
Constraint-Preserving Snapshot Isolation
Stephen J. Hegner
Umeå University

Department of Computing Science
SE-901 87 Umeå, Sweden

hegner@cs.umu.se
http://www.cs.umu.se/~hegner

0/25

Database Transactions

• A central feature of modern
database-management systems (DBMSs) is the
support of concurrent transactions.
• In general, these transactions may both read and

write the database.

DB

T1 T2
. . . Tk

• When transactions write the database, the updates which they perform
must respect the integrity constraints of the schema.
• It is generally assumed that these transactions respect the consistency

property; that is, that they perform operations which preserve the
integrity constraints when run alone.
• It is also necessary that these transactions operate in isolation, that is

that they do not interfere with each other.
• If care is not taken, the results may not be as intended.

1/25

Serial Execution of Transactions

Serial execution: A set of transactions runs serially if there is no temporal
overlap in their operations.

• Serial execution is considered to define optimal isolation, even though the
result may depend upon the order of execution.

T1 T2 x
Read〈x〉 10000

Cpd〈x , 10%〉 10000

Write〈x〉 11000

Read〈x〉 11000

Wd〈x , 2000〉 11000

Write〈x〉 9000

T1 T2 x
Read〈x〉 10000

Wd〈x , 2000〉 10000

Write〈x〉 8000

Read〈x〉 8000

Cpd〈x , 10%〉 8000

Write〈x〉 8800

• The operations Cpd = compound and Wd = withdraw operate internally
and do not write the database.

2/25

Lost Updates

• If the steps of the transactions are interleaved in certain ways, isolation
may be lost.
• One symptom of poor isolation is lost updates.

T1 T2 x
Read〈x〉 10000

Cpd〈x , 10%〉 10000

Read〈x〉 10000

Wd〈x , 2000〉 10000

Write〈x〉 8000

Write〈x〉 11000

T1 T2 x
Read〈x〉 10000

Wd〈x , 2000〉 10000

Read〈x〉 10000

Cpd〈x , 10%〉 10000

Write〈x〉 11000

Write〈x〉 8000

• In the schedule on the left, the result of T2 is lost.
• In the schedule on the right, the result of T1 is lost.

3/25

The Model of Operations, Transactions, and Schedules

• Model the database schema as a set of updateable objects.
Object-level model of operations: There are two basic operations:

Read: rT〈x〉 denotes that transaction T reads data object x .
Write: wT〈x〉 denotes that transaction T writes data object x .

• In particular, the specific change which T makes to the value of x during
a write is not modelled.
• A transaction is then modelled as a sequence of such operations:

Examples: T1: rT1
〈x1〉wT1

〈x1〉rT1
〈x2〉wT1

〈x2〉 T2: rT2
〈x1〉rT2

〈x3〉wT2
〈x3〉wT2

〈x2〉
• A schedule for a set of transactions is an intertwining of their operation

sequences which preserves the local order for each transaction.
Examples: S1 : rT1

〈x1〉wT1
〈x1〉rT1

〈x2〉wT1
〈x2〉rT2

〈x1〉rT2
〈x3〉wT2

〈x3〉wT2
〈x2〉

S2 : rT1
〈x1〉wT1

〈x1〉rT2
〈x1〉rT2

〈x3〉wT2
〈x3〉rT1

〈x2〉wT1
〈x2〉wT2

〈x2〉
• S1 is a serial schedule for {T1,T2}, while S2 is a non-serial schedule.

4/25

The Gold Standard for Isolation: View Serializability

Idea: A schedule is view serializable if it can be obtained by rearranging the
operations of some serial schedule in such a way that:
• The read operations read from the same writer in each case (which

might be the initial database state).
• The final writer of each data object is the same transaction in each

case.
• Such a rearrangement does not change the final result of running the

transactions.
Examples: S1 : rT1

〈x1〉wT1
〈x1〉rT1

〈x2〉wT1
〈x2〉rT2

〈x1〉rT2
〈x3〉wT2

〈x3〉wT2
〈x2〉

S2 : rT1
〈x1〉wT1

〈x1〉rT2
〈x1〉rT2

〈x3〉wT2
〈x3〉rT1

〈x2〉wT1
〈x2〉wT2

〈x2〉
S3 : rT1

〈x1〉rT2
〈x1〉wT1

〈x1〉rT2
〈x3〉wT2

〈x3〉rT1
〈x2〉wT1

〈x2〉wT2
〈x2〉

S4 : rT1
〈x1〉wT1

〈x1〉rT2
〈x1〉rT2

〈x3〉wT2
〈x3〉rT1

〈x2〉wT2
〈x2〉wT1

〈x2〉
• S1 and S2 are view serializable.
• S3 is not view serializable (changed read source of rT2〈x1〉).
• S4 is not view serializable (changed final write of x2).

5/25

Guaranteeing View Serializability — SS2PL

System requirement: Need a scheduling algorithm which guarantees
view-serializable schedules, not just a test for view serializability.

Strong strict two-phase locking (SS2PL): The classical lock-based solution.
• Shared (read) locks and exclusive (write) locks are required for all

data access.
• Locks may be acquired at any time.
• All locks held until the transaction commits (ends).

Severe drawback: The locking requirements greatly limit concurrency.
• Querying on a non-indexed attribute would require locking the entire

table until the end of the transaction!
Incorrect claim: Many DBMS textbooks incorrectly assert that SS2PL is

widely used in practice to realize serializable isolation.
• Unknown to many users, the SQL SERIALIZABLE mode of isolation

does not provide view serializability in many systems (e.g., Oracle).
• Even with those systems which do implement SS2PL, it is not widely

used due to poor performance.
6/25

Levels of Isolation of Transactions

Question: Isn’t view serializability necessary to guarantee correct results?

Answer: That depends upon what is meant by “correct”.

• Isolation is a matter of degree.

Real-world fact: Lower levels of isolation are used routinely.

• The default level of isolation in many real systems is read committed,
which guarantees that only committed data are read, but little more.

• Many transactions can tolerate such lower isolation levels without
suffering serious consequences.

• The highest level, view serializable, is used only where absolutely
essential, such as in financial transactions.

7/25

Multiversion Concurrency Control

MVCC: Most modern DBMSs employ multiversion concurrency control.
• There may be several versions of a given data object x .
• Rather than requiring locks, concurrency is achieved by allowing

distinct transactions to operate on distinct versions of x .
• Differences must eventually be resolved, but typically not at the

expense of long waits.
• In general, MVCC supports far more concurrency than single-version,

lock-based approaches.

• One of the most common approaches within MVCC for achieving a high
level of isolation with substantial concurrency is called snapshot isolation.

• Because the approach of this research is based upon it, it is worth a
closer look.

8/25

Snapshot Isolation

Stable DB

s1:
DB at time
Start〈T1〉



snapshot

s2:
DB at time
Start〈T2〉



snapshot

T1
executes on
snapshot s1

T2
executes on
snapshot s2

Stable DB

merge


merge

• In snapshot isolation (SI), each transaction operates on a snapshot:
• a (private) copy of the database with values taken at the point in

time at which the transactions begins.
First Committer Wins (FCW): Ti is allowed to commit its local writes to the

stable DB only if no data object x which it writes has been committed,
since its snapshot was created, to the stable DB by another transaction.
• Otherwise, it must abort and start over.

9/25

Advantages of Snapshot Isolation

• SI has some very attractive properties.
High Level of Isolation: Since each transaction operates on a private copy,

isolation is achieved at what appears to be at a relatively high level.
Enhanced concurrency: No locks ⇒ writers do not block readers.

• Readers (almost) never have to wait for writers to finish.
• The attainable level of concurrency is far greater than that of SS2PL.

• For these reasons, SI is widely used in practice.
� Real systems use first updater wins (FUW), and there may be some

blocking when foreign-key constraints are checked, but these are details
which do not distort the main conclusions.

Question: Does SI provide serializable-level isolation?
Answer: That depends upon the definition of serializable.

10/25

Interdependent Data Objects

Fact: SI does not guarantee view-serializable isolation. 2

• An example is defined by a foreign key
constraint.

T1: Delete the Research department (which has
no employees assigned to it)
[modifies Department only].

Employee
EmpID · · · Dept · · ·

DptID · · · · · · · · ·
Department

T2: Assign Alice to the Research department [modifies Employee only].
• Each of T1 and T2 may be run by itself with no violation of integrity

constraints.
• T1 and T2 operate on distinct data objects, yet if run concurrently, a

constraint violation occurs if both commit.

11/25

Write Skew — Constraint Violation under SI

Fact: Built-in constraints are managed internally by all modern DBMSs, so
the previous example, while instructive, is not relevant in a practical
sense.
• On the other hand, consraint enforcement for the following situation

would likely be implemented with triggers and so not handled internally.
Example (write skew): x and y represent the balances of two accounts.

Integrity constraint: x + y ≥ 500AC Initial state: x = 300AC, y = 300AC
T1: Withdraw 100AC from x T2: Withdraw 100AC from y .

• Assume that these transactions run concurrently under SI.
• Each transaction run in isolation satisfies the integrity constraint.
• The final state is (x , y) = (200AC, 200AC), which violates the constraint.
• With serial execution, the second transaction will fail.
• Thus, SI does not guarantee view serializability.

12/25

The SQL Standard and Serializability

� SI satisfies the conditions set forth in the SQL standard for the
SERIALIZABLE isolation level.
• The standard defines serializability as the absence of three types of

transaction anomalies.
Apparent reason: The architects of the standard could not think of any

nonserializable behavior which could arise in the absence of violations of
those anomalies.

Consequence: Real systems are free to implement the SERIALIZABLE level of
isolation as SI, and several do so.
• Unfortunately, many users mistakenly believe that SERIALIZABLE

isolation in SQL must mean view serializable.
Opinion/Rant: The definition of SERIALIZABLE in the SQL standard is a

poster child for why good theory is a necessary part of even the most
practical endeavors.

13/25

The DSG and Conflict Serializability

DSG: The direct serialization graph (DSG) has transactions as vertices and
three types of edges:
Ti

rw〈x〉−→ Tj : Ti reads x and Tj is the next writer of x .
Ti

ww〈x〉−→ Tj : Ti and Tj are consecutive writers of x .
Ti

wr〈x〉−→ Tj : Tj reads x and Ti is the previous writer of x .
Example: The DSG for

r1〈x〉r1〈y〉 r3〈z〉w3〈z〉r3〈x〉 r2〈z〉 w1〈x〉w1〈y〉 w2〈z〉w2〈y〉 w3〈x〉

T1

T3

T2
ww〈y〉

ww〈x〉
wr〈z〉 ww〈z〉

rw〈x〉

Theorem: Cycle-free DSG ⇔ conflict serializability ⇒ view serializability.2
• Stronger than view serializability but the differences are anomalous.
• Useful for testing because the computational complexity is low.

14/25

Serializable Snapshot Isolation

Serializable SI (SSI): Augment SI to achieve true view serializability.
Observation: With all transactions running under SI, if Ti and Tj are

concurrent and there is an edge Ti −→ Tj in the DSG, then it must be
an rw-edge. 2

Dangerous structure in DSG: Ti
rw−→ Tj

rw−→ Tk (Ti = Tk possible)
occurring in a cycle with {Ti ,Tj} and {Tj ,Tk} concurrent.

Theorem [Fekete et al 2005]: If a schedule for SI is not view serializable, the
DSG must contain a dangerous structure. 2

Optimistic strategy: Serializable SI (SSI):
• It is too expensive to maintain the entire DSG.
• Look for potential dangerous structures (need not be part of a cycle)

and require one transaction to terminate to preserve serializability.
• This requires testing only three transactions at a time.
• But there will be false positives.

15/25

Serializable Snapshot Isolation — Practice and Limitations

Use in PostgreSQL: As of version 9.1, SSI is used to implement
SERIALIZABLE isolation in PostgreSQL.
• Thus, SERIALIZABLE isolation is finally truly view serializability.
• Ordinary SI is still available as REPEATABLE READ isolation.
• Before version 9.1, both isolation levels were implemented as SI.

Question: Why is there a need for anything more?
Answers:

• SSI results in more false positives (with consequent aborts and
reruns) than does ordinary SI.
• For some transaction mixes (particularly interactive and

long-running), this may be a severe drawback.
Question: Is there something in between SI and SSI?
Answer: Yes, constraint-preserving SI (CPSI), the topic of this research.

• Ensures that constraints will be satisfied (no write skew).
• Much simpler algorithm with limited false positives.

16/25

Permutation – Nonserializability without Constraint Violation

Example (SI permutation): n ∈ N;
• d0,, d1, …dn−1 data objects.
• τ0, τ1, . . . , τn−1 transactions with
τi : di←d(i+1) mod n.
• The n transactions, run concurrently

under SI, effect a permutation of the
values of the di ’s (shift clockwise).

τ0

τ1 τ2

τi

τi+1τn−1

rw〈d1〉
rw〈d2〉

rw〈di+1〉rw〈d0〉
· · ·

· · ·

• τi
rw〈di 〉−→ τ(i+1) mod n denotes that τ1 reads di and τ(i+1) mod n writes it.

• This behavior cannot be view serializable since if τi is run first, the old
value of di is lost.
• However, if any transaction (say τi) is removed, the result of running all

transactions concurrently under SI is serializable.
• Run them in this order: τi+1 . . . τn−1τ0 . . . τi−1.

Observation: For any n ∈ N, there is a set of n transaction which, when run
concurrently under SI, results in nonserializable behavior, yet any proper
subset produces serializable behavior under SI. 2

17/25

Two Types of Reads under SI

Example: Let the database schema have three data objects w , x , and y with
the constraint x + y ≥ 500.
• Transaction T defined by x←x − w .
• y is the guard of the transaction; it must be read in order to verify

that the update will satisfy the integrity constraint.
• w must be read only to determine the update; it is not used in the

checking the integrity constraint.

The value of y when T commits is critical: If the value of the guard y of T
is changed by another concurrent transaction, there is a risk that the
constraint will be violated.

Only the snapshot value of w is important for constraint satisfaction: A
change to the value of w by another concurrent transaction will not
affect whether or not the constraint is satisfied.

18/25

The Guard of a Data Object

Guard of a transaction: The guard of a transaction T is the set of all data
objects which must be read by T in order to verify the integrity
constraints, but which are not written by T .

Example: Integer data objects: {x , y , z1, z2}; Constraint: x + y ≥ 500.

Transaction Write Set Read Set Guard Set
T1 : x←x − z1; z2←z2 − 10 {x , z2} {y , z1} {y}
T2a : y←y + z2; z1←z1/2 {y , z1} {x , z2} {x}

T2b : y←y + |z2|; z1←z1/2 {y , z1} {z2} ∅
gw-edge Ti

gw−→ Tj in the (augmented) DSG: Tj writes the guard of Ti .
• Ti

gw−→ Tj ⇒ Ti
rw−→ Tj but not conversely.

T1 T2a T1 T2b

gw〈y〉, rw〈y , z1〉

gw〈x〉, rw〈x , z2〉

gw〈y〉, rw〈y , z1〉

rw〈z2〉

Note: T2a and T2b are alternatives; they cannot run concurrently.
19/25

Guard Independence and CPSI

Guard independence of two transactions T1 and T2 is the formalization of
the condition that a cycle of the form

Ti Tj

gw

gw

does not exist.
Theorem: Let T = {T1,T2, . . . ,Tm} be a set of transactions running under

SI according to some schedule S. If every pair of concurrent transactions
is guard independent, then the result is guaranteed to satisfy all integrity
constraints. 2

CPSI: Require all pairs of concurrent transactions to be guard independent.
Remark: Cycles of the following three forms are allowed, as long as the

rw-edges do not involve guard objects:

Ti Tj

rw

gw
Ti Tj

gw

rw
Ti Tj

rw

rw

• Assuming all guard objects are read, these would identify a dangerous
structure in SSI and result in the termination of one of the transactions.

20/25

Example of Guard Independence

Example: Data objects: {x , y , z1, z2}; Constraint: x + y ≥ 500.

Transaction Write Set Read Set Guard Set
T1 : x←x − z1; z2←z2 − 10 {x , z2} {y , z1} {y}
T2a : y←y + z2; z1←z1/2 {y , z1} {x , z2} {x}

T2b : y←y + |z2|; z1←z1/2 {y , z1} {z2} ∅

T1 T2a T1 T2b

gw〈y〉, rw〈y , z1〉

gw〈x〉, rw〈x , z2〉

gw〈y〉, rw〈y , z1〉

rw〈z2〉

Note: rw〈α〉 not shown if gw〈α〉 also holds for data object α on an edge.

• T1 and T2b are guard independent, while T1 and T2a are not.

Note: T2a and T2b are alternatives; they cannot run concurrently.
21/25

CPSI and False Positives

• False positives may occur under CPSI to the extent that a transaction
may avoid reading the entire guard.
• This is possible if “clever” coding is used.
• For the most part, such coding is possible only if transactions enforce

constraints locally, not if they are implemented using triggers.
• However, it is possible under certain special circumstances if the

trigger is implemented in a very clever way.
Bottom line: The occurrence of false positives depends very much upon how

a false positive is defined.
• All approaches involve false positives to some degree, in that reads

or writes may be benign.
• CPSI avoids many of the false positives which occur under SSI.

CPSI+SSI: CPSI and SSI may be combined so that the only false positives
are those which occur in both.

CPSI+CSSI: Even fewer false positives; only dangerous structures caused by
guard reads are considered in the SSI component.

22/25

Applications of CPSI

Interactive transactions: Those with a human in the loop making decisions.
Example: Business processes; employee requesting travel funds.
• Running time may be extremely long (days).
• Abort and restart is not a viable option.

Negotiation: For interactive transactions, negotiation is often a far superior
alternative to abort and restart when conflicts occur.
• The transactions in conflict “negotiate” a solution in which the

conflict does not occur.

CPSI and negotiation: In CPSI, all conflicts are binary and the conflicts are
explicitly identified by the guards.
• This makes it particularly feasible to identify conflicting parties for

negotiation.

23/25

Conclusions and Further Directions

Conclusions:
New Isolation Level: A new isolation level, constraint-preserving snapshot

isolation (CPSI), has been investigated.
SI < CPSI < Ser: It is at a strictly higher level than snapshot isolation,

and a strictly lower level than view serializability.
• The test for adherence is much simpler than that for serializable

snapshot isolation, with far less risk of false positives.
Further Directions:
Implementation and performance studies: It would be very useful to see how

this approach fares in various situations.
Extension to a value-level model: Work is underway to extend the approach

to a value-level model, in which the transaction manager has simple
information about the nature of the updates which the transactions
perform.
• This type of extension is critical for interactive transactions, in which

abort and rerun is not an acceptable strategy for resolving conflicts.
24/25

More Information

Comprehensive slides: Slides (124 of them) entitled Transaction models and
concurrency control from the course Database System Principles at Umeå
University:

http://www8.cs.umu.se/kurser/5DV120/V15/Slides/09_trans_5dv120_h.pdf

Research paper: Hegner, Stephen J., Constraint-preserving snapshot
isolation, Annals of Mathematics and Artificial Intelligence, to appear:

http://www8.cs.umu.se/~hegner/Publications/PDF/amai15.pdf

25/25

http://www8.cs.umu.se/kurser/5DV120/V15/Slides/09_trans_5dv120_h.pdf
http://www8.cs.umu.se/~hegner/Publications/PDF/amai15.pdf

