
Gen_talk:1999/02/09: 1 of 25

Computational Issues in the Parsing
of Natural Language

Part 1: Selected Background Material (60%)

• The reason why generative parsing methods
for programming languages are inadequate for
natural languages.

• Modern techniques for parsing natural
languages.

¾ This part is background; it is not about my
research.

¾ It assumes knowledge of parsing in computer
science (i.e., CFG’s), but no knowledge of
computational linguistics.

Part 2: Current Research Topics (40%)

• Declarative specification of HPSG-style
grammars.

• Computational management of partially
specified type hierarchies.

Gen_talk:1999/02/09: 2 of 25

Natural Language Processing
and Computational Linguistics

A terminological distinction:

Natural Language Processing (NLP):
• Typically a component of a larger application.
• Restricted domain of linguistic discourse.
• Embodiment of linguistic principles secondary.
¾ Example: Natural-language interface to a help

system for UNIX.

Computational Linguistics (CL):
• Study of formal models of language which are

amenable to computation.
• Often involves stand-alone or demonstration

implementation projects.
• Fairly general domain of linguistic discourse.
• Embodiment of linguistic principles essential.

Some major theories within computational
linguistics:

• Lexical Functional Grammar (LFG).
• Head-Driven Phrase Structure Grammar

(HPSG).
• Categorial Grammar.

¾ Example parsing systems : PATR, ALE, CUF,
Troll, TFS, [Meurers’].

¾ Example projects within CL: Verbmobil.

Gen_talk:1999/02/09: 3 of 25

Parsing

Parsing refers to the process of determining the
syntactic and possibly semantic structure of a
string.

In programming languages:

• We design the language (usually) to have certain
properties, among them that of being amenable
to parsing.
• Notable exceptions: Ada, SQL

• Parsing base:
• Unambiguous context-free grammar (BNF)
• Semantic constraints to eliminate unwanted

parses

• A given string has at most one parse (programs
have unique derivations).

Gen_talk:1999/02/09: 4 of 25

In natural language:

• We have to parse the language as it is.

• There are many strategies for parsing; some are
based upon context-free grammars, some are
not.

• A given sentence may have several parses.
• 7LPH�IOLHV�OLNH�DQ�DUURZ�

• ,�VDZ�WKH�ZRPDQ�RQ�WKH�KLOO�ZLWK�D�WHOHVFRSH�

• Correct parses may be strongly context
dependent.
• +RZ�GR�,�SULQW�D�ILOH�RQ�WKH�ODVHU�SULQWHU

ZLWK�WKH�OLQHV�QXPEHUHG"

• Parses may be rejected on purely semantic
grounds.
• -RKQ�JDYH�WKH�ERRN�WR�0DU\�

• �-RKQ�JDYH�WKH�ERRN�IURP�0DU\�

• ���-RKQ�JDYH�WKH�ERRN�IURP�0DU\�WR�0DULH�

Apparently similar constructions may be legal or
illegal based upon fairly subtle rules.

• ���-RKQ�KLW�WKH�EDOO�WR�0DU\�

• ���-RKQ�KLW�0DU\�WKH�EDOO�

• ���-RKQ�KLW�WKH�EDOO�WR�WKH�ZDOO�
• �-RKQ�KLW�WKH�ZDOO�WKH�EDOO�

Gen_talk:1999/02/09: 5 of 25

Pure Generative Parsing of NL

A context-free grammar (CFG) for a tiny fragment of
English:

Syntactic Rules:
S → NP VP
VP → V V NP
NP → Name Det N

Lexical Rules:
Name → John Mary I We You
N → car cars truck trucks pickup pickups
Det → a an the two
V → own owns sleep sleeps

A parse tree for the sentence:

 “John owns a pickup.”

S

NP VP

Name

John

V NP

Det N

a pickup

owns

Gen_talk:1999/02/09: 6 of 25

The Problem with
Pure Generative Parsing

Many ungrammatical sentences can also be
generated.

• * John own an pickup.
• * We owns two pickup.
• * John owns.
• * Mary sleeps a truck.

These problems can be remedied by forcing
number and verb-type distinction within the
grammar.

To fix the verb-type distinction:

VP → VI VT NP
VI → sleep sleeps
VT → own owns

The number distinction on noun phrases:

Ns → car truck pickup
NP → cars trucks pickups
DetS → a an the
DetP → two
NP → DetS Ns DetP NP

Gen_talk:1999/02/09: 7 of 25

Why This Is Not a Good Solution

• These types of “fixes” result in a combinatorial
explosion in the number of rules of the grammar.

• Representation of other languages will result in
much more serious explosions in size:

• Multiple genders on nouns which require
agreement with determiners and adjectives:
French, Swedish: 2; German, Norwegian: 3

• Complex verb conjugation depending upon
both number and person:
German: 4; French: 5 or 6

Conclusion: CFG, by itself, is not an adequate tool
for describing natural language.

Remarks:

• It is a debatable theoretical question as to
whether languages such as English can be
represented by CFG, in the weak sense of being
able to generate exactly the legal sentences
strings.

• It is easy to show that English cannot be
generated by a CFG in the strong sense, in which
the parse trees reflect the grammatical structure.

Gen_talk:1999/02/09: 8 of 25

The Hybrid
 Generative + Constraint Solution

• Approach:
• CFG (the context-free skeleton / backbone) +
• constraint set

• LFG (Lexical-Functional Grammar) uses this
approach.

A simple example: The objects in the lexicon are
augmented with types:

Some Names:

A verb:

• The grammatical productions now have these
constraints attached to them.

• Similar in idea to indexed grammars for
programming languages.

Singular:Number

3 :Person

John :Name

Plural:Number

1 :Person

We :Name

sing:Number

3 :Person

owns :Name

 :Number

 :Person

 own :Name

pers 3 sing but any +

Gen_talk:1999/02/09: 9 of 25

The main idea of this approach thus consists of two
steps:
• Generate : Find the candidate parses for the

underlying CFG.
• Constrain : Use the feature constraints to

eliminate undesired parses.

Decision properties:

• In general, the problem of deciding whether a
sentence has a parse tree which satisfies the
given constraints is undedicable.
• ... because there can be infinitely many parse

trees for a given string.

• However, it is decidable if we can find all parse
trees algorithmically (off-line parsing condition).
• ... in which case the number of parse trees is

provably finite and identifiable.

S

NP VP

Name

John

V NP

Det N

a pickup

owns

=

=

VNP

VNP

NumberNumber

PersonPerson

Gen_talk:1999/02/09: 10 of 25

Pure Constraint-Based Parsing

• In pure constraint based parsing (as exemplified
by HPSG), there is no underlying context-free
grammar.

• The entire parsing process is one of finding
models of constraints, which are expressed in a
typed feature logic.

• The main operation is unification; hence the
techniques is also called unification-based
parsing.

The following examples illustrate the idea of typed
feature logic, but do not represent the HPSG
model.

Gen_talk:1999/02/09: 11 of 25

Feature Structures

Typed Feature structures are simply record-like
entities.

Example:

Pascal Notation Feature-Structure Notation
type Person = record
 Name: Name_type;
 ID_number: ID_type;
 Income: Integer
end record; {Person}

 Name: τName-type

 ID_number: τID_type

τPerson Income: τInteger

var P Person;
P.Name := Smith;
P.ID_number := 123456;
P.Income := 100000;

 Name: Smith
 ID_number: 123456
 Income: 100000

• Feature structures also admit direct and indirect
recursion on types.

Pseudo Pascal Feature Structure
type Node = record
 Value: Integer;
 Next: Node
end record {Node}

 Value: τInteger

 τNode Next: τNode

Gen_talk:1999/02/09: 12 of 25

Feature structures also admit coalescing of values.

Name: John
Salary: 100000
Child: James

Name: Mary
Salary: 100000
Child: James

 N
Here James is the same person in each case.

This type of construction is critical in modelling
linguistic situations in which the same object is
referenced in two ways.

Gap-filler constructions:

• -DQM�LV�HDV\�WR�WDON�WR�BBBM�DERXW�SUREOHPV�RI

WKLV�VRUW�

• >3UREOHPV�RI�WKLV�VRUW@L��-DQM�LV�HDV\�WR�WDON�WR

BBBM�DERXW�BBBL�

Example from Norwegian:

• +DQ�YDVNHW�VLQ�ELO�

• +DQ�YDVNHW�KDQV�ELO�

Gen_talk:1999/02/09: 13 of 25

Unification-Based Parsing

Recapture: S → NP VP

Subj: τNP

 τS Verb_P: τVP

The corresponding logical constraint:
(∀x)(∃y)(∃z)

 (τS(x) ⇒ x:Subj:τNP(y) ∧ x:Verb_P:τVP(z))

To recapture agreement:

 «Other things¬..
Person: τPers

τNP Number: τNum

 «Other things¬..
Person: τPers

τVP Number: τNum

Subj: «Other things¬..
Person:
Number:

Verb_P: «Other things¬..
Person:
Number:

 (∀x) (τS(x) ⇒ (x:Subj⋅Person N x.Verb_P⋅Person ∧
 x:Subj⋅Number N x.Verb_P⋅Number))

Gen_talk:1999/02/09: 14 of 25

VP → V V NP

(∀x)(τVP(x) ⇔ τVP1(x) ∨ τVP2(x))

Schema for V: Phon: τV_Lex

Person: τPers

τVP1 Number: τNum

Instances from the lexicon would contain the
following information:

Phon: own
Person: any but
Number: 3p+sing

Phon: owns
∨ Person: 3 ∨ ..

Number: sing

This process goes on and on..

Gen_talk:1999/02/09: 15 of 25

This is what the final parse might look like:

Subj: Noun_P1: Noun: Phon: John
Person: 3
Number: sing

Person: 3
Number: sing

Verb: Verb_P: Verb: Phon: owns
Person: 3
Number: sing

Noun_P2: Det Phon: a
Number: sing

Noun: Phon: pickup
Person: 3
Number: sing

Notes:

• Such a structure is a model of the appropriate
constraints in the underlying logic:

• Framework constraints;
• Input specific constraints.

• If there were more than one legal parse, each
such parse would be represented by a structure
of this form.

• This is not HPSG.

Gen_talk:1999/02/09: 16 of 25

Current Research Directions

Unification-based parsing

Algorithmic Aspects

Decidability of HPSG-style
parsing

Computational efficiency of
type-hierarchy management
algorithms

Development of “automatic”
parsing algorithms

Development of efficient
management algorithms

Gen_talk:1999/02/09: 17 of 25

Research Problem 1:
The Decidability of Parsing

 within HPSG-style Formalisms

The ideal world of constraint-based parsing
(Similar to the real world of PL parsing.)

The real world of constraint-based parsing

• Question: Is it possible to render the process of
constraint-based parsing decidable, so that the
grammar writer / user need not supply control
information?

• This is a nontrivial question...

Input Parse(s)Unification-
based parser

Description of
the grammar

Input Parse(s)Unification-
based parser

Control informationDescription of
the grammar

Gen_talk:1999/02/09: 18 of 25

Motivation:
• The process of understanding natural language

appears to be decidable. (Humans do it all the
time.)

• Generative frameworks such as LFG render large
fragments of natural languages decidable. The
user need not supply control information.

• Existing tools for unification-based grammatical
formalisms (such as HPSG) require the user to
supply control information.

General approach:
• Formalize to an appropriate logic.
• Show the logic, or significant fragments thereof,

to be decidable.

My approach:
• Develop a custom logic, and then embedded this

logic into first-order predicate logic.
• Show that this fragment is decidable.
• Rationale:

• A great deal is known about decidable and
undecidable classes of formulas within first
order logic. This approach makes use of that
knowledge.

Other approaches:
• Custom logics:

• Tübingen (King, Kepser)
• Edinburgh (Manandhar)

Gen_talk:1999/02/09: 19 of 25

Research Problem 2:
Efficient Computational

Management of Partially Specified
Type Hierarchies

• Feature logic, as applied to formalisms such as
HPSG, depends critically upon the concept of a
type hierarchy.

What is a type hierarchy?

• The concept of inheritance via a hierarchy should
be familiar from object-oriented languages.

Person

Employee

Staff

Student

Workstudy

Faculty

]

Mascot

\

Dog Goat Badger

Gen_talk:1999/02/09: 20 of 25

The Semantics of Type Hierarchies:

• Every class has a set of instances:
• Inst(Student) = the class of students, etc.
• Inst(\) = universe; Inst(]) = ∅.

ISA semantics:
• X ≤ Y ⇒ Inst(Y) ⊆ Inst(X).

• Workstudy(x) ⇒ Student(x)

Natural semantics:
 (Y = infimum ; Z = supremum)

• Z = X Y Y ⇒ Inst(Z) = Inst(X) ∩ Inst(Y)
• Z = X Z Y ⇒ Inst(Z) = Inst(X) ∪ Inst(Y)

• Student(x) ∧ Staff(x) ⇔ Workstudy(x)
• Student(x) ∨ Staff(x) ⇔ Person(x)

Are these semantics always consistent?

Person

Employee

Staff

Student

Workstudy

Faculty

]

Mascot

\

Dog Goat Badger

Gen_talk:1999/02/09: 21 of 25

The natural semantics is valid if and only if the
hierarchy does not contain a pentagon or a
diamond.

This is equivalent to satisfaction of either of the
distributive laws (Birkhoff”s representation):

• (X Y Y) Z Z = (X Z Z) Y (Y Z Z)
• (X Z Y) Y Z = (X Y Z) Z (Y Y Z)

• These tests may be performed in time O(n3), with
n the number of classes in the hierarchy.

Person

Employee

Staff

Student

Workstudy

Faculty

]

Mascot

\

Dog Goat Badger

Gen_talk:1999/02/09: 22 of 25

Partial Specification

The need:
• In large systems, complete explicit specification

of the type hierarchy is impractical.

headed-structure = head-complement-structure
 ∨ head-filler-structure
 ∨ head-adjunct-structure

τ = τ1 ∧ τ2 ∧ τ3 ∧ τ4

headed-structure

head-complement
structure

head-filler
structure

head-adjunct
structure

head-c+f
structure

head-c+a
structure

head-f+a
structure

τ

τ1 τ2 τ3 τ4

τ12 τ13 τ14 τ23 τ24 τ34

τ123 τ124 τ134 τ234

Gen_talk:1999/02/09: 23 of 25

Formal Open Specification

In a formal open specification, declarations of the
following forms are allowed.

Order constraints:
(a) τ1 ≤ τ2

(b) τ = τ1 Z τ2 Z .. Z τn

(c) τ = τ1 Y τ2 Y .. Y τn

Note: Supremum is not Z, by default.
 Infimum is not Y, by default.

Position constraints:
(d) τ1 ≠ τ2

(e) $WRP(τ) (τ ∉ {�,�}.)

• The interpretation of these constraints is in
accordance with the natural semantics, and is
inherently partial:
• A collection of such rules characterizes not a

single hierarchy; such a collection is a set of
constraints defining a set of hierarchies.

Goal:

• Find effective algorithms for characterizing the
distributive hierarchies which are consistent with
such a collection of rules.

Gen_talk:1999/02/09: 24 of 25

Result:

• Does a given open specification have an
extension to a complete distributive type
hierarchy?
• This problem is NP-complete [Hegner, 1995].

⇒ The best known algorithm is O(2n).

Special aspects making this problem unique:

• NP-complete problems must be dealt with, and
are dealt with, all the time.

• Existing techniques (approximation) apply to
optimization problems, and are not applicable to
this problem.

• This problem belongs to a class including
satisfiability problems in logic, in which
approximation makes no sense.

• In addition, all solutions are sought, rather than
just a single solution.

Gen_talk:1999/02/09: 25 of 25

Current Directions:

• Development of techniques which make use of
the special properties of the solution space (it
forms a complete lattice) to reduce greatly the
amount of searching which needs to be done.

• Experimental measurement of algorithm
performance.

• Incremental modification:

• Linguistic databases, particularly lexicons,
undergo frequent modification.

• Rather than rebuild the entire hierarchy every
time a modification is to be performed, it would
be simpler to modify the existing hierarchy.

• Current research includes investigation of
determining whether an update of a legal
formal specification is also legal.

	Computational Issues in the Parsing of Natural Language
	Natural Language Processing �and Computational Linguistics
	Parsing
	Pure Generative Parsing of NL
	The Problem with �Pure Generative Parsing
	The Hybrid� Generative + Constraint Solution
	Pure Constraint-Based Parsing
	Feature Structures
	Unification-Based Parsing
	Current Research Directions
	Algorithmic Aspects
	Research Problem 1:�The Decidability of Parsing� within HPSG-style Formalisms
	Partial Specification
	Formal Open Specification

