Integration Integrity for Multigranular Data

Stephen J. Hegner Umeå University, Sweden

M. Andrea Rodríguez University of Concepción, Chile

ADBIS 2016 20th East-European Conference on Advances in Databases and Information Systems Prague, Czech Republic 30 August 2016

The Consistency Problem for Data Integration

Task: Several source DBs are to be combined into a single integrated DB.

• Assume that each source DB is *locally consistent*.

Consistency problem: There may exist additional *global constraints* which apply when all source DBs are considered together.

Example constraint: $\sum_{i=1}^{k} x_i = x$.

- This constraint arises only in a context in which all data items in $\{x_1, x_2, \ldots, x_k, x\}$ occur.
 - In other words, only on the integrated DB.

Consistency of Multigranular Data

Disjointness constraints are central to this work:

• Chile is the disjoint union of its fifteen regions:

• Year 2014 is the disjoint union of its quarters:

$$\left| \bot \right|_{\mathsf{Time}} \{ Q \times Y2014 \mid 1 \le x \le 4 \} = Y2014$$

Consequences:

- $\sum_{i=1}^{15} n_i = b_1$ (constraint for integration of DB 1 and DB 2).
- $\sum_{i=1}^{3} b_i \leq b_{14}$ (constraint for integration of DB 2 and DB 3).
- Even to integrate just DB 1 and DB3, need $\sum_{i=1}^{15} n_i \leq b_{14}$ to hold.

The Concept of a TMCD

Source database 1		Sou	Source database 2			Source database 3			
Place	Time	Births	Place	Time	Births		Place	Time	Births
Reg_I	Q1Y2014	<i>n</i> ₁	Chile	Q1Y2014	b_1		Chile	Y2012	<i>b</i> ₁₂
Reg_II	Q1Y2014	<i>n</i> ₂	Chile	Q2Y2014	<i>b</i> ₂		Chile	Y2013	b ₁₃
			Chile	Q3Y2014	<i>b</i> ₃		Chile	Y2014	b_{14}
Reg_XV	Q1Y2014	n ₁₅	Chile	Q4Y2014	null		Chile	Y2015	b_{15}

- For simplicity, the source databases are assumed to have the same relational structure, but at different granularities.
- Thematic multigranular comparison dependencies: *TMCDs* generalize ordinary FDs for the multigranular framework.
 - The notation for an example *TMCD* is shown below.

variable fixed op is thematic
attribute attribute equality attribute
Place
$$\overrightarrow{\text{Time}} \stackrel{!}{\underset{(\perp,1)}{\overset{=}{\longrightarrow}}} \langle \text{Births:} \langle \theta, \Sigma, \tau \rangle \rangle$$

Form is thematic aggregation aggregation
 $\underset{\text{order operator tolerance}}{\overset{=}{\longrightarrow}} \langle \text{value} \rangle$

Modelling Multigranular Data — Granularities

- In the classical relational model, the attribute domains are *flat*.
- In the multigranular model, the attribute domains have partial-order (*poset*) structure.
- Granularities are the types, while granules are the domain values.

Example granularities for the attribute Place:

- Going up results in *coarser* granularity.
- There is always a coarsest granularity $\top.$
- Every nonempty set of granularities has at least on one minimal upper bound (MUB).
 - No other algebraic structure (join, meet, complement, \perp) is utilized.
 - An ordinary (flat) attribute is recaptured via just \top plus the single, main granularity.

Modelling Multigranular Data — Granules

- Shown is a small fragment of the granule structure for attribute Place.
- The poset is *bounded*: ⊥ and ⊤ are always present.

 There are three types of *rules*: Ordinary subsumption: *Concepción Province* ⊑ *Reg_VIII* Join: □_{Place} {*Reg_R* | *I* ≤ *R* ≤ *XV*} = *Chile* Binary disjunction: *Reg_R* ∧ *Reg_S* = ⊥
 |⊥| = | | + pairwise binary disjunction:

- The structure must complete to a *distributive* lattice.
- This is always satisfied in practice for spatio-temporal attributes.
- Join corresponds to union and meet to intersection in that case.

The Interaction of Granularities and Granules

- For granular attribute *A*, granules are assigned to granularities via a *granulated domain assignment*.
- GrtoDom_A(G) = granules of granularity G.
 Example: GrtoDom_{Place}(Region) = {Reg₋R | I ≤ R ≤ XV}.
- Granularity \top consists of granule \top .
- Every granule except ⊥ belongs to at least one granularity.
 Example: Concepción City = Concepción County (same granule).
- The granules GrtoDom_A(G) of a given granularity G are pairwise disjoint.
 Examples: Cities: Concepción ∧ Santiago = ⊥ Regions: Reg_VIII ∧ Reg_IX = ⊥
- Granularity order is induced by granule order.
 - $G_1 \sqsubseteq G_2 \Leftrightarrow$ $(\forall g_1 \in \operatorname{GrtoDom}_A(G_1))(\exists g_2 \in \operatorname{GrtoDom}_A(G_2))(g_1 \sqsubseteq g_2).$ Example: City \sqsubseteq Region since every city is contained in some region.

The Granular Structure of Thematic Attributes

• Classification of multigranular attributes:

Place	Time	Births
Reg_I	Q1Y2014	<i>n</i> ₁
Reg_II	Q1Y2014	n ₂
Reg_XV	Q1Y2014	n ₁₅

- Thematic attributes: Usually numerical; typically on RHS of dependency.

Dimension attributes: Usually spatial or temporal; typically on LHS of dependency.

- Both thematic and dimension attributes have granular structure, although it arises and is used in different ways.
- The values of thematic attributes often involve imprecision.
- General model: For each granularity, the numbers are partitioned into disjoint intervals.

Simple example: The intervals are defined by rounding.

One granularity for each *i*, 0 ≤ *i* ≤ *r*_{max}. with granularity *G*_{round_i} corresponding to rounding to the nearest 10^{*i*}.

Granules: $g_1 \sqsubseteq g_2$ iff g_1 (as an interval) is contained in interval g_2 . Granularities: $G_1 \sqsubseteq G_2$ iff every interval (granule) associated with G_1 is contained in an interval (granule) associated with G_2 .

Aggregation for Thematic Attributes

- A constraint may involve a sum from on source equalling a value from a second.
- To formalize this, *aggregation operators* are defined on thematic attributes.
- These operators must be monotonic with respect to the thematic order. Examples: summation, maximum
- - Additional nonnegative numbers cannot decrease the sum but they can decrease the average.

Coarsening maps a granule to the containing one of a coarser granularity.

• In this work, the use of coarsening is limited to thematic attributes.

Example:

- $G_{I_{100}} =$ Intervals of the form [n, n + 99] with $n \ge 0$ divisible by 100.
- $G_{I_{1000}}$ = Intervals of the form [n, n + 999] with $n \ge 0$ divisible by 1000.
 - Coarsen $\langle G_{l_{1000}}, [3100, 3199] \rangle = [3000, 3999].$
- Coarsen $\langle G, g \rangle$ need not exist, but when it does, it is unique.
- Principle: In general, for an aggregation operation to make sense, all operands must be of the same granularity.

Consequence: Coarsening must be applied to reduce operands to a common granularity.

Coarsening Tolerance for Thematic Attributes

Source database 1			
Place	Time	Births	
Reg_I	Q1Y2014	<i>n</i> ₁	
Reg_II	Q1Y2014	<i>n</i> ₂	
		\	
Reg_XV	Q1Y2014	n ₁₅	

$\sum_{i=1}^{15}$	ni		<i>b</i> ₁
		/	

Source database 2			
Place	Time	Births	
Chile	Q1Y2014	b_1	
Chile	Q2Y2014	b_2	
Chile	Q3Y2014	<i>b</i> ₃	
Chile	Q4Y2014	null	

- With data gathered from different sources, at different levels of aggregation, equality cannot be expected in general.
- The solution is to employ a *tolerance relation*.
- The values only need agree within a certain tolerance.
- The level of disagreement may depend upon the granularity of the thematic data.
- It may also depend upon the number of items in the aggregation.
- These ideas apply to inequality as well.

An Annotated Example TMCD

Source database 1				
Place	Time	Births		
Reg_I	Q1Y2014	<i>n</i> ₁		
Reg_II	Q1Y2014	<i>n</i> ₂		
Reg_XV	Q1Y2014	n ₁₅		

Place $\underline{\text{Time}} \xrightarrow{=}_{(\pm,1)} \langle \mathbf{E} \rangle$	$Births:\langle heta, \Sigma, au angle angle$
$\Box_{Place} \{ Reg_{-} R \mid I \leq I \}$	$R \leq XV\} = Chile$

Source database 2			
Place	Time	Births	
Chile	Q1Y2014	b_1	
Chile	Q2Y2014	<i>b</i> ₂	
Chile	Q3Y2014	b3	
Chile	Q4Y2014	null	

Tuples of correct type $(\forall T_1 \subseteq_f \operatorname{Tuples}\langle \alpha \rangle) (\forall t_2 \in \operatorname{Tuples}\langle \alpha \rangle)$ $\alpha = \text{common relation type}$ $(\forall G_1 \in \text{CoarsenSetMUB}_{\text{Births}} \langle \{t. \text{Births} \mid t \in T_1 \} \rangle)$ Find common granularity $(\forall G_2 \in \text{GranSetOf}_{\text{Births}} \langle t_2.\text{Births} \rangle)$ for birth values $(\forall G \in \mathsf{MUB} \langle \{G_1, G_2\} \rangle)$ $((\bigwedge R\langle t_1 \rangle) \land R\langle t_2 \rangle)$ Tuples in relations $t_1 \in T_1$ Time value is the same \land (\bigwedge (t_1 .Time = t_2 .Time)) in all tuples $t_1 \in T_1$ $T_1 = Reg_i \text{ tuples } \left\{ \land \left(\left(\bigsqcup_{t \in T_1} t_1. Place \right) = t_2. Place \right) \right. \\ t_2 = Chile \text{ tuple } \left\{ t_1 \in T_1 \right\}$ Place values match the governing rule $\Rightarrow \tau_{\mathsf{Births}}^{\langle \mathsf{G},\mathsf{Card}(\mathcal{T}_1)\rangle} \langle \mathsf{Coarsen}_{\mathsf{Births}} \langle \sum_{\mathsf{Births}}^{\mathsf{G}_1} \mathsf{Coarsen}_{\mathsf{Births}} \langle t_1.\mathsf{Births}, \mathsf{G}_1\rangle, \mathsf{G}\rangle, \mathsf{Coarsen}_{\mathsf{Births}} \langle t_2.\mathsf{Births}, \mathsf{G}\rangle\rangle)$ $t_1 \in T_1$ Aggregation Aggregation Coarsen sum Coarsen Coarsen at G1 Reg_R tuples to G_1 Chile tuples to G tolerance to G

Conclusions:

- Model for multigranular data: Extending the earlier work of Rodríguez and Bravo, and others, an extensive and formal model of multigranular attributes and relations has been developed.
- TMCDs: Within this multigranular framework, *thematic multigranular comparison dependencies*, which recapture constraints which arise when data of differing granularities are to be integrated, have been developed.

Further Directions:

- Data structures and algorithms: Although some initial ideas have been developed, it remains to develop detailed models for the data structures and algorithms which would underlie an efficient implementation.
 Implementation and performance studies: A priority is to build a prototype system to test the ideas.
- Elaboration of TMCDs: While TMCDs recapture common types of integration constraints, they are not complete. Further investigations are needed to identify other important types of constraints.