
Transaction Isolation
in Mixed-Level and Mixed-Scope Settings

Stephen J. Hegner
DBMS Research of New Hampshire, USA

dbmsnh@gmx.com

ADBIS 2019
Bled, Slovenia

10 September 2019

0/12



Isolation of Database Transactions

Transactions: A database transaction performs reads and (possibly) writes
on a database.

Concurrency: In a modern DBMS, transactions may run concurrently.
Isolation: Concurrent transactions should not interfere with each other.
Serializable schedules: The “gold standard” for isolation is serializability.

• The behavior of the concurrent transactions must be equivalent to
that for some non-concurrent, or serial schedule.

Drawback: Serializable schedules may limit concurrency (and hence
performance) substantially.

Reality: DBMSs offer a variety of isolation levels.
Tradeoff: • Higher isolation ⇒ reduced concurrency.

• Lower isolation ⇒ undesirable interaction.
SQL: READ UNCOMMITTED

< READ COMMITTED < REPEATABLE READ < SERIALIZABLE.
1/12



Goals of this Research

• In descriptions of the various isolation levels, it is typically assumed that
all transactions run at the same level.

Reality: Most DBMSs permit the selection of isolation level on a
per-transaction basis.

Goal 1 – mixed-level isolation: Develop a systematic model of the behavior
of transactions when different ones run at different levels of isolation.
Example: T1 runs under REPEATABLE READ while while T2 runs under

READ COMMITTED.
Local scope: READ COMMITTED and REPEATABLE READ are local in scope.

• They are properties of an individual transaction, depending only
upon that transaction and its relationship to concurrent neighbors.

Global scope: SERIALIZABLE is a property of a schedule of transactions.
• It makes no sense to say that an individual transaction is serializable.

Goal 2 – mixed-scope isolation: Develop a model in which SERIALIZABLE
isolation has meaning in a mixed-level setting.

2/12



The Object-Level Model of Transactions

T
tStart〈T 〉 tEnd〈T 〉

rT〈x〉 rT〈y〉 wT〈x〉

tReq
Read〈x〉〈T 〉 tReq

Read〈y〉〈T 〉 tReq
Write〈x〉〈T 〉

tRRWE
Read〈x〉〈T 〉 tRRWE

Read〈y〉〈T 〉 tRRWE
Write〈x〉〈T 〉tRBWE

Read〈x〉〈T 〉

tRBWE
Read〈y〉〈T 〉 tRBWE

Write〈x〉〈T 〉

• Each transaction T has a start time and an end time.
• Read and write operations are at the object level.

• Operations, but not the values, are modelled.
• Each read and each write operation has a request time.
• In a Teff-transaction 〈T, τ〉, each read and write operation also has an

effective time assignment τ , at which the global DBMS is read or written.
• τ = RRWE = read (at) request write (at) end.
• τ = RBWE = read (at) beginning write (at) end (snapshot read).

3/12



Conflict Classification

• Effective times are used in all three types of conflict:

〈T1, τ1〉
rw−→ 〈T2, τ2〉: T1 reads some x and T2 is the next writer of x .

〈T1, τ1〉
ww−−→ 〈T2, τ2〉: T1 writes some x and T2 is the next writer of x.

〈T1, τ1〉
wr−→ 〈T2, τ2〉: T1 is the last writer of some x before T2 reads x .

Forward edge: 〈T1, τ1〉
f :zz−−→ 〈T2, τ2〉 holds iff tEnd〈T1〉 < tEnd〈T2〉.

Backward edge: 〈T1, τ1〉
b:zz−−→ 〈T2, τ2〉 holds iff tEnd〈T2〉 < tEnd〈T1〉.

T1

T2

rT1
〈x〉

wT2
〈x〉

b:rw

Fact: Only rw-edges can be backward; ww- and wr-edges must be forward. 2

4/12



Modelling Isolation via Conflicts

• Common MVCC levels may be charaterized by two parameters.
Effective time assignment: RRWE (read at request, write at end)

RBWE (read at beginning, write at end)
Admissibility of concurrent edges: Only f :rw, b:rw, f :ww, f :wr possible.

Policy Eff. Time
Assign.

Admissibility of concurrent edge type
f :rw b:rw f :ww f :wr

RC RRWE Permitted Permitted Permitted Permitted
SI RBWE Permitted Permitted Prohibited Impossible

• First consider the single-mode situation, in which all transactions run at
the same level of isolation.

Read Committed (RC): RRWE + all edge types allowed.
READ COMMITTED in PostgreSQL.

Snapshot Isolation (SI): RBWE + f :ww prohibited; f :wr impossible.
REPEATABLE READ in PostgreSQL.

Question: How can this be extended to a mixed-mode setting?
5/12



Winners and Losers — FCW and FUW

• In a prohibited conflict, only the winner may commit.

T1

T2

wT1
〈x〉

wT2
〈x〉

First committer wins (FCW):
First updater wins (FUW): Use request time; for ww-conflicts only.

• Widely used in practice, including PostgreSQL.
• In mixed mode, the loser transaction may not have a prohibited edge.

Policy Eff. Time
Assign.

Admissibility of concurrent edge type for loser
f :rw b:rw f :ww f :wr

RC RRWE Permitted Permitted Permitted Permitted
SI RBWE Permitted Permitted Prohibited Impossible

6/12



Examples of Mixed-Level Isolation

T1

T2

wT1
〈x〉

wT2
〈x〉

• Under both FCW and FUW, T1 is the winner, T2 the loser.
• (Isolation〈T1〉 = RC), (Isolation〈T2〉 = SI) ⇒ T2 not allowed to commit.
• (Isolation〈T1〉 = SI), (Isolation〈T2〉 = RC) ⇒ both may commit.

• The loser transaction, running under RC, plays by its own set of
rules, which do not prohibit such concurrent writes.

Observation: It is not always that case that running a transaction under SI
will prevent concurrent writes of a data object.

Real world: This is how PostgreSQL (and other systems) implement
mixed-level isolation.

• Note that the write by T2 is not even known when T1 commits.
• Any “fix” would require that the transaction manager override the local

isolation policy of the loser.
7/12



Serializability Issues

Global scope: Recall that serializability is a global property, of a set of
transactions.
• It does not make sense to say that a single transaction is serializable.

Question: How does one integrate serializable, as an isolation level, with
local levels such as RC and SI?

Double-duty strategy: The (apparent) intent of the SQL standard was to
give SERIALIZABLE double duty.
Local duty: Provide so-called DEGREE 3 isolation.
Global duty: If all transactions are run under SERIALIZABLE, the result

should be serializable behavior.
D Unfortunately, running all transactions with DEGREE 3 isolation does

not ensure serializable behavior. §
Goal: Realize this double-duty strategy in another way.

8/12



Serializable-Generating and Serializable-Preserving Strategies

Serializable Generating (SerGen): An isolation level is SerGen if, whenever
all transactions are run at that level, the result is a serializable schedule.
D SerGen does not apply in a mixed-level setting.

Serializable Preserving (SerPres): An isolation level is SerPres if committing
a transaction at that level does not create any new nonserializable
behavior, regardless of the level at which the previously commited
transactions were run.
Conflict serializability: No cycles in the direct serialization graph (DSG),

defined by rw-, ww-, and wr -conflicts.
Observation: SerPres ⇒ SerGen. 2

SERIALIZABLE Policy DBMS SerGen SerPres
SSI PostgreSQL Yes No
SI Oracle, MySQL/MariaDB No No

Question: Are there useful SerPres strategies?
9/12



RCX and SIX: Examples of SerPres Isolation Levels

Observation: An isolation level which prohibits backward edges is SerPres. 2

DSG: Committed transactions 〈T, τ〉

f :−

b:rw

New SerPres local isolation levels:
Policy Eff. Time

Assign.
Admissibility of concurrent edge type for loser
f :rw b:rw f :ww f :wr

RCX RRWE Permitted Prohibited Permitted Permitted
SIX RBWE Permitted Prohibited Prohibited Impossible

Note: In RCX, prohibiting b:rw is all that is needed to achieve SerPres.
Advantage of RCX and SIX: They solve the mixed-scope problem.

• They provide a well-defined local isolation level, which may be mixed
with other levels in an understandable way (providing SerPres).

• When all transactions are run under RCX or SIX, they provide true
conflict-serializable isolation (SerGen).

10/12



RCX and SIX in Practice

Use in practice: The RDBMSs Pyrrho and StrongDBMS employ SIX to
implement SERIALIZABLE isolation.

SERIALIZABLE Policy DBMS SerGen SerPres
SSI PostgreSQL Yes No
SI Oracle, MySQL/MariaDB No No
SIX Pyrrho, StrongDBMS Yes Yes
RCX ? Yes Yes

Drawback: SIX involves strictly more false positives than SSI.
• RCX is incomparable to SSI in this regard.

Advantage: RCX and SIX provide meaningful isolation semantics in a
mixed-level setting, with simple semantics and implementation.

Question: Are RCX and SIX “good enough” in practice?
• The answer must come from benchmarking.
• Pyrrho seems to perform quite well.

Bottom line: RCX and SIX deserve further investigation as alternatives for
implementing SQL SERIALIZABLE isolation.

11/12



Conclusions and Further Directions

Conclusions: Two models have been developed for transaction isolation.
Mixed-level model: for local-scope isolation (RC, SI).

• Provides a firm foundation for understanding what to expect when
different transactions are run at different levels of isolation.

Mixed-scope model: for serializable isolation.
• Extends the global semantics of a serializable schedule by providing

meaningful semantics (serializable preserving) to individual
transactions running with isolation SERIALIZABLE,

• Even when others are running at other levels of isolation.
Further Directions:
• Experimental studies of the efficacy of RCX and SIX.
• Extension of the theoretical model to classical lock-based levels of

isolation (e.g., SS2PL).

12/12


