
Invariance Properties of the
Constant-Complement View-Update Strategy

Stephen J. Hegner

Ume̊a University, Department of Computing Science
SE-901 87 Ume̊a, Sweden

hegner@cs.umu.se http://www.cs.umu.se/~hegner

Abstract. The constant-complement approach is one of the principal
strategies for defining the reflections of database view updates. The pur-
pose of this paper is twofold. First, a self-contained presentation of the
strategy itself is given. Second, two fundamental invariance problems
are examined. Admissibility invariance addresses the question of when
the translatability of a view update is independent of the view state.
Reflection invariance addresses the question of when a view update is
independent of the choice of complement. In addition to a summary of
existing results for both forms of invariance, new results for reflection
invariance are presented.

1 Introduction

To illustrate the main ideas of this paper, it is convenient to begin with a very
small database schema E0 which involves only four data items, a, b, c, and
d. A database of E0 is any subset of {a, b, c, d}; thus, E0 has exactly sixteen
possible databases. For simplicity, a nonempty subset of {a, b, c, d} is written as
the concatenation of its elements, in lexicographic order. For example, acd is
shorthand for {a, c, d}. To avoid confusion, the symbol ∅, rather than the empty
string, is used to denote the empty subset of {a, b, c, d}.

Database schemata typically include constraints which limit the databases
which are allowed. For this simple example, the only constraint is that b and
d must occur together. More formally, LDB(E0) = {∅, a, c, ac, bd , bcd , abd , abcd}
denotes the set of legal databases of E0; that is, those databases which satisfy the
constraint that b and d must occur together or not at all. A state of a database
schema is a legal database.

Virtually all modern database-management systems provide views, or win-
dows on the database. Such windows provide partial, but generally not total,
information about the state of the main schema. For the example schema E0,
the view Ω0 = (W0, ω0), which retains only information about the presence of a
and b in the current state, is illustrated in Fig. 1 below. The view schema W0 is
defined by LDB(W0) = {∅, a, b, ab} and the view mapping ω0 by M 7→M ∩ ab.

A view mapping is always total and surjective, by definition. Each state of the
view schema must be the image of some state of the main schema. Although every

Final post-workshop submission: 20120621 SDKB2011 page 1

Main Schema E0

∅ c a ac bd bcd abd abcd

View mapping ω0

View Ω0 with Schema W0

∅ a b ab

Fig. 1. Visualization of a view

update to the state of a view schema has at least one reflection to an update on
the main schema (i.e., an update to the main schema which is consistent with the
view update), there is rarely only one such possibility. An update to any schema,
main or view, is represented as a pair (M1,M2), with M1 the current state and
M2 the new state after the change. In the simple example of Fig. 1, since each
view state is the image of exactly two states of the main schema, there are two
possible reflections for each view update. For example, if the current state of
the main schema is c, the view update (∅, a) has two possible reflections for the
corresponding update to the main schema, (c, a) and (c, ac). In other words, both
c and ac are candidates for the new state of E0 in support of the view update
(∅, a). The problem of determining which, if any, of the possible reflections is
suitable is called the view-update problem, and a specific approach to solving
this problem is termed a view-update strategy.

This paper is about one such approach, the constant-complement strategy.
Before examining it in more detail on the above example, to place the general ap-
proach in context, it is useful to provide a brief discussion of view-update strate-
gies, which may be classified along several lines. Perhaps the most fundamen-
tal distinction is between design-based and principle-based strategies. Roughly
speaking, in a design-based strategy, the reflection mechanism for view updates
is defined explicitly as part of the specification of the view itself. With such an
approach, the range of view updates which may be supported is very large, but,
on the other hand, it is up to the designer to account for whatever effects the
translation of a view update will have upon the properties of the main schema.
Furthermore, with such strategies, there may be many views which provide pre-
cisely the same information, but which support updates in very different ways.
Most designed-based strategies, by their very nature, are customized to a spe-
cific application, although there has been some recent work which attempts to
systematize this approach using a construction known as a lens [8, 13].

In a principle-based strategy, view-update reflections are chosen according
to certain principles. Thus, in particular, the update-reflection mechanism is

Final post-workshop submission: 20120621 SDKB2011 page 2

determined by the update principle, and not explicitly as an added component
of the view specification. Much of the theory of view-update support is based
upon principles which are founded in specific representations for specific data
models. By far, the most common context is the representation of views in the
relational model using the relational algebra or calculus. Examples include [11,
26, 6, 7]. While they often provide interesting insights, they do not, in general,
provide a unified theory of how view updates may be handled.

There are at least two major principle-based strategies which are general in
character, one based upon minimal repairs and the other upon constant com-
plement. They are nevertheless diametrically opposed in nature. The minimal-
repair strategy provides a ranking on possible reflections, but does not otherwise
classify them as acceptable or unacceptable. On the other hand, the constant-
complement strategy provides an absolute classification of acceptability, without
any other ranking. It is instructive to take a slightly closer look.

In the approach based upon minimal repairs, the underlying principle is that
the reflection of a view update should change the state of the main schema as
little as possible. To formalize this, a distance metric between states of the main
schema is identified. An optimal reflection of a view update, if it exists, is defined
by a reflection for which the distance between the old state (before the update)
of the main schema and the new state (after the update) is least. For example,
return to the context of the view Ω0 of W0, with distance measured by the
number of data objects whose presence in the state changes. Then for the view
update (∅, a) with current state c of the main schema, the reflection (c, ac) to
the main schema is preferred to (c, a), since in the former only a is added (one
change), while in (c, a) a is added while c is removed (two changes). If no such
optimal update exists, it is still possible to identify a set of minimal reflections.
Most of the efforts based upon minimal repairs are formulated within the context
of logic databases; for a comprehensive presentation, see [3, 2]. In [21], the basic
ideas are applied to a class of traditional relational views.

Although undoubtedly useful, such a ranking approach can also produce
questionable results. Consider, for example, a view which computes the average
salary of all employees. Using a metric of minimal number of tuples or minimal
subset of tuples changed, to support a view update which increases the average
salary by some value x, the minimal reflections are those which alter the salary
of exactly one employee, and leave the other salaries unchanged, together with
those which add one new employee with just the right salary to achieve the
desired average. Of course, the metric can be questioned in this case, and this
example shows that a main challenge facing a designer of a minimal-repair strat-
egy is the choice of the distance metric. Traditional metrics, such as counting the
number of tuples which change, or simply using symmetric set difference, have
mathematical appeal but are sometimes too coarse to recapture what would oth-
erwise appear to be the best reflection. Thus, a thorough study of this approach
must necessarily focus upon the choice of metric as well.

The constant-complement strategy, first described in [5], provides absolute
criteria for the acceptability of a view-update reflection. It focuses upon encap-

Final post-workshop submission: 20120621 SDKB2011 page 3

sulation — only that part of the main schema which embodies the information
contained in the view may be altered; the rest of the main schema must remain
unchanged. Encapsulation may be cast equivalently via the principle that the
updates which are allowed on the view must be closed — all changes to the main
schema which are induced by a view update should be visible within the view
itself; there should be no side effects which are not fully represented within the
view [17, Sec. 1].

Such encapsulation is achieved by identifying a second view which is comple-
mentary to the one which is to be updated. This complementary view recaptures
that part of the main schema which is not covered by the view to be updated. By
keeping the complement constant, all changes are limited to the updated view.

The main idea is illustrated in Fig. 2 for the view Ω0 of Fig. 1. The comple-
ment Ω′0 retains information about the presence of c and d in the state of the
main schema; i.e., the view mapping ω′0 is defined by M 7→ M ∩ cd . The hori-

Main Schema E0

View Ω0 with Schema W0

∅ a b ab

View Ω′
0 with Schema W′

0

∅ c d cd

∅ c bd bcd

a ac abd abcd

View mapping ω0 View mapping ω′
0

Fig. 2. Visualization of a complementary pair

zontal ellipses, shaded in gray, show the groups of states of the main schema E0

which map to the same state of the view Ω0. The vertical ellipses, with dotted
borders, show the groups of states of the main schema E0 which map to the same
state of the view Ω′0. Define the decomposition mapping ω0 × ω′0 : LDB(E0) →
LDB(W0) × LDB(W′

0) on elements by M 7→ (ω0(M), ω′0(M)). It is easy to see
that this mapping is injective; indeed, for M ∈ LDB(E0), M 7→ (M∩ab,M∩cd).
This implies that the state of the main schema E0 may be recovered from the
combined states of both views. In classical database theory, it is said that E0

decomposes losslessly into W0 and W′
0 (via the views Ω0 and Ω′0). This is

the definition of a complementary pair — that the associated decomposition be
lossless.

Consider again the potential update (∅, a) to W0, and assume further that
the the current state of E0 is c. As noted above, there are two possible reflections
to the main schema, (c, a) and (c, ac), but only the second keeps the state of W′

0

Final post-workshop submission: 20120621 SDKB2011 page 4

the same. It is the only one which avoids a change to (a side effect on) Ω′0, and
thus is the only one admitted by the constant-complement strategy. Indeed, since
ω0 × ω′0 is injective, there can be at most one reflection update which keeps Ω′0
constant. The new state of the main schema E0 must be (ω0 × ω′0)

−1
(a, ω′0(c)) =

(ω0 × ω′0)
−1

(a, c) = ac.

Not all updates to Ω0 are possible with constant complement Ω′0. To see why
this is so, observe that the two views Ω0 and Ω′0 overlap, due to the constraint
that b and d must occur together or not at all. For example, if the current state
of W0 is ∅ or a, then d cannot be in the state of W′

0. Similarly, if the current
state of W0 is either b or ab, then d must be in the state of W′

0. Thus, none of
the updates (∅, b), (∅, bd), (a, b), and (a, ab) is possible on Ω0 while keeping Ω′0
constant. This is a fundamental property of the constant-complement strategy
— in general, not all view updates admit a reflection. This is the “price” of
requiring encapsulation.

It is instructive to illustrate these same ideas with a simple relational ex-
ample. Let the schema E1 consist of the single relation symbol R[ABC], con-
strained by the join dependency 1 [AB,BC]. The view to be updated is ΠE1

AB =

(EAB
1 , πE1

AB), defined by the projection of R[ABC] onto AB. Here EAB
1 is the

schema whose single relation symbol is RAB [AB], while πE1

AB is the projection

morphism. The chosen complementary view is ΠE1

BC = (EBC
1 , πE1

BC), defined by

the projection onto BC. That {ΠE1

AB , Π
E1

BC} forms a complementary pair follows

from the classical result [31, Thm. 1]. With constant-complement ΠE1

BC , the up-

dates which are allowed to ΠE1

AB are those which keep the the projection onto

B constant. This illustrates the associated encapsulation. Any change to ΠE1

B

would necessarily imply a change to ΠE1

BC , which would include a change not

visible from within ΠE1

AB . Thus, in this example, ΠE1

B must be held constant to

render ΠE1

AB a closed view, without side effects to its allowed updates. Figure 3
provides a visualization of this situation.

R[ABC]

1 [AB,BC]

RAB [AB]

ΠE1
AB

πE1
AB

RBC [BC]

ΠE1
BC

πE1
BC

RB [B]

πE1
B

Fig. 3. Visualization of constant-complement in the relational setting

Final post-workshop submission: 20120621 SDKB2011 page 5

The price of encapsulation has been seen by some to be too high. For example,
according to [27, p. 41], the constant complement strategy is “only applicable
to a trivial class of views”, and is “too restrictive to be of any practical use”.
This criticism must be evaluated in context. The starting point in [27] is that all
updates on a view which preserve its integrity constraints should be supported.
However, the idea that only some, but not all, updates to a view are supported
by a given strategy is not at all unusual, and is central in many approaches. Fur-
thermore, for a summary view such as the example given above which computes
average salary, an update through anything but a design-based strategy seems
unreasonable. Even the SQL standard limits updates to views [9, Sec. 13.3]. In
any case, the constant-complement strategy is exactly what is required to ensure
encapsulation. Of course, it is difficult to argue that all view update strategies
require encapsulation, but it is equally difficult to argue that none do.

The constant-complement strategy is important for at least one additional
reason — it is central to the approach of modelling database schemata via com-
ponents [33, 32]. The ways in which such components are interconnected, as well
as the ways in which updates are supported on such interconnections, is very
closely related to the constant-complement strategy [19, 25, 22].

In short, while it is not the universal solution for all view-update problems,
the constant-complement strategy is sufficiently useful that it should be under-
stood by anyone interested in the principles of database updates via views.

The goals of this paper are twofold. The first is to present the fundamental
ideas of the constant-complement strategy in a reasonably self-contained fashion.
The second is to examine two invariance issues surrounding the approach.

The first is called admissibility invariance. For an update strategy to be truly
encapsulated, the admissibility of a view update must not depend upon the state
of the main schema. A given view update (N,N ′) must either be allowed for all
states M of the main schema which map to N , or else for none of them. It is easy
to verify that the examples depicted in Fig. 2 and Fig. 3 each have this property.
However, it is possible to alter the example of Fig. 2 so that this property fails,
as illustrated in Fig. 4. This main schema E2 is identical to E0, save that ac
has been removed. The views Ω2 and Ω′2 are likewise identical to Ω0 and Ω′0,
respectively, save that ac is no longer in the domain of the view mapping. This
example no longer exhibits admissibility invariance, since the view update (∅, a)
to W0 is supported with constant complement Ω′2 if the current state of the
main schema E2 is ∅, but not if it is c.

A similar effect can be observed in the relational example of Fig. 3. Ob-
tain E′1 from E1 by adding the functional dependency (FD) A → C, with

the views Π
E′1
AB and Π

E′1
BC defined as for E1. Consider the view update u =

{({RAB(a1,b1), RAB(a2,b2)}, {RAB(a1,b1), RAB(a1,b2)})} toΠ
E′1
AB . This update is

possible with constant complement Π
E′1
BC if the state of the main schema is M1a =

{R(a1,b1, c1), R(a2,b2, c1)}, (to new state M1a′ = {R(a1,b1, c1), R(a1,b2, c1)}),
but not if it is M1b = {R(a1,b1, c1), R(a2,b2, c2)}, since in the latter case the
required update to M1b′ = {R(a1,b1, c1), R(a1,b2, c2)} would violate the FD
A→ C.

Final post-workshop submission: 20120621 SDKB2011 page 6

Main Schema E2

∅ c bd bcd

a acd abcd

View Ω2 with Schema W2

∅ a b ab

View Ω′
2 with Schema W′

2

∅ c d cd

ω2 ω′
2

Fig. 4. Visualization of a situation without admissibility invariance

In Sec. 3, this question of admissibility invariance is examined in detail. As
it turns out, there is a very general characterization of such invariance, defined
in terms of the congruences of the views, which depend only upon a model of
database schema given by sets and functions. Section 3 is a tutorial summary
of known results; it does not contain anything fundamentally new, although the
presentation is hopefully more accessible than that found in research papers on
the subject.

The second invariance issue is called reflection invariance. One of the thornier
issues with the constant-complement strategy, identified already in [5, Thm. 4.4],
is that a view complement is almost never unique. Furthermore the reflection of
a given update using the constant-complement strategy may depend upon the
choice of complement, as illustrated in Fig. 5. This example uses the same main

Main Schema E0

View Ω0 with Schema W0

∅ a b ab

View Ω′′
0 with Schema W′′

0

∅∨ac a∨c bd∨abcd abd∨bcd

∅ c bd bcd

a ac abd abcd

View mapping ω0 View mapping ω′′
0

Fig. 5. Visualization of an alternate complement to Ω0

Final post-workshop submission: 20120621 SDKB2011 page 7

schema E0 and the same view Ω0 as in Fig. 2, but the complementary view
Ω′′0 = (W′

0, ω
′′
0) is not the same as Ω′0. The states of W′′

0 are represented by the
disjunction of the states of the main schema which map to them. The updates
allowed to Ω0 under constant complement Ω′′0 are the same as those for constant
complement Ω′0, but with the exception of identity updates, the translations
are always different. For example, from initial state c of the main schema, the
view update (∅, a) has the unique reflection with constant complement Ω′′0 to the
update (c, a) on the main schema E0, while with constant complement Ω′0 the
reflection is (c, ac). Without adding additional structure, there is no reasonable
way to prefer one of these complements to the other.

This observation would appear to compromise the utility of the constant-
complement strategy substantially. If the strategy depends upon the choice of
complement, and complements are almost never unique, then encapsulation is
reduced to a mathematical construction, with the choice of complement an ar-
bitrary parameter. However, when one attempts to carry out a similar construc-
tion on a “real” example such as that of Fig. 3, as illustrated in [17, Sec. 1,3], it
becomes remarkably difficult to construct a “reasonable” complement to ΠE1

AB

which does not at least include ΠE1

BC as a subview. The key lies in the fact that
most common views, particularly relational views, involve order. The databases
have a natural order structure, and the view mappings respect this structure.
When limiting the constant-complement strategy to that context in an appropri-
ate manner, the reflection of a view update becomes independent of the choice of
complement. The main results along these lines were established in [17]. In Sec.
4, a fundamental result along these lines is recalled, and then some important
new extensions are developed.

In addition to these main sections, Sec. 2 provides the basic formalisms nec-
essary to understand the constant-complement strategy and the extensions dis-
cussed in this paper, while Sec. 5 provides conclusions and further directions.

2 The Basic Framework of Views and Updates

The purpose of this section is twofold. First, it provides a compact summary
of the necessary mathematical and notational material. Second, it provides a
simple yet formal presentation of the basic constant-complement strategy.

Much of this framework appears, with minor variations, in earlier work of
the author. The reader is referred in particular to [17, 20] for further details.

Familiarity with the relational model, as presented in [28, 30, 1] is assumed.
For the most part, relational notation and terminology will not be reviewed here.

Notation 2.1 (Some mathematical shorthand). It will often be necessary
to assert that a partial function f is defined on an argument x. The shorthand
f(x)↓ will be used in this regard.

Summary 2.2 (Equivalence relations, partitions, and blocks). Equiva-
lence relations and their properties play a central rôle in the characterization of

Final post-workshop submission: 20120621 SDKB2011 page 8

views, especially for properties associated with the constant-complement strat-
egy. Although familiarity with the basic ideas is assumed, it is nevertheless useful
to gather important terminology and notation in one place. A comprehensive ref-
erence on the subject of equivalence relations and their algebraic properties is
[29], while [10] is a useful reference for order structures in general.

An equivalence relation r on a set S is one which is reflexive (for all x ∈ S,
(x, x) ∈ r); symmetric (for all x, y ∈ S, (x, y) ∈ r implies (y, x) ∈ r); and
transitive (for all x, y, z ∈ S, (x, y) ∈ r and (y, z) ∈ r implies (x, z) ∈ r). The set
of all equivalence relations on S is denoted EqRels(S).

The equivalence relation r divides S into disjoint blocks, with the block
Blockr(x) containing x given by {y ∈ S | (x, y) ∈ r}. The set {Blockr(x) | x ∈ S}
of all such blocks is called the partition of r and is denoted Partition(r).

There is a natural order �S on EqRels(S) given by r1 �S r2 (written r2 ⊃ r1

in [29]) iff r2 ⊆ r1. Equivalently, r1 �S r2 iff every block of of r2 is a subset of
some block of r1. In particular, the identity relation 1S is greatest in this order-
ing, and the trivial relation 0S = S×S is least. If r1 �S r2, then Partition(r1) is
said to be coarser than Partition(r2), and Partition(r2) is finer than Partition(r1).

This natural order induces a bounded complete lattice structure on EqRels(S)
[29, Thm. 5]. The join of any set Q ⊆ EqRels(S) is just its intersection; i.e.,∨
Q = {(x, y) | (∀r ∈ Q)((x, y) ∈ r)}. The meet of Q is the intersection of all

equivalence relations which are lesser than each element of Q; i.e.,
∧
Q =

⋂
{r ∈

EqRels(S) | (∀s ∈ Q)(s �S r)}. For two elements, which is the case of most inter-
est in this work, this reduces to r1∧r2 =

⋂
{r ∈ EqRels(S) | (r �S r1) and (r �S

r2)}, Thus, the meet r1 ∧ r2 corresponds to the finest partition which is coarser
than both Partition(r1) and Partition(r2); i.e., the greatest lower bound of r1

and r2. Further properties of the meet will be examined in Discussion 3.3 and
Definition 3.5. As already noted above, 0S and 1S are the least and greatest
elements of EqRels(S), respectively; i.e., 0S ≤ r ≤ 1S for all r ∈ EqRels(S).

Summary 2.3 (Database schemata, morphisms, and views). One of
the beauties of the constant-complement strategy is that its basic formulation
requires very little in the way of underlying structure; it is applicable to any
state-based database model. In such a model, at each point in time there is a
single database associated with each schema. Relational, object-oriented, and
even XML-based schemata are accommodated. (On the other hand, deductive
formalisms, such as those employed in [12], in which the database “state” is
modelled not by a single instance, but rather by a set of constraints, are not
recaptured directly by such a model.)

Formally, a (set-based) database schema D is just a set. This set, denoted
LDB(D), consists of the legal databases of D. Constraints, schema structure, and
the like are not represented explicitly. Rather, a database schema is modelled by
its instances alone. This model has already been employed in the examples of
Sec. 1. For example, LDB(E0) = {∅, a, abcd , abd , ac, bcd , bd , c}. For the relational
example E1, LDB(E1) is just the set of all finite sets of tuples on ABC which
satisfy the join dependency 1 [AB,BC].

Final post-workshop submission: 20120621 SDKB2011 page 9

A morphism f : D1 → D2 of database schemata is a function f : LDB(D1)→
LDB(D2). In the relational context, a morphism is usually defined using the
relational algebra or calculus, but the abstraction to a function on states is all
that is needed for the purposes of the constant-complement strategy.

A view of the database schema D is a pair Γ = (V, γ) in which V is a
database schema and γ : D → V is a surjective database morphism. The views
Ω0, Ω′0, Ω′′0 , Ω2, and Ω′2 introduced in Sec. 1 are each direct examples of this
set-based formalism. The views ΠE1

AB and ΠE1

BC are reduced to this formalism by
working with the functions underlying their view morphisms.

Summary 2.4 (View congruences and canonical views). Let Γ = (V, γ)
be a view of the database schema D. The congruence of Γ is Congr(Γ) =
{(M1,M2) ∈ LDB(D) × LDB(D) | γ(M1) = γ(M2)}. In Figs. 1, 2, 4, and 5,
the congruence of each view is shown by ellipses drawn around sets of states
belonging to the same block.

Views with identical congruences are the same up to a renaming of their
states. Indeed, there is a natural bijective correspondence CTransΓ : LDB(V)→
Partition(Congr(Γ)) given by N 7→ {M ∈ LDB(D) | γ(M) = N}. In other words,
N ∈ LDB(V) is in natural correspondence with the block of all states in LDB(D)
which map to it under γ.

As the basic constructions which underlie the constant-complement strategy
depend only upon the congruence, and not any further details of the view, it
is convenient to regard views which have identical congruences as isomorphic,
a convention which will be followed in this paper. It is furthermore possible
to identify a canonical representative for each isomorphism class. Specifically,
let r be any equivalence relation on LDB(D). The canonical view defined by
r is View(r) = (Partition(r),Blockr); in other words, View(r) has Partition(r),
the set of all blocks of r, as its state set, and the function Blockr : M →
Blockr(M) as its database morphism. Congr(View(r)) = r, just by construction.
In particular, Congr(View(Congr(Γ))) = Congr(Γ) for any view Γ . In Fig. 1, the
canonical view defined by Congr(Ω0) is given by the function BlockCongr(Ω0) :
LDB(E0) → LDB(W0) defined on elements by ∅ 7→ {∅, c}, c 7→ {∅, c}, a 7→
{a, ac}, ac 7→ {a, ac}, bd 7→ {bd , bcd}, bcd 7→ {bd , bcd}, abd 7→ {abd , abcd}, and
abcd 7→ {abd , abcd}.

The lattice structure identified in Summary 2.2 applies equally well to views,
since a canonical view is defined entirely by its congruence. Specifically, for views
Γ1 = (V1, γ1) and Γ2 = (V2, γ2) of D, define Γ1 �D Γ2 iff Congr(Γ1) �LDB(D)

Congr(Γ2). The view (up to isomorphism) 1D whose congruence is 1LDB(D) is
called the identity view of D, while the view (up to isomorphism) 0D whose con-
gruence is 0LDB(D) is called the zero view of D. Clearly, the identity view, which
preserves all information about the state of D, is greatest under the ordering �D ,
while 0D , which preserves no information (since its schema has only one state), is
least. The view (up to isomorphism) whose congruence is Congr(Γ1)∧Congr(Γ2)
is called the meet view of {Γ1, Γ2}. The meet of two views is discussed more
thoroughly, with an example, in Definition 3.5 and Fig. 7.

Final post-workshop submission: 20120621 SDKB2011 page 10

Definition 2.5 (View morphisms and relative views). Let Γ1 = (V1, γ1)
and Γ2 = (V2, γ2) be views of the schema D. A morphism f : Γ1 → Γ2 is a
function f : LDB(V1)→ LDB(V2) with the property that γ2 = f ◦γ1. There is at
most one such morphism, and it exists iff Γ2 �D Γ1. To see this, it suffices to work
with the views View(Congr(Γi)) = (Partition(Congr(Γi)),BlockCongr(Γi)) for i ∈
{1, 2}. If Congr(Γ2) �LDB(D) Congr(Γ1), then the morphism f :
Partition(Congr(Γ1)) → Partition(Congr(Γ2)) given by BlockCongr(Γ1)(M) 7→
BlockCongr(Γ2)(M) for each M ∈ LDB(D) is well defined and the only possibility.
If Congr(Γ2) 6�LDB(D) Congr(Γ1), then it is not possible to map BlockCongr(Γ1)(M)
to BlockCongr(Γ2)(M) for all M , with each block mapped to one of its supersets,
and so no such f is possible. This unique morphism is of sufficient interest to
warrant its own notation. For Γ2 �D Γ1, the relative morphism RelMor〈Γ1, Γ2〉 :
Γ1 → Γ2 is illustrated in Fig. 6.

D

V1 V2

γ1 γ2

RelMor〈Γ1, Γ2〉

Fig. 6. Visualization of a relative view morphism

In the case that there is such a morphism, RelView(Γ1, Γ2) =
(V2,RelMor〈Γ1, Γ2〉) is a view of V1, called the relative view of Γ1 induced
by Γ2.

As a concrete example, consider the schema E1 introduced in Sec. 1, to-
gether with the views ΠE1

AB and ΠE1

BC , and the additional view ΠE1

B which is

the projection of R[ABC] onto B. Then ΠE1

B �E1
ΠE1

AB and ΠE1

B �E1
ΠE1

BC .

The relative view morphism RelView(ΠE1

AB , Π
E1

B) sends a relation on attributes

AB to its projection onto attribute B. RelView(ΠE1

BC , Π
E1

B) is defined similarly.
Relative morphisms will appear again in Definition 3.5.

Definition 2.6 (View complements). Complements have already been in-
troduced informally in Sec. 1; Ω′0 and Ω′′0 are complements of Ω0, Ω′2 is a com-
plement of Ω2, and ΠE1

BC is a complement of ΠE1

AB . This idea is placed on firm
formal ground as follows.

Let D be a database schema and Γ = (V, γ) a view of D. A complement of
Γ is a view Γ ′ = (V′, γ′) with the property that Γ ∨ Γ ′ = 1D . Equivalently,
Γ ′ is a complement of Γ if the decomposition function γ × γ′ : LDB(D) →
LDB(V) × LDB(V′) given on databases by M 7→ (γ(M), γ′(M)) is injective.
This definition is clearly symmetric; if Γ ′ is a complement of Γ , then Γ is a
complement of Γ ′. It is thus appropriate to call {Γ, Γ ′} a complementary pair.

Final post-workshop submission: 20120621 SDKB2011 page 11

Definition 2.7 (Updates, update strategies, and reflectors). Although
the notion of an update to a database is a simple one, it is nevertheless necessary
to have some compact and precise notation in order to formulate properties of
view updates and their reflections. The following definitions are designed to serve
that purpose.

An update on the database schema D is a pair (M1,M2) ∈ LDB(D) ×
LDB(D). M1 is the current state, and M2 the new state. The set of all up-
dates on D is denoted Updates(D). To describe the situation surrounding an
update request on the view Γ = (V, γ), it is sufficient to specify the current
state M1 of the main schema and the desired new state N2 of the view schema
V. The current state of the view can be computed as γ(M1); it is only the new
state M2 of the main schema (subject to N2 = γ(M2)) which must be obtained
from an update strategy. Formally, an update request from Γ to D is a pair
(M1, N2) in which M1 ∈ LDB(D) (the current state of the main schema) and
N2 ∈ LDB(V) (the new state of the view schema). The set of all update requests
from Γ to D is denoted UpdReq(Γ).

A realization of (M1, N2) ∈ UpdReq(Γ) is an update (M1,M2) on D with
the property that γ(M2) = N2. The update (M1,M2) is called a reflection (or
translation) of the view update (γ(M1), N2). Thus, the realization (M1,M2) tells
how to reflect the view update (γ(M1), N2) to the main schema D when the state
of D is M1.

A reflector for Γ is a partial function u : UpdReq(Γ) → LDB(D) with the
property that for any (M,N) ∈ UpdReq(Γ), if u(M,N)↓, then (M, u(M,N)) is
a realization of (M,N) along Γ .

Definition 2.8 (The constant-complement view-update strategy). Let
D be a database schema, and let {Γ1, Γ2} be a complementary pair of views
of D, with Γi = (Vi, γi) for i ∈ {1, 2}. The constant-complement reflector for
〈Γ1, Γ2〉 is the reflector CCRefl〈Γ1|Γ2〉 for Γ1 given on elements by

CCRefl〈Γ1|Γ2〉(M,N) =

{
(γ1 × γ2)

−1
(N, γ2(M)) if (γ1 × γ2)

−1
(N, γ2(M))↓

undefined otherwise

Definition 2.9 (Properties of reflectors). Let u be a reflector for the view
Γ of schema D.

The reflector u respects identities if for any M ∈ LDB(D), u(M,γ(M)) = M .
This implies in particular that u(M,γ(M))↓.

The reflector u exhibits path independence if for any M ∈ LDB(D) and
N1, N2 ∈ LDB(Γ), if both u(M,N1)↓ and u(u(M,N1), N2)↓, then u(M,N2)↓ as
well, with u(M,N2) = u(u(M,N1), N2). A similar property is called consistency
in [14, Def. 2.7].

The reflector u exhibits reversibility if for any (M,N) ∈ UpdReq(Γ), if
u(M,N)↓, then so too is u(u(M,N), γ(M)) with u(u(M,N), γ(M)) = M .

Define the set of realizations or reflected updates induced by u to be
ReflUpd〈u〉 = {(M, u(M,N)) | (M,N) ∈ UpdReq(Γ) and u(M,N)↓}.

The following is easy to verify.

Final post-workshop submission: 20120621 SDKB2011 page 12

Observation 2.10 (Realizations and equivalence relations). Let u be a
reflector for the view Γ of schema D. Then ReflUpd〈u〉 is an equivalence relation
on LDB(D) iff u respects identities and exhibits both path independence and
reversibility. 2

Theorem 2.11 (Characterization of constant-complement reflectors).
Let u be a reflector for the view Γ of schema D. Then there is a view Γ ′ of D
with the property that u = CCRefl〈Γ |Γ ′〉 iff ReflUpd〈u〉 is an equivalence relation.
In the case that such a Γ ′ exists, it is given by View(ReflUpd〈u〉).
Proof sketch: A full, formal proof may be found in [5], but is really a very
simple verification. If Γ ′ is a complement of Γ , then CCRefl〈Γ |Γ ′〉 respects identi-
ties (because doing nothing keeps Γ constant), exhibits path independence (since
the composition of operations which keep Γ ′ constant keeps it constant as well),
and exhibits reversibility (since undoing an operation which kept Γ ′ constant
still keeps it constant). Thus, Observation 2.10 may be invoked to show that for
any complement Γ ′ of Γ , ReflUpd〈CCRefl〈Γ |Γ ′〉〉 forms an equivalence relation.

In the other direction, if ReflUpd〈u〉 is an equivalence relation, then it defines a
view View(ReflUpd〈u〉), and the updates to Γ which keep it constant are precisely
those which limit the state changes of D to those which lie in the congruence of
that view, i.e., ReflUpd〈u〉. 2

3 Admissibility Invariance

Admissibility invariance is a fundamental issue in the support of view updates.
As already noted in the introduction, it addresses the question of whether the
admissibility of a proposed view update depends only upon the view state, or
whether it depends also upon the state of the complement. Although the results
presented in this section are not new, many of them are found only in research
papers which intertwine them with other, more advanced concepts. It therefore
seems appropriate to give them a relatively simple and unified presentation. The
papers [17] and [24] are the primary sources for further information.

Notation 3.1. Throughout this section, unless stated specifically to the con-
trary, take D to be a database schema, with Γ = (V, γ), Γ ′ = (V′, γ′), Γ1 =
(V1, γ1), and Γ2 = (V2, γ2) views over D.

Definition 3.2 (Admissibility invariance). Let u be a reflector for Γ . Define

(a) ViewUpd∃(u) =
{(N1, N2) ∈ LDB(V)× LDB(V) | (∃M ∈ γ−1(N1))(u(M,N2)↓)}.

(b) ViewUpd∀(u) =
{(N1, N2) ∈ LDB(V)× LDB(V) | (∀M ∈ γ−1(N1))(u(M,N2)↓)}.

(c) Say that the reflector u exhibits admissibility invariance if ViewUpd∃(u) =
ViewUpd∀(u).

Final post-workshop submission: 20120621 SDKB2011 page 13

Discussion 3.3 (Characterization of the meet and commuting congru-
ences). Recall from Summary 2.2 that the meet r1 ∧ r2 of two equivalence
relations r1 and r2 on a set S is the largest equivalence relation which is smaller
than both r1 and r2. This may be computed explicitly by iterating r1 and r2.
Specifically, (x, y) ∈ r1 ∧ r2 iff there is a chain

(x, x1), (x1, x2), (x2, x3), . . . , (xk−1, xk), (xk, y)

in which each pair is either in r1 or else in r2 [29, Thm. 5]. Translating to views,
this means that a pair (M,M ′) ∈ Congr(Γ1) ∧ Congr(Γ2) iff there is a chain

(M,M1), (M1,M2), (M2,M3), . . . , (Mk−1,Mk), (Mk,M
′)

with each pair in either Congr(Γ1) or else Congr(Γ2). If the congruences commute,
that is, if Congr(Γ1) ◦ Congr(Γ2) = Congr(Γ2) ◦ Congr(Γ1), with ◦ denoting ordi-
nary composition of relations, then this characterization reduces to (M,M ′) ∈
Congr(Γ1) ∧ Congr(Γ2) iff (M,M ′) ∈ Congr(Γ1) ◦ Congr(Γ2) iff (M,M ′) ∈
Congr(Γ2) ◦ Congr(Γ1).

If {Γ1, Γ2} is complementary pair with commuting congruences, then it is
called a meet-complementary pair.

A connection between commuting congruences and reflection invariance may
not seem apparent at first. The idea is the following. For a complementary pair
{Γ1, Γ2}, with Γ1 to be updated with constant complement Γ2, and (N1, N2) a
view update on Γ1, blocks of Congr(Γ2) represent transitions for constant com-
plement Γ1 (e.g., a reflection of (N1, N2) for a fixed M1 ∈ γ1

−1(N1)), while blocks
of Congr(Γ1) represent switching between alternate choices for M1. If the congru-
ences commute, then the choices may be made in either order. Thus, if (M1, N) ∈
UpdReq(Γ1) has a constant-complement realization CCRefl〈Γ1|Γ2〉(M1, N) = M2,
then CCRefl〈Γ1|Γ2〉(M

′
1, N) must exist for any M ′1 ∈ BlockCongr(Γ1)(M1) since

instead of first going from (M1,M
′
1) ∈ Congr(Γ1) and then doing the update

defined by CCRefl〈Γ1|Γ2〉(M
′
1, N) (which has the value M ′2, say), the transition

(M1,M2) ∈ Congr(Γ2) may be made first, with assurance that the transition
(M2,M

′
2) is in Congr(Γ1). This may be visualized with the aid of Fig. 2. Note

that if it is possible to move from one state of E0 to another by moving through
connected ellipses, then it is possible by first going through a shaded ellipse
(representing Congr(Ω0)) and then a dotted one (representing Congr(Ω′0)), or by
going through a dotted one first and then a shaded one. For example, since the
view update (∅, a) ∈ Updates(W0) is supported for current state c ∈ LDB(E0) as
the reflection (c, ac) ∈ Updates(E0), it must also be supported for current state
∅ ∈ LDB(E0) as (∅, c) ◦ (c, ac) ◦ (ac, a) ∈ Congr(Ω0) ◦ Congr(Ω′0) ◦ Congr(Ω0) =
(∅, a) ∈ Updates(E′0).

On the other hand, in Fig. 4, which represents a situation without commuting
congruences. this property does not hold. It is possible to go from c to a by first
going through a shaded ellipse and then a dotted one, but not through a dotted
one followed by a shaded one. Thus, while view update (∅, a) ∈ Updates(W0) is
supported for current state ∅ ∈ LDB(E0) as the reflection (∅, a) ∈ Updates(E0),
this view update is not supported for current state c ∈ LDB(E0).

Final post-workshop submission: 20120621 SDKB2011 page 14

The formal characterization is given below. Although [4] contains related
ideas in the form of weak independence, it was first stated in its form in [15,
1.13], albeit without proof. A detailed proof in the context of ordered views was
given in [17, Thm. 2.14], with an alternate proof in [24, Thm. 3.8]. Because if
its importance, as because it might still otherwise seem mysterious that admis-
sibility invariance and commuting congruences could possibly have anything to
do with one another, a proof sketch is given here as well.

Theorem 3.4 (Fundamental characterization of admissibility). Let
{Γ1, Γ2} be a complementary pair. Then the reflector CCRefl〈Γ1|Γ2〉 exhibits ad-
missibility invariance iff {Γ1, Γ2} has commuting congruences; i.e., iff it is a
meet-complementary pair.

Proof sketch: Choose (M1,M
′
2) ∈ Congr(Γ1) and (M ′2,M2) ∈ Congr(Γ2).

Then, in view of Theorem 2.11, CCRefl〈Γ1|Γ2〉(M
′
2, γ1(M2)) = M2. Now if

CCRefl〈Γ1|Γ2〉 exhibits admissibility invariance, CCRefl〈Γ1|Γ2〉(M1, γ1(M2)) must
also be defined. Letting M ′1 = CCRefl〈Γ1|Γ2〉(M1, γ1(M2)), (M2,M

′
1) ∈ Congr(Γ1)

follows immediately, and applying Theorem 2.11 again yields (M1,M
′
1) ∈

Congr(Γ2). Hence (M1,M
′
1) ◦ (M ′1,M2) ∈ Congr(Γ2) ◦ Congr(Γ1); so that

Congr(Γ1) ◦ Congr(Γ2) ⊆ Congr(Γ2) ◦ Congr(Γ1). The reverse inclusion is proved
similarly, whence Congr(Γ1) ◦ Congr(Γ2) = Congr(Γ2) ◦ Congr(Γ1).

In the opposite direction, assume that {Γ1, Γ2} has commuting congruences,
and let M1,M2 ∈ LDB(D), N ∈ LDB(V1) with CCRefl〈Γ1|Γ2〉(M1, N) = M2.
Choose any M ′1 ∈ BlockCongr(Γ1)(M1). Then (M ′1,M2) = (M ′1,M1) ◦ (M1,M2) ∈
Congr(Γ1)◦Congr(Γ2). By assumption, (M ′1,M2) ∈ Congr(Γ2)◦Congr(Γ1) as well.
Hence, there is an M ′2 ∈ LDB(D) with (M ′1,M

′
2) ∈ Congr(Γ2) and (M ′2,M2) ∈

Congr(Γ1), with the former and Theorem 2.11 implying that
CCRefl〈Γ1|Γ2〉(M

′
1, γ(M ′2) = M ′2 and the latter implying that γ1(M ′2) = γ(M2) =

N , so that CCRefl〈Γ1|Γ2〉(M
′
1, N) = M2, whence CCRefl〈Γ1|Γ2〉 exhibits admissi-

bility invariance. 2

Definition 3.5 (Meet admissibility). If a reflector u exhibits admissibility
invariance, then since the admissibility of a view update depends only upon that
update, and no external information, it is appropriate to ask how to describe the
set of admissible updates in terms of the view alone. It turns out that there is a
very simple and most useful characterization. Namely, the allowed view updates
are precisely those which keep the relative view induced by the complement
constant. This idea has already been illustrated in the context of a simple rela-
tional example in Fig. 3, in which the updates to the view ΠE1

AB with constant

complement ΠE1

BC are precisely those which hold the meet view ΠE1

B constant.

Formally, let {Γ1, Γ2} be a complementary pair, and define
ViewUpd∧(CCRefl〈Γ1|Γ2〉) = {(N1, N2) ∈ LDB(V1)× LDB(V1) |

RelMor〈Γ1, Γ1 ∧ Γ2〉(N1) = RelMor〈Γ2, Γ1 ∧ Γ2〉(N2)}.
Call the reflector CCRefl〈Γ1|Γ2〉 meet admissible if

ViewUpd∧(CCRefl〈Γ1|Γ2〉) = ViewUpd∀(CCRefl〈Γ1|Γ2〉), and say that it exhibits
meet admissibility. In other words, CCRefl〈Γ1|Γ2〉 exhibits meet admissibility iff

Final post-workshop submission: 20120621 SDKB2011 page 15

the updates allowed under constant complement are precisely those which hold
RelView(Γ1, Γ1 ∧ Γ2) constant.

Figure. 7 provides an illustration of meet for the schema and views of Fig.
2. The meet Ω0 ∧ Ω′0 recaptures whether or not bd occurs in the state of the
main schema. Since a stipulated constraint on W0 is that b and d must occur
together or not at all, either of the views Ω0 (which recaptures whether or not b
is a subset of the state of W0) and Ω′0 (which recaptures whether or not d is a
subset of the state of W0), by itself, contains enough information to determine
whether or not bd is a subset of the state of W0.

The equivalence classes of RelView(Ω0, Ω0 ∧ Ω′0) and RelView(Ω′0, Ω0 ∧ Ω′0)
are shown explicitly in the corresponding view, together to their common target
in the meet. Note in particular how each block within Ω0 (representing the
legal constant-complement updates to that view) is paired with the blocks of
Ω′0, which represent possible alternatives for completing the state of the main
schema. It is easy to see that keeping the meet Ω0∧Ω′0 constant; that is, keeping
whether or not bd is a subset of the current state of W0, is exactly what is needed
to identify the legal constant-complement updates.

A proof of the following will not be given, although the idea is hopefully
apparent from the above discussion. Rather, the interested reader is referred to
the given citations.

Proposition 3.6 (Admissibility invariance and meet admissibility). Let
{Γ1, Γ2} be a complementary pair. Then the reflector CCRefl〈Γ1|Γ2〉 is meet ad-
missible iff CCRefl〈Γ1|Γ2〉 exhibits admissibility invariance.

Proof. A direct proof may be found in [24, Thm. 3.8], while the equivalence to
commuting congruences is shown in [17, Thm. 2.14]. 2

Definition 3.7 (Constraint independence). In the context of schemata
with constraints, admissibility invariance for a complementary pair {Γ1, Γ2} may
be characterized via embedded covers. Specifically, the pair {Γ1, Γ2} admits an
embedded cover of the constraints Constr(D) if those constraints may be inferred
from the constraint sets Constr(V1) and Constr(V2) of the view schemata V1 and
V2, via inversion of the decomposition mapping γ1 × γ2. This idea was first put
forward in the context of FDs and projections in [31, Thm. 2], and is discussed
in a general way in [18], but there is a way to capture the essence of the idea
without any recourse to constraints at all. Specifically, it may be axiomatized
that any state N1 ∈ LDB(V1) may be paired with any state N2 ∈ LDB(V2) to
identify a corresponding state of D represented as (γ1 × γ2)

−1
(N1, N2). The only

requirement is that (N1, N2) form a “compatible” pair. The formal definition is
as follows.

Let {Γ1, Γ2} be a complementary pair. Say that it exhibits constraint inde-
pendence if for any N1, N

′
1 ∈ LDB(V1) and N2, N

′
2 ∈ LDB(V2), if any three

of (N1, N2), (N1, N
′
2), (N ′1, N2), (N ′1, N

′
2) are the images of elements of LDB(D)

under γ1 × γ2, then so too is the fourth.
Note how this excludes general, cross-view constraints. If, say, (N1, N2) ∈

LDB(V1) × LDB(V2) is not compatible, then for any other pair (N ′1, N
′
2) ∈

Final post-workshop submission: 20120621 SDKB2011 page 16

Main Schema E0

View Ω0 with Schema W

∅ a b ab

View Ω′
0 with Schema W′

∅ c d cd

Meet View Ω0 ∧Ω′
0

∅ bd

∅ c bd bcd

a ac abd abcd

Fig. 7. Visualization of a meet-complementary pair

LDB(V1) × LDB(V2), at least one of (N1, N
′
2) and (N ′1, N2) must not be com-

patible either. The lack of compatibility of (N1, N2) cannot thus be due to any
special properties of this pair, since it mandates non-compatibility of at least
one other pair with at least one arbitrary component.

In terms of the example depicted in Fig. 2 and Fig. 7, (N1, N2) ∈ (ω0 ×
ω′0)(LDB(E0)) iff the condition (b ∈ N1 ⇔ d ∈ N2) holds. From this, it is easy
to see that if (N1, N2), (N1, N

′
2), (N ′1, N2) ∈ (ω0×ω′0)(LDB(E0)), then b ∈ N1 iff

b ∈ N ′1 iff d ∈ N2 iff d ∈ N ′2, whence (N ′1, N
′
2) ∈ (ω0 × ω′0)(LDB(E0)),

In terms of the relational example of Fig. 3, ΠE1

AB ∧ Π
E1

BC = ΠE1

B , i.e., the
meet of the AB and BC projection is the projection onto the common column
B. For two relations N1 ∈ LDB(EAB

1) and N2 ∈ LDB(EBC
1), (N1, N2) ∈ (πE1

AB ×
πE1

BC)(LDB(E1)) iff RelMor〈ΠE1

AB , Π
E1

B 〉(N1) = RelMor〈ΠE1

BC , Π
E1

B 〉(N2); that is,
N1 and N2 are compatible if they agree on the common column B. This is none
other than the classical condition for a lossless join.

The formal result is as follows.

Proposition 3.8 (Admissibility invariance and constraint indepen-
dence). Let {Γ1, Γ2} be a complementary pair. Then CCRefl〈Γ1|Γ2〉 exhibits
admissibility invariance iff {Γ1, Γ2} exhibits constraint independence.

Proof. A direct proof may be found in [24, Thm. 3.8], while the equivalence to
commuting congruences is shown in [17, Thm. 2.14]. 2

Final post-workshop submission: 20120621 SDKB2011 page 17

4 Reflection Invariance

The constant-complement strategy requires a choice of complement, and that
has always been its Achilles’ heel. Distinct complements may give rise not only
to distinct sets of supported view updates, but, as illustrated in Fig. 5, to dis-
tinct translations of the same view update as well. Nevertheless, it is difficult
to construct examples which reflect realistic data modelling yet which exhibit
alternate translations of a given view update. There always seems to be one “nat-
ural” choice, with the others appearing to be contrived mathematical artifacts
which are of dubious use in terms of any reasonable modelling. In this section,
this issue is examined in some detail. First, the main known result is recalled
and extended; that if attention is restricted to situations in which databases
have order and database morphisms preserve that order, then order updates —
insertions and deletions — always have reflections which are independent of the
choice of complement. Subsequently, new results on how to extend this basic
result beyond simple insertions and deletions are developed.

The main reference for the known results in [17], although the approach taken
in that paper is some different, and undeniably more complex, than that given
here. Thus, the first part of this section also serves as a simpler tutorial on the
basic aspects of incorporating order into the constant-complement approach.

Definition 4.1 (Reflection invariance). Before venturing into a description
of order properties, it is appropriate to provide a formal definition of reflection
invariance which applies to the completely general case. Let D be a database
schema, let Γ be a view of D, and let U be a set of reflectors for Γ .

(a) The set U is said to exhibit reflection invariance with respect to an update
request u ∈ UpdReq(Γ) if for any u1, u2 ∈ U , if both u1(u) ↓ and u2(u) ↓,
then u1(u) = u2(u).

(b) The set U is said to exhibit reflection invariance with respect to a set
U ⊆ UpdReq(Γ) if it exhibits reflection invariance for each u ∈ U .

Examples 4.2 (The utility of order). To illustrate the utility of respect-
ing order properties in the constant-complement strategy, a simple example,
first presented in [16, 1.1.1 and 1.1.2], is recalled. Let E3 be the relational
schema comprised of two unary relation symbols R[A] and S[A]; there are no
constraints other than that these two relations share the same domain. Let
ΠE3

R = (ER
3 , π

E3

R) be the view which preserves R while discarding S entirely,

and define ΠE3

S = (ES
3 , π

E3

S) similarly. Thus, a state M ∈ LDB(E3) is repre-
sented as a pair (MR,MS) in which MR is the relation for R and MS is the
relation for S, with πE3

R (MR,MS) = MR, and πE3

S (MR,MS) = MS . It is imme-

diate that {ΠE3

R , ΠE3

S } forms a meet complementary pair, with meet the zero
view 0E3

. Any update may be made to R[A] while holding S[A] constant. There
cannot be a simpler and more natural complement of ΠE3

R than ΠE3

S .

Nevertheless, there are other complements. Define the view
ΠE3

R∆S = (ER∆S
3 , πE3

R∆S) to have the schema ER∆S
3 which consists of the single

Final post-workshop submission: 20120621 SDKB2011 page 18

unary relation symbol T [A], with the view mapping πE3

R∆S defined by the sym-

metric difference; thus πE3

R∆S(MR,MS) = MR ∆MS = (MR \MS)∪ (MS \MR).

It is not difficult to see that {ΠE3

R , ΠE3

R∆S} also forms a meet-complementary
pair with meet 0E3

. Indeed, MS = MR ∆(MR ∆MS).
Using ΠE3

R∆S as a complement to ΠE3

R leads to unnatural view updates. For
example, if the state of the main schema is M31 = {R(a1), S(b1)}, then the view
update ({R(a1)}, ∅) to ΠE3

R — the deletion of R(a1) with constant complement

ΠE3

R∆S — requires the insertion of a1 into S[A], so that the new state after the
update must be M32 = {S(b1), S(a1)}, and not the much more natural {S(b1)}
mandated by constant complement ΠE3

S .
It is difficult to imagine a modelling situation in which a complement of the

form ΠE3

R∆S would be preferred to ΠE3

S . Nevertheless, from a set-based mathe-
matical perspective, there is no ground to choose one over the other. However,
if order is considered, the preference for ΠE3

S becomes immediate. Regard the
states of the schemata as being ordered under relation-by-relation inclusion.
Then both πE3

R and πE3

S are order-preserving morphisms, while πE3

R∆S is not.
Since view morphisms which occur typically in the relational model, such as the
SPJR morphisms which are defined using the operations or selection, projection,
join, and renaming, are order preserving, restricting attention to such views is a
natural step. As will be seen, this choice leads to interesting results on reflection
invariance.
It is important to note that reflection invariance only addresses the issue of when
the translation of a given view update, or set of view updates, is independent of
the choice of complement. It does not address the issue of whether a single com-
plement supports a given set of updates. A simple example, taken from [20, Sec.
1], illustrates this difference. Let E4 have the single relation symbol R[ABCD],
constrained by the FDs in {B → D,C → D}. The three projective views ΠE4

ABC ,

ΠE4

BD, and ΠE4

CD are defined in the obvious way. Using the classical characteriza-

tion [31, Thm. 1], it is easy to see that both ΠE4

BD and ΠE4

CD are complements of

ΠE4

ABC . Each of these views is order preserving, and the results of Theorem 4.11
and Theorem 4.14 established below ensure that, at least for update requests
which are realized by the composition of at most one insertion and one deletion,
the reflection of that view update on ΠE4

ABC is independent of which of these
two complements is chosen. However, the two complements support distinct sets
of updates. Indeed, with constant complement ΠE4

CD, the updates to ΠE4

ABC are
those which keep the projection onto C constant, while those with constant
complement ΠE4

BD must keep B constant. The theory only guarantees that the
updates which are common to the two — those which keep both the projection
onto B as well as the projection onto C constant — have the same translation.
Although these pairs are not meet complements, it is possible to obtain similar,
but slightly more complex examples, which are meet complements. See [23] for
details, as well as for a study of the conditions under which a single complement
can handle all possible updates definable via constant complement.

Definition 4.3 (Partially ordered sets). Since the theory is based upon or-
der, it is pertinent to recall the basic ideas and notation, as well as to introduce

Final post-workshop submission: 20120621 SDKB2011 page 19

some special but useful extensions. Familiarity with the fundamental ideas of
posets, such as presented in [10], is presumed; only a few notational and ter-
minological points are reviewed here. A partially ordered set (poset) is a pair
P = (P,≤P) in which P is a set and ≤P is a reflexive, transitive, and antisym-
metric relation on P . Given posets P = (P,≤P) and Q = (Q,≤Q), a morphism
f : P → Q is a monotone function f : P → Q; i.e., p1, p2 ∈ P with p1 ≤P p2

implies that f(p1) ≤Q f(p2). The morphism f is open if, for any q1, q2 ∈ Q with
q1 ≤Q q2, there are p1 ∈ f−1(q1), p2 ∈ f−1(q2) with p1 ≤P p2. In other words, f
is open if Q carries the weakest order which renders f a morphism.

The morphism f is an isomorphism iff it has both left and right inverses. It
is easily verified that this is equivalent to being an open bijection.

The morphism is f is an embedding if it is an open injection, so that the
image f(P) is isomorphic to P; i.e., Q contains an isomorphic copy of P.

If P = (P,≤P) is a poset, then so too is its dual P = (P,≥P), with p1 ≥P p2

iff p2 ≤P p1. Thus, associated with each property a dual one. Duality will be
used throughout this section.

Given a poset P = (P,≤P) and S ⊆ P , an upper bound for S is any b ∈ P
with s ≤P b for all s ∈ S. The set of all upper bounds of S is denoted UBP(S).
An upper bound m is minimal if whenever b is also an upper bound, and b ≤ m,
then b = m. The set of all minimal upper bounds, or MUBs of S, is denoted
MUBP(S). If S has exactly one MUB, it is called a least upper bound, or LUB,
in accordance with standard notation. The LUB of S, when it exists, is denoted
LUBP(S).

The notions of lower bound, maximal lower bound or MLB, and greatest lower
bound or GLB, are defined dually. The set of all lower bounds (resp. MLBs) of
S is denoted LBP(S) (resp. MLBP(S)), and the GLB of S, when it exists, is
denoted GLBP(S).

Definition 4.4 (Schemata. morphisms, and views with order). A
database schema with order is a poset D = (LDB(D),≤D) in which LDB(D)
is a set, called the set of legal databases of D.

Observe that an ordinary set-based schema may be regarded as a special case
in which ≤D is the flat order for which M1 ≤D M2 iff M1 = M2.

An order morphism f : D1 → D2 of database schemata with order is just a
poset morphism.

An order view of the schema D is a pair Γ = (V, γ) in which V is a schema
and γ : D → V is an open surjection. The congruence of Γ is defined exactly as
in the set-based case (Summary 2.4).

In modelling within the relational context, the natural ordering is relation-
by-relation inclusion, which will always be assumed unless stated specifically to
the contrary. It will furthermore be assumed that all relations consist of a finite
number of tuples — a condition which is always met in practice — in order
to ensure that the associated poset is satisfies the bounded chain condition. As
noted above, and as expanded in [17, Prop. 2.5], the usual SPJR-morphisms
define open surjections and hence order views in the above sense.

Final post-workshop submission: 20120621 SDKB2011 page 20

Notation 4.5. Throughout the rest of this section, unless stated specifically to
the contrary, take D =(LDB(D),≤D) to be a database schema with order, with
Γ = (V, γ), Γ ′ = (V′, γ′), Γ1 = (V1, γ1), and Γ2 = (V2, γ2) order views over D.

Definition 4.6 (Order complements). In order to extend the notions of
Definition 2.6 to the order case, it does not suffice simply to require that the
views be order views. Rather, it is also necessary to ensure that the decom-
position function be an embedding the order sense. More precisely, the order
view Γ ′ is an order complement of the order view Γ if the function γ × γ′ :
LDB(D) → LDB(V) × LDB(V′) (see Definition 2.6) is an embedding when
LDB(V) × LDB(V′) is given the product ordering defined by (N1, N

′
1) ≤V1×V2

(N2, N
′
2) iff N1 ≤V N2 and N ′1 ≤V′ N

′
2. In this case, {Γ, Γ ′} is called an order

complementary pair.

Examples 4.7 (Order complements). In Examples 4.2, {ΠE3

R , ΠE3

S } forms

an order complementary pair, while {ΠE3

R , ΠE3

R∆S} does not. Both

{ΠE4

ABC , Π
E4

BD} and {ΠE4

ABC , Π
E4

CD} also form order complementary pairs. In Fig.

3, {ΠE1

AB , Π
E1

BC} forms an order complementary pair.

Definition 4.8 (Simple order updates). In the relational context, an update
is an insertion if it only adds tuples, and a deletion if it only removes tuples. The
natural generalization to the abstract order case is that an update (M1,M2) ∈
Updates(D) is an insertion if M1 ≤D M2 and a deletion if M2 ≤D M1. The sets
of all insertions and deletions on D are denoted Ins(D) and Del(D), respectively.

An update request (M,N) ∈ UpdReq(Γ) is an insertion request along Γ
if (γ(M), N) is an insertion, and a deletion request along Γ if (γ(M), N) is a
deletion. Define InsReq(Γ) and DelReq(Γ) to be the sets of all insertion and
deletion requests along Γ , respectively. An order-based realization respects the
ordering. Specifically, given (M,N) ∈ InsReq(Γ) (resp. (M,N) ∈ DelReq(Γ)), an
order-based realization (M,M ′) is a realization with the property that (M,M ′) ∈
Ins(D) (resp. (M,M ′) ∈ Del(D)).

It is convenient to combine these. A simple order update is either an insertion
or else a deletion; SimpUpd(D) = Ins(D) ∪ Del(D). Similarly, a simple order-
update request is either an insertion request or else a deletion request, with
OrderReq(Γ) = InsReq(Γ) ∪ DelReq(Γ).

It is natural to require that a view update which is an insertion be reflected
to the main schema as an insertion, and likewise for deletions. Fortunately, this
is guaranteed automatically for the constant-complement strategy with order
complements.

Lemma 4.9 (Reflection preserves order). Let {Γ1, Γ2} be an order comple-
mentary pair, and suppose that u = (M,N) ∈ InsReq(Γ1) (resp. u = (M,N) ∈
DelReq(Γ1)) with CCRefl〈Γ1|Γ2〉(u)↓.
(a) (M,CCRefl〈Γ1|Γ2〉(u)) ∈ Ins(D) (resp. (M,CCRefl〈Γ1|Γ2〉(u)) ∈ Del(D)). In

other words, the reflection of an order-based update request is always an
order-based realization of the same type.

Final post-workshop submission: 20120621 SDKB2011 page 21

(b) CCRefl〈Γ1|Γ2〉(u) = GLBD({M ′ ∈ LDB(D) | M ≤D M ′ and γ1(M ′) = N})
(resp. CCRefl〈Γ1|Γ2〉(u) = LUBD({M ′ ∈ LDB(D) |M ′ ≤D M and γ1(M ′) =
N})). In other words, CCRefl〈Γ1|Γ2〉(u) is the least (resp. greatest) state in
LDB(D) which is at least as large (resp, at least as small) as M under ≤D

and which maps to N under γ1.

Proof. The proof of (a) follows from the fact that the mapping
γ1× γ2 : LDB(D)→ LDB(V1)× LDB(V2) is an order embedding. For (M,N) ∈
InsReq(D),
(γ1 × γ2)(M) = (γ1(M), γ2(M)) ≤V1×V2

(N, γ2(M))
= (γ1 × γ2)CCRefl〈Γ1|Γ2〉(M,N).

Hence M = (γ1 × γ2)
−1

(γ1 × γ2)(M)
≤D (γ1 × γ2)

−1
(γ1 × γ2)(CCRefl〈Γ1|Γ2〉(M,N)) = CCRefl〈Γ1|Γ2〉(M,N).

The proof for a deletion request is dual.
For (b), first assume that u = (M,N) is an insertion request, and let M ′ ∈

LDB(D) with M ≤D M ′ and γ1(M ′) = N . Denote (γ1 × γ2)(M ′) by (N,N ′).
Since (M,M ′) is an insertion, γ2(M) ≤ N ′. Thus (N, γ2(M)) ≤ (N,N ′), and
so CCRefl〈Γ1|Γ2〉(M,N) = (γ1 × γ2)

−1
(N, γ2(M)) ≤D (γ1 × γ2)

−1
(N,N ′) = M ′.

Thus, CCRefl〈Γ1|Γ2〉(M,N) is the least element of LDB(D) for which maps to
N under γ1 and which is at least as large as M , as required. The proof for a
deletion request is dual. 2

Definition 4.10 (Constant-complement reflectors of an order view).
For the order view Γ , define the constant-complement reflector set of Γ to be
OrdCCRefl〈Γ |−〉 = {CCRefl〈Γ |Γ ′〉 | Γ ′ is an order complement of Γ}.

The following theorem is the central result for the uniqueness of reflections
of simple order updates.

Theorem 4.11 (Reflection invariance for simple order-update
requests). The set OrdCCRefl〈Γ |−〉 of reflectors for Γ exhibits reflection in-
variance with respect to the set OrderReq(Γ) of update requests.

Proof. The proof follows directly from Lemma 4.9(b), since that characterization
of CCRefl〈Γ1|Γ2〉 is does not depend upon the particular choice of Γ2. 2

Definition 4.12 (Two-step updates and update requests). The result
of Theorem 4.11 is established in [17, Thm. 4.3] for the case of meet order
complementary pairs (represented via the corresponding update strategies of that
paper). The above result generalizes that of [17] in that it does not require meet
complements.

However, [17, Thm. 4.3] also claims, without further discussion, that the
result extends to all order-based updates which are defined to be compositions
of insertions and deletions. Unfortunately, a more careful examination of the
situation shows this not to be the case. The problem is that a single view update
to Γ u may be represented by two distinct sequences v1 and v2 defining order-
based updates, with v1 supported by order complement Γ1 but not by order

Final post-workshop submission: 20120621 SDKB2011 page 22

complement Γ2, while v2 is supported by Γ2 but not Γ1. A concrete example is
given in Example 4.16 at the end of this section.

Fortunately, the result of Theorem 4.11 does extend for certain classes of the
so-called two-step order-based updates, that is, those which may be expressed
as a single insertion followed by a single deletion, or a single deletion followed
by a single insertion. A presentation of those results constitutes the remainder
of this section.

Formally, a two-step update on D is a triple v = (M1,M2,M3) ∈ LDB(D)×
LDB(D)× LDB(D). The set of two-step updates on D is denoted Updates2(D).

A two-step update request for Γ is a triple v = (M,N1, N2) ∈ LDB(D) ×
LDB(V) × LDB(V), with the set of such requests on Γ denoted UpdReq2(Γ).
The triple v defines a request to update the view state from γ(M) to N2 via a pair
of updates, going through the intermediate state N1. The triple v is called a two-
step expansion of (M,N2). A realization of v is an (M,M1,M2) ∈ Updates2(D)
with the property that (M,M1) is a realization of (M,N1) and (M1,M2) is a
realization of (M1, N2).

The relevant order properties are defined as follows. (M1,M2,M3) ∈
Updates2(D) is an insertion-deletion triple if (M1,M2) ∈ Ins(D) and (M2,M3) ∈
Del(D), and deletion-insertion triple if (M1,M2) ∈ Del(D) and (M2,M3) ∈
Ins(D). The set of all insertion-deletion triples and deletion-insertion triples over
D are denoted by InsDel(D) and DelIns(D), respectively. A two-step order-based
update on D is either an insertion-deletion triple or else a deletion-insertion
triple. Define OrderUpd2(D) = InsDel(D) ∪ DelIns(D).

Analogously, the two-step update request (M,N1, N2) is an insertion-deletion
request if (γ(M), N1) ∈ Ins(V) and (N1, N2) ∈ Del(V), and a deletion-insertion
request if (γ(M), N1) ∈ Del(V) and (N1, N2) ∈ Ins(V). Denote the correspond-
ing sets by InsDelReq(Γ) and DelInsReq(Γ), respectively. A two-step order update
request is either an insertion-deletion request or else a deletion-insertion request;
define OrderReq2(Γ) = InsDelReq(Γ)∪DelInsReq(Γ). Observe that any insertion
request (M,N) ∈ InsReq(Γ) may be regarded as an insertion-deletion request
(M,N,N) ∈ InsDelReq(Γ). Similarly, any deletion request may be regarded as
a deletion-insertion request. Thus, a theory of two-step order-update requests
subsumes simple order updates as well.

Although two-step order-based updates and update requests may be of two
senses, one insertion-deletion and the other deletion-insertion, it is nevertheless
useful to have a concise terminology for the case that they are of the same
sense. To this end, say that two u, u′ ∈ OrderUpd2(D) are of the same sense
if either both u, u′ ∈ InsDel(D) or else both u, u′ ∈ DelIns(D). Similarly, two
v, v′ ∈ OrderReq2(Γ) are of the same sense if either both v, v′ ∈ InsDelReq(Γ)
or else both v, v′ ∈ DelInsReq(Γ).

An order realization of (M,N1, N2) ∈ OrderReq2(Γ) is a realization
(M,M1,M2) ∈ OrderUpd2(D) which preserves sense; i.e., (M,N1, N2) ∈
InsDelReq(D) implies (M,M1,M2) ∈ InsDel(D), and (M,N1, N2) ∈
DelInsReq(D) implies (M,M1,M2) ∈ DelIns(D).

Final post-workshop submission: 20120621 SDKB2011 page 23

It is also convenient to have terminology and notation for a two-step up-
date request which is an expansion of an ordinary update request. Let u =
(M,N) ∈ UpdReq(Γ). An insertion-deletion expansion of u is an (M,N ′, N) ∈
InsDelReq(Γ), with InsDelExpnd(u) denoting the set of all such expansions. Sim-
ilarly, a deletion-insertion expansion is an (M,N ′, N) ∈ InsDelReq(Γ), with
DelInsExpnd(u) denoting the set of all such expansions.

A two-step order expansion of u is either an insertion-deletion expansion or
else a deletion-insertion expansion. The set of all two-step order expansions of u
is denoted OrdExpnd2(u); thus OrdExpnd2(u) = InsDelExpnd(u)∪DelInsExpnd(u).

The triple u = (M1,M2,M3) ∈ InsDel(Γ) (resp. u = (M1,M2,M3) ∈
DelIns(Γ) is reduced if M2 ∈ MUBD({M1,M3}) (resp. M2 ∈ MLBD({M1,M3})).
Similarly, u = (M1, N2, N3) ∈ InsDelReq(Γ) (resp. u = (M1, N2, N3) ∈
DelInsReq(Γ) is reduced if N2 ∈ MUBD({γ(M1), N3}) (resp. N2 ∈
MLBD({γ(M1), N3})). Although not employed directly in the theory which fol-
lows, reduced triples are useful in examples, because they represent a two-step
update in which the intermediate change is minimal.

Given an order complement Γ ′ of Γ , define the extended constant-complement
translator to be the partial function CCRefl2

〈Γ |Γ ′〉 : OrderReq2(Γ) → LDB(D) ×
LDB(D), given on elements by

(M,N1, N2) 7→ (CCRefl〈Γ |Γ ′〉(M,N1),CCRefl〈Γ |Γ ′〉(CCRefl〈Γ |Γ ′〉(M,N1), N2)).
This function is taken to be defined iff both CCRefl〈Γ |Γ ′〉(M,N1) and

CCRefl〈Γ |Γ ′〉(CCRefl〈Γ |Γ ′〉(M,N1), N2) are. Thus, CCRefl2
〈Γ |Γ ′〉 defines the trans-

lator which associates the realization
(M,CCRefl〈Γ |Γ ′〉(M,N1),CCRefl〈Γ |Γ ′〉(CCRefl〈Γ |Γ ′〉(M,N1), N2))

with the update request (M,N1, N2). It represents performing the two constant-
complement updates in sequence, first from M to CCRefl〈Γ |Γ ′〉(M,N1), and then
from CCRefl〈Γ |Γ ′〉(M,N1) to CCRefl〈Γ |Γ ′〉(CCRefl〈Γ |Γ ′〉(M,N1), N2).

Definition 4.13 (Two-step reflection invariance). To present results on
reflection invariance for order-based updates in a form similar to that of Theorem
4.11, it is appropriate to develop some additional definitions. In that result, the
set of reflectors is general (all constant-complement reflectors defined by order-
based complements), while the set of update requests is restricted to simple order
updates. To handle the more complex case of two-step updates, it is convenient
to work with a general set of update requests, but to limit the reflectors more
strictly. Define the insertion-deletion reflector on Γ for order complement Γ ′ as
follows.

CCRefl↗↘〈Γ |Γ ′〉(u) =

CCRefl〈Γ |Γ ′〉(u) if (∃v ∈ InsDelExpnd(u))

(CCRefl2
〈Γ |Γ ′〉(v)↓)

undefined otherwise

Thus, whenever it is defined, CCRefl〈Γ |Γ ′〉 provides the same translations as
the full constant-complement reflector CCRefl〈ΓΓ |ΓΓ ′ 〉, but it is only defined on
those update requests u = (M,N) expand to a two-step order update request

Final post-workshop submission: 20120621 SDKB2011 page 24

for which the constant-complement translation is defined on both steps. The
associated set of reflectors is defined to be

OrdCCRefl↗↘〈Γ |−〉 = {CCRefl↗↘〈Γ |Γ ′〉 | Γ
′ is an order complement of Γ}.

Thus, to say that OrdCCRefl↗↘〈Γ |−〉 exhibits reflection invariance with respect

to UpdReq(Γ) (as is proven in Theorem 4.14 below), is to say that the final state
of any insertion-deletion expansion v of an update request u does not depend
upon the choice of complement, provided that both the insertion and the deletion
associated with v are supported by the associated constant-complement reflector.

An analogous deletion-insertion reflector is defined as follows.

CCRefl↘↗〈Γ |Γ ′〉(u) =

CCRefl〈Γ |Γ ′〉(u) if (∃v ∈ DelInsExpnd(u))

(CCRefl2
〈Γ |Γ ′〉(v)↓)

undefined otherwise

The associated set of reflectors in this case is
OrdCCRefl↘↗〈Γ |−〉 = {CCRefl↘↗〈Γ |Γ ′〉 | Γ

′ is an order complement of Γ}.
There are also two reflectors which are defined by combining the above

two. In the first, CCRefl
↗↘
↘↗∨

〈Γ |Γ ′〉(u) ↓ iff at least one of CCRefl↗↘〈Γ |Γ ′〉(u) ↓ and

CCRefl↘↗〈Γ |Γ ′〉(u)↓, while in the second CCRefl
↗↘
↘↗∧

〈Γ |Γ ′〉(u)↓ iff both CCRefl↗↘〈Γ |Γ ′〉(u)↓
and CCRefl↘↗〈Γ |Γ ′〉(u)↓.

CCRefl
↗↘
↘↗∨

〈Γ |Γ ′〉(u) =

CCRefl〈Γ |Γ ′〉(u) if (∃v ∈ OrdExpnd2(u))

(CCRefl2
〈Γ |Γ ′〉(v)↓)

undefined otherwise

CCRefl
↗↘
↘↗∧

〈Γ |Γ ′〉(u) =

CCRefl〈Γ |Γ ′〉(u) if (∃v1 ∈ DelInsExpnd(u))
(∃v2 ∈ InsDelExpnd(u))

((CCRefl2
〈Γ |Γ ′〉(v1)↓)

∧(CCRefl2
〈Γ |Γ ′〉(v2)↓))

undefined otherwise

The associated sets of reflectors are

OrdCCRefl
↗↘
↘↗∨

〈Γ |−〉 = {CCRefl
↗↘
↘↗∨

〈Γ |Γ ′〉 | Γ
′ is an order complement of Γ}

and OrdCCRefl
↗↘
↘↗∧

〈Γ |−〉 = {CCRefl
↗↘
↘↗∧

〈Γ |Γ ′〉 | Γ
′ is an order complement of Γ}.

Three of these four exhibit reflection invariance; only OrdCCRefl
↗↘
↘↗∨

〈Γ |−〉 fails, as

shown below.

Theorem 4.14 (Reflection invariance for same-sense requests). Each

of the sets OrdCCRefl↗↘〈Γ |−〉, OrdCCRefl↘↗〈Γ |−〉, and OrdCCRefl
↗↘
↘↗∧

〈Γ |−〉 of reflectors

exhibits reflection invariance with respect to the set UpdReq(Γ).

Final post-workshop submission: 20120621 SDKB2011 page 25

Proof. First, the case of OrdCCRefl↗↘〈Γ |−〉 will be considered. Write u = (M1, N),

and assume that there are vi = (M1, N3i, N2i) ∈ InsDelExpnd(u) for i ∈ {1, 2}
with CCRefl2

〈Γ |Γi〉(vi)↓. Then, for i ∈ {1, 2}, let (M1,M3i,M2i) denote the order
realization of vi defined by constant complement Γi; i.e., M3i =
CCRefl〈Γ |Γi〉(M1, N31) and M2i = CCRefl〈Γ |Γi〉(M3i, N21).

Next, observe that since γ(M21) = γ(M22) = N , and N ≤V γ(M32) (since
(γ(M32), N) is a deletion), γ(M21) ≤V γ(M32). Also, γ1(M21) = γ1(M1) (since
the update (M1,M31,M21) is with constant complement γ1), and γ1(M1) ≤V1

γ1(M32) (since (M1,M32) is an insertion), so γ1(M21) ≤V1
γ1(M32). Hence

M21 ≤D M32 (since γ × γ1 is an order embedding). Thus γ2(M21) ≤V2
γ2(M32)

(since γ2 is an order morphism), and since γ2(M32) = γ2(M22) (since (M32,M22)
is a deletion with constant complement γ2), it follows that γ2(M21) ≤V2

γ2(M22).
Finally, since γ(M21) = γ(M22) = N , it follows that M21 ≤D M22. An analo-
gous argument obtained by swapping the rôles of Γ1 and Γ2 yields M22 ≤D M21,
whence M21 = M22; i.e., CCRefl〈Γ |Γ1〉(u) = CCRefl〈Γ |Γ2〉(u), as required.

For OrdCCRefl↘↗〈Γ |−〉, the proof is dual. For OrdCCRefl
↗↘
↘↗∧

〈Γ |−〉, it suffices to com-

bine the two results, since OrdCCRefl
↗↘
↘↗∧

〈Γ |−〉(u)↓ iff both OrdCCRefl↘↗〈Γ |−〉(u)↓ and

OrdCCRefl↗↘〈Γ |−〉(u)↓. 2

Examples 4.15 (Application of Theorem 4.14). A few examples will help
illustrate the applicability of Theorem 4.14. First, continue with the schema E4

and its views of Examples 4.2. Let RABC denote the relation symbol of ΠE4

ABC ,
let N41 = {RABC (a1,b1, c1)}, N42 = {RABC (a2,b1, c1)}, and consider the view
update (N41, N42). For concreteness, assume that the current state of E4 is
M41 = {R(a1,b1, c1,d1)}, so that the corresponding update request is u41 =
(M41, N42).

Consider the order complement ΠE4

BD of ΠE4

ABC . It is clear that
CCRefl〈ΠE4

ABC |Π
E4
BD〉

(u41) = M42, with M42 = {R(a2,b1, c1,d1)}. Nevertheless,

since (M41, N42) is not a simple order update, Theorem 4.11 does not ap-
ply. However, u41 has the two-step order expansion v41 = (M41, N412, N42) ∈
InsDelReq(ΠE4

ABC) with N412 = N41 ∪N42 = {RABC (a1,b1, c1), RABC (a2,b1, c1)}.
In view of Theorem 4.14, (M41,M42) is the reflection of u41 for every element of
OrdCCRefl↗↘

〈ΠE4
ABC |−〉

for which a reflection is defined; in particular for complement

ΠE4

CD.

Furthermore, ∅ = MLBEABC4
(N41, N42), and so any v = (M41, N,N42) ∈

DelInsReq(ΠE4

ABC) must haveN = ∅. Since the only stateM ∈ LDB(E4) for which

πE4

ABC(M) = ∅ is ∅ ∈ LDB(E4), it follows that u41 is not supported by a deletion
followed by an insertion for any choice of complement (since the information
about the values in column D could not possibly be preserved). Thus, (M41,M42)

is in fact the reflection of u41 for every element of OrdCCRefl
↗↘
↘↗∨

〈ΠE4
ABC |−〉

for which

a reflection is defined, including CCRefl〈ΠE4
ABC |Π

E4
CD〉

, even though Theorem 4.14

Final post-workshop submission: 20120621 SDKB2011 page 26

does not provide that result directly. In other words, OrdCCRefl
↗↘
↘↗∨

〈ΠE4
ABC |−〉

exhibits

reflection invariance with respect to u41.
As a second example, on the same schema and view, consider the view up-

date (N43, N44) on ΠE4

ABC with N43 = {RABC (a1,b1, c1), RABC (a3,b1, c1)} and
N44 = {RABC (a2,b1, c1), RABC (a3,b1, c1)}. Assume that the initial state of E4 is
M43 = {R(a1,b1, c1,d1), R(a3,b1, c1,d1)}, so that the associated update request
is u42 = (M43, N44). Now there are two two-step expansions, (M43, N45, N44) ∈
InsDelReq(ΠE4

ABC) with N45 = N43 ∪ N44, and (M43, N46, N44)

∈ DelInsReq(ΠE4

ABC) with N46 = N43 ∩ N44. It is immediate that each re-
sults in the same final state M44 = {R(a2,b1, c1,d1), R(a3,b1, c1,d1)} under

CCRefl2

〈ΠE4
ABC |Π

E4
BD〉

. Thus, invoking Theorem 4.14 for OrdCCRefl
↗↘
↘↗∧

〈ΠE4
ABC |−〉

, it fol-

lows that all two-step order expansions, for any order complement, regardless of
sense, yield the same reflection.

It is not always the case that there is a single “natural” intermediate point
for a two-step update. To illustrate, let E5 be the schema obtained from E4 by
adding a second relation S[AE], together with the constraint

(∀x)(∀y)(∀z1)(∀z2)((R(a1, x, y, z1)∧R(a2, x, y, z2))⇒ (∃w)(S(a1, w))).
The view to be updated is ΠE5

ABC+S = (EABC+S
5 , πE5

ABC+S) which consists of the
ABC projection of R[ABCD], together with the entire relation S[AE]. The two
main complements are, as for E4, the BD and CD projections ΠE5

BD and ΠE5

CD.

For concreteness, work with ΠE5

BD as the complement. Consider the view up-
date u51 = (N51, N52) with N51 = {RABC (a1,b1, c1)}, N52 = {RABC (a2,b1, c1)}.
Take the state of E5 to be M51 = {R(a1,b1, c1,d1)}, so that the desired up-
date request is u51 = (M51, N52). Now N51 ∪ N52 6∈ LDB(EABC+S

5). Rather,
MUBEABC+S

5
(N51, N52) = {N51 ∪N52 ∪ {S(a1, e1)} | e1 ∈ Dom(E)} and any one

of these states could be chosen as the intermediate point N of a two-step update
expansion v51 = (M51, N,N52) of u51. If Dom(E), the set of domain values for at-
tribute E, is infinite, then there are infinitely many distinct reduced expansions
of (M51, N52). Nevertheless, these expansions differ only in the choice for entries
associated with E in the inserted tuples, and those added tuples are deleted in
the second, deletion step of the update anyway. Regardless of the choice of N ,
the final translation of u41 is (M51,M52), with M52 = {R(a2,b1, c1,d1)}. This
of course must be the case, since they are all constant-complement expansions.
The point is that there may be many alternatives for an order expansion, even
for a single complement.

Example 4.16 (Two-step translation dependent upon complement).

It is unfortunately not the case that Theorem 4.14 extends to OrdCCRefl
↗↘
↘↗∨

〈Γ |−〉.

To complete this section, it is instructive to see via example how this can occur.
Let E6 be the relational schema with two unary relational symbols R[A] and

S[B], with the finite domains Dom(A) = {a1, a2, a3} and Dom(B) = {b1,b2}.
States are represented compactly as concatenations of domain values, with the
order irrelevant. For example, a1a2b1 represents {R(a1), R(a2), S(b1)}. The only
allowable states are those in LDB(E6) = {a1b1, a1b2, a1a2b1, a1a2b2, a1a2a3b1,

Final post-workshop submission: 20120621 SDKB2011 page 27

a1a2a3b2, a1a2a3b1b2}. In other words, each element of {a1, a1a2, a1a2a3} may
be paired with each element of {b1,b2}, and a1a2a3 may be paired with b1b2.
The order relationships for these states, together with names as subscripted M ’s,
are shown in Figure 8. Each block except for the top one, labelled M632, actually
represents two states, one for x = 1 and a second for x = 2. The subscripted c’s
listed with each state represent the associated state of a view Ω61, and will be
elaborated shortly. All lines connecting states illustrate the order structure. The
dotted lines indicate order structure not associated with any update discussed in
the example, while the solid and dashed lines identify specific the specific paths
of two updates, as elaborated below.

Define the view ΠE6

R = (ER
6 , π

E6

R) to be that which preserves R while dis-
carding S. Thus, ER

6 is the schema with the single relation symbol R[A]. Define
ΠE6

S similarly. Each of these is trivially an order view, and {ΠE6

R , ΠE6

S } is an
order meet-complementary pair. Thus, in view of Theorem 4.11, all simple order
updates of the same sense on ΠE6

R exhibit reflection invariance with respect to
constant complement. No order-complement can give a translation which dif-
fers from that of CCRefl〈ΠE6

R |Π
E6
S 〉

. Furthermore, in light of Theorem 4.14, two

two-step order update requests of the same sense also exhibit update invariance.

Fix x ∈ {1, 2}, and consider v60 = (a1a2bx, a1a3) ∈ UpdReq(ER
6). As it is not

a simple order update request, Theorem 4.11 does not apply. However, it does
have the two-step order expansion w61 = (a1a2bx, a1, a1a3) ∈ DelInsReq(ΠE6

R),
which has the realization u61 = (a1a2bx, a1bx, a1a3bx) ∈ DelIns(D), which keeps
the complementΠE6

S constant. On the other hand, it is easy to verify that there is

no two step order expansion for v60 which is in InsDelReq(ΠE6

R) and which holds

ΠE6

S constant. Indeed, the only possibility is w62 = (a1a2bx, a1a2a3, a1a3) ∈
InsDelReq(ΠE6

R) which has realization u62 = (a1a2bx, a1a2a3b1b2, a1a3bx) ∈
InsDel(ΠE6

R). The path of this update is shown by solid lines in Fig. 8.

There is, however, a second order complement Ω61 to ΠE6

R which does hold
w62 constant. Define Ω61 = (E61, ω61) be the view of E6 with W61 having the
single unary relation symbol T [C] with Dom(T) = {c1, c2, } and LDB(W61) =
{c1, c1c2, c1c3}. The view mapping ω61 is defined on elements as illustrated in
Fig. 8; specifically, for x ∈ {1, 2}: a1bx 7→ cx, a1a2bx 7→ cxc3c4, a1a3bx 7→ cxc4,
a1a3bxb3 7→ cxc3c4, a1a2a3bxb3 7→ cxc3c4. It is straightforward to verify that
Ω61 is an order view, that {ΠE6

R , Ω61} forms a meet-complementary pair, and
that the realization u62 of w62 holds Ω61 constant. It is furthermore the case
that no deletion-deletion request for v60 is realizable with constant complement
Ω61. Indeed, v61 and its realization u61 are the only possibilities, and they clearly
change the state of Ω61 from c1c2 to c1c2c3 and finally back to c1c2. The path
of this update is shown by dashed lines in Fig. 8.

The upshot is that there are two distinct complements to ΠE6

R , one which
supports v60 by an deletion-insertion sequence, but not by an insertion-deletion
sequence, and a second view which supports v60 by an insertion-deletion sequence
but not by a deletion-insertion sequence. Furthermore, the resulting view updates

are distinct. Thus, Theorem 4.14 does not extend to OrdCCRefl
↗↘
↘↗∨

〈Γ |−〉.

Final post-workshop submission: 20120621 SDKB2011 page 28

M632 : a1a2a3bxb3

cxc3c4

M61 : a1a2bx

cxc3c4

M621 : a1a3bx

cxc4

M622 : a1a3bxb3

cxc3c4

M631 : a1bx

cx

Fig. 8. Order diagram for the states of E6

5 Conclusions and Further Directions

Much of this paper is of a survey/tutorial nature, presenting the constant-
complement strategy in simple terms. In addition, two key properties of the
strategy which are central to its property of encapsulation have been formal-
ized and characterized; namely admissibility invariance and reflection invariance,
Furthermore, for reflection invariance, new results which extend beyond simple
insertions and deletions have been developed.

Directions for further work include the following.

Refinement of the conditions for reflection invariance The charac-
terization of reflection invariance which is developed in Sec. 4 is limited to two-
step expansions of updates. As such, it is somewhat incomplete, in that a given
view update could still have distinct reflections which fall outside of the scope
of two-step expansions. Further work on this topic is thus warranted. In the
context of Example 4.16, it is very difficult to imagine a real database schema
with such an order structure. A reasonable approach might thus be to look for
additional properties on the order structure of the schemata themselves, prop-
erties which would guarantee reflection invariance. The existing theory does
not place any constraints at all on the order structure. The natural question to
ask is whether traditional database dependencies on relational schemata imply
useful properties on the underlying order structure which would eliminate the
type of anomaly illustrated in Example 4.16 and lead to a much broader theory
of reflection invariance.

Integration with a theory of optimal complements Reflection invari-
ance demands that the translation of a view update via constant-complement
be independent of the choice of complement. However, as illustrated via E1

and its views, different complements may support different sets of updates,
even though their translations agree on common elements. A more ambitious
goal is to identify situations in which a single complement supports all desired
updates – a universal complement. Investigations along such lines were begun

Final post-workshop submission: 20120621 SDKB2011 page 29

in [20] and [23], but there remains much work to be done. Such work would be
a natural extension of the invariance characterizations identified in this paper.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. O. Arieli, M. Denecker, and M. Bruynooghe. Distance semantics for database
repair. Ann. Math. Artif. Intell., 50(3-4):389–415, 2007.

3. O. Arieli, M. Denecker, B. V. Nuffelen, and M. Bruynooghe. Computational meth-
ods for database repair by signed formulae. Ann. Math. Artif. Intell., 46(1-2):4–37,
2006.

4. F. Bancilhon and N. Spyratos. Independent components of databases. In Pro-
ceedings of the Seventh International Conference on Very Large Data Bases, pages
398–408, 1981.

5. F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Trans.
Database Systems, 6:557–575, 1981.

6. F. Bentayeb. Mises à jour au travers de Vues dans les Bases de Données Rela-
tionnelles: Traduction et Déterminisme. PhD thesis, l’Université d’Orléans, 1998.

7. F. Bentayeb and D. Laurent. View updates translations in relational databases.
In Proc. DEXA ’98, Vienna, Sept. 24-28, 1998, pages 322–331, 1998.

8. A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational lenses: a lan-
guage for updatable views. In Proceedings of the Twenty-Fifth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 26-28,
2006, Chicago, Illinois, USA, pages 338–347, 2006.

9. C. J. Date. A Guide to the SQL Standard. Addison-Wesley, 1997.

10. B. A. Davey and H. A. Priestly. Introduction to Lattices and Order. Cambridge
University Press, second edition, 2002.

11. U. Dayal and P. A. Bernstein. On the correct translation of update operations on
relational views. ACM Trans. Database Systems, 8(3):381–416, 1982.

12. J. A. Fernández, J. Grant, and J. Minker. Model theoretic approach to view
updates in deductive databases. J. Automated Reasoning, 17(2):171–197, 1996.

13. J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. Com-
binators for bidirectional tree transformations: A linguistic approach to the view-
update problem. ACM Trans. Programming Languages and Systems, 29(3), 2007.

14. G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of consistent
views. ACM Trans. Database Systems, 13:486–524, 1988.

15. S. J. Hegner. Foundations of canonical update support for closed database views. In
S. Abiteboul and P. C. Kanellakis, editors, ICDT’90, Third International Confer-
ence on Database Theory, Paris, France, December 1990, pages 422–436. Springer-
Verlag, 1990.

16. S. J. Hegner. Unique complements and decompositions of database schemata. J.
Comput. System Sci., 48(1):9–57, 1994.

17. S. J. Hegner. An order-based theory of updates for closed database views. Ann.
Math. Art. Intell., 40:63–125, 2004.

18. S. J. Hegner. The complexity of embedded axiomatization for a class of closed
database views. Ann. Math. Art. Intell., 46:38–97, 2006.

Final post-workshop submission: 20120621 SDKB2011 page 30

19. S. J. Hegner. A model of database components and their interconnection based
upon communicating views. In H. Jakkola, Y. Kiyoki, and T. Tokuda, editors,
Information Modelling and Knowledge Systems XIX, Frontiers in Artificial Intelli-
gence and Applications, pages 79–100. IOS Press, 2008.

20. S. J. Hegner. Characterization of optimal complements of database views defined
by projection. In K.-D. Schewe and B. Thalheim, editors, 4th International Work-
shop, SDKB 2010, Bordeaux, France, July 5, 2010, Revised Selected Papers, volume
6384 of Lecture Notes in Computer Science, pages 73–95. Springer-Verlag, 2011.

21. S. J. Hegner. Information-based distance measures and the canonical reflection of
view updates. Ann. Math. Art. Intell., 63:317–355, 2011.

22. S. J. Hegner. A simple model of negotiation for cooperative updates on database
schema components. In Y. Kiyoki, T. Tokuda, A. Heimbürger, H. Jaakkola, and
N. Yoshida., editors, Frontiers in Artificial Intelligence and Applications XX11,
pages 154–173, 2011.

23. S. J. Hegner. FD covers and universal complements of simple projections. In
T. Lukasiewicz and A. Sali, editors, Foundations of Information and Knowledge
Systems: Seventh International Symposium, FoIKS 2012, Kiel, Germany, March
5-9, 2012, Proceedings, volume 7153 of Lecture Notes in Computer Science, pages
185–193. Springer-Verlag, 2012.

24. S. J. Hegner. Independent update reflections on interdependent database views.
In A. Düsterhöft, M. Klettke, and K.-D. Schewe, editors, Conceptual Modelling
and Its Theoretical Foundations - Essays Dedicated to Bernhard Thalheim on the
Occasion of His 60th Birthday, volume 7260 of Lecture Notes in Computer Science,
pages 101–115. Springer-Verlag, 2012.

25. S. J. Hegner and P. Schmidt. Update support for database views via cooperation.
In Y. Ioannis, B. Novikov, and B. Rachev, editors, Advances in Databases and
Information Systems, 11th East European Conference, ADBIS 2007, Varna, Bul-
garia, September 29 - October 3, 2007, Proceedings, volume 4690 of Lecture Notes
in Computer Science, pages 98–113. Springer-Verlag, 2007.

26. A. M. Keller. Updating Relational Databases through Views. PhD thesis, Stanford
University, 1985.

27. R. Langerak. View updates in relational databases with an independent scheme.
ACM Trans. Database Systems, 15(1):40–66, 1990.

28. D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.
29. O. Ore. Theory of equivalence relations. Duke Math. J., 9:573–627, 1942.
30. J. Paredaens, P. De Bra, M. Gyssens, and D. Van Gucht. The Structure of the

Relational Database Model. Springer-Verlag, 1989.
31. J. Rissanen. Independent components of relations. ACM Trans. Database Systems,

2(4):317–325, 1977.
32. K.-D. Schewe and B. Thalheim. Component-driven engineering of database appli-

cations. In APCCM ’06: Proceedings of the 3rd Asia-Pacific conference on Concep-
tual modelling, pages 105–114, Darlinghurst, Australia, 2006. Australian Computer
Society, Inc.

33. B. Thalheim. Component development and construction for database design. Data
Knowl. Eng., 54(1):77–95, 2005.

Final post-workshop submission: 20120621 SDKB2011 page 31

