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• On the underlying states, the view map-ping is generally surjetive (onto) butnot injetive (one-to-one).

Thus, a view update has many possiblere�etions to the main shema.The problem of identifying a suitable re-�etion is known as the update transla-tion problem or update re�etion prob-lem.With a reasonable de�nition of suitabil-ity, it may not be the ase that everyview update has a suitable translation.

Main Shema
View Shema
b

b

b

b

b

b

b

b

b



The Update Problem for Database Views
1 / 22

• On the underlying states, the view map-ping is generally surjetive (onto) butnot injetive (one-to-one).

• Thus, a view update has many possiblere�etions to the main shema.

The problem of identifying a suitable re-�etion is known as the update transla-tion problem or update re�etion prob-lem.With a reasonable de�nition of suitabil-ity, it may not be the ase that everyview update has a suitable translation.

Main Shema
View Shema
b

b

b

b

b

b

b

b

b

update



The Update Problem for Database Views
1 / 22

• On the underlying states, the view map-ping is generally surjetive (onto) butnot injetive (one-to-one).

• Thus, a view update has many possiblere�etions to the main shema.

• The problem of identifying a suitable re-�etion is known as the update transla-tion problem or update re�etion prob-lem.

With a reasonable de�nition of suitabil-ity, it may not be the ase that everyview update has a suitable translation.

Main Shema
View Shema
b

b

b

b

b

b

b

b

b

update



The Update Problem for Database Views
1 / 22

• On the underlying states, the view map-ping is generally surjetive (onto) butnot injetive (one-to-one).

• Thus, a view update has many possiblere�etions to the main shema.

• The problem of identifying a suitable re-�etion is known as the update transla-tion problem or update re�etion prob-lem.

• With a reasonable de�nition of suitabil-ity, it may not be the ase that everyview update has a suitable translation.

Main Shema
View Shema
b

b

b

b

b

b

b

b

b

update



The Gold Standard � the Constant-Complement Strategy
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In the onstant-omplement strategy[Banilhon and Spyratos 81℄, [Hegner 03℄,the main shema is deomposed into twomeet-omplementary views.One is isomorphi to the view shema and traksits updates exatly.The other is held onstant for all updates to theview.This results in a unique update strategy, al-though all view updates need not be supported.It an be shown [Hegner 03℄ that this strategy ispreisely that whih avoids all update anomalies.
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• Given is the following two-relation mainshema.

The view shema to be updated isthe projetion of .The natural omplement onsistsof the projetion of and all of .With onstant, the allowable up-dates to the view are preisely thosewhih keep the meet onstant.In partiular:Deletion of is not allowed.Insertion of is not allowed.

Main Shema E0

R[AB]1R[BC]

R[C] ⊆ S[C]

R[ABC] S[CD]

On the other hand, oneptually, onstant-omplement view update avoids allupdate anomalies.
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• The ritial features of onstant om-plement update re�etions: reversibil-ity, transitivity, and re�etion of up-dates.

Examples of non-admissibility:Deletion of violates re-versibility.Insertion of must math itssubsequent deletion, whih fails forthe reason above.Examples whih satisfy reversibilitybut violate transitivity exist as well,but are more omplex.
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• There are two prinipal approahes to extending the onstant-omplementstrategy:

Limited sope: automated deision or deision by one user:Ranked preferene of re�etions to the main shema, usually based uponminimization of hange.Broad sope: deision via the ooperation of many users.[Hegner & Shmidt, ADBIS 2007℄The omplement is updated in a negotiation with other users.The omplement may in fat be represented as an interonnetion ofsmaller views � database omponents.In this work, the limited sope approah, via minimization of hange isinvestigated.
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• Consider the update Insert〈R(a2, b2)〉 into W1.

The following alternatives for the re�etion are alltuple minimal � no proper subset is a solution.

The following alternative is not tuple minimal.

Most existing approahes work only with groundatoms, and so do not provide a formal prefereneranking on minimal alternatives.Often, the seletion proess is left to the user.
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Question: Is there a reasonable way to measure the quality of tuple-minimalalternatives?
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• In the example to the left, if the initial state of E0 isdenoted M00 , then:
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• Note that all of the other re�etions may be realizedas endomorphi images of the �rst.
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• There is a natural algebrai struture on the olletion of re�etions of a givenview update.

Let denote the set of all onstants whih an our in the main shemaand the views.A onstant endomorphism is a funtion (subjet toertain typing onstraints whih will not be elaborated here).Suh mappings are also alled homomorphisms.Suh an endomorphism indues a mapping of tuples via .This, in turn, indues a mapping of databases via .For , all -invariant if for all .For , all at most -variant if it is -invariant.
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Context:

D = XEID relational shema (V, γ : D → V) = an SPJ view of D

M1 ∈ DB(D) (γ(M1), N2) = an insertion on V.

Theorem: In the above ontext, every insertion whih is minimal with respet to theinformation ontent de�ned by is optimal.Corollary: In the above ontext, all minimal insertions, with respet to theinformation ontent de�ned by , are isomorphi upto a renaming of the newly-introdued onstant symbols.Question: When do minimal insertions exist?Answer: Not always, the hase proedure is required to terminate.This may be guaranteed by restriting attention to the weakly aylidependenies [Fagin et al 2005℄.
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• The shema and initial states are shown.

Consider the view update .This proess ontinues endlessly.A deision to reuse an existing value must bemade.However, suh a deision learly leads to sub-optimality.
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• A logi-based tehnique for measuring the quality of a re�etion of a view updatehas been presented.

This tehnique is stritly �ner grained than simply ounting the number of tupleswhih hange.Under ommon onditions, it has been shown that all optimal updates areisomorphi up to a renaming of the new onstant symbols whih are introdued.When the main shema is onstrained by XEIDs and the view is SPJ, all optimalsolutions are isomorphi.Optimal solutions exist in ase the hase inferene proedure terminates.
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Optimization of tuple modi�ation:

The existing approah fouses upon insertions.Deletions are an easy extension.Modi�ations almost never have an optimal solution, beause they annotdistinguish a hange from a ombination of insertions and deletions.An alternative model is neessary for this ase.Appliation to database omponents:Cooperative updates to database omponents has been studied [Hegner &Shmidt 2007 ADBIS℄Methods whih ombine ooperative update with the automated hoies ofthis paper deserve further investigation.Relationship to work in logi programming:
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