
Automated Design of Updateable Database Views:

a Framework for Possible Strategies

Stephen J. Hegner
Ume̊a University

Department of Computing Science
SE-901 87 Ume̊a, Sweden

hegner@cs.umu.se

http://www.cs.umu.se/~hegner

0/11



Disclaimer and (Modest) Goal

• My field of expertise is neither conceptual design nor automated
reasoning.

� So within the context defined by those fields, I probably do not know
what I am talking about.

• My interest is in database views, in particular:

Constraints: Characterize the constraints on a view, given the
constraints on the main schema.

Updates: Develop ways and understand how updates to views may be
supported in a systematic fashion.

Structure: Understand how views interact with one another, and more
generally their mathematical properties as a collection.

Goal: In this short presentation, some ideas of the problems which (from my
limited perspective) must be addressed in order to perform conceptual
design of schemata with updateable views will be identified.

1/11



Views and the View-Update Problem

Views: A view of a schema D provides partial
information about the state of D.

• The underlying mapping is usually defined by a
quotient operation in which each view state
corresponds to an equivalence class of states of D.

• This means that a given view update will have
many translations to the main schema (it will
always have at least one).

Main Schema D

View Schema V

• The view-update problem is to determine:

• which reflections, if any, are suitable; and

• if there is more than one suitable choice, which is best.

• The view update problem is a design problem with no universal answer.

• However there are principles to be considered.

2/11



Open vs. Closed Views

Open view: The user has access to both the
view schema and the main schema.

• The view is thus a “helper”.

• The user has enough information to
define the update translations herself.

Main Schema
D

View Schema
V

γþ
User

Closed view: The user sees only the view.

• The user has no direct knowledge of the base schema.

• The view must be self contained in terms of knowledge needed to
effect updates.

• The view should look “just” like a complete base schema.

Focus: The view design issues addressed in this talk will focus upon closed
views.

3/11



Open vs. Closed Views

Open view: The user has access to both the
view schema and the main schema.

• The view is thus a “helper”.

• The user has enough information to
define the update translations herself.

Main Schema
D

View Schema
V

γþ
User

Closed view: The user sees only the view.

• The user has no direct knowledge of the base schema.

• The view must be self contained in terms of knowledge needed to
effect updates.

• The view should look “just” like a complete base schema.

Focus: The view design issues addressed in this talk will focus upon closed
views.

3/11



Simple Views with Complex Constraints

Goal: To present a closed view, it is highly desirable to be able to describe
the integrity constraints in a simple way.

Problem: Unfortunately, this is often not possible.

Example: There is a relational schema R[ABCD] with three FDs, for which
the constraints on the projection ΠABC are not finitely representable.

• F = {A→D,B→D,CD→A}.
Example: There is a relational schema R[AB] with one FD for which the

constraints on the pair of projections (ΠA,ΠB), regarded as a view, are
not first order (for infinite databases).

• F = {A→B}.
• Constraint = Card(B) ≤ Card(A).

Conclusion: It is not always realistic to provide a full characterization of the
constraints on a view.

Solution: Limit the allowable updates, and provide only constraints which are
necessary to define acceptable updates.

4/11



Localization via Constant Complement

• In general, a view update has
many translations to an update on
the main schema.

• The best choice may be
formalized via localization.

R[ABCDE ]
A→D B→D CD→A A→E

R[ABCE ]
A→E

πABCE

R[ABCD]
A→D B→D

CD→A

πABCD

Localization: Restrict the reflected changes to the main schema to that part
which corresponds to the view.

Example: To update the view ΠABCE , change only ABCE values in
R[ABCDE ].

• Keep the complementary part constant.

• In this case, a complement is ΠABCD .

Why require a complement? It defines a lossless decomposition, so it
determines unambiguously how the update is to be translated.

5/11



Localization via Constant Complement – State Invariance

State invariance: The admissibility of
a view update must depend upon
the view state only; not upon the
state of the main schema.

R[ABCDE ]
A→D B→D CD→A A→E

R[ABCE ]
A→E

πABCE

R[ABCD]
A→D B→D

CD→A

πABCD

R[ABC ]

πABC

• Guaranteed if the view and its complement form a dependency-preserving
decomposition (meet complements).

• A view update is allowed if:

• The embedded constraints are satisfied.

• The common view (meet) is held constant.

• In the above example, the allowed updates to ΠABCE are those which
satisfy the FDs and keep the meet ΠABC constant.

• This holds even though the view ΠABCE is not finitely axiomatizable.

• For meet complements, the view axioms which need to be satisfied by
valid updates are no more complex than those of the main schema.

6/11



Localization via Constant Complement – Other Invariance

• There are two other forms of invariance which are important in the
design process.

Problem: The translation of a view update may depend upon the choice of
complement.

Solution: Reflection invariance is guaranteed for insertions and deletions if
the view mappings are monotonic.

• It may be guaranteed for other updates as well, but pathological
exceptions exist.

Problem: There need not be a universal complement which supports all
updates which are supported by some complement.

• Simple counterexamples exist to update-set invariance.

• There is no widely applicable solution to this problem.

• Often, a maximal set of view updates to be supported must be chosen in
the design process.

7/11



View Specification

Question: How should a view be specified in the design process?

Proposal: The following information is necessary:

• Information content of the view;

• View updates to be supported.

• The information-content issue is a bit more complex.

• To support the given updates via a suitable constant-complement
strategy, it may be necessary to include more than the given information
content.

• More information makes it possible to find a smaller complement,
and thus a better chance of supporting all of the updates.

• On the other hand, if no bound on the allowed information in the view is
given, then the identity view gives a trivial but probably not very useful
solution.

• The following refinement on information content of the view is proposed:

• Minimal information content of the view;

• Maximal information content of the view.
8/11



Automation of Updateable View Design

Context: A set V of views which includes both the possibilities for the view
to be updated and the candidate complements.

• The search process must not find only a complement to the view to
be updated, but within the min-max constraints, that view itself.

Algorithm: The algorithm must identify suitable pairs (Γ, Γ′) ∈ V × V in
which Γ is the view to be updated and Γ′ is a suitable meet complement.

• The updates must not change the state of Γ′.

• So a bigger Γ might allow a smaller Γ′, with a greater chance of
success.

• Recall that meet complements are characterized by lossless and
dependency-preserving decompositions.

• Testing for losslessness is relatively easy in many settings.

Embedded covers: The key to success for any such algorithm is thus the
ability to test for and analyze embedded covers.

9/11



Automation of Updateable View Design – Embedded Covers

• Determining whether or not a pair of projections on a universal relation
constrained by FDs has an embedded cover is NP-complete.

• Thus, algorithms which are worst-case tractable (in the formal sense) are
essentially ruled out.

• However, there may still be many situations in which solutions may be
found effectively for many practical cases.

Suggested context for investigation:

Constraints: FDs and simple inclusion and cardinality constraints.

• More general constraints could be allowed, as long as the view
to updated does not “split” those constraints.

Views: The equivalent of SP-views, with projection and selection.

• Enough is known about this context that some useful results could likely
be obtained (with some work).

10/11



Conclusions and Further Directions

Conclusions:

• There appear to be fertile areas for investigation of automated
(updateable) view design based upon the constant-complement strategy.

• These are contingent upon suitable algorithms for finding embedded
covers of the class of dependencies considered, into the class of views
considered.

Further Directions:

• Explore algorithms for finding embedded covers efficiently.

• Apply these algorithms to the problem of automated view updateable
view design.

A Request:

• If there has been work on the conceptual design of (updateable) views, I
would very much appreciate some pointers to the work.

11/11


