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e The classical solution to concurrency control is
Ti Ty - Tk

serializability of the schedule of operations.

e Roughly, serializability requires that the read and write operation
interleave as in some serial schedule.

Not OK: Read(T;, X) Read(T;, X) Write(T;,X) Write(T;,X)
e Operations on distinct data objects are never modelled as conflicting.
OK: Read(T;, X) Read(T;,Y) Write(T;,X) Write(T;,Y)

Questions: s this model adequate?
Can operations on distinct data objects be in conflict?
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Interdependent Data Objects

e In the presence of integrity constraints, non-overlapping data objects may
be interdependent.

Employee
e An example is defined by a foreign key EmpiD| ... | Dept
constraint.
T1: Delete the Research department (which has f—J
no employees assigned to it) DptiD| --- | ---
[modifies Department only]. Department

T,: Assign Alice to the Research department [modifies Employee only].

e Each of T; and T, may be run by itself with no violation of integrity
constraints.

e T7 and T, operate on distinct data objects yet cannot both be run, even
serially.

e Their overlap is only of a very limited read-only nature.



Solutions to the Management of Interdependent Updates

Classical solution:



Solutions to the Management of Interdependent Updates

Classical solution:

e The integrity of the overall update is checked at each commit.



Solutions to the Management of Interdependent Updates

Classical solution:
e The integrity of the overall update is checked at each commit.

e Inconsistency of potential commits resolved by aborting one or more
transactions.



Solutions to the Management of Interdependent Updates

Classical solution:
e The integrity of the overall update is checked at each commit.

e Inconsistency of potential commits resolved by aborting one or more
transactions.

e A locking protocol is employed to ensure that all access is authorized.



Solutions to the Management of Interdependent Updates

Classical solution:
e The integrity of the overall update is checked at each commit.

e Inconsistency of potential commits resolved by aborting one or more
transactions.

e A locking protocol is employed to ensure that all access is authorized.

Observations about situations with human interaction:



Solutions to the Management of Interdependent Updates

Classical solution:
e The integrity of the overall update is checked at each commit.

e Inconsistency of potential commits resolved by aborting one or more
transactions.

e A locking protocol is employed to ensure that all access is authorized.
Observations about situations with human interaction:

e Abort and re-run should only be used as a last resort.



Solutions to the Management of Interdependent Updates

Classical solution:
e The integrity of the overall update is checked at each commit.

e Inconsistency of potential commits resolved by aborting one or more
transactions.

e A locking protocol is employed to ensure that all access is authorized.
Observations about situations with human interaction:
e Abort and re-run should only be used as a last resort.

e Relative to computer speed, human decision making and interactive input
take a very long time.



Solutions to the Management of Interdependent Updates

Classical solution:
e The integrity of the overall update is checked at each commit.

e Inconsistency of potential commits resolved by aborting one or more
transactions.

e A locking protocol is employed to ensure that all access is authorized.
Observations about situations with human interaction:
e Abort and re-run should only be used as a last resort.

e Relative to computer speed, human decision making and interactive input
take a very long time.
= Justify increased preprocessing to minimize conflict in concurrency.



Solutions to the Management of Interdependent Updates

Classical solution:
e The integrity of the overall update is checked at each commit.

e Inconsistency of potential commits resolved by aborting one or more
transactions.

e A locking protocol is employed to ensure that all access is authorized.
Observations about situations with human interaction:
e Abort and re-run should only be used as a last resort.

e Relative to computer speed, human decision making and interactive input
take a very long time.
= Justify increased preprocessing to minimize conflict in concurrency.
= Claiming/locking of data objects as fine-grained as possible.
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Classical solution:
e The integrity of the overall update is checked at each commit.

e Inconsistency of potential commits resolved by aborting one or more
transactions.

e A locking protocol is employed to ensure that all access is authorized.
Observations about situations with human interaction:
e Abort and re-run should only be used as a last resort.

e Relative to computer speed, human decision making and interactive input
take a very long time.
= Justify increased preprocessing to minimize conflict in concurrency.
= Claiming/locking of data objects as fine-grained as possible.

Focus of this research:
e A fine-grained model of interdependence for data objects.
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Characterization of Independence for Two Data Objects

Main Schema

e The constant complement strategy is a
classical solution to the
view-update-translation problem.

e View 1 to be updated is matched with a
meet complement View 2 .

e Meet View 1 A View 2 held constant.

e A classical example is dependency-
preserving decomposition via a JD.

R[ABC]
X [AB, BC]

View 1 N 4 View 2
e The solution is actually symmetric.

e The two views may be updated independently.
e Think of View 1 and View 2 defining data

. View 1 A View 2
objects.

e They may be updated independently, in any order, provided that
View 1 A View 2 is held constant.
e This forms the basic idea for independent data objects.
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An Overview of the Algebra of Data Objects

e The idea of independence may be extended to many components.

e The idea is based upon database schema components and has roots in
classical pairwise definability.

e Each data object is a view of the main
schema.

e Each data object has zero or more
read-only sub-views called ports .

e Data objects overlap by sharing ports.
e Updates to a data object must keep the ports constant.
e Data objects may be combined to form larger objects.

e To obtain a write claim on a port, all basic components which share that
port must be combined into a larger complex object.
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Interdependent Data Objects in a Common Context

e It is important to show that these ideas may be concretized to common
DBMS contexts.

Model: The relational model is still by far the most widely used in DBMS.

Dependencies: Two forms of constraints dominate in practice:
FDs: Functional dependencies, in particular key dependencies.
FKDs: Foreign key dependencies, special case of inclusion dependencies.
Planes of decomposition: There are two important planes along which data
objects are constructed.
Vertical decomposition: Classical DB decomposition is based upon
projection .
Horizontal decomposition: Transactions often need to claim parts of the
DB based upon attribute selection o.
e The basic data objects represent parts of the DB obtained by operations
along both of these planes.

e The remainder of the talk will sketch how these goals are realized.
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Data Objects Defined by Vertical Decomposition

e The vertical plane of components is defined by standard pairwise
decomposition.

Example: R[ABCDE]; A— B, B — C, C — DE.

R[CD]

C—D
R[AB] ‘ R[BC]
A— B @ B— C @
. i R[CE]

C—~E

Additional requirement for data objects: Each component may be governed
by at most one (key) FD.

e This is accomplished via “redundant” decomposition.

)

R[ABC] RIBC R[BC]
Example: R[ABC], AB— C, C — B. |AB=C C->B

G

e These are object definitions, not materialized views!!
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Data Objects Defined by Horizontal Decomposition

Data objects defined by vertically (via
projection) are not adequate by themselves.
Each “vertical” projection is further divided
into “horizontal” selection slices, one for each
value of its key attribute(s).

Assumption: All domains are finite.

The port attributes are similarly divided.
Only selection on the key attribute(s) is used.
e By construction, only one (key) FD is

enforced in each object.
A workable definition of more general select
objects is difficult.
e This is not a shortcoming of this
particular approach.
e |dentifying the scope of updates with the
key not specified are difficult by nature.

R[AB]
A— B

U
O’B:b1 R[B]

..é

0a=a, RIAB] ] oB=5;R[B

UB:b,, R[B]

0B—p, R[B]

0 p—ay, RIAB] Ko 8—b; RIB

J

‘
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e Foreign-key dependencies require special attention.

e Consider the Employee-Department
example, with the foreign-key
constraint:

Employee[Dept] C Department[DptID]

e To accommodate this FK dependency,
the foreign key is included in the data
object containing the key and associated
attribute of the other relation.

e Any update to the key of the
Department relation also requires a
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constraint:

Employee[Dept] C Department[DptID]

e To accommodate this FK dependency,
the foreign key is included in the data
object containing the key and associated
attribute of the other relation.

e Any update to the key of the
Department relation also requires a
claim/lock on the foreign key in the
Employee relation, and conversely.

e These objects also divide horizontally.
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Independent Transactions

Model: Each transaction T claims a set Claim(T) of data objects.

Independence: Call aset £ = {Ty, Ty,..., Tp} independent if for any distinct
Ti, Tj € &, Claim(T;) and Claim(T;) have no ports in common.

Observation: If ¥ is independent, then its transactions may run with any
concurrency whatever
e yielding the same result, guaranteed to be globally consistent
provided that the transactions execute locally consistent updates. O

It is important to note that simply requiring data objects to be comprised
of physically disjoint tuples does not guarantee such consistency.

Independence is needed to guarantee such consistency.

Serializability limits operations on the same data object.

Indepdendence limits operations on distinct data objects.

Independence is a complement to serializability, not an alternative.
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Conclusions:

e A model of structured data objects which supports a notion of strong
independence has been developed.

o A key feature of the model is that each object has a writable area and a
read-only area.

e The objects may be combined to form larger objects.

e Distinct updates which respect this structure are guaranteed to result in a
legal database state.

Further Directions:

e Implementation on top of existing systems.

e Application to the concurrency problems in the context which motivated
this research:
Cooperative update: Updates which require the cooperation of many

actors/views.



