Implicit Representation of Bigranular Rules for Multigranular Data

> Stephen J. Hegner DBMS Research of New Hampshire, USA

> > M. Andrea Rodríguez University of Concepción, Chile

DEXA 2018 29th International Conference on Database and Expert Systems Applications Regensburg, Germany 04 September 2018

The Idea of Multigranular Attributes

Granules: The domain values are called granules.

Granular order: The granules of spatial and temporal attributes have inherent order structure.

Temporal interval containment: $Y2017Q1 \sqsubseteq Y2017$

Typical constraints: Functional dependency (FD) {Place, Time} \rightarrow Births.

• The number of births is monotonic w.r.t. space and time, so

 $b_1 \leq b_2 \leq b_3$, $b_2 \leq b_4$.

Lattice-Like Operations on Granules

<u>Place</u>	<u>Time</u>	Births
Osorno_prv	Y2017Q1	b_1
Llanquihue_prv	Y2017Q1	<i>b</i> ₂
Chiloé_prv	Y2017Q1	<i>b</i> ₃
Palena_prv	Y2017Q1	<i>b</i> 4
Los_Lagos_rgn	Y2017Q1	b_5

Join: The four provinces join to the region.

 $Los_Lagos_rgn = \bigsqcup \{Osorno_prv, Llanquihue_prv, Chiloé_prv, Palena_prv\}$.

Meet: Distinct provinces are disjoint (six possibilities in all). $[Osorno_prv, Llanquihue_prv] = \bot$

Disjoint Join: The four provinces join *disjointly* to the region. $Los_Lagos_rgn = \lfloor \perp \rfloor \{Osorno_prv, Llanquihue_prv, Chiloé_prv, Palena_prv\}$.

Consequence: $\sum_{i=1}^{4} b_i = b_5$.

Observation: These lattice-like operations are partial.

Approaches to Modelling Multigranular Domains

Question: How can multigranular attributes be modelled for effective implementation? Two possibilities:

Single-structure model: Widely used in Geographic Information Systems.

Fix a domain \mathcal{D} ; semantics of granule g defined by a subset $Sem(g) \subseteq \mathcal{D}$.

- For a spatial attribute, \mathcal{D} = suitable subset of $\mathbb{R} \times \mathbb{R}$.
- Sem(g) the geographic region represented by g. Advantages: Extensive model; well-developed theory and practice. Disadvantages: Extreme resource demands, both space and time.

Constraint-based model: Work directly with constraints of the form $g_1 \sqsubseteq g_2$, $g \sqsubseteq \bigsqcup \{g_i \mid 1 \le i \le k\}$, and $g = \bigsqcup \{g_i \mid 1 \le i \le k\}$, among others.

Advantages: Only represent as much information as needed.

Challenges: Constraint inference,

Constraint retrieval (based upon features), Constraint consistency.

A Logic for Multigranular Domains

• A logic for representing knowledge within multigranular attributes has been developed [Hegner & Rodríguez, 2016, 2017].

Granule Expressions (terms): g, $\bigsqcup \{g \mid g \in S\}$, $\bigsqcup \{g \mid g \in S\}$, \bot , \top Granule Rules (sentences): Combine granule expressions using \sqsubseteq (and equality). Examples: $g_1 \sqsubseteq g_2$, $\bigsqcup \{g_1, g_2\} = \bot$.

Semantics/Models: Set semantics. Fix a domain $\mathcal{D}.$

 A model assigns to each granule a semantics Sem(g) ⊆ D in a manner which respects the operations.

Example: $g_1 \sqsubseteq g_2$ iff $Sem(g_1) \subseteq Sem(g_2)$.

Satisfiability (of a set of rules): Related to distributivity of order operators.

- Very complex problem in theory.
- Not a problem in practice axioms are models of "real" things.

Needs for an inference/lookup mechanism: The theory does not provide any such mechanism, beyond raw testing.

Goal of this work: Provide such a mechanism for the common case.

Requirements for Join-Rule Lookup

Join rule: One of the following forms: $g = \bigsqcup S$ $g = \bigsqcup S$ Head $g = \bigsqcup S$ $g \subseteq \bigsqcup S$ Body

Primary Lookup requirements:

Head lookup: Given a granule g', find all rules with head g'.

Body lookup: Given a set T of granules, find all rules with T contained in the body ($T \subseteq S$).

Complication: In the general case, the rules to be found may need to be derived first.

• A knowledge base of rules, not just a database.

Goal: For rule retrieval, make the common case fast.

Question: What is the common case?

Granularities — Organizing Granules

• The granules of each attribute are partitioned into a hierarchy of *granularities*.

 $\begin{array}{lll} \text{Order:} & G_1 \leq G_2 \Leftrightarrow ((\forall g_1 \in \text{Granules}\langle G_1 \rangle)(\exists g_2 \in \text{Granules}\langle G_2 \rangle)(g_1 \sqsubseteq g_2)).\\ & \text{Examples:} & \text{Every county is contained in a (unique) province.}\\ & \text{Every day is contained in a (unique) week.} \end{array}$

Disjointness: Distinct granules of the same granularity are disjoint.

A common case: A family of *bigranular* rules between a pair of granules.

Bigranular rule: All granules in the body are of the same granularity.

• The head is necessarily of a different granularity.

Common case 1: Equality-join order property:

 $G_1 \trianglelefteq G_2 \stackrel{\text{def}}{=}$ every granule of G_2 is the (disjoint) join of granules of G_1 .

Example of common case 1: Province \trianglelefteq Region.

 $Los_Lagos_rgn = \left[\bot \right] \{ Osorno_prv, Llanquihue_prv, Chiloé_prv, Palena_prv \}.$ BíoBío_rgn = $\left[\bot \right] \{ Arauco_prv, BíoBío_prv, Concepción_prv, \tilde{Nuble_prv} \}.$

Common case 2: Subsumption-join order property:

 $G_1 \otimes G_2 \stackrel{\text{def}}{=}$ every granule of G_2 is contained in the (disjoint) join of granules of G_1 .

Example of common case 2: MetroArea ⊗ Province *Gran_Puerto_Montt_urb* ⊑ [⊥]{*Puerto_Montt_cmn*, *Puerto_Varas_cmn*}

Resolvability and the Nondisjointness Relation

- Context: Let C denote the set of constraints which hold on the multigranular attribute under consideration.
 - Given a rule φ , there are three possible cases.
 - (a) $\mathcal{C} \models \varphi$ (b) $\mathcal{C} \models \neg \varphi$ (c) Neither of these

Resolvability: The rule φ is *resolvable* from C if one of (a) or (b) holds.

• Written $\mathcal{C} \models \varphi$.

Context: $\langle G_1, G_2 \rangle$ a pair of granularities.

Full disjointness resolvability: $\langle G_1, G_2 \rangle$ is *fully disjointness resolvable* if $(\forall g_1 \in \text{Granules} \langle G_1 \rangle)(\forall g_2 \in \text{Granules} \langle G_2 \rangle)(\mathcal{C} \models (\prod \{g_1, g_2\} = \bot)).$

A compact relational representation under full disjointness resolvability: $\operatorname{NRel}_{(g_1,g_2)} = \{ \langle g_1, g_2 \rangle \mid \mathcal{C} \models (\prod \{g_1,g_2\} \neq \bot) \}$

• $\mathcal{C} \models ((\bigcap \{g_1, g_2\} = \bot))$ iff $(g_1, g_2) \notin \mathsf{NRel}_{\langle G_1, G_2 \rangle}$.

 $\label{eq:Symmetry: Note that $\mathsf{NRel}_{\langle \mathcal{G}_1,\mathcal{G}_2\rangle} = \mathsf{NRel}_{\langle \mathcal{G}_2,\mathcal{G}_1\rangle}$ always holds.}$

• Use NRel_(G1,G2) rather than DRel_(G1,G2) (the corresponding relation for disjointness) because NRel_(G1,G2) is usually much smaller.

- (a) $\langle G_1, G_2 \rangle$ is fully disjointness resolvable. In other words, for $G_1 \leq G_2$ to hold, there <u>must</u> be complete information about disjointness of the collective granules of G_1 and G_2 .
- (b) In the above "recall" formula, for each g₂ ∈ Granules⟨G₂⟩, S = {g₁ ∈ Granules⟨G₁⟩ | ⟨g₁, g₂⟩ ∈ NRel_{⟨G₁,G₂⟩}}. In words, each g₁ ∈ Granules⟨G₂⟩ is the join of those granules in Granules⟨G₁⟩ with which it is not disjoint. This is the only possibility.
 Fast head-driven lookup: To identify the body of the rule with head g₂ ∈ Granules⟨G₂⟩, it suffices to find all matches to g₂ in NRel_{⟨G₁,G₂⟩}.
 Fast body-driven lookup: To identify the head of the rule with S' ⊆ Granules⟨G₁⟩ as part of its body, it suffices to find the unique g₁ which matches every member of S' in NRel_{⟨G₁,G₂⟩}.

- The result is similar to that of \trianglelefteq , with one additional condition necessary.
- With subsumption, a resolved minimality condition is necessary.

Motivating example: Consider MetroArea \trianglelefteq Province. Trivial "solution": *Gran_Puerto_Montt_urb* \sqsubseteq Granules(Province).

Resolved minimality: In the "recall" formula, for any proper subset $S' \subsetneq S$, $(\mathcal{C} \models \neg(g_2 \sqsubseteq \sqcup S')).$

- In other words, if any element is removed from *S*, the assertion becomes false (not just fails to be true).
- Under those conditions, a theorem analogous to that for \trianglelefteq holds.

Conclusions and Current Directions

Conclusions:

Representation of common-case join rules:

- Handles both equality- and subsumption-join order.
- Applies in a constraint-based framework with incomplete information.
- Uses only (non)disjointness information about granules.

Current Directions:

Implementation in MGDB: *MGDB* is a PostgreSQL-based multigranular DBMS under development at the University of Concepción.

- Test data of administrative and political subdivisions of Chile provide many instances of equality- and subsumption-join order.
- The ideas of this paper are being applied to the efficient implementation of the associated rules.