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The Consistency Problem for Data Integration
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Task: Several source DBs are to be combined into a single integrated DB.
e Assume that each source DB is locally consistent.
Consistency problem: There may exist additional global constraints which
apply when all source DBs are considered together.
Example constraint: Zf'(:l Xj = X.
e This constraint arises only in a context in which all data items in
{x1, X2, ..., Xk, x} occur.
e In other words, only on the integrated DB.
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Consistency of Multigranular Data

Source database 1 Source database 2 Source database 3
| Place [ Time [ pinhs Place [ Time r&hs Place [ Time | Births
[ Regl | Qiv2014]] ng | [“Chile | QLY. by Chile | Y2012] b
| Regll | QIY20i4 | np || L _Chile | Q2Y2014 | b» Chile | Y2013 | bys
[ . | L L Chile Q3Y2014 T b3 Tie bia
| RegXV.[ Q1Y2014 |\ s Chile | Q4Y2014 Chile | Y2015 bss
S \—/

Disjointness constraints are central to this work:
e Chile is the disjoint union of its fifteen regions:
leace{Reg,R | I < R < XV} = Chile
e Year 2014 is the disjoint union of its quarters:
HTime{QxY2014 |1 <x<4}=Y2014
Consequences:
o Z,lil n; = by (constraint for integration of DB 1 and DB 2).
° Z?:l b; < bia (constraint for integration of DB 2 and DB 3).

e Even to integrate just DB 1 and DB3, need .12, n; < by4 to hold.
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The Concept of a TMCD

Source database 1 Source database 2 Source database 3
Place | Time [ Births Place [ Time [ Births Place [ Time | Births
Reg_I Q1Y2014 ny Chile | Q1Y2014 by Chile | Y2012 | bia
Reg_Il Q1Y2014 ny Chile Q2Y2014 b Chile Y2013 | b3

o S . Chile Q3Y2014 bs Chile Y2014 | bia
Reg XV | Q1Y2014 nis Chile QR4Y2014 | null Chile Y2015 | bis

e For simplicity, the source databases are assumed to have the same
relational structure, but at different granularities.

Thematic multigranular comparison dependencies: TMCDs generalize
ordinary FDs for the multigranular framework.

e The notation for an example TMCD is shown below.

variable fixed op is thematic
attribute attribute equality attribute

hace 'Fime i> <Biéhs:<9,2,7’>)
AN

(L.1) yd
Form is / thematic aggregation aggregation
[)p,... (set) @ (value) order  operator  tolerance
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Modelling Multigranular Data — Granularities

e In the classical relational model, the attribute domains are flat.

e In the multigranular model, the attribute domains have partial-order
(poset) structure.

e Granularities are the types, while granules are the domain values.

Example granularities for the attribute Place:

T : . :
/ e Going up results in coarser granularity.
Ocean  Country e There is always a coarsest granularity T.
/ \ e Every nonempty set of granularities has at least
Region NatRegion  one minimal upper bound (MUB).

e No other algebraic structure (join, meet,
complement, L) is utilized.

c / \ . e An ordinary (flat) attribute is recaptured via just
ounty City . . )
T plus the single, main granularity.

Province
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Modelling Multigranular Data — Granules

| e Shown is a small fragment of the granule
structure for attribute Place.

e The poset is bounded: | and T are always

Reg.| --- Reg_VIll --- Reg XV present.
(Bio Bio)

Concepcién

e There are three types of rules:

Ordinary subsumption:

Province
I Concepcién Province T Reg_ VI
Concepcién . B ]
City/County JOIn' uPlace{Reg*R ’ I S R S XV} — Ch’/e

Binary disjunction: Reg.R A Reg S = L
+ | =] + pairwise binary disjunction:

|Yp... {Reg-R | I < R < XV} = Chile
e The structure must complete to a distributive lattice.
e This is always satisfied in practice for spatio-temporal attributes.

e Join corresponds to union and meet to intersection in that case.
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The Interaction of Granularities and Granules

e For granular attribute A, granules are assigned to granularities via a
granulated domain assignment.

e GrtoDoma(G) = granules of granularity G.
Example: GrtoDompjace(Region) = {Reg_-R | | < R < XV'}.

e Granularity T consists of granule T.

e Every granule except L belongs to at least one granularity.
Example: Concepcion City = Concepcién County (same granule).

e The granules GrtoDom(G) of a given granularity G are pairwise disjoint.
Examples: Cities: Concepcion A Santiago = |
Regions: Reg_VIII AN Reg_IX = L
e Granularity order is induced by granule order.
e GIC G &
(Vg1 € GrtoDoma(Gi))(3g2 € GrtoDoma(Gz))(g1 C g2).
Example: City C Region since every city is contained in some region.
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The Granular Structure of Thematic Attributes

e Classification of multigranular attributes:

Plac TnmeSfEIrthS}' Thematic attributes: Usually numerical;

Reg/ Q1Y2014 typically on RHS of dependency.
Reg_ll Q1Y2014 n2

Dimension attributes: Usually spatial or temporal;
Reg XV | QIY2014]| ms typically on LHS of dependency.

e Both thematic and dimension attributes have granular structure,
although it arises and is used in different ways.
e The values of thematic attributes often involve imprecision.
General model: For each granularity, the numbers are partitioned into
disjoint intervals.
Simple example: The intervals are defined by rounding.
e One granularity for each i, 0 < i < rnpax. with granularity Groung;
corresponding to rounding to the nearest 10'.
Granules: g1 C gy iff g1 (as an interval) is contained in interval g».
Granularities: Gy C Gy iff every interval (granule) associated with Gj is

contained in an interval :granule: associated with Go.



Attributes

Source database 1 Source database 2
Place ‘ Time ‘ Birshs Place ‘ Time ‘ Births
Reg ! | Q1Y2014 ] ni | b Chile | QIN20L4Y B>
Regll | Q1Y2014 || m 1 Chile | Q2Y2014| b

.. o - Chile Q3Y2014 bs
Reg XV | Q1Y2014 nis Chile Q4Y2014 | null
S

e A constraint may involve a sum from on source equalling a value from a
second.

e To formalize this, aggregation operators are defined on thematic
attributes.

e These operators must be monotonic with respect to the thematic order.
Examples: summation, maximum

® average is not a valid aggregation operator because averaging is not
monotonic in the required sense.
e Additional nonnegative numbers cannot decrease the sum but they
can decrease the average.
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Coarsening for Thematic Attributes

Coarsening maps a granule to the containing one of a coarser granularity.
e In this work, the use of coarsening is limited to thematic attributes.

Example:
Gl = Intervals of the form [n, n + 99] with n > 0 divisible by 100.
Ghooo = Intervals of the form [n, n + 999] with n > 0 divisible by 1000.

e Coarsen(Gj,,, [3100,3199]) = [3000,3999].
e Coarsen (G, g) need not exist, but when it does, it is unique.

Principle: In general, for an aggregation operation to make sense, all
operands must be of the same granularity.

Consequence: Coarsening must be applied to reduce operands to a common
granularity.

9/12



Coarsening Tolerance for Thematic Attributes

Source database 1 Source database 2
Place [ Time [ Births Place [ Time [ Births
Reg_| QIY2014 ] m 15 b Chile | Q1Y2014 | by
Reg Il | Q1Y2014| m Z i 1 Chile | Q2Y2014| by
Chile | Q3Y2014 b3
Chile | Q4Y2014 | null

Reg XV | Q1Y2014 | nis

e With data gathered from different gources, at different levels of
aggregation, equality cannot be expected in general.

e The solution is to employ a tolerarce relation.
e The values only need agree within|a certain tolerance.

e The level of disagreement may depend upon the granularity of the
thematic data.

e It may also depend upon the number of items in the aggregation.

e These ideas apply to inequality as well.



An Annotated Example TMCD

Source database 1 Source database 2
[ Place .| Time [ Births| Place Time —=» (Births: (6, 3%, 7)) | Place | Time [ Births|
Reg_| QIY2014| m +1 Chile | Q1Y2014| b
Reg_Il Q1Y2014 n ; Chile Q2Y2014 by
Ubace {Reg-R | 1 < R < XV} =Chile Chile | Q3Y2014| by
Reg XV | Q1Y2014 nis Chile Q4Y2014 | null
Tuples of correct type
(VT1 Cr Tuples(a))(Vt2 € Tuples(a)) } o = common relation type
(VGy € CoarsenSetMUBgihs ({ t.Births | t € T1}) Find .
Ind common granularity
(VGa € GranSetOfgjrths (t2.Births)) for birth values
(VG € MUB({ Gy, G2}))
( \ Rit)) n R(ta) } Tuples in relations
teTy
. - . Time value is the same
A( /\ (t1.Time = t.Time)) } in all tuples
teTy
T1 = Reg_i tuples [ A (( |i| t1.Place) = t,.Place) Place values match
t, = Chile tuple el the governing rule
= éﬁtfsrd(m (Coarsengiyths ( Zznhs(ﬁoarseng,nm(tl Births, G1), G), Coarsengirhs (t2.Births, G)))
/ teT \ /
Aggregation Coarsen sum  Aggregation Coarsen Coarsen
tolerance to G at Gy Reg_R tuples to Gy Chile tuples to G
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Conclusions and Further Directions

Conclusions:

Model for multigranular data: Extending the earlier work of Rodriguez and
Bravo, and others, an extensive and formal model of multigranular
attributes and relations has been developed.

TMCDs: Within this multigranular framework, thematic multigranular
comparison dependencies, which recapture constraints which arise when

data of differing granularities are to be integrated, have been developed.
Further Directions:

Data structures and algorithms: Although some initial ideas have been
developed, it remains to develop detailed models for the data structures
and algorithms which would underlie an efficient implementation.

Implementation and performance studies: A priority is to build a prototype
system to test the ideas.

Elaboration of TMCDs: While TMCDs recapture common types of

integration constraints, they are not complete. Further investigations are
needed to identify other important types of constraints.



