to-one).

e Thus, a view update has many possible
reflections to the main schema.

e The problem of identifying a suitable re-
flection is known as the update transla-
tion problem or update reflection prob-
lem.

e With a reasonable definition of suitabil-
ity, it may not be the case that every
view update has a suitable translation.
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It can be shown [Hegner 03] that this strategy is
precisely that which avoids all update anomalies.
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Consequently, it is quite limited in the view updates which it allows.

An example will help illustrate.
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Given is the following two-relation main Main Schema Ej
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of the BC projection of R and all of S. TAR
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On the other hand, conceptually, constant-complement view update avoids all
update anomalies.
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ity, transitivity, and reflection of up- R[C] C S[C]
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but are more complex.

e Bottom line: The price of avoiding update anomalies completely is very high.
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e There are two principal approaches to extending the constant-complement
strategy:

e | imited scope: automated decision or decision by one user:

e Ranked preference of reflections to the main schema, usually based upon
minimization of change.

e Broad scope: decision via the cooperation of many users.
[Hegner & Schmidt, ADBIS 2007]

e The complement is updated in a negotiation with other users.
e The complement may in fact be represented as an interconnection of
smaller views — database components.

e In this work, the limited scope approach, via minimization of change is
iInvestigated.
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e The following alternative is not tuple minimal. R[ADB|
o Insert(R(ag, ba, CQ), S(CQ, dg), R(ag, ba, 63), S(Cg, d3)> ZO [[ZO

e Most existing approaches work only with ground a; b;

atoms, and so do not provide a formal preference

ranking on minimal alternatives. View Schema

Wy
e Often, the selection process is left to the user.
Question: s there a reasonable way to measure the quality of tuple-minimal
alternatives?
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e For ® CWFS(D) and M € DB(D), the information content of M relative to :

Info(M,®) ={pe®| M E ¢}
e For ® = ground atoms in WFS(D), Info(M,®) = M.

e For finer measure of information content, a larger subset of WFS(D) is used.

e The general idea is to regard optimal reflections as those which minimize the
change of information content, rather than just the number of tuples which are
changed.

e To make this concept useful, some further properties are necessary.
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o Example: Let & = WFS(E).

M = {S(co,do)} implies (Vx)(S(z,y) = (x = cp)) € Info(M, D).
M' = {S(cy,dy),S(c1,d1)} implies (Vz)(S(z,y) = (x = cp)) & Info(M, ®).

e Call ® information monotone if:

My C My = Info<M1, (I)> C |ch<M2,(I)>

e If ® consists of positive formulas (no negation) and existential (no V) sentences,
then it is automatically information monotone.

e O will always be chosen to be information monotone.

e In most cases, it will be chosen to be a subset of WFS(D, dA+), the set of all
existential positive conjunctive sentences in the language of the schema D.
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e The update difference (w.r.t. ®) for an update (M7, M>) is the change of
information associated with that update.

e The positive, negative, and total information differences for (M1, Ms) w.r.t. ® are
defined as follows:

A+<(M17 M2)7 (I)>
A™((My, M3), @)
A<(M17 M2)7 (I)>

e Observe that if ® = WFS(D, Atoms), then the update difference reduces to the
set of changes (tuples inserted or deleted) by the update.
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Update Difference and Optimal Reflections

An update is modelled formally as a pair of states
(M7, M3) = (current state, next state).

The update difference (w.r.t. ®) for an update (M7, M>) is the change of
information associated with that update.

The positive, negative, and total information differences for (M7, M3) w.r.t. ® are
defined as follows:

AT (M, M), ®) = Info(Ms, @) \ Info(M;, ®)
A_<(M1, MQ), (I)> nfO<M1, (I)> \ |nfo<M2, (I)>
A<(M1, Mg), (I)> — A+<(M1, Mg), (I)> U A_<(M1, Mg), (I)>

Observe that if ® = WFS(D, Atoms), then the update difference reduces to the
set of changes (tuples inserted or deleted) by the update.

An optimal reflection of a view update is a tuple-minimal reflection to the main
schema for which the update difference is least.
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e (v(M;y),N3) the desired update to the view.

e Define ConstSym(M; U~(M;) U No) to be the set of all constant symbols which
occur in these databases.

e For the information measure, choose:
¢ = WFS(D, 3A+, ConstSym(M; U~ (M;) U Na)),

the positive conjunctive sentences in the language of the main schema D which
involve only those constant symbols which occur in at least one of the three
databases.

e Such formulas are indifferent to the identities of new constants which are inserted.
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Examples of Measures for Information Content

e In the example to the left, if the initial state of Eg is Main Schema Eg

denoted My , then: R[AB]XR[BC]|

R[C] C 5[C]
R[ABC] S[CD]

ag bo co co do
a by 1 c1 dy

ConStSym(MOO) — {a07 ai, b07 b17 Co, C1, dOa dl}

TAB

RIAD]

ag bo
aj by

View Schema
Wy
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Examples of Measures for Information Content

e In the example to the left, if the initial state of Eg is Main Schema Eq
denoted My , then: RIABIRIBC]
ConstSym(Myy) = { bo. b do, d1 } R[C] C S|C]
onstSym = {agp, a1, by, b1, cg, c1, dp,
y 00 0, a1, 00, 01, Co, C1, o, A1 R[ABC] S[CD]
e For the view update
agp bo Co Co do
a1 by ¢ c1 d
Insert({ R(az, b2)}) = TAB 1 01 1 1 di
({(CLO, bO)? (a’la bl)}a {(a’07 b0)7 (al, b1)7 (CLQ, b2) } R EB
the set of constants which are allowed in the sen- AB]
tences defining the information of the new state of do ZO
EO IS: ai 91
a- bg

ConstSym(Moo) U {ag, bg}

View Schema
Wy
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Examples of Information Measure

e Consider again the view update Insert(R(as2,bs)). Main Schema Eg
R[AB|XR[BC]
R[C] C S[C]
R[ABC] S[CD]
aop by co co do
TAR ai bl C1 C1 dl
Y
R[AB]
ao bo
aq bl
a- bg

View Schema
Wy
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R[ABC] S[CD]
agp bo Co Co do
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nAB as bg Co C9 d2
Y
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a- bg
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e Consider again the view update Insert(R(as2,bs)). Main Schema Eg
e Consider the reflection R[AB]XR[BC]
Insert(R(as, b, c2), S(co, ds)) to Ey. R[C] € S[C]
e A basis for the information content is R|ABC] S|CD]
ao bo Co Co do
Moo U{(Fz)(Ty)(R(az, ba, z)AS(x,y))} g | @ba c1 dq
as bg C3 C3 Clg
e The reflection Insert(R(az, b2, c3), S(c3,ds3)) has the Y
same basis. R[AB]
e These two reflections are equivalent with respect to ZO ZO
1 01
WFS(E07 EI/\—|_7 {CLO, ai, az, bOa bla b27 o, C1, d07 dl})7 a2 b2

but not with respect to WFS(Eq, IA+). View Schema

Wy
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Examples of Information Measure — Part 2

e Now consider the reflection Main Schema Ej
Insert(R(az, b2, ¢2), S(c2,d1)) to Eo. R[ABXR[BC]
R[C] C 5|C]
R[ABC]| S|CD]
ag b co co do
ai bl Cq C1 dl
TAB as bg Co C9 d1
Y

R[AB]

ao bo

aq bl

a- bg

View Schema
Wy
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e A basis for the information content is R[C] C S[C]
R|ABC] S|CD]
Moo U {(356) (R(ag, ba, CC)/\S(CI}, dl))} a0 bo co co do
e This reflection is not optimal, since mag | & b1 1 c1 dy
as bg Co C9 Cll
Moo U {(Elﬂf)(R(CLQ, ba, CC)/\S(CC, dg))} R[Z}B]
= Moo U {(3z)(Jy)(R(az, b2, z)rS(z,y))} ,
ag bo
but not conversely. ay by
a- bg
e Inserting S(ca,d;) adds strictly more information
than inserting S(c2, d2). View Schema
Wy

e Note that this distinction is not possible with sim-
ple minimization of the number of atoms which are
changed.
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Examples of Information Measure — Part 3

e Finally, consider the reflection Main Schema Eg
Insert<R(a2, bg, C()), S(Co, d0)> to Eo. R[AB]NR[BC]
R[C] C S[C]
R[ABC] S[CD]
agp bo Co Co do
TAR aq bl C1 C1 dl
as bg Co
Y

R[AB]

ap by

aq bl

a- bg

View Schema
Wy
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Examples of Information Measure — Part 3

e Finally, consider the reflection Main Schema Eg
Insert(R(az, bz, o), S(co, dp)) to Eop. RIABJNR[BC]
e A basis for the information content is R[C] C 5[C]
Iy ; R[ABC] S[CD]
00 U {R(az,b2,co)} a0 by ¢ co do
e This reflection is not optimal, since mag | “@ b1 1 c1 di
as bg Co
Moo U {R(az,b2,¢0)} = \/
(R(az,bs, o)} e
Moo U {(Fz)(Jy) (R(az, by, x)AS(x,y))} n
ag bo
but not conversely. ay b
a- bg

e Note that this choice is suboptimal with respect to
information measure even though it inserts fewer tu- View Schema
ples than the optimal solution. Wo

14 / 22



Endomorphisms of Constants and the Associated DB Mapping

e Note that all of the other reflections may be realized Main Schema Eg
as endomorphic images of the first. R[ABIMR[BC]
R|C] C S[C]
Insert(R(az, bz, c2), S(c2,d2)) R|ABC] S|CD]
C3/Co, dg dQ
/ — / Insert<R(a2, bQ, 63), 5(027 d3)> ZO ZO 20 20 ZO
1 01 ¢ 1 dq
TAB | s by b G o
C3 C3 d3
Y
R[AB]
ao bo
aq bl
a- bg

View Schema
Wy
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Endomorphisms of Constants and the Associated DB Mapping

e Note that all of the other reflections may be realized Main Schema Ej
as endomorphic images of the first. R[ABJXR[BC]
R|C] C S[C]
R|ABC] S|CD]
ag bo co co do
a1 by cq c1 dy
Insert(R(ag, bg, CQ), S(CQ, d2)> nAB az by co C2 Cl/Q
do/d2 Y -
— Insert(R(az, b2, c2), S(ca, do)) R[AB]
ao bo
aq bl
a- bg

View Schema
Wy
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Endomorphisms of Constants and the Associated DB Mapping

e Note that all of the other reflections may be realized Main Schema Ej
as endomorphic images of the first. R[ABJXR[BC]
R|C] C S[C]
R|ABC] S|CD]
aop by co co do
a1 b1 c1 c1 dq
B wbgh b
Co Co do
Y
R[AB]
Insert<R(a2, bs, CQ), S(CQ, d2)> ap by
b
Co/C2,do/do o
/ — / Insert<R(a2, ba, C())> az by

View Schema
Wy
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Endomorphisms of Constants and the Associated DB Mapping

e Note that all of the other reflections may be realized Main Schema Ej
as endomorphic images of the first. R[ABIMR[BC]
R[C] C S[C]
Insert(R(az, b2, c2), S(c2,d2)) R|ABC] S|CD]
c3/c2,d3z/do
/ — / Insert(R2(as, b, c3), S(c2,d3)) ZO ZO 20 EO ZO
1 V1l €] 1 W]
TAB | s by b G o
C3 C3 d3
Y
R[AB]
ao bo
aq bl
a- bg

View Schema
e Note also that the first endomorphism may be re- Wy

versed, but the others may not.

15 / 22



Endomorphisms of Constants and the Associated DB Mapping
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view update.
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Endomorphisms of Constants and the Associated DB Mapping

e There is a natural algebraic structure on the collection of reflections of a given
view update.

e Let Const(D) denote the set of all constants which can occur in the main schema
and the views.

e A constant endomorphism is a function h : Const(D) — Const(D) (subject to
certain typing constraints which will not be elaborated here).

e Such mappings are also called homomorphisms.

e Such an endomorphism induces a mapping of tuples via

(a1,a2,...,a,) — (h(ar),h(a2),...,h(ay)).
e This, in turn, induces a mapping of databases via M +— {h(t) |t € M }.
e For A C Const(D), call h A-invariant if h(a) = a for all a € A.

e For A C Const(D), call h at most A-variant if it is (Const(D) \ A)-invariant.
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Algebraic Representation of Optimal Insertions

Context: D = relational schema (V,v:D — V) =aview of D
M, € DB(D) (v(M7), N2) = an insertion on V.

Theorem: Let My € DB(D). Then (M, M) is an optimal reflection of (v(N7), N2)

iff for every minimal reflection (v(N1), M}), there is a unique invariant
endomorphism h and with h(Ms) = MJ and which is at most
(ConstSym( M) \ ConstSym(Ms))-variant. O

e An optimal reflection is initial amongst all minimal reflections.

Corollary Any two optimal insertions are isomorphic up to renaming of the newly
introduced constant symbols. O

Y.



Existence of Optimal Insertions

e Question: Under what conditions are optimal insertions guaranteed to exist?

18 / 22



Existence of Optimal Insertions

e Question: Under what conditions are optimal insertions guaranteed to exist?

e An XEID (extended embedded implicational dependency) [Fagin82 JACM] is one
of the following form:

(Va1)(Va2) ... (Vo) ((AinAoa ... AAR) = (Fy1)(Ty2) ... (Fyr)(BiaBaa ... ABy))

18 / 22



Existence of Optimal Insertions

e Question: Under what conditions are optimal insertions guaranteed to exist?

e An XEID (extended embedded implicational dependency) [Fagin82 JACM] is one
of the following form:

(Va1)(Va2) ... (Vo) ((AinAoa ... AAR) = (Fy1)(Ty2) ... (Fyr)(BiaBaa ... ABy))

e Each A; is a relational atom.

18 / 22



Existence of Optimal Insertions

e Question: Under what conditions are optimal insertions guaranteed to exist?

e An XEID (extended embedded implicational dependency) [Fagin82 JACM] is one
of the following form:

(Va1)(Va2) ... (Vo) ((AinAoa ... AAR) = (Fy1)(Ty2) ... (Fyr)(BiaBaa ... ABy))

e Each A; is a relational atom.

e Each B; is a relational atom or an equality.

18 / 22



Existence of Optimal Insertions

e Question: Under what conditions are optimal insertions guaranteed to exist?

e An XEID (extended embedded implicational dependency) [Fagin82 JACM] is one
of the following form:

(Va1)(Va2) ... (Vo) ((AinAoa ... AAR) = (Fy1)(Ty2) ... (Fyr)(BiaBaa ... ABy))

e Each A; is a relational atom.
e Each B; is a relational atom or an equality.
e The left-hand side it typed.

18 / 22



Existence of Optimal Insertions

e Question: Under what conditions are optimal insertions guaranteed to exist?
e An XEID (extended embedded implicational dependency) [Fagin82 JACM] is one

of the following form:

(Va1)(Va2) ... (Vo) ((AinAoa ... AAR) = (Fy1)(Ty2) ... (Fyr)(BiaBaa ... ABy))

e Each A; is a relational atom.
e Each B; is a relational atom or an equality.

e The left-hand side it typed.

e XEIDs subsume virtually all database dependencies which have been studied.

18 / 22



Existence of Optimal Insertions

e Question: Under what conditions are optimal insertions guaranteed to exist?

e An XEID (extended embedded implicational dependency) [Fagin82 JACM] is one
of the following form:

(Va1)(Va2) ... (Vo) ((AinAoa ... AAR) = (Fy1)(Ty2) ... (Fyr)(BiaBaa ... ABy))

e Each A; is a relational atom.
e Each B; is a relational atom or an equality.
e The left-hand side it typed.

e XEIDs subsume virtually all database dependencies which have been studied.

e They enjoy a key property of faithfulness [Fagin82 JACM].
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Existence of Optimal Insertions

Context:
D = XEID relational schema (V,v:D — V) =an SPJ view of D

M; € DB(D) (v(M7), N2) = an insertion on V.
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Existence of Optimal Insertions

Context:
D = XEID relational schema (V,v:D — V) =an SPJ view of D

M; € DB(D) (v(M7), N2) = an insertion on V.

Theorem: In the above context, every insertion which is minimal with respect to the
information content defined by WFS(D, A+, ConstSym(M7)) is optimal. O

Corollary: In the above context, all minimal insertions, with respect to the
information content defined by WFS(D, 3A+, ConstSym(M7)), are isomorphic up
to a renaming of the newly-introduced constant symbols. O

e Question: When do minimal insertions exist?
e Answer. Not always, the chase procedure is required to terminate.

e This may be guaranteed by restricting attention to the weakly acyclic
dependencies [Fagin et al 2005].
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Example of Non-Existence of Optimal Insertions

e The schema and initial states are shown. Main Schema E,
e Consider the view update Insert(R(a1)). g[[ﬁ]] %ﬂjﬂ
e This process continues endlessly. T[B] C S[B]
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Example of Non-Existence of Optimal Insertions

The schema and initial states are shown.
Consider the view update Insert(R(a1)).
This process continues endlessly.

A decision to reuse an existing value must be
made.

However, such a decision clearly leads to sub-
optimality.

Main Schema E,

R[A] C S[A]
S[A] C T[A]
T[B] € S[B]
RIAl  SIABI
agp ao bo
aq an bl
TAB as bo
wlh
ao
aj

View Schema
W,

TIAB]
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Conclusions and Properties of the Solution Technique

e A logic-based technique for measuring the quality of a reflection of a view update
has been presented.
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e A logic-based technique for measuring the quality of a reflection of a view update
has been presented.

e This technique is strictly finer grained than simply counting the number of tuples
which change.

e Under common conditions, it has been shown that all optimal updates are
iIsomorphic up to a renaming of the new constant symbols which are introduced.

e When the main schema is constrained by XEIDs and the view is SPJ, all optimal
solutions are isomorphic.

e Optimal solutions exist in case the chase inference procedure terminates.
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Optimization of tuple modification:

e The existing approach focuses upon insertions.

e Deletions are an easy extension.

e Modifications almost never have an optimal solution, because they cannot
distinguish a change from a combination of insertions and deletions.

e An alternative model is necessary for this case.

Application to database components:

e Cooperative updates to database components has been studied [Hegner &
Schmidt 2007 ADBIS]

e Methods which combine cooperative update with the automated choices of
this paper deserve further investigation.

Relationship to work in logic programming:
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