Information-Optimal Reflections
of View Updates
on Relational Database Schemata

Stephen J. Hegner
Umed University
Department of Computing Science
Sweden

0/ 22

The Update Problem for Database Views

e On the underlying states, the view map- Main Schema
ping is generally surjective (onto) but
not injective (one-to-one). °

View Schema

1/ 22

The Update Problem for Database Views

e On the underlying states, the view map-
ping is generally surjective (onto) but
not injective (one-to-one).

Main Schema

e Thus, a view update has many possible
reflections to the main schema.

View Schema

1/ 22

The Update Problem for Database Views

e On the underlying states, the view map- Main Schema
ping is generally surjective (onto) but
not injective (one-to-one).

e Thus, a view update has many possible
reflections to the main schema.

e The problem of identifying a suitable re-
flection is known as the update transla-
tion problem or update reflection prob-
lem.

View Schema

1/ 22

The Update Problem for Database Views

e On the underlying states, the view map- Main Schema
ping is generally surjective (onto) but
not injective (one-to-one).

e Thus, a view update has many possible
reflections to the main schema.

e The problem of identifying a suitable re-
flection is known as the update transla-
tion problem or update reflection prob-
lem.

e With a reasonable definition of suitabil-
ity, it may not be the case that every
view update has a suitable translation.

View Schema

1/ 22

The Gold Standard — the Constant-Complement Strategy

Main Schema

View Schema

2 /22

The Gold Standard — the Constant-Complement Strategy

e In the constant-complement strategy Main Schema

[Bancilhon and Spyratos 81], [Hegner 03],
the main schema is decomposed into two
meet-complementary views.

View Schema

The Gold Standard — the Constant-Complement Strategy

e In the constant-complement strategy Main Schema

[Bancilhon and Spyratos 81], [Hegner 03],
the main schema is decomposed into two
meet-complementary views.

e One is isomorphic to the view schema and tracks l

its updates exactly.

View Schema

The Gold Standard — the Constant-Complement Strategy

In the constant-complement strategy
[Bancilhon and Spyratos 81], [Hegner 03],
the main schema is decomposed into two
meet-complementary views.

One is isomorphic to the view schema and tracks
its updates exactly.

The other is held constant for all updates to the
View.

Main Schema

17/
.

View Schema

The Gold Standard — the Constant-Complement Strategy

e In the constant-complement strategy Main Schema

[Bancilhon and Spyratos 81], [Hegner 03],
the main schema is decomposed into two
meet-complementary views.

e One is isomorphic to the view schema and tracks
its updates exactly.

e The other is held constant for all updates to the
View.
e This results in a unique update strategy, al-

View Schema

though all view updates need not be supported.

The Gold Standard — the Constant-Complement Strategy

In the constant-complement strategy Main Schema

[Bancilhon and Spyratos 81], [Hegner 03],

the main schema is decomposed into two
meet-complementary views.

One is isomorphic to the view schema and tracks l

its updates exactly.

The other is held constant for all updates to the
View.
This results in a unique update strategy, al-

though all view updates need not be supported. View Schema

It can be shown [Hegner 03] that this strategy is
precisely that which avoids all update anomalies.

Consequently, it is quite limited in the view updates which it allows.

The Gold Standard — the Constant-Complement Strategy

In the constant-complement strategy
[Bancilhon and Spyratos 81], [Hegner 03],
the main schema is decomposed into two
meet-complementary views.

One is isomorphic to the view schema and tracks
its updates exactly.

The other is held constant for all updates to the
View.

This results in a unique update strategy, al-
though all view updates need not be supported.

It can be shown [Hegner 03] that this strategy is
precisely that which avoids all update anomalies.

Main Schema

I
A

View Schema

Consequently, it is quite limited in the view updates which it allows.

An example will help illustrate.

An Example of the Constant-Complement Strategy

e Given is the following two-relation main Main Schema Eg
schema. R[AB]XR[BC]
R[C] C S[C]
R|ABC] S|C D]

3/ 22

An Example of the Constant-Complement Strategy

e Given is the following two-relation main Main Schema E,
schema. RIABIMRIBC]
R[C] C S[C]
R[ABC] agp bo Co S[CD] Co do
aq bl C1 C1 dl

3/ 22

An Example of the Constant-Complement Strategy

e Given is the following two-relation main Main Schema E,
Schema. R[AB]NR[BC]
e The view schema Wy to be updated is R[C] C S[C]
the AB projection of R. R[ABC] apbyco S[CD] ¢ dy
a1 by c1 c1 dy
TAB
Y
R|AB]

View Schema
Wy

3/ 22

An Example of the Constant-Complement Strategy

e Given is the following two-relation main Main Schema E,
schema, R[ABXR[BC]
e The view schema Wy to be updated is R[C] C S[C]
the AB projection of R. R[ABC| agbyco S[CD] codo
a1 by c1 c1 dy
TAB
Y
R|AB]
agp b()
a bl

View Schema
Wy

3/ 22

An Example of the Constant-Complement Strategy

e Given is the following two-relation main Main Schema Ej
schema. RIABMR[BC]
e The view schema Wy to be updated is R[C] C S[C]
the AB projection of R. R[ABC] apbyco S[CD] ¢ dy
e The natural complement W consists a1 b1 e @ dh
of the BC projection of R and all of S. TAR
TBC 1
Y
R[AB] R|BC] S|C D]
agp b()
ay by

View Schema
Wy

An Example of the Constant-Complement Strategy

e Given is the following two-relation main Main Schema E,
schema, R[ABXR[BC]
e The view schema Wy to be updated is R[C] C S[C]
the AB projection of R. R[ABC| agbyco S[CD] codo
a1 by cq c1 dy

e The natural complement Wy consists

of the BC projection of R and all of S. TAR

. TBC 1
e With W, constant, the allowable up-

dat.es to the view are precisely those R[ZlB] R|BC] S[CD]\
which keep the meet R|B] constant.

ag bo bo co co do
ay by b1 1 c1 dy

J

—
View Schema Complement Schema
WO W1

An Example of the Constant-Complement Strategy

e Given is the following two-relation main Main Schema E,
schema, R[ABXR[BC]
e The view schema Wy to be updated is R[C] C S[C]
the AB projection of R. R[ABC| agbyco S[CD] codo
a1 by cq c1 dy

e The natural complement Wy consists

of the BC projection of R and all of S. TAR
TBC 1

e With W, constant, the allowable up-

dates to the view are precisely those R[ZlB] RIBC] S[CD]\
which keep the meet R|B] constant.
_ ao bo bo co co do
e In particular: a1 by b1 c1 c1 dq
: : — J
e Deletion of (ay,b1) is not allowed. View Schema Complement Schema
Wy W,

e Insertion of (a2, bs) is not allowed.

An Example of the Constant-Complement Strategy

Given is the following two-relation main Main Schema Ej
schema. R[ABJXR[BC]
The view schema W to be updated is R[C] C S[C]
the AB projection of R. R[ABC| agbyco S[CD] codo
The natural complement W consists il B @ dh
of the BC projection of R and all of S. TAR
TBC 1
With W constant, the allowable up-

dat.es to the view are precisely those R[ZlB] R|BC] S[CD]\
which keep the meet R|B] constant.

_ ao bo bo co co do
In particular: aq by by ¢ ¢ dy
. . — ~
e Deletion of (ay,b1) is not allowed. View Schema Complement Schema
e Insertion of (a2, bs) is not allowed. Wo Wi

On the other hand, conceptually, constant-complement view update avoids all
update anomalies.

Characterization of Admissible View Updates under Constant Complement

e The critical features of constant com- Main schema
plement update reflections: reversibil-

ity, transitivity, and reflection of up-
dates.

View schema

4/ 22

Characterization of Admissible View Updates under Constant Complement

e The critical features of constant com-
plement update reflections: reversibil-

ity, transitivity, and reflection of up-
dates.

e Examples of non-admissibility:

e Deletion of (aji,b;) violates re-
versibility.

Main Schema E

R[AB|XR[BC]
R[C] C S[C]
R[ABC] agp bo Co S[CD] Co do
aq bl C1 C1 dl
TAB R~ 1
\ 2
R|AB] R|BC] S|CD]
ap bo bo co co do
ai bl bl Cq C1 dl
J
View Schema Complement Schema
WO W1

Characterization of Admissible View Updates under Constant Complement

e The critical features of constant com- Main Schema Eg
plement update reflections: reversibil- R[AB|XR[BC]
ity, transitivity, and reflection of up- R[C] C S[C]
dates. R[ABC] ag by co S[CD] co do
e Examples of non-admissibility: ar+bre1 c1 dy
° Dele.ti.o.n of (a1,by) violates re- TAB TBC 1
versibility.
\ ™
R|AB] R|BC] S|C D]
ag bo bo co co do
as-by b1 c1 c1 dq
y
View Schema Complement Schema

WO W1

Characterization of Admissible View Updates under Constant Complement

e The critical features of constant com-
plement update reflections: reversibil-

ity, transitivity, and reflection of up-
dates.

e Examples of non-admissibility:

e Deletion of (aji,b;) violates re-
versibility.

Main Schema E

R[AB|XR[BC]
R[C] C S[C]
R[ABC] agp bo Co S[CD] Co do
aq bl 7 C1 dl
TAB R~ 1
\ 2
R|AB] R|BC] S|CD]
ap bo bo co co do
ai bl bl Cq C1 dl
J
View Schema Complement Schema
WO W1

Characterization of Admissible View Updates under Constant Complement

e The critical features of constant com-
plement update reflections: reversibil-
ity, transitivity, and reflection of up-
dates.

e Examples of non-admissibility:

e Deletion of (aji,b;) violates re-
versibility.
e Insertion of (ag, b2) must match its

subsequent deletion, which fails for
the reason above.

Main Schema Ej

R[AB|XR[BC]
R|C] C S|C]
R[ABC] agp bo Co S[CD] Co do
aq bl C1 C1 dl
TAB R~ 1
\ 2
R[AB] R[BC] S[CD]
ap bo bo co co do
ai bl bl Cq C1 dl

J

—
View Schema Complement Schema
W4

Wy

Characterization of Admissible View Updates under Constant Complement

e The critical features of constant com-
plement update reflections: reversibil-
ity, transitivity, and reflection of up-
dates.

e Examples of non-admissibility:

e Deletion of (aji,b;) violates re-
versibility.
e Insertion of (ag, b2) must match its

subsequent deletion, which fails for
the reason above.

e Examples which satisfy reversibility
but violate transitivity exist as well,
but are more complex.

Main Schema E

R[AB|XR[BC]
R[C] C S[C]
R[ABC] agp bo Co S[CD] Co do
aq bl C1 C1 dl
TAB R~ 1
\ 2
R[AB] R[BC] S[CD]
ap bo bo co co do
ai bl bl Cq C1 dl
J

View Schema
Wy

Complement Schema

W,

Characterization of Admissible View Updates under Constant Complement

e The critical features of constant com- Main Schema Eg
plement update reflections: reversibil- R[AB|XR[BC]
ity, transitivity, and reflection of up- R[C] C S[C]
dates. R[ABC] agboco S[CD)] co do
e Examples of non-admissibility: ai by ¢ c1 dy
o Dele.ti.o.n of (a1,by) violates re- TAB TBO 1
versibility.
e Insertion of (ag, b2) must match its R[ZlB] R[BC S[C’D]\
subsequent deletion, which fails for b b
) b ap Og 0 Co co do
the reason above. a1 by b1 1 i dy
e Examples which satisfy reversibility y
but violate transitivity exist as well, View Schema Complement Schema
WO Wl

but are more complex.

e Bottom line: The price of avoiding update anomalies completely is very high.

Extending the Constant-Complement Strategy

e There are two principal approaches to extending the constant-complement
strategy:

5/ 22

Extending the Constant-Complement Strategy

e There are two principal approaches to extending the constant-complement
strategy:

e | imited scope: automated decision or decision by one user:

5/ 22

Extending the Constant-Complement Strategy

e There are two principal approaches to extending the constant-complement
strategy:

e | imited scope: automated decision or decision by one user:

e Ranked preference of reflections to the main schema, usually based upon
minimization of change.

5/ 22

Extending the Constant-Complement Strategy

e There are two principal approaches to extending the constant-complement
strategy:

e | imited scope: automated decision or decision by one user:

e Ranked preference of reflections to the main schema, usually based upon
minimization of change.

e Broad scope: decision via the cooperation of many users.
[Hegner & Schmidt, ADBIS 2007]

e The complement is updated in a negotiation with other users.
e The complement may in fact be represented as an interconnection of
smaller views — database components.

5/ 22

Extending the Constant-Complement Strategy

e There are two principal approaches to extending the constant-complement
strategy:

e | imited scope: automated decision or decision by one user:

e Ranked preference of reflections to the main schema, usually based upon
minimization of change.

e Broad scope: decision via the cooperation of many users.
[Hegner & Schmidt, ADBIS 2007]

e The complement is updated in a negotiation with other users.
e The complement may in fact be represented as an interconnection of
smaller views — database components.

e In this work, the limited scope approach, via minimization of change is
iInvestigated.

5/ 22

The Idea of Minimal Change

e Consider the update Insert(R(az, b2)) into W, Main Schema Ej
R[AB|XR[BC]
R[C] C S[C]
R[ABC] S[CD]
ap bo co co do
TAR ai bl C1 C1 dl
Y
R[AB]
agp b()
ai bl

View Schema
Wy

6 /22

The Idea of Minimal Change

e Consider the update Insert(R(az, b2)) into W, Main Schema Ej
e The following alternatives for the reflection are all R[ABXR[BC]
tuple minimal — no proper subset is a solution. R[C] C 5[C]
e Insert{R(as, by, c2),S(co,ds)) R[ABC]| S[CD]
e Insert(R(as,bs,c3),S(c3,ds)) ao bo co co do
o Insert(R(ag,ba,c2), S(ca,dy)) mapg | @b e c1 d
o Insert(R(ag, ba, C())>
RIAB]
ag bo
a1 by
as bo

View Schema
Wy

6 /22

The Idea of Minimal Change

e Consider the update Insert(R(az, b2)) into W, Main Schema Ej
e The following alternatives for the reflection are all R[ABIXR[BC]
tuple minimal — no proper subset is a solution. R[C] C S|C]

° Insert(R(aQ, ba, CQ) S(CQ, d2)> R[ABC] S[CD]
° Insert(R(ag, ba, Cg) (Cg, d3)> ag bg co co dp
® Insert(R(a ba, CQ), (CQ, d1)> TAB ay by 1 €1 01
O Insert(R(ag, ba, C())>

e The following alternative is not tuple minimal. R[AB]
° |nsert<R(a2, ba, CQ), S(CQ, dz), R(az, ba, 03), S(C?)) d3)> ZO [go

a; b;

View Schema
Wy

6 /22

The Idea of Minimal Change

e Consider the update Insert(R(az, b2)) into W, Main Schema Ej
e The following alternatives for the reflection are all R[ABXR[BC]
tuple minimal — no proper subset is a solution. R[C] C 5[C]

° Insert(R(aQ, ba, CQ) S(CQ, d2)> R[ABC] S[CD]
° Insert(R(ag, ba, Cg) (Cg, d3)> ag bg co co dp
o Insert(R(ag,ba,c2), S(ca,dy)) mapg | @b e c1 d
o Insert(R(ag, ba, C())>

e The following alternative is not tuple minimal. R[ADB|
o Insert(R(ag, ba, CQ), S(CQ, dg), R(ag, ba, 63), S(Cg, d3)> ZO [[ZO

e Most existing approaches work only with ground a; b;

atoms, and so do not provide a formal preference

ranking on minimal alternatives. View Schema

Wy

6 /22

The Idea of Minimal Change

e Consider the update Insert(R(az, b2)) into W, Main Schema Ej
e The following alternatives for the reflection are all R[ABXR[BC]
tuple minimal — no proper subset is a solution. R[C] C 5[C]

° Insert(R(aQ, ba, CQ) S(CQ, d2)> R[ABC] S[CD]
° Insert(R(ag, ba, Cg) (Cg, d3)> ag bg co co dp
o Insert(R(ag,ba,c2), S(ca,dy)) mapg | @b e c1 d
o Insert(R(ag, ba, C())>

e The following alternative is not tuple minimal. R[ADB|
o Insert(R(ag, ba, CQ), S(CQ, dg), R(ag, ba, 63), S(Cg, d3)> ZO [[ZO

e Most existing approaches work only with ground a; b;

atoms, and so do not provide a formal preference

ranking on minimal alternatives. View Schema

Wy
e Often, the selection process is left to the user.

6 /22

The Idea of Minimal Change

e Consider the update Insert(R(az, b2)) into W, Main Schema Ej
e The following alternatives for the reflection are all R[ABXR[BC]
tuple minimal — no proper subset is a solution. R[C] C 5[C]

° Insert(R(aQ, ba, CQ) S(CQ, d2)> R[ABC] S[CD]
° Insert(R(ag, ba, Cg) (Cg, d3)> ag bg co co dp
o Insert(R(ag,ba,c2), S(ca,dy)) mapg | @b e c1 d
o Insert(R(ag, ba, C())>

e The following alternative is not tuple minimal. R[ADB|
o Insert(R(ag, ba, CQ), S(CQ, dg), R(ag, ba, 63), S(Cg, d3)> ZO [[ZO

e Most existing approaches work only with ground a; b;

atoms, and so do not provide a formal preference

ranking on minimal alternatives. View Schema

Wy
e Often, the selection process is left to the user.
Question: s there a reasonable way to measure the quality of tuple-minimal
alternatives?

6 /22

The Information Content of a Database State

Idea: Exploit the first-order properties of the model, rather than just counting the
number of tuples which are changed.

7 /22

The Information Content of a Database State

Idea: Exploit the first-order properties of the model, rather than just counting the
number of tuples which are changed.

e Model database states as finite sets of ground atoms. DB(D) = set of all
database states of schema D.

7 /22

The Information Content of a Database State

Idea: Exploit the first-order properties of the model, rather than just counting the
number of tuples which are changed.

e Model database states as finite sets of ground atoms. DB(D) = set of all
database states of schema D.

e WFS(D) denotes the set of all sentences in the language of the schema D.

7 /22

The Information Content of a Database State

Idea: Exploit the first-order properties of the model, rather than just counting the
number of tuples which are changed.

e Model database states as finite sets of ground atoms. DB(D) = set of all
database states of schema D.

e WFS(D) denotes the set of all sentences in the language of the schema D.
e For ® CWFS(D) and M € DB(D), the information content of M relative to :

Info(M,®) ={p e ®| M = ¢}

7 /22

The Information Content of a Database State

Idea: Exploit the first-order properties of the model, rather than just counting the
number of tuples which are changed.

e Model database states as finite sets of ground atoms. DB(D) = set of all
database states of schema D.

e WFS(D) denotes the set of all sentences in the language of the schema D.
e For ® CWFS(D) and M € DB(D), the information content of M relative to :

Info(M,®) ={pe®| M E ¢}
e For ® = ground atoms in WFS(D), Info(M,®) = M.

7 /22

The Information Content of a Database State

Idea: Exploit the first-order properties of the model, rather than just counting the
number of tuples which are changed.

e Model database states as finite sets of ground atoms. DB(D) = set of all
database states of schema D.

e WFS(D) denotes the set of all sentences in the language of the schema D.

e For ® CWFS(D) and M € DB(D), the information content of M relative to :
Info(M, @) ={p € ® | M E ¢}

e For ® = ground atoms in WFS(D), Info(M,®) = M.

e For finer measure of information content, a larger subset of WFS(D) is used.

7 /22

The Information Content of a Database State

Idea: Exploit the first-order properties of the model, rather than just counting the
number of tuples which are changed.

e Model database states as finite sets of ground atoms. DB(D) = set of all
database states of schema D.

e WFS(D) denotes the set of all sentences in the language of the schema D.
e For ® CWFS(D) and M € DB(D), the information content of M relative to :

Info(M,®) ={pe®| M E ¢}
e For ® = ground atoms in WFS(D), Info(M,®) = M.

e For finer measure of information content, a larger subset of WFS(D) is used.

e The general idea is to regard optimal reflections as those which minimize the
change of information content, rather than just the number of tuples which are
changed.

7 /22

The Information Content of a Database State

Idea: Exploit the first-order properties of the model, rather than just counting the
number of tuples which are changed.

e Model database states as finite sets of ground atoms. DB(D) = set of all
database states of schema D.

e WFS(D) denotes the set of all sentences in the language of the schema D.
e For ® CWFS(D) and M € DB(D), the information content of M relative to :

Info(M,®) ={pe®| M E ¢}
e For ® = ground atoms in WFS(D), Info(M,®) = M.

e For finer measure of information content, a larger subset of WFS(D) is used.

e The general idea is to regard optimal reflections as those which minimize the
change of information content, rather than just the number of tuples which are
changed.

e To make this concept useful, some further properties are necessary.

7 /22

Monotonicity of an Information Measure

e In general, inserting a new tuple into a database can result in formulas being
removed from the information content.

8 /22

Monotonicity of an Information Measure

e In general, inserting a new tuple into a database can result in formulas being
removed from the information content.

o Example: Let & = WFS(E).

M = {S(co,do)} implies (Vx)(S(z,y) = (x = cp)) € Info(M, D).
M' = {S(cy,dy),S(c1,d1)} implies (Vz)(S(z,y) = (x = cp)) & Info(M, ®).

8 /22

Monotonicity of an Information Measure

e In general, inserting a new tuple into a database can result in formulas being
removed from the information content.

o Example: Let & = WFS(E).

M = {S(co,do)} implies (Vx)(S(z,y) = (x = cp)) € Info(M, D).
M' = {S(cy,dy),S(c1,d1)} implies (Vz)(S(z,y) = (x = cp)) & Info(M, ®).

e Call ® information monotone if:

My C My = Info<M1, (I)> C |ch<M2,(I)>

8 /22

Monotonicity of an Information Measure

e In general, inserting a new tuple into a database can result in formulas being
removed from the information content.

o Example: Let & = WFS(E).

M = {S(co,do)} implies (Vx)(S(z,y) = (x = cp)) € Info(M, D).
M' = {S(cy,dy),S(c1,d1)} implies (Vz)(S(z,y) = (x = cp)) & Info(M, ®).

e Call ® information monotone if:

My C My = Info<M1, (I)> C |ch<M2,(I)>

e If ® consists of positive formulas (no negation) and existential (no V) sentences,
then it is automatically information monotone.

8 /22

Monotonicity of an Information Measure

e In general, inserting a new tuple into a database can result in formulas being
removed from the information content.

o Example: Let & = WFS(E).

M = {S(co,do)} implies (Vx)(S(z,y) = (x = cp)) € Info(M, D).
M' = {S(cy,dy),S(c1,d1)} implies (Vz)(S(z,y) = (x = cp)) & Info(M, ®).

e Call ® information monotone if:

My C My = Info<M1, (I)> C |ch<M2,(I)>

e If ® consists of positive formulas (no negation) and existential (no V) sentences,
then it is automatically information monotone.

e O will always be chosen to be information monotone.

8 /22

Monotonicity of an Information Measure

e In general, inserting a new tuple into a database can result in formulas being
removed from the information content.

o Example: Let & = WFS(E).

M = {S(co,do)} implies (Vx)(S(z,y) = (x = cp)) € Info(M, D).
M' = {S(cy,dy),S(c1,d1)} implies (Vz)(S(z,y) = (x = cp)) & Info(M, ®).

e Call ® information monotone if:

My C My = Info<M1, (I)> C |ch<M2,(I)>

e If ® consists of positive formulas (no negation) and existential (no V) sentences,
then it is automatically information monotone.

e O will always be chosen to be information monotone.

e In most cases, it will be chosen to be a subset of WFS(D, dA+), the set of all
existential positive conjunctive sentences in the language of the schema D.

8 /22

Update Difference and Optimal Reflections

e An update is modelled formally as a pair of states
(M1, Ms) = (current state, next state).

9 /22

Update Difference and Optimal Reflections

e An update is modelled formally as a pair of states
(M7, M3) = (current state, next state).

e The update difference (w.r.t. ®) for an update (M7, M>) is the change of
information associated with that update.

9 /22

Update Difference and Optimal Reflections

e An update is modelled formally as a pair of states
(M7, M3) = (current state, next state).

e The update difference (w.r.t. ®) for an update (M7, M>) is the change of
information associated with that update.

e The positive, negative, and total information differences for (M1, Ms) w.r.t. ® are
defined as follows:

A+<(M17 M2)7 (I)>
A™((My, M3), @)
A<(M17 M2)7 (I)>

nfO<M2, (I)> \ |nfo<M1, (I)>
nfO<M1, (I)> \ |nfo<M2, (I)>
AT((My, My), ®) U A~ (M, Ms), ®)

9 /22

Update Difference and Optimal Reflections

e An update is modelled formally as a pair of states
(M7, M3) = (current state, next state).

e The update difference (w.r.t. ®) for an update (M7, M>) is the change of
information associated with that update.

e The positive, negative, and total information differences for (M1, Ms) w.r.t. ® are
defined as follows:

A+<(M17 M2)7 (I)>
A™((My, M3), @)
A<(M17 M2)7 (I)>

e Observe that if ® = WFS(D, Atoms), then the update difference reduces to the
set of changes (tuples inserted or deleted) by the update.

fO<M2, (I)> \ |nfo<M1, (I)>
fO<M1, (I)> \ |nfo<M2, (I)>
AT((My, My), ®) U A~ (M, Ms), ®)

In
In

9 /22

Update Difference and Optimal Reflections

An update is modelled formally as a pair of states
(M7, M3) = (current state, next state).

The update difference (w.r.t. ®) for an update (M7, M>) is the change of
information associated with that update.

The positive, negative, and total information differences for (M7, M3) w.r.t. ® are
defined as follows:

AT (M, M), ®) = Info(Ms, @) \ Info(M;, ®)
A_<(M1, MQ), (I)> nfO<M1, (I)> \ |nfo<M2, (I)>
A<(M1, Mg), (I)> — A+<(M1, Mg), (I)> U A_<(M1, Mg), (I)>

Observe that if ® = WFS(D, Atoms), then the update difference reduces to the
set of changes (tuples inserted or deleted) by the update.

An optimal reflection of a view update is a tuple-minimal reflection to the main
schema for which the update difference is least.

9 /22

The Choice of Information Measure

e The key idea is to render @ indifferent to the names of new constants which are
inserted.

10 / 22

The Choice of Information Measure

e The key idea is to render @ indifferent to the names of new constants which are
inserted.

e Setting: Main schema = D, View = (V,7: D — V).

o Let:
e)V, = the initial state of the main schema.

e (v(M;y),N3) the desired update to the view.

10 / 22

The Choice of Information Measure

e The key idea is to render @ indifferent to the names of new constants which are
inserted.

e Setting: Main schema = D, View = (V,7: D — V).

o Let:
e)V, = the initial state of the main schema.

e (v(M;y),N3) the desired update to the view.

e Define ConstSym(M; U~(M;) U No) to be the set of all constant symbols which
occur in these databases.

10 / 22

The Choice of Information Measure

e The key idea is to render @ indifferent to the names of new constants which are
inserted.

e Setting: Main schema = D, View = (V,7: D — V).

o Let:
e)V, = the initial state of the main schema.

e (v(M;y),N3) the desired update to the view.

e Define ConstSym(M; U~(M;) U No) to be the set of all constant symbols which
occur in these databases.

e For the information measure, choose:
¢ = WFS(D, 3A+, ConstSym(M; U~ (M;) U Na)),

the positive conjunctive sentences in the language of the main schema D which
involve only those constant symbols which occur in at least one of the three
databases.

10 / 22

The Choice of Information Measure

e The key idea is to render @ indifferent to the names of new constants which are
inserted.

e Setting: Main schema = D, View = (V,7: D — V).

o Let:
e)V, = the initial state of the main schema.

e (v(M;y),N3) the desired update to the view.

e Define ConstSym(M; U~(M;) U No) to be the set of all constant symbols which
occur in these databases.

e For the information measure, choose:
¢ = WFS(D, 3A+, ConstSym(M; U~ (M;) U Na)),

the positive conjunctive sentences in the language of the main schema D which
involve only those constant symbols which occur in at least one of the three
databases.

e Such formulas are indifferent to the identities of new constants which are inserted.

10 / 22

Examples of Measures for Information Content

e In the example to the left, if the initial state of Eg is Main Schema Eg

denoted My , then: R[AB]XR[BC]|

R[C] C 5[C]
R[ABC] S[CD]

ag bo co co do
a by 1 c1 dy

ConStSym(MOO) — {a07 ai, b07 b17 Co, C1, dOa dl}

TAB

RIAD]

ag bo
aj by

View Schema
Wy

11 / 22

Examples of Measures for Information Content

e In the example to the left, if the initial state of Eg is Main Schema Eq
denoted My , then: RIABIRIBC]
ConstSym(Myy) = { bo. b do, d1 } R[C] C S|C]
onstSym = {agp, a1, by, b1, cg, c1, dp,
y 00 0, a1, 00, 01, Co, C1, o, A1 R[ABC] S[CD]
e For the view update
agp bo Co Co do
a1 by ¢ c1 d
Insert({ R(az, b2)}) = TAB 1 01 1 1 di
({(CLO, bO)? (a’la bl)}a {(a’07 b0)7 (al, b1)7 (CLQ, b2) } R EB
the set of constants which are allowed in the sen- AB]
tences defining the information of the new state of do ZO
EO IS: ai 91
a- bg

ConstSym(Moo) U {ag, bg}

View Schema
Wy

11 / 22

Examples of Information Measure

e Consider again the view update Insert(R(as2,bs)). Main Schema Eg
R[AB|XR[BC]
R[C] C S[C]
R[ABC] S[CD]
aop by co co do
TAR ai bl C1 C1 dl
Y
R[AB]
ao bo
aq bl
a- bg

View Schema
Wy

12 / 22

Examples of Information Measure

e Consider again the view update Insert(R(as2,bs)). Main Schema E,
e Consider the reflection R[AB|XR[BC]
Insert<R(a2, ba, 62), S(CQ, d2)> to Ey. R|C] C 5|C]
R[ABC] S[CD]
agp bo Co Co do
aq bl C1 C1 dl
nAB as bg Co C9 d2
Y
R[AB]
ao bo
a1 by
a- bg

View Schema
Wy

12 / 22

Examples of Information Measure

e Consider again the view update Insert(R(as2,bs)). Main Schema E,
e Consider the reflection R[AB]XR[BC]
Insert(R(as, b, c2), S(co, ds)) to Ey. R[C] € S[C]
e A basis for the information content is R|ABC] S|CD]
ag bo co co do
Moo U{(Fz)(Ty)(R(az, ba, z)AS(x,y))} g | @ba c1 dq
as bg Co C9 Clg
Y
R[AB]
ao bo
aq bl
a- bg

View Schema
Wy

12 / 22

Examples of Information Measure

e Consider again the view update Insert(R(as2,bs)). Main Schema E,
e Consider the reflection R[AB]XR[BC]
Insert(R(as, b, c2), S(co, ds)) to Ey. R[C] € S[C]
e A basis for the information content is R|ABC] S|CD]
ao bo Co Co do
Moo U{(Fz)(Ty)(R(az, ba, z)AS(x,y))} g | @ba c1 dq
as bg C3 C3 Clg
e The reflection Insert(R(az, b2, c3), S(c3,ds3)) has the Y
same basis. R[AB|
ap bo
a by
a- bg

View Schema
Wy

12 / 22

Examples of Information Measure

e Consider again the view update Insert(R(as2,bs)). Main Schema Eg
e Consider the reflection R[AB]XR[BC]
Insert(R(as, b, c2), S(co, ds)) to Ey. R[C] € S[C]
e A basis for the information content is R|ABC] S|CD]
ao bo Co Co do
Moo U{(Fz)(Ty)(R(az, ba, z)AS(x,y))} g | @ba c1 dq
as bg C3 C3 Clg
e The reflection Insert(R(az, b2, c3), S(c3,ds3)) has the Y
same basis. R[AB]
e These two reflections are equivalent with respect to ZO ZO
1 01
WFS(E07 EI/\—|_7 {CLO, ai, az, bOa bla b27 o, C1, d07 dl})7 a2 b2

but not with respect to WFS(Eq, IA+). View Schema

Wy

12 / 22

Examples of Information Measure — Part 2

e Now consider the reflection Main Schema Ej
Insert(R(az, b2, ¢2), S(c2,d1)) to Eo. R[ABXR[BC]
R[C] C 5|C]
R[ABC]| S|CD]
ag b co co do
ai bl Cq C1 dl
TAB as bg Co C9 d1
Y

R[AB]

ao bo

aq bl

a- bg

View Schema
Wy

13 / 22

Examples of Information Measure — Part 2

e Now consider the reflection Main Schema Ej
Insert<R(a2, bg, 62), S(CQ, d1)> to Eo. R[AB]NR[BC]
e A basis for the information content is R|C] C S|C]
R[ABC]| S|CD]
MOO U {(HI)(R(G’% b27 QZ')/\S(CC, dl))} ag bO Co co dO
ai bl Cq C1 dl
TAB as bg Co C9 d1
Y
R[AB]
ao bo
aq bl
a- bg

View Schema
Wy

13 / 22

Examples of Information Measure — Part 2

e Now consider the reflection Main Schema E
Insert(R(aso, ba, c2), S(c2,dy)) to Eyp. RIABIXR[BC]
e A basis for the information content is R[C] C S[C]
R[ABC] S|CD]
Moo U {(356) (R(ag, ba, CC)/\S(CI}, dl))} ao b co o @y
e This reflection is not optimal, since g | @hra c1 dy
as by co Cco dy
Moo U {(Elﬂf)(R(CLQ, ba, CC)/\S(CC, dg))} R[ZIB]
= Moo U {(3z)(Jy)(R(az, b2, z)rS(z,y))} w0 b
but not conversely. ay b
as bo

View Schema
Wy

13 / 22

Examples of Information Measure — Part 2

e Now consider the reflection Main Schema E,
|nsert<R(a2,b2762),S(027d1)> to EO R[AB]NR[BC]
e A basis for the information content is R[C] C S[C]
R|ABC] S|CD]
Moo U {(356) (R(ag, ba, CC)/\S(CI}, dl))} a0 bo co co do
e This reflection is not optimal, since mag | & b1 1 c1 dy
as bg Co C9 Cll
Moo U {(Elﬂf)(R(CLQ, ba, CC)/\S(CC, dg))} R[Z}B]
= Moo U {(3z)(Jy)(R(az, b2, z)rS(z,y))} ,
ag bo
but not conversely. ay by
a- bg
e Inserting S(ca,d;) adds strictly more information
than inserting S(c2, d2). View Schema
Wy

13 / 22

Examples of Information Measure — Part 2

e Now consider the reflection Main Schema E,
|nsert<R(a2,b2762),S(027d1)> to EO R[AB]NR[BC]
e A basis for the information content is R[C] C S[C]
R|ABC] S|CD]
Moo U {(356) (R(ag, ba, CC)/\S(CI}, dl))} a0 bo co co do
e This reflection is not optimal, since mag | & b1 1 c1 dy
as bg Co C9 Cll
Moo U {(Elﬂf)(R(CLQ, ba, CC)/\S(CC, dg))} R[Z}B]
= Moo U {(3z)(Jy)(R(az, b2, z)rS(z,y))} ,
ag bo
but not conversely. ay by
a- bg
e Inserting S(ca,d;) adds strictly more information
than inserting S(c2, d2). View Schema
Wy

e Note that this distinction is not possible with sim-
ple minimization of the number of atoms which are
changed.

13 / 22

Examples of Information Measure — Part 3

e Finally, consider the reflection Main Schema Eg
Insert<R(a2, bg, C()), S(Co, d0)> to Eo. R[AB]NR[BC]
R[C] C S[C]
R[ABC] S[CD]
agp bo Co Co do
TAR aq bl C1 C1 dl
as bg Co
Y

R[AB]

ap by

aq bl

a- bg

View Schema
Wy

14 / 22

Examples of Information Measure — Part 3

e Finally, consider the reflection Main Schema Eg
Insert<R(a2, bg, C()), S(Co, d0)> to Eo. R[AB]NR[BC]
e A basis for the information content is R|C] C S|C]
Iy ; R[ABC]| S|CD]
00 U {R(az,b2,c0)} a0 by Co co do
TAR aq bl C1 C1 dl
as bg Co
Y
R[AB]
ao bo
aq bl
a- bg

View Schema
Wy

14 / 22

Examples of Information Measure — Part 3

e Finally, consider the reflection Main Schema Eg
Insert(R(az, bz, o), S(co, dp)) to Eop. RIABJNR[BC]
e A basis for the information content is R[C] C 5[C]
R[ABC] S[CD]
Moo U { R(az, b2, co)} a0 b co co do
e This reflection is not optimal, since mag | “@ b1 1 c1 di
as bg Co
Moo U {R(az,b2,c0)} = Y
00 U { R(az, b2, co)} RIABI
Moo U {(3z)(Jy)(R(az, b2, 2)AS(z,y))} n
ag bo
but not conversely. ay b
a- bg

View Schema
Wy

14 / 22

Examples of Information Measure — Part 3

e Finally, consider the reflection Main Schema Eg
Insert(R(az, bz, o), S(co, dp)) to Eop. RIABJNR[BC]
e A basis for the information content is R[C] C 5[C]
Iy ; R[ABC] S[CD]
00 U {R(az,b2,co)} a0 by ¢ co do
e This reflection is not optimal, since mag | “@ b1 1 c1 di
as bg Co
Moo U {R(az,b2,¢0)} = \/
(R(az,bs, o)} e
Moo U {(Fz)(Jy) (R(az, by, x)AS(x,y))} n
ag bo
but not conversely. ay b
a- bg

e Note that this choice is suboptimal with respect to
information measure even though it inserts fewer tu- View Schema
ples than the optimal solution. Wo

14 / 22

Endomorphisms of Constants and the Associated DB Mapping

e Note that all of the other reflections may be realized Main Schema Eg
as endomorphic images of the first. R[ABIMR[BC]
R|C] C S[C]
Insert(R(az, bz, c2), S(c2,d2)) R|ABC] S|CD]
C3/Co, dg dQ
/ — / Insert<R(a2, bQ, 63), 5(027 d3)> ZO ZO 20 20 ZO
1 01 ¢ 1 dq
TAB | s by b G o
C3 C3 d3
Y
R[AB]
ao bo
aq bl
a- bg

View Schema
Wy

15 / 22

Endomorphisms of Constants and the Associated DB Mapping

e Note that all of the other reflections may be realized Main Schema Ej
as endomorphic images of the first. R[ABJXR[BC]
R|C] C S[C]
R|ABC] S|CD]
ag bo co co do
a1 by cq c1 dy
Insert(R(ag, bg, CQ), S(CQ, d2)> nAB az by co C2 Cl/Q
do/d2 Y -
— Insert(R(az, b2, c2), S(ca, do)) R[AB]
ao bo
aq bl
a- bg

View Schema
Wy

15 / 22

Endomorphisms of Constants and the Associated DB Mapping

e Note that all of the other reflections may be realized Main Schema Ej
as endomorphic images of the first. R[ABJXR[BC]
R|C] C S[C]
R|ABC] S|CD]
aop by co co do
a1 b1 c1 c1 dq
B wbgh b
Co Co do
Y
R[AB]
Insert<R(a2, bs, CQ), S(CQ, d2)> ap by
b
Co/C2,do/do o
/ — / Insert<R(a2, ba, C())> az by

View Schema
Wy

15 / 22

Endomorphisms of Constants and the Associated DB Mapping

e Note that all of the other reflections may be realized Main Schema Ej
as endomorphic images of the first. R[ABIMR[BC]
R[C] C S[C]
Insert(R(az, b2, c2), S(c2,d2)) R|ABC] S|CD]
c3/c2,d3z/do
/ — / Insert(R2(as, b, c3), S(c2,d3)) ZO ZO 20 EO ZO
1 V1l €] 1 W]
TAB | s by b G o
C3 C3 d3
Y
R[AB]
ao bo
aq bl
a- bg

View Schema
e Note also that the first endomorphism may be re- Wy

versed, but the others may not.

15 / 22

Endomorphisms of Constants and the Associated DB Mapping

e There is a natural algebraic structure on the collection of reflections of a given
view update.

16 / 22

Endomorphisms of Constants and the Associated DB Mapping

e There is a natural algebraic structure on the collection of reflections of a given
view update.

e Let Const(D) denote the set of all constants which can occur in the main schema
and the views.

16 / 22

Endomorphisms of Constants and the Associated DB Mapping

e There is a natural algebraic structure on the collection of reflections of a given
view update.

e Let Const(D) denote the set of all constants which can occur in the main schema
and the views.

e A constant endomorphism is a function h : Const(D) — Const(D) (subject to
certain typing constraints which will not be elaborated here).

e Such mappings are also called homomorphisms.

16 / 22

Endomorphisms of Constants and the Associated DB Mapping

e There is a natural algebraic structure on the collection of reflections of a given
view update.

e Let Const(D) denote the set of all constants which can occur in the main schema
and the views.

e A constant endomorphism is a function h : Const(D) — Const(D) (subject to
certain typing constraints which will not be elaborated here).

e Such mappings are also called homomorphisms.

e Such an endomorphism induces a mapping of tuples via
(a1,a2,...,a,) — (h(ar),h(a2),...,h(ay)).

16 / 22

Endomorphisms of Constants and the Associated DB Mapping

e There is a natural algebraic structure on the collection of reflections of a given
view update.

e Let Const(D) denote the set of all constants which can occur in the main schema
and the views.

e A constant endomorphism is a function h : Const(D) — Const(D) (subject to
certain typing constraints which will not be elaborated here).

e Such mappings are also called homomorphisms.

e Such an endomorphism induces a mapping of tuples via
(a1,a2,...,a,) — (h(ar),h(a2),...,h(ay)).
e This, in turn, induces a mapping of databases via M — {h(t) |t € M}.

16 / 22

Endomorphisms of Constants and the Associated DB Mapping

e There is a natural algebraic structure on the collection of reflections of a given
view update.

e Let Const(D) denote the set of all constants which can occur in the main schema
and the views.

e A constant endomorphism is a function h : Const(D) — Const(D) (subject to
certain typing constraints which will not be elaborated here).

e Such mappings are also called homomorphisms.

e Such an endomorphism induces a mapping of tuples via
(a1,a2,...,a,) — (h(ar),h(a2),...,h(ay)).
e This, in turn, induces a mapping of databases via M — {h(t) |t € M}.

e For A C Const(D), call h A-invariant if h(a) = a for all a € A.

16 / 22

Endomorphisms of Constants and the Associated DB Mapping

e There is a natural algebraic structure on the collection of reflections of a given
view update.

e Let Const(D) denote the set of all constants which can occur in the main schema
and the views.

e A constant endomorphism is a function h : Const(D) — Const(D) (subject to
certain typing constraints which will not be elaborated here).

e Such mappings are also called homomorphisms.

e Such an endomorphism induces a mapping of tuples via

(a1,a2,...,a,) — (h(ar),h(a2),...,h(ay)).
e This, in turn, induces a mapping of databases via M +— {h(t) |t € M }.
e For A C Const(D), call h A-invariant if h(a) = a for all a € A.

e For A C Const(D), call h at most A-variant if it is (Const(D) \ A)-invariant.

16 / 22

Algebraic Representation of Optimal Insertions

Context: D = relational schema (V,v:D — V) =aview of D
M, € DB(D) (v(M7), N2) = an insertion on V.

Y.

Algebraic Representation of Optimal Insertions

Context: D = relational schema (V,v:D — V) =aview of D
M, € DB(D) (v(M7), N2) = an insertion on V.

Theorem: Let My € DB(D). Then (M, M) is an optimal reflection of (v(N7), N2)

iff for every minimal reflection (v(N1), M}), there is a unique invariant
endomorphism h and with h(Ms) = MJ and which is at most
(ConstSym(M) \ ConstSym(Ms))-variant. O

Y.

Algebraic Representation of Optimal Insertions

Context: D = relational schema (V,v:D — V) =aview of D
M, € DB(D) (v(M7), N2) = an insertion on V.

Theorem: Let My € DB(D). Then (M, M) is an optimal reflection of (v(N7), N2)

iff for every minimal reflection (v(N1), M}), there is a unique invariant
endomorphism h and with h(Ms) = MJ and which is at most
(ConstSym(M) \ ConstSym(Ms))-variant. O

e An optimal reflection is initial amongst all minimal reflections.

Y.

Algebraic Representation of Optimal Insertions

Context: D = relational schema (V,v:D — V) =aview of D
M, € DB(D) (v(M7), N2) = an insertion on V.

Theorem: Let My € DB(D). Then (M, M) is an optimal reflection of (v(N7), N2)

iff for every minimal reflection (v(N1), M}), there is a unique invariant
endomorphism h and with h(Ms) = MJ and which is at most
(ConstSym(M) \ ConstSym(Ms))-variant. O

e An optimal reflection is initial amongst all minimal reflections.

Corollary Any two optimal insertions are isomorphic up to renaming of the newly
introduced constant symbols. O

Y.

Existence of Optimal Insertions

e Question: Under what conditions are optimal insertions guaranteed to exist?

18 / 22

Existence of Optimal Insertions

e Question: Under what conditions are optimal insertions guaranteed to exist?

e An XEID (extended embedded implicational dependency) [Fagin82 JACM] is one
of the following form:

(Va1)(Va2) ... (Vo) ((AinAoa ... AAR) = (Fy1)(Ty2) ... (Fyr)(BiaBaa ... ABy))

18 / 22

Existence of Optimal Insertions

e Question: Under what conditions are optimal insertions guaranteed to exist?

e An XEID (extended embedded implicational dependency) [Fagin82 JACM] is one
of the following form:

(Va1)(Va2) ... (Vo) ((AinAoa ... AAR) = (Fy1)(Ty2) ... (Fyr)(BiaBaa ... ABy))

e Each A; is a relational atom.

18 / 22

Existence of Optimal Insertions

e Question: Under what conditions are optimal insertions guaranteed to exist?

e An XEID (extended embedded implicational dependency) [Fagin82 JACM] is one
of the following form:

(Va1)(Va2) ... (Vo) ((AinAoa ... AAR) = (Fy1)(Ty2) ... (Fyr)(BiaBaa ... ABy))

e Each A; is a relational atom.

e Each B; is a relational atom or an equality.

18 / 22

Existence of Optimal Insertions

e Question: Under what conditions are optimal insertions guaranteed to exist?

e An XEID (extended embedded implicational dependency) [Fagin82 JACM] is one
of the following form:

(Va1)(Va2) ... (Vo) ((AinAoa ... AAR) = (Fy1)(Ty2) ... (Fyr)(BiaBaa ... ABy))

e Each A; is a relational atom.
e Each B; is a relational atom or an equality.
e The left-hand side it typed.

18 / 22

Existence of Optimal Insertions

e Question: Under what conditions are optimal insertions guaranteed to exist?
e An XEID (extended embedded implicational dependency) [Fagin82 JACM] is one

of the following form:

(Va1)(Va2) ... (Vo) ((AinAoa ... AAR) = (Fy1)(Ty2) ... (Fyr)(BiaBaa ... ABy))

e Each A; is a relational atom.
e Each B; is a relational atom or an equality.

e The left-hand side it typed.

e XEIDs subsume virtually all database dependencies which have been studied.

18 / 22

Existence of Optimal Insertions

e Question: Under what conditions are optimal insertions guaranteed to exist?

e An XEID (extended embedded implicational dependency) [Fagin82 JACM] is one
of the following form:

(Va1)(Va2) ... (Vo) ((AinAoa ... AAR) = (Fy1)(Ty2) ... (Fyr)(BiaBaa ... ABy))

e Each A; is a relational atom.
e Each B; is a relational atom or an equality.
e The left-hand side it typed.

e XEIDs subsume virtually all database dependencies which have been studied.

e They enjoy a key property of faithfulness [Fagin82 JACM].

18 / 22

Existence of Optimal Insertions

Context:
D = XEID relational schema (V,v:D — V) =an SPJ view of D

M; € DB(D) (v(M7), N2) = an insertion on V.

19 / 22

Existence of Optimal Insertions

Context:
D = XEID relational schema (V,v:D — V) =an SPJ view of D

M; € DB(D) (v(M7), N2) = an insertion on V.

Theorem: In the above context, every insertion which is minimal with respect to the
information content defined by WFS(D, A+, ConstSym(M7)) is optimal. O

19 / 22

Existence of Optimal Insertions

Context:
D = XEID relational schema (V,v:D — V) =an SPJ view of D

M; € DB(D) (v(M7), N2) = an insertion on V.

Theorem: In the above context, every insertion which is minimal with respect to the
information content defined by WFS(D, A+, ConstSym(M7)) is optimal. O

Corollary: In the above context, all minimal insertions, with respect to the
information content defined by WFS(D, 3A+, ConstSym(M7)), are isomorphic up
to a renaming of the newly-introduced constant symbols. O

19 / 22

Existence of Optimal Insertions

Context:
D = XEID relational schema (V,v:D — V) =an SPJ view of D

M; € DB(D) (v(M7), N2) = an insertion on V.

Theorem: In the above context, every insertion which is minimal with respect to the
information content defined by WFS(D, A+, ConstSym(M7)) is optimal. O

Corollary: In the above context, all minimal insertions, with respect to the
information content defined by WFS(D, 3A+, ConstSym(M7)), are isomorphic up
to a renaming of the newly-introduced constant symbols. O

e Question: When do minimal insertions exist?

19 / 22

Existence of Optimal Insertions

Context:
D = XEID relational schema (V,v:D — V) =an SPJ view of D

M; € DB(D) (v(M7), N2) = an insertion on V.

Theorem: In the above context, every insertion which is minimal with respect to the
information content defined by WFS(D, A+, ConstSym(M7)) is optimal. O

Corollary: In the above context, all minimal insertions, with respect to the
information content defined by WFS(D, 3A+, ConstSym(M7)), are isomorphic up
to a renaming of the newly-introduced constant symbols. O

e Question: When do minimal insertions exist?

e Answer. Not always, the chase procedure is required to terminate.

19 / 22

Existence of Optimal Insertions

Context:
D = XEID relational schema (V,v:D — V) =an SPJ view of D

M; € DB(D) (v(M7), N2) = an insertion on V.

Theorem: In the above context, every insertion which is minimal with respect to the
information content defined by WFS(D, A+, ConstSym(M7)) is optimal. O

Corollary: In the above context, all minimal insertions, with respect to the
information content defined by WFS(D, 3A+, ConstSym(M7)), are isomorphic up
to a renaming of the newly-introduced constant symbols. O

e Question: When do minimal insertions exist?
e Answer. Not always, the chase procedure is required to terminate.

e This may be guaranteed by restricting attention to the weakly acyclic
dependencies [Fagin et al 2005].

19 / 22

Example of Non-Existence of Optimal Insertions

e The schema and initial states are shown. Main Schema E»
R[A] C S[A]
S[A] C T'[A]
TB] C S[B]
R[A] SIABl T[AB]

ag ag bo ag bo

TAB

View Schema
W,

20 / 22

Example of Non-Existence of Optimal Insertions

e The schema and initial states are shown. Main Schema Es
R[A] C S[A]
S[A] C T[A]
T(B] C 5[B]
RIAl S[ABl TI[ABI

ag ag bo ag bo

e Consider the view update Insert(R(a1)).

TAB

View Schema
Wy

20 / 22

Example of Non-Existence of Optimal Insertions

e The schema and initial states are shown. Main Schema Es

R[A] C S[A]

S[A] C T[A]

TB] C S|B]
RIAl S[ABl TI[ABI
ap ag bo ag bo
ai

e Consider the view update Insert(R(a1)).

TAB

View Schema
Wy

20 / 22

Example of Non-Existence of Optimal Insertions

e The schema and initial states are shown. Main Schema Es

R[A] C S[A]

S[A] C T[A]

TB] C S|B]
RIAl SIABl TI[ABI
agp agp bo agp b()
ai ay by

e Consider the view update Insert(R(a1)).

TAB

RIA

aop
aj

View Schema
Wy

20 / 22

Example of Non-Existence of Optimal Insertions

e The schema and initial states are shown. Main Schema Es

R[A] C S[A]

S[A] C T[A]

TB] C S|B]
RIAl SIABl TIABI
ao agp bo agp bo
ai ay by az by

e Consider the view update Insert(R(a1)).

TAB

RIA

aop
aj

View Schema
Wy

20 / 22

Example of Non-Existence of Optimal Insertions

e The schema and initial states are shown. Main Schema Es

R[A] C S[A]

S[A] C TA]

T[B] C S[B]
RIAl SIABl TI[ABI
agp ao bo aop bo
ai ai bl as b1
TAB as bo

e Consider the view update Insert(R(a1)).

RIA

aop
aj

View Schema
Wy

20 / 22

Example of Non-Existence of Optimal Insertions

e The schema and initial states are shown. Main Schema E,
e Consider the view update Insert(R(a1)). g[[ﬁ]] %ﬂjﬂ
e This process continues endlessly. T[B] C S[B]

R| Al SIABl TIAB]
ao ao bo ag bo
aq ai by az by

TAB as by as bo
Y
R[A]
ag
aq

View Schema
W,

20 / 22

Example of Non-Existence of Optimal Insertions

The schema and initial states are shown.
Consider the view update Insert(R(a1)).
This process continues endlessly.

A decision to reuse an existing value must be
made.

Main Schema E,

R[A] C S[A]
S[A] C T[A]
T[B] € S[B]
RIAl SIABI
agp ao bo
aq an bl
TAB as bo
wlh
ao
aj

View Schema
W,

TIAB]
ap bo
az by
as bo

20 / 22

Example of Non-Existence of Optimal Insertions

The schema and initial states are shown.
Consider the view update Insert(R(a1)).
This process continues endlessly.

A decision to reuse an existing value must be
made.

However, such a decision clearly leads to sub-
optimality.

Main Schema E,

R[A] C S[A]
S[A] C T[A]
T[B] € S[B]
RIAl SIABI
agp ao bo
aq an bl
TAB as bo
wlh
ao
aj

View Schema
W,

TIAB]
ap bo
az by
as bo

20 / 22

Conclusions and Properties of the Solution Technique

e A logic-based technique for measuring the quality of a reflection of a view update
has been presented.

21 / 22

Conclusions and Properties of the Solution Technique

e A logic-based technique for measuring the quality of a reflection of a view update
has been presented.

e This technique is strictly finer grained than simply counting the number of tuples
which change.

21 / 22

Conclusions and Properties of the Solution Technique

e A logic-based technique for measuring the quality of a reflection of a view update
has been presented.

e This technique is strictly finer grained than simply counting the number of tuples
which change.

e Under common conditions, it has been shown that all optimal updates are
iIsomorphic up to a renaming of the new constant symbols which are introduced.

21 / 22

Conclusions and Properties of the Solution Technique

e A logic-based technique for measuring the quality of a reflection of a view update
has been presented.

e This technique is strictly finer grained than simply counting the number of tuples
which change.

e Under common conditions, it has been shown that all optimal updates are
iIsomorphic up to a renaming of the new constant symbols which are introduced.

e When the main schema is constrained by XEIDs and the view is SPJ, all optimal
solutions are isomorphic.

21 / 22

Conclusions and Properties of the Solution Technique

e A logic-based technique for measuring the quality of a reflection of a view update
has been presented.

e This technique is strictly finer grained than simply counting the number of tuples
which change.

e Under common conditions, it has been shown that all optimal updates are
iIsomorphic up to a renaming of the new constant symbols which are introduced.

e When the main schema is constrained by XEIDs and the view is SPJ, all optimal
solutions are isomorphic.

e Optimal solutions exist in case the chase inference procedure terminates.

21 / 22

Further Directions

Optimization of tuple modification:

22 / 22

Further Directions

Optimization of tuple modification:

e The existing approach focuses upon insertions.

22 / 22

Further Directions

Optimization of tuple modification:

e The existing approach focuses upon insertions.

e Deletions are an easy extension.

22 / 22

Further Directions

Optimization of tuple modification:

e The existing approach focuses upon insertions.
e Deletions are an easy extension.

e Modifications almost never have an optimal solution, because they cannot
distinguish a change from a combination of insertions and deletions.

22 / 22

Further Directions

Optimization of tuple modification:

e The existing approach focuses upon insertions.

e Deletions are an easy extension.

e Modifications almost never have an optimal solution, because they cannot
distinguish a change from a combination of insertions and deletions.

e An alternative model is necessary for this case.

22 / 22

Further Directions

Optimization of tuple modification:

e The existing approach focuses upon insertions.

e Deletions are an easy extension.

e Modifications almost never have an optimal solution, because they cannot
distinguish a change from a combination of insertions and deletions.

e An alternative model is necessary for this case.

Application to database components:

22 / 22

Further Directions

Optimization of tuple modification:

e The existing approach focuses upon insertions.

e Deletions are an easy extension.

e Modifications almost never have an optimal solution, because they cannot
distinguish a change from a combination of insertions and deletions.

e An alternative model is necessary for this case.

Application to database components:

e Cooperative updates to database components has been studied [Hegner &
Schmidt 2007 ADBIS]

22 / 22

Further Directions

Optimization of tuple modification:

e The existing approach focuses upon insertions.
e Deletions are an easy extension.

e Modifications almost never have an optimal solution, because they cannot
distinguish a change from a combination of insertions and deletions.

e An alternative model is necessary for this case.

Application to database components:

e Cooperative updates to database components has been studied [Hegner &
Schmidt 2007 ADBIS]

e Methods which combine cooperative update with the automated choices of
this paper deserve further investigation.

22 / 22

Further Directions

Optimization of tuple modification:

e The existing approach focuses upon insertions.

e Deletions are an easy extension.

e Modifications almost never have an optimal solution, because they cannot
distinguish a change from a combination of insertions and deletions.

e An alternative model is necessary for this case.

Application to database components:

e Cooperative updates to database components has been studied [Hegner &
Schmidt 2007 ADBIS]

e Methods which combine cooperative update with the automated choices of
this paper deserve further investigation.

Relationship to work in logic programming:

22 / 22

	The Update Problem for Database Views
	The Gold Standard --- the Constant-Complement Strategy
	An Example of the Constant-Complement Strategy
	Characterization of Admissible View Updates under Constant Complement
	Extending the Constant-Complement Strategy
	The Idea of Minimal Change
	The Information Content of a Database State
	Monotonicity of an Information Measure
	Update Difference and Optimal Reflections
	The Choice of Information Measure
	Examples of Measures for Information Content
	Examples of Information Measure
	Examples of Information Measure -- Part 2
	Examples of Information Measure -- Part 3
	Endomorphisms of Constants and the Associated DB Mapping
	Endomorphisms of Constants and the Associated DB Mapping
	Algebraic Representation of Optimal Insertions
	Existence of Optimal Insertions
	Existence of Optimal Insertions
	Example of Non-Existence of Optimal Insertions
	Conclusions and Properties of the Solution Technique
	Further Directions

