A Model of Independence and Overlap
for Transactions on Database Schemata

Stephen J. Hegner
Umea University
Department of Computing Science
SE-901 87 Umed, Sweden
hegner@cs.umu.se
http://www.cs.umu.se/ hegner

Serializability for Concurrency Control

e It is very common that transactions share access DB
to a database.

Ty Ty - Ty

Serializability for Concurrency Control

e It is very common that transactions share access DB
to a database.
e The classical solution to concurrency control is
Ti Ty - Tk

serializability of the schedule of operations.

Serializability for Concurrency Control

e It is very common that transactions share access DB
to a database.

e The classical solution to concurrency control is

serializability of the schedule of operations. 1 T Tk

e Roughly, serializability requires that the read and write operation
interleave as in some serial schedule.

Serializability for Concurrency Control

e It is very common that transactions share access DB
to a database.

e The classical solution to concurrency control is

serializability of the schedule of operations. 1 T Tk

e Roughly, serializability requires that the read and write operation
interleave as in some serial schedule.

Not OK: Read(T;, X) Read(T;, X) Write(T;,X) Write(T;,X)

Serializability for Concurrency Control

e It is very common that transactions share access DB
to a database.

e The classical solution to concurrency control is

serializability of the schedule of operations. 1 T Tk

e Roughly, serializability requires that the read and write operation
interleave as in some serial schedule.
Not OK: Read(T;,X) Read(Tj,X) Write(T;,X) Write(T}, X)

e Operations on distinct data objects are never modelled as conflicting.

Serializability for Concurrency Control

e It is very common that transactions share access DB
to a database.

e The classical solution to concurrency control is

serializability of the schedule of operations. 1 T Tk

e Roughly, serializability requires that the read and write operation
interleave as in some serial schedule.
Not OK: Read(T;,X) Read(Tj,X) Write(T;,X) Write(T;,X)
e Operations on distinct data objects are never modelled as conflicting.

OK: Read(T;, X) Read(T;,Y) Write(T;,X) Write(T;,Y)

Serializability for Concurrency Control

e It is very common that transactions share access DB
to a database.

e The classical solution to concurrency control is

serializability of the schedule of operations. 1 T Tk

e Roughly, serializability requires that the read and write operation
interleave as in some serial schedule.
Not OK: Read(T;, X) Read(T;, X) Write(T;,X) Write(T;,X)
e Operations on distinct data objects are never modelled as conflicting.
OK: Read(T;, X) Read(T;,Y) Write(T;,X) Write(T;,Y)

Questions: s this model adequate?

Serializability for Concurrency Control

e It is very common that transactions share access DB
to a database.
e The classical solution to concurrency control is
Ti Ty - Tk

serializability of the schedule of operations.

e Roughly, serializability requires that the read and write operation
interleave as in some serial schedule.

Not OK: Read(T;, X) Read(T;, X) Write(T;,X) Write(T;,X)
e Operations on distinct data objects are never modelled as conflicting.
OK: Read(T;, X) Read(T;,Y) Write(T;,X) Write(T;,Y)

Questions: s this model adequate?
Can operations on distinct data objects be in conflict?

Interdependent Data Objects

e In the presence of integrity constraints, non-overlapping data objects may
be interdependent.

Interdependent Data Objects

e In the presence of integrity constraints, non-overlapping data objects may

be interdependent. Employee
e An example is defined by a foreign key EmpiD| .. | Dept
constraint. |
DptiD| -« | --.
Department

Interdependent Data Objects

e In the presence of integrity constraints, non-overlapping data objects may

be interdependent. Employee
e An example is defined by a foreign key EmpiD| ... | Dept
constraint.
T1: Delete the Research department (which has L
no employees assigned to it) DptiD| --- | ---

[modifies Department only]. Department

Interdependent Data Objects

e In the presence of integrity constraints, non-overlapping data objects may
be interdependent. Employee
e An example is defined by a foreign key EmpiD| ... | Dept

constraint.
T1: Delete the Research department (which has L

no employees assigned to it) DptID
[modifies Department only]. Department

T,: Assign Alice to the Research department [modifies Employee only].

Interdependent Data Objects

e In the presence of integrity constraints, non-overlapping data objects may
be interdependent. Employee
e An example is defined by a foreign key EmpiD| ... | Dept

constraint.
T1: Delete the Research department (which has L

no employees assigned to it) DptID
[modifies Department only]. Department

T,: Assign Alice to the Research department [modifies Employee only].

e Each of T; and T, may be run by itself with no violation of integrity
constraints.

Interdependent Data Objects

e In the presence of integrity constraints, non-overlapping data objects may

be interdependent. Employee

e An example is defined by a foreign key EmpiD| ... | Dept
constraint.

T1: Delete the Research department (which has f—J
no employees assigned to it) DptiD| --- | ---
[modifies Department only]. Department

T,: Assign Alice to the Research department [modifies Employee only].
e Each of T; and T, may be run by itself with no violation of integrity
constraints.

e T7 and T, operate on distinct data objects yet cannot both be run, even
serially.

Interdependent Data Objects

e In the presence of integrity constraints, non-overlapping data objects may
be interdependent.

Employee
e An example is defined by a foreign key EmpiD| ... | Dept
constraint.
T1: Delete the Research department (which has f—J
no employees assigned to it) DptiD| --- | ---
[modifies Department only]. Department

T,: Assign Alice to the Research department [modifies Employee only].

e Each of T; and T, may be run by itself with no violation of integrity
constraints.

e T7 and T, operate on distinct data objects yet cannot both be run, even
serially.

e Their overlap is only of a very limited read-only nature.

Solutions to the Management of Interdependent Updates

Classical solution:

Solutions to the Management of Interdependent Updates

Classical solution:

e The integrity of the overall update is checked at each commit.

Solutions to the Management of Interdependent Updates

Classical solution:
e The integrity of the overall update is checked at each commit.

e Inconsistency of potential commits resolved by aborting one or more
transactions.

Solutions to the Management of Interdependent Updates

Classical solution:
e The integrity of the overall update is checked at each commit.

e Inconsistency of potential commits resolved by aborting one or more
transactions.

e A locking protocol is employed to ensure that all access is authorized.

Solutions to the Management of Interdependent Updates

Classical solution:
e The integrity of the overall update is checked at each commit.

e Inconsistency of potential commits resolved by aborting one or more
transactions.

e A locking protocol is employed to ensure that all access is authorized.

Observations about situations with human interaction:

Solutions to the Management of Interdependent Updates

Classical solution:
e The integrity of the overall update is checked at each commit.

e Inconsistency of potential commits resolved by aborting one or more
transactions.

e A locking protocol is employed to ensure that all access is authorized.
Observations about situations with human interaction:

e Abort and re-run should only be used as a last resort.

Solutions to the Management of Interdependent Updates

Classical solution:
e The integrity of the overall update is checked at each commit.

e Inconsistency of potential commits resolved by aborting one or more
transactions.

e A locking protocol is employed to ensure that all access is authorized.
Observations about situations with human interaction:
e Abort and re-run should only be used as a last resort.

e Relative to computer speed, human decision making and interactive input
take a very long time.

Solutions to the Management of Interdependent Updates

Classical solution:
e The integrity of the overall update is checked at each commit.

e Inconsistency of potential commits resolved by aborting one or more
transactions.

e A locking protocol is employed to ensure that all access is authorized.
Observations about situations with human interaction:
e Abort and re-run should only be used as a last resort.

e Relative to computer speed, human decision making and interactive input
take a very long time.
= Justify increased preprocessing to minimize conflict in concurrency.

Solutions to the Management of Interdependent Updates

Classical solution:
e The integrity of the overall update is checked at each commit.

e Inconsistency of potential commits resolved by aborting one or more
transactions.

e A locking protocol is employed to ensure that all access is authorized.
Observations about situations with human interaction:
e Abort and re-run should only be used as a last resort.

e Relative to computer speed, human decision making and interactive input
take a very long time.
= Justify increased preprocessing to minimize conflict in concurrency.
= Claiming/locking of data objects as fine-grained as possible.

Solutions to the Management of Interdependent Updates

Classical solution:
e The integrity of the overall update is checked at each commit.

e Inconsistency of potential commits resolved by aborting one or more
transactions.

e A locking protocol is employed to ensure that all access is authorized.
Observations about situations with human interaction:
e Abort and re-run should only be used as a last resort.

e Relative to computer speed, human decision making and interactive input
take a very long time.
= Justify increased preprocessing to minimize conflict in concurrency.
= Claiming/locking of data objects as fine-grained as possible.

Focus of this research:
e A fine-grained model of interdependence for data objects.

Characterization of Independence for Two Data Objects

Main Schema
e The constant complement strategy is a

classical solution to the
view-update-translation problem.

Characterization of Independence for Two Data Objects

Main Schema
e The constant complement strategy is a

classical solution to the
view-update-translation problem.
e View 1 to be updated

View 1

Characterization of Independence for Two Data Objects

Main Schema
e The constant complement strategy is a

classical solution to the
view-update-translation problem.

e View 1 to be updated is matched with a
meet complement View 2 .

View 1 View 2

Characterization of Independence for Two Data Objects

Main Schema
e The constant complement strategy is a

classical solution to the
view-update-translation problem.

e View 1 to be updated is matched with a
meet complement View 2 .

o Meet View 1 A View 2 held constant.

View 1 N 4 View 2

View 1 A View 2

Characterization of Independence for Two Data Objects

Main Schema

e The constant complement strategy is a
classical solution to the
view-update-translation problem.

e View 1 to be updated is matched with a
meet complement View 2 .

e Meet View 1 A View 2 held constant.

e A classical example is dependency-
preserving decomposition via a JD.

R[ABC]
X [AB, BC]

View 1 N 4 View 2

View 1 A View 2

Characterization of Independence for Two Data Objects

Main Schema

e The constant complement strategy is a
classical solution to the
view-update-translation problem.

e View 1 to be updated is matched with a
meet complement View 2 .

e Meet View 1 A View 2 held constant.

e A classical example is dependency-
preserving decomposition via a JD.

R[ABC]
X [AB, BC]

View 1 N 4 View 2
e The solution is actually symmetric.

View 1 A View 2

Characterization of Independence for Two Data Objects

Main Schema

e The constant complement strategy is a
classical solution to the
view-update-translation problem.

e View 1 to be updated is matched with a
meet complement View 2 .

e Meet View 1 A View 2 held constant.

e A classical example is dependency-
preserving decomposition via a JD.

R[ABC]
X [AB, BC]

View 1 N 4 View 2
e The solution is actually symmetric.
e The two views may be updated independently.

View 1 A View 2

Characterization of Independence for Two Data Objects

Main Schema

The constant complement strategy is a
classical solution to the
view-update-translation problem.

R[ABC]
X [AB, BC]
View 1 to be updated is matched with a
meet complement View 2 .

Meet View 1 A View 2 held constant.

A classical example is dependency-
preserving decomposition via a JD. View 1 N 4 View 2
The solution is actually symmetric.

The two views may be updated independently.
Think of View 1 and View 2 defining data

. View 1 A View 2
objects.

Characterization of Independence for Two Data Objects

Main Schema

e The constant complement strategy is a
classical solution to the
view-update-translation problem.

e View 1 to be updated is matched with a
meet complement View 2 .

e Meet View 1 A View 2 held constant.

e A classical example is dependency-
preserving decomposition via a JD.

R[ABC]
X [AB, BC]

View 1 N 4 View 2

e The solution is actually symmetric.

e The two views may be updated independently.

e Think of View 1 and View 2 defining data
objects.

e They may be updated independently, in any order, provided that
View 1 A View 2 is held constant.

View 1 A View 2

Characterization of Independence for Two Data Objects

Main Schema

e The constant complement strategy is a
classical solution to the
view-update-translation problem.

e View 1 to be updated is matched with a
meet complement View 2 .

e Meet View 1 A View 2 held constant.

e A classical example is dependency-
preserving decomposition via a JD.

R[ABC]
X [AB, BC]

View 1 N 4 View 2
e The solution is actually symmetric.

e The two views may be updated independently.
e Think of View 1 and View 2 defining data

. View 1 A View 2
objects.

e They may be updated independently, in any order, provided that
View 1 A View 2 is held constant.
e This forms the basic idea for independent data objects.

An Overview of the Algebra of Data Objects

e The idea of independence may be extended to many components.

An Overview of the Algebra of Data Objects

e The idea of independence may be extended to many components.

e The idea is based upon database schema components and has roots in
classical pairwise definability.

An Overview of the Algebra of Data Objects

e The idea of independence may be extended to many components.

e The idea is based upon database schema components and has roots in
classical pairwise definability.

e Each data object is a view of the main |:| |:|
schema.
[]
[] []

An Overview of the Algebra of Data Objects

e The idea of independence may be extended to many components.

e The idea is based upon database schema components and has roots in
classical pairwise definability.

e Each data object is a view of the main
schema.
e Each data object has zero or more

read-only sub-views called ports .

An Overview of the Algebra of Data Objects

e The idea of independence may be extended to many components.

e The idea is based upon database schema components and has roots in
classical pairwise definability.

e Each data object is a view of the main
schema.

e Each data object has zero or more
read-only sub-views called ports .

e Data objects overlap by sharing ports.

An Overview of the Algebra of Data Objects

e The idea of independence may be extended to many components.

e The idea is based upon database schema components and has roots in
classical pairwise definability.

e Each data object is a view of the main
schema.

e Each data object has zero or more
read-only sub-views called ports .

e Data objects overlap by sharing ports.

e Updates to a data object must keep the ports constant.

An Overview of the Algebra of Data Objects

e The idea of independence may be extended to many components.

e The idea is based upon database schema components and has roots in
classical pairwise definability.

e Each data object is a view of the main
schema.

e Each data object has zero or more
read-only sub-views called ports .

e Data objects overlap by sharing ports.
e Updates to a data object must keep the ports constant.

e Data objects may be combined to form larger objects.

An Overview of the Algebra of Data Objects

e The idea of independence may be extended to many components.

e The idea is based upon database schema components and has roots in
classical pairwise definability.

e Each data object is a view of the main
schema.

e Each data object has zero or more
read-only sub-views called ports .

e Data objects overlap by sharing ports.
e Updates to a data object must keep the ports constant.
e Data objects may be combined to form larger objects.

e To obtain a write claim on a port, all basic components which share that
port must be combined into a larger complex object.

511

Interdependent Data Objects in a Common Context

e It is important to show that these ideas may be concretized to common
DBMS contexts.

Interdependent Data Objects in a Common Context

e It is important to show that these ideas may be concretized to common
DBMS contexts.

Model: The relational model is still by far the most widely used in DBMS.

Interdependent Data Objects in a Common Context

e It is important to show that these ideas may be concretized to common
DBMS contexts.

Model: The relational model is still by far the most widely used in DBMS.

Dependencies: Two forms of constraints dominate in practice:

Interdependent Data Objects in a Common Context

e It is important to show that these ideas may be concretized to common
DBMS contexts.

Model: The relational model is still by far the most widely used in DBMS.

Dependencies: Two forms of constraints dominate in practice:
FDs: Functional dependencies, in particular key dependencies.

Interdependent Data Objects in a Common Context

e It is important to show that these ideas may be concretized to common
DBMS contexts.
Model: The relational model is still by far the most widely used in DBMS.
Dependencies: Two forms of constraints dominate in practice:
FDs: Functional dependencies, in particular key dependencies.
FKDs: Foreign key dependencies, special case of inclusion dependencies.

Interdependent Data Objects in a Common Context

e It is important to show that these ideas may be concretized to common
DBMS contexts.
Model: The relational model is still by far the most widely used in DBMS.
Dependencies: Two forms of constraints dominate in practice:
FDs: Functional dependencies, in particular key dependencies.
FKDs: Foreign key dependencies, special case of inclusion dependencies.
Planes of decomposition: There are two important planes along which data
objects are constructed.

Interdependent Data Objects in a Common Context

e It is important to show that these ideas may be concretized to common
DBMS contexts.

Model: The relational model is still by far the most widely used in DBMS.

Dependencies: Two forms of constraints dominate in practice:
FDs: Functional dependencies, in particular key dependencies.
FKDs: Foreign key dependencies, special case of inclusion dependencies.
Planes of decomposition: There are two important planes along which data
objects are constructed.
Vertical decomposition: Classical DB decomposition is based upon
projection .

Interdependent Data Objects in a Common Context

e It is important to show that these ideas may be concretized to common
DBMS contexts.

Model: The relational model is still by far the most widely used in DBMS.

Dependencies: Two forms of constraints dominate in practice:
FDs: Functional dependencies, in particular key dependencies.
FKDs: Foreign key dependencies, special case of inclusion dependencies.

Planes of decomposition: There are two important planes along which data
objects are constructed.
Vertical decomposition: Classical DB decomposition is based upon
projection .
Horizontal decomposition: Transactions often need to claim parts of the
DB based upon attribute selection o.

Interdependent Data Objects in a Common Context

e It is important to show that these ideas may be concretized to common
DBMS contexts.

Model: The relational model is still by far the most widely used in DBMS.

Dependencies: Two forms of constraints dominate in practice:
FDs: Functional dependencies, in particular key dependencies.
FKDs: Foreign key dependencies, special case of inclusion dependencies.

Planes of decomposition: There are two important planes along which data
objects are constructed.
Vertical decomposition: Classical DB decomposition is based upon
projection .
Horizontal decomposition: Transactions often need to claim parts of the
DB based upon attribute selection o.

e The basic data objects represent parts of the DB obtained by operations
along both of these planes.

Interdependent Data Objects in a Common Context

e It is important to show that these ideas may be concretized to common
DBMS contexts.

Model: The relational model is still by far the most widely used in DBMS.

Dependencies: Two forms of constraints dominate in practice:
FDs: Functional dependencies, in particular key dependencies.
FKDs: Foreign key dependencies, special case of inclusion dependencies.
Planes of decomposition: There are two important planes along which data
objects are constructed.
Vertical decomposition: Classical DB decomposition is based upon
projection .
Horizontal decomposition: Transactions often need to claim parts of the
DB based upon attribute selection o.
e The basic data objects represent parts of the DB obtained by operations
along both of these planes.

e The remainder of the talk will sketch how these goals are realized.

611

Data Objects Defined by Vertical Decomposition

e The vertical plane of components is defined by standard pairwise
decomposition.

Data Objects Defined by Vertical Decomposition

e The vertical plane of components is defined by standard pairwise
decomposition.

Example: R[ABCDE]; A— B, B — C, C — DE.

Data Objects Defined by Vertical Decomposition

e The vertical plane of components is defined by standard pairwise
decomposition.

Example: R[ABCDE]; A— B, B — C, C — DE.

R[CD]

C—D
R[AB] R[BC] —
R[CE]

C—~E

Data Objects Defined by Vertical Decomposition

e The vertical plane of components is defined by standard pairwise
decomposition.

Example: R[ABCDE]; A— B, B — C, C — DE.

R[CD]

C—D
R[AB] ‘ R[BC]
A— B @ B— C @
. i R[CE]

C—~E

Additional requirement for data objects: Each component may be governed
by at most one (key) FD.

Data Objects Defined by Vertical Decomposition

e The vertical plane of components is defined by standard pairwise
decomposition.

Example: R[ABCDE]; A— B, B — C, C — DE.

R[CD]

C—D
R[AB] ‘ R[BC] ‘
A— B @ B— C @

R[CE]
C—~E

Additional requirement for data objects: Each component may be governed
by at most one (key) FD.

e This is accomplished via “redundant” decomposition.

Data Objects Defined by Vertical Decomposition

e The vertical plane of components is defined by standard pairwise
decomposition.

Example: R[ABCDE]; A— B, B — C, C — DE.

R[CD]

C—D
R[AB] ‘ R[BC] ‘
A— B @ B— C @

R[CE]
C—~E

Additional requirement for data objects: Each component may be governed
by at most one (key) FD.

e This is accomplished via “redundant” decomposition.

Example: R[ABC], AB— C, C — B.

Data Objects Defined by Vertical Decomposition

e The vertical plane of components is defined by standard pairwise
decomposition.

Example: R[ABCDE]; A— B, B — C, C — DE.

R[CD]

C—D
R[AB] ‘ R[BC]
A— B @ B— C @
. i R[CE]

C—~E

Additional requirement for data objects: Each component may be governed
by at most one (key) FD.

e This is accomplished via “redundant” decomposition.

RIABC] @ RIBC]
Example: R[ABC], AB— C, C — B. |AB=C u C->B

Data Objects Defined by Vertical Decomposition

e The vertical plane of components is defined by standard pairwise
decomposition.

Example: R[ABCDE]; A— B, B — C, C — DE.

R[CD]

C—D
R[AB] ‘ R[BC]
A— B @ B— C @
. i R[CE]

C—~E

Additional requirement for data objects: Each component may be governed
by at most one (key) FD.

e This is accomplished via “redundant” decomposition.

)

R[ABC] RIBC R[BC]
Example: R[ABC], AB— C, C — B. |AB=C C->B

G

e These are object definitions, not materialized views!!

Data Objects Defined by Horizontal Decomposition
e Data objects defined by vertically (via If[iBé

projection) are not adequate by themselves.

Data Objects Defined by Horizontal Decomposition
e Data objects defined by vertically (via If[iBé

projection) are not adequate by themselves.

e Each “vertical” projection is further divided u
into “horizontal” selection slices, one for each
value of its key attribute(s).

OA=a, R[AB]

0a=a, R[AB]

Data Objects Defined by Horizontal Decomposition
e Data objects defined by vertically (via If[iBé

projection) are not adequate by themselves.

e Each “vertical” projection is further divided u

into “horizontal” selection slices, one for each
value of its key attribute(s).

Assumption: All domains are finite. 0A—ay RIAB]

0a=a, R[AB]

Data Objects Defined by Horizontal Decomposition

e Data objects defined by vertically (via 5[':3‘513
projection) are not adequate by themselves.
e Each “vertical” projection is further divided u
into “horizontal” selection slices, one for each
value of its key attribute(s). :
Assumption: All domains are finite. 0 A—ay RIAB]

e The port attributes are similarly divided. :
oB=b, R[B]

oB—p, R[B]

0a—a, RIAB] K oB=5; R[B

o—p, R[B]

‘

Data Objects Defined by Horizontal Decomposition

Data objects defined by vertically (via
projection) are not adequate by themselves.
Each “vertical” projection is further divided
into “horizontal” selection slices, one for each
value of its key attribute(s).

Assumption: All domains are finite.
The port attributes are similarly divided.
Only selection on the key attribute(s) is used.

R[AB]
A— B

U
O’B:b1 R[B]

.@

0a=a, RIAB]] oB=5;R[B

UB:b,, R[B]

0B—p, R[B]

0a—a, RIAB] K oB=5; R[B

o—p, R[B]

‘

Data Objects Defined by Horizontal Decomposition

Data objects defined by vertically (via
projection) are not adequate by themselves.
Each “vertical” projection is further divided
into “horizontal” selection slices, one for each
value of its key attribute(s).

Assumption: All domains are finite.

The port attributes are similarly divided.
Only selection on the key attribute(s) is used.
e By construction, only one (key) FD is

enforced in each object.

R[AB]
A— B

U
O’B:b1 R[B]

.@

0a=a, RIAB]] oB=5;R[B

UB:b,, R[B]

0B—p, R[B]

0a—a, RIAB] K oB=5; R[B

o—p, R[B]

‘

Data Objects Defined by Horizontal Decomposition

Data objects defined by vertically (via
projection) are not adequate by themselves.
Each “vertical” projection is further divided
into “horizontal” selection slices, one for each
value of its key attribute(s).

Assumption: All domains are finite.
The port attributes are similarly divided.

Only selection on the key attribute(s) is used.

e By construction, only one (key) FD is
enforced in each object.
A workable definition of more general select
objects is difficult.

R[AB]
A— B

U
oB—p, R[B]

.@

0A=a; RIAB] W oB=h; R[B

b, R[B]

oB—p, R[B]

0a—a, RIAB] K oB=5; R[B

o—p, R[B]

‘

Data Objects Defined by Horizontal Decomposition

Data objects defined by vertically (via
projection) are not adequate by themselves.
Each “vertical” projection is further divided
into “horizontal” selection slices, one for each
value of its key attribute(s).

Assumption: All domains are finite.
The port attributes are similarly divided.

Only selection on the key attribute(s) is used.

e By construction, only one (key) FD is
enforced in each object.
A workable definition of more general select
objects is difficult.
e This is not a shortcoming of this
particular approach.

R[AB]
A— B

U
oB—p, R[B]

.@

0A=a; RIAB] W oB=h; R[B

b, R[B]

oB—p, R[B]

0a—a, RIAB] K oB=5; R[B

o—p, R[B]

‘

Data Objects Defined by Horizontal Decomposition

Data objects defined by vertically (via
projection) are not adequate by themselves.
Each “vertical” projection is further divided
into “horizontal” selection slices, one for each
value of its key attribute(s).

Assumption: All domains are finite.

The port attributes are similarly divided.
Only selection on the key attribute(s) is used.
e By construction, only one (key) FD is

enforced in each object.
A workable definition of more general select
objects is difficult.
e This is not a shortcoming of this
particular approach.
e |dentifying the scope of updates with the
key not specified are difficult by nature.

R[AB]
A— B

U
O’B:b1 R[B]

..é

0a=a, RIAB]] oB=5;R[B

UB:b,, R[B]

0B—p, R[B]

0 p—ay, RIAB] Ko 8—b; RIB

J

‘

o—p, R[B]

Managing Foreign-Key Dependencies

e Foreign-key dependencies require special attention.

Managing Foreign-Key Dependencies

e Foreign-key dependencies require special attention.

Employee
e Consider the Employee-Department EmpiD| ... | Dept
example, with the foreign-key —
constraint: {—J
Employee[Dept] C Department[DptID] DotiD| Loc | ...
Department

Managing Foreign-Key Dependencies

e Foreign-key dependencies require special attention.

e Consider the Employee-Department
example, with the foreign-key
constraint:

Employee[Dept] C Department[DptID]

e To accommodate this FK dependency,
the foreign key is included in the data
object containing the key and associated
attribute of the other relation.

Employee
EmpID]| ... Dept
DptID| Loc o
Department

Dept[DptID, Loc], Emp[Dept]
DptID — Loc, Emp[Dept] C Dept[DptID]

I
Emp|[Dept]

Emp[EmpID, Dept] EmpID — Dept

Managing Foreign-Key Dependencies

e Foreign-key dependencies require special attention.

e Consider the Employee-Department
example, with the foreign-key
constraint:

Employee[Dept] C Department[DptID]

e To accommodate this FK dependency,
the foreign key is included in the data
object containing the key and associated
attribute of the other relation.

e Any update to the key of the
Department relation also requires a
claim/lock on the foreign key in the
Employee relation, and conversely.

Employee

EmpID| ... Dept
DptID| Loc
Department

Dept[DptID, Loc], Emp[Dept]
DptID — Loc, Emp[Dept] C Dept[DptID]

I
Emp|[Dept]

Emp[EmpID, Dept] EmpID — Dept

Managing Foreign-Key Dependencies

e Foreign-key dependencies require special attention.

e Consider the Employee-Department
example, with the foreign-key
constraint:

Employee[Dept] C Department[DptID]

e To accommodate this FK dependency,
the foreign key is included in the data
object containing the key and associated
attribute of the other relation.

e Any update to the key of the
Department relation also requires a
claim/lock on the foreign key in the
Employee relation, and conversely.

e These objects also divide horizontally.

Employee

EmpID| ... Dept
DptID| Loc
Department

Dept[DptID, Loc], Emp[Dept]
DptID — Loc, Emp[Dept] C Dept[DptID]

I
Emp|[Dept]

Emp[EmpID, Dept] EmpID — Dept

Independent Transactions

Model: Each transaction T claims a set Claim(T) of data objects.

Independent Transactions

Model: Each transaction T claims a set Claim(T) of data objects.

Independence: Call aset £ = {Ty, Ty,..., Tp} independent if for any distinct
Ti, Tj € &, Claim(T;) and Claim(T;) have no ports in common.

Independent Transactions

Model: Each transaction T claims a set Claim(T) of data objects.

Independence: Call aset £ = {Ty, Ty,..., Tp} independent if for any distinct
Ti, Tj € &, Claim(T;) and Claim(T;) have no ports in common.

Observation: If ¥ is independent, then its transactions may run with any
concurrency whatever

Independent Transactions

Model: Each transaction T claims a set Claim(T) of data objects.
Independence: Call aset £ = {Ty, Ty,..., Tp} independent if for any distinct
Ti, Tj € &, Claim(T;) and Claim(T;) have no ports in common.

Observation: If ¥ is independent, then its transactions may run with any
concurrency whatever
e yielding the same result, guaranteed to be globally consistent
provided that the transactions execute locally consistent updates. O

Independent Transactions

Model: Each transaction T claims a set Claim(T) of data objects.
Independence: Call aset £ = {Ty, Ty,..., Tp} independent if for any distinct
Ti, Tj € &, Claim(T;) and Claim(T;) have no ports in common.

Observation: If ¥ is independent, then its transactions may run with any
concurrency whatever
e yielding the same result, guaranteed to be globally consistent
provided that the transactions execute locally consistent updates. O

e It is important to note that simply requiring data objects to be comprised
of physically disjoint tuples does not guarantee such consistency.

Independent Transactions

Model: Each transaction T claims a set Claim(T) of data objects.

Independence: Call aset £ = {Ty, Ty,..., Tp} independent if for any distinct
Ti, Tj € &, Claim(T;) and Claim(T;) have no ports in common.

Observation: If ¥ is independent, then its transactions may run with any
concurrency whatever
e yielding the same result, guaranteed to be globally consistent
provided that the transactions execute locally consistent updates. O

e It is important to note that simply requiring data objects to be comprised
of physically disjoint tuples does not guarantee such consistency.

e Independence is needed to guarantee such consistency.

Independent Transactions

Model: Each transaction T claims a set Claim(T) of data objects.

Independence: Call aset £ = {Ty, Ty,..., Tp} independent if for any distinct
Ti, Tj € &, Claim(T;) and Claim(T;) have no ports in common.

Observation: If ¥ is independent, then its transactions may run with any
concurrency whatever
e yielding the same result, guaranteed to be globally consistent
provided that the transactions execute locally consistent updates. O

e It is important to note that simply requiring data objects to be comprised
of physically disjoint tuples does not guarantee such consistency.

e Independence is needed to guarantee such consistency.

e Serializability limits operations on the same data object.

Independent Transactions

Model: Each transaction T claims a set Claim(T) of data objects.

Independence: Call aset £ = {Ty, Ty,..., Tp} independent if for any distinct
Ti, Tj € &, Claim(T;) and Claim(T;) have no ports in common.

Observation: If ¥ is independent, then its transactions may run with any
concurrency whatever
e yielding the same result, guaranteed to be globally consistent
provided that the transactions execute locally consistent updates. O

It is important to note that simply requiring data objects to be comprised
of physically disjoint tuples does not guarantee such consistency.

Independence is needed to guarantee such consistency.

Serializability limits operations on the same data object.

Indepdendence limits operations on distinct data objects.

Independent Transactions

Model: Each transaction T claims a set Claim(T) of data objects.

Independence: Call aset £ = {Ty, Ty,..., Tp} independent if for any distinct
Ti, Tj € &, Claim(T;) and Claim(T;) have no ports in common.

Observation: If ¥ is independent, then its transactions may run with any
concurrency whatever
e yielding the same result, guaranteed to be globally consistent
provided that the transactions execute locally consistent updates. O

It is important to note that simply requiring data objects to be comprised
of physically disjoint tuples does not guarantee such consistency.

Independence is needed to guarantee such consistency.

Serializability limits operations on the same data object.

Indepdendence limits operations on distinct data objects.

Independence is a complement to serializability, not an alternative.

Conclusions and Further Directions

Conclusions:

e A model of structured data objects which supports a notion of strong
independence has been developed.

Further Directions:

Conclusions and Further Directions

Conclusions:

e A model of structured data objects which supports a notion of strong
independence has been developed.

o A key feature of the model is that each object has a writable area and a
read-only area.

Further Directions:

Conclusions and Further Directions

Conclusions:

e A model of structured data objects which supports a notion of strong
independence has been developed.

o A key feature of the model is that each object has a writable area and a
read-only area.

e The objects may be combined to form larger objects.

Further Directions:

Conclusions and Further Directions

Conclusions:

e A model of structured data objects which supports a notion of strong
independence has been developed.

o A key feature of the model is that each object has a writable area and a
read-only area.

e The objects may be combined to form larger objects.

e Distinct updates which respect this structure are guaranteed to result in a
legal database state.

Further Directions:

Conclusions and Further Directions

Conclusions:

e A model of structured data objects which supports a notion of strong
independence has been developed.

o A key feature of the model is that each object has a writable area and a
read-only area.

e The objects may be combined to form larger objects.

e Distinct updates which respect this structure are guaranteed to result in a
legal database state.

Further Directions:

e Implementation on top of existing systems.

Conclusions and Further Directions

Conclusions:

e A model of structured data objects which supports a notion of strong
independence has been developed.

o A key feature of the model is that each object has a writable area and a
read-only area.

e The objects may be combined to form larger objects.

e Distinct updates which respect this structure are guaranteed to result in a
legal database state.

Further Directions:

e Implementation on top of existing systems.

e Application to the concurrency problems in the context which motivated
this research:

Conclusions and Further Directions

Conclusions:

e A model of structured data objects which supports a notion of strong
independence has been developed.

o A key feature of the model is that each object has a writable area and a
read-only area.

e The objects may be combined to form larger objects.

e Distinct updates which respect this structure are guaranteed to result in a
legal database state.

Further Directions:

e Implementation on top of existing systems.

e Application to the concurrency problems in the context which motivated
this research:
Cooperative update: Updates which require the cooperation of many

actors/views.

