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Abstract. A complement to a database view Γ is a second view Γ ′

which provides the information necessary to reconstruct the entire state
of the main schema. View complementation is central in situations in
which a view is to be updated, since the complement Γ ′ embodies the
information not contained in Γ . In general, Γ may have many comple-
ments. In this work, an approach to identifying and constructing opti-
mal relational complements for relational views defined by projections,
including not only single projections but also sets of projections, is initi-
ated. The approach is based upon the idea of identifying when the main
schema has a governing join dependency; that is, a join dependency which
implies all others. Four distinct classes of such governing dependencies
are identified, corresponding to ordinary complements as well as three
distinct types of dependency-preserving complements.

1 Introduction

A view of a database schema embodies partial, but in general not total, infor-
mation about the state of the schema. To recover the remaining information,
a second view, called a complement, may be used. To illustrate the surround-
ing ideas, a set of four closely related schemata and some of their views will
be considered. Table 1 provides a summary of the associated notation and of
their properties. Each of the four schemata has the same, single relation symbol

Schema Relation Constraints Views for W ⊆ ABCD

E0 R[ABCD] F0 = {C → D} Π
E0

W
= (EW

0
, π

E0

W
)

E1 R[ABCD] F1 = {B → D,C → D} Π
E1

W
= (EW

1
, π

E1

W
)

E2 R[ABCD] F2 = {B → C,C → D} Π
E2

W
= (EW

2
, π

E2

W
)

E3 R[ABCD] F3 = {B → C,C → D,D → B} Π
E3

W
= (EW

3
, π

E3

W
)

Table 1. Example schemata and their views

R[ABCD]; they differ only in the set of constraints which govern them, which in
each case consists of a set of functional dependencies (FDs). Sets of attributes are
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represented in the conventional relational format; ABCD denotes {A,B,C,D}.
The view ΠEi

W
recaptures the projection of the relation R[ABCD] of Ei onto the

subset W of ABCD. The relation symbol of the view schema EW

i is denoted

RW [W]. The symbol πEi

ABC denotes the associated view morphism (i.e., the pro-

jection mapping itself). For example, ΠE0

ABC = (EABC
0 , πE0

ABC) is the projection
of R[ABCD] of E0 onto ABC; the relation symbol of this view is RABC [ABC],
and the view morphism is πE0

ABC projects R[ABCD] onto RABC [ABC].

In this simple context, for ΠEi

W2
to be a complement of ΠEi

W1
, it is necessary

and sufficient that the join dependency (JD) 1 [W1,W2] hold. This follows im-
mediately from the classical result [24, Thm. 1], which establishes further that,
in the context of FDs, this JD holds iff at least one of the FDs W1∩W2 → W1,
W1 ∩W2 → W2 holds; i.e., iff W1 ∩W2 is a key for at least one of the projec-
tions.

In the setting of E0, it is thus the case that ΠE0

CD is a complement of ΠE0

ABC .
Furthermore, amongst projections, it is a minimal complement, in the sense that
no projection whose attribute set is a proper subset of CD is also a complement.
Of course, there are other complements; indeed ΠE0

BCD, ΠE0

ACD, and even ΠE0

ABCD

are each complements of ΠE0

ABC as well. However, these are all larger than ΠE0

CD

in that they recapture more attributes and hence more information about the
state of E0.

To see why this minimality is important, suppose that it is desired to up-
date the state of ΠE0

ABC . In general, there are many ways to reflect such an
update back to E0. For example, let the state of E0 be M00 = {R(a1, b1, c1, d1),
R(a2, b2, c2, d2)}, so that the state of EABC

0 is N00 = {R(a1, b1, c1),
R(a2, b2, c2)}. Suppose further that the desired new state of EABC

0 is N01 =
{R(a3, b1, c1), R(a2, b2, c2)}. Two possibilities for translation of this view update
to the main schema E0 include M01 = {R(a3, b1, c1, d1), R(a2, b2, c2, d2)} and
M01′ = {R(a3, b1, c1, d3), R(a2, b2, c2, d2)}. Of these two, M01 seems the more
natural, in that it does not alter the CD projections of the tuples.M01′ makes the
additional and rather arbitrary change of d1 to d3. This preference is formalized
by the classical constant-complement strategy [3]. The update (M00,M01) on the
main schema is the only one which is a reflection of the update (N00, N01) on
ΠE0

ABC and which holds the state of the complement ΠE0

CD constant. Indeed, since

the states ofΠE0

ABC and the complementΠE0

CD together determine the state of E0,
there can be only one such reflection. The appeal of the constant-complement
strategy is that the reflection is limited to that part of the state of the main
schema which is determined by the view to be updated. The rest of the state of
the main schema, as captured by the complement, is left unchanged. Although a
classical approach, the constant-complement strategy has seen renewed interest
in recent years [20] [21] [14], and is also related to other modern approaches to
view updates, such as those based upon lenses [7] [12].

It was noted already in the initial seminal paper on the subject that a view
almost always has many complements [3, Thm. 4.4]. A question which arises
immediately is whether by choosing a complement other than ΠE0

CD, a reflec-
tion other than (M00,M01), such as (M00,M

′
01), is possible for the view update
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(N00, N01) on ΠE0

ABC . The answer is a qualified yes, but a rather “unnatural”
complement is required. An example of such an unnatural complement for a
similar schema and view may be found in [14, Sec. 1.3]. However, it has been
shown that for a very wide range of schemata and views which occur in prac-
tice, in which the schemata have a natural order structure and the morphisms
are order preserving, the reflection of the view update is in fact independent
of the choice of complement [14, Thm. 4.4], [17, Thm. 53]. Under these condi-
tions, (M00,M01) is the only reasonable translation of (N00, N01) from initial
state M00. Nevertheless, the set of view updates which are allowed under the
constant-complement strategy does in fact depend upon the choice of comple-
ment. As noted above,ΠE0

BCD, the projection onto R[BCD], is also a complement

of ΠE0

ABC , as is ΠE0

ACD. The view update (N00, N01) is also supported via con-

stant complement ΠE0

BCD, with the same reflection, but not with constant com-

plement ΠE0

ACD. On the other hand, with N01′ = {R(a1, b3, c1), R(a2, b2, c2)},

the view update (N00, N01′) is supported with constant complement ΠE0

CD, as

well as with constant complement ΠE0

ACD, via the reflection (M00,M
′′
01) with

M ′′
01 = {R(a3, b3, c1, d1), R(a2, b2, c2, d2)}, but not with constant complement

ΠE0

BCD. The reason is clear. ΠE0

CD is a smaller complement than either ΠE0

BCD or

ΠE0

ACD, and the smaller the complement, the less that must be held constant, and
so the larger the set of possible view updates. Thus, in order to maximize the
set of view updates which are supported, the complement must be minimized.

It is easy to see that ΠE0

CD is the unique minimal complement to ΠE0

ABC

amongst projections; it is thus called an optimal projective complement. Unfor-
tunately, there are simple examples for which there are incomparable minimal
complements, so no such optimal complement exists. The schema E1 provides
one such setting, in which both ΠE1

CD and ΠE1

BD are minimal complements to

ΠE1

ABC within the family of projections. That both ΠE1

CD and ΠE1

BD are comple-

ments of ΠE1

ABC follows from the classical result [24, Thm. 1] noted above. Fur-
thermore, since the setting is completely symmetric with respect to attributes
B and C, there is no way to prefer one over the other. Thus, it is not possi-
ble, in general, to expect an optimal projective complement, even in the ba-
sic setting of FDs and views which are projections. Consequently, there is no
complement which supports all updates which any other complement does. For
example, if the state of E1 is M00 as given above, then the update on ΠE1

ABC

from N10 = {R(a1, b1, c1), R(a2, b2, c2)}, to N11 = {R(a1, b3, c1), R(a2, b2, c2)}
is supported with constant complement ΠE1

CD but not with constant complement

ΠE1

BD, while the update from N10′ = {R(a1, b1, c1), R(a2, b2, c2)}, to N11′ =

{R(a1, b1, c3), R(a2, b2, c2)} is supported with constant complement ΠE1

BD but

not with constant complement ΠE1

CD.

There is a further, central issue. A cover (i.e., a logical representation) of the
constraints F0 = {C → D} of E0 embeds into the pair {ΠE0

ABC , Π
E0

CD}; indeed;

C → D itself embeds into ΠE0

CD. This implies that whether an update to ΠE0

ABC

is supported by constant complement ΠE0

CD is determined by the state of EABC
0

alone; it is not necessary to know the state of ECD
0 . In the classical setting, it is
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said that ΠE0

ABC and ΠE0

CD are independent [24, Thm. 2]. The updates to ΠE0

ABC

which are allowed with constant complement ΠE0

CD are exactly those which keep

the view ΠE0

C defined by the common column of ΠE0

ABC and ΠE0

CD constant. In

this case, {ΠE0

ABC , Π
E0

CD} is said to form a meet-complementary pair [14, Def.

2.12], with ΠE0

C their meet.

On the other hand, in the context of E1, neither {ΠE1

ABC , Π
E1

CD} nor

{ΠE1

ABC , Π
E1

BD} forms a meet-complementary pair. Indeed, B → D cannot be
embedded into the first pair while C → D cannot be embedded into the sec-
ond. Consequently, it cannot be determined in general whether a given update
to ΠE1

ABC is supported via constant complement without knowing the state

of the complementary view. For example, the update on ΠE1

ABC from N10 to

N12 = {R(a1, b2, c1), R(a2, b2, c2)} is supported with constant complement ΠE1

CD

if the state of E1 is M11 = {R(a1, b1, c1, d1), R(a2, b2, c2, d1)}, but not if it is
M00. Thus, requiring a meet complement for the constant-complement strategy
is critical. Interestingly, ΠE1

ABC does have an optimal projective meet comple-

ment, namely, ΠE1

BCD, which is obtained by combining ΠE1

BD and ΠE1

CD.

The schema E2 illustrates yet another possibility, in which both ΠE2

BD and

ΠE2

CD are minimal projective complements of ΠE2

ABC , yet only {ΠE2

ABC , Π
E2

CD}
forms a meet-complementary pair. Thus, it is possible for a schema to have
several minimal projective complements, of which only one is a meet complement.

In view of these three examples, it might be conjectured that an optimal meet
complement always exists, at least in the context of projections of a universal
schema which is constrained by FDs. That this is not the case is illustrated
by the situation surrounding the schema E3. In that context, both ΠE3

CD and

ΠE3

BD are minimal meet complements of ΠE3

ABC . Indeed, F3 is equivalent to F ′
3 =

{B → C,C → B,C → D,D → C}, which embeds into {ΠE3

ABC , Π
E3

CD}, as well
as equivalent to F ′′

3 = {B → C,C → B,B → D,D → B}, which embeds into
{ΠE3

ABC , Π
E3

BD}. Consequently, in this case, there is no optimal meet complement.

In summary, it the case that, even in the context of simple universal relational
schemata constrained only by FDs, there are many possibilities regarding the
existence of optimal complements and optimal meet complements. The goal of
this paper is to address the issues surrounding such optimal complements in a
systematic fashion.

The organization of the paper is as follows. Section 2 provides an overview of
the basic terminology and notation required for the following sections, Section
3 comprises the main part of the paper. Four fundamental notions of optimal
complement are developed, first for the case of views on a universal relational
schema defined by single projections, and then for the more general context of
views defined by sets of projections. Finally, Sec. 4 provides conclusions and
sketches some further directions.
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2 Database Schemata, Views, and Complements

Although the main focus in this paper is upon views defined by projection on the
classical relational model, the underlying theory is not based upon any particular
data model. Rather, the set-based model described in [14] and [15] is more than
adequate. It is in fact simpler to present the underlying theory in a general
context, and only afterwards to specialize it to the relational context. In this
section, the key ideas of the underlying theoretical model are outlined. Much of
the material is based upon earlier papers, such as [14], although the classification
scheme of Definition 2.5 is new.

Summary 2.1 (Database schemata and views). In the underlying theory
of this work, a database schema D is just a set. This set, denoted LDB(D),
consists of the legal databases of D. Thus, a database schema is modelled by its
instances alone; constraints, schema structure, and the like are not represented
explicitly.

A morphism f : D1 → D2 of database schemata is a function f : LDB(D1) →
LDB(D2). A view of the schema D is a pair Γ = (V, γ) in which V is a schema
and γ : D → V is a surjective database morphism. In the relational context,
a morphism is usually defined using the relational algebra or calculus, but the
abstraction to a function on states is adequate for the framework developed here.

The congruence of Γ is the equivalence relation on LDB(D) defined by
(M1,M2) ∈ Congr(Γ ) iff γ(M1) = γ(M2). Views with identical congruences
are considered “abstractly the same” for the purposes of this work. The views
Γ1 = (V1, γ1) and Γ2 = (V2, γ2) of D are equivalent or (congruence) isomorphic
iff Congr(Γ1) = Congr(Γ2). In general, views with vastly different representa-
tions may have the same congruence. However, in the context of the examples
of this paper, which are all relational and defined by projections, unless two
views are “obviously” equivalent, they will generally have distinct congruences.
Such equivalences occur in particular in the context of views defined by sets of
projections, where a view with a single relation is equivalent to one with two
relations connected by a join dependency. See Definition 3.22 and Example 3.24
for examples. The bottom line is that in this paper Congr(Γ ) may be regarded
as identifying the view Γ up to an obvious relational equivalence.

A congruence on LDB(D) may be represented by the partition which it in-
duces [22, Sec. 1]. The partition of LDB(D) induced by Congr(Γ ) is denoted
Partition(Congr(Γ )).

There is a natural partial order on the equivalence classes of the views of
D, given by Γ2 �D Γ1 iff Congr(Γ1) ⊆ Congr(Γ2). If Γ2 �D Γ1, then every
pair {M1,M2} ⊆ LDB(D) which is distinguished by Γ2 (in the precise sense
that γ2(M1) 6= γ2(M2)) is also distinguished by Γ1. Less formally, Γ1 preserves
at least as much information about the state of D as does Γ2. The notation
Γ2 ≺D Γ1 means that Γ2 �D Γ1 holds but Γ1 �D Γ2 does not.

It is easy to see that Γ2 �D Γ1 iff every block of Partition(Congr(Γ2)) is the
union of blocks of Partition(Congr(Γ1)). If Γ2 �D Γ1, there is thus a unique view
morphism λ〈Γ1, Γ2〉 : Γ1 → Γ2, called the relativization morphism from Γ1 to
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Γ2, which sends a block of Partition(Congr(Γ1)) to the block which contains it in
Partition(Congr(Γ2)).

Summary 2.2 (Complements and Optimality). The pair {Γ1 = (V1, γ1),
Γ2 = (V2, γ2)} of views of the database schema D is said to be complementary
if the decomposition mapping γ1 × γ2 : LDB(D) → LDB(V1) × LDB(V2) given
on elements by M 7→ (γ1(M), γ2(M)) is injective. This is nothing more than a
repackaging of the classical idea of a lossless decomposition. Γ2 is said to be a
complement of Γ1, and vice versa. The inverse (γ1 × γ2)

−1
: (γ1×γ2)(LDB(D)) →

LDB(D) of the decomposition mapping is called the reconstruction mapping.

Given a set V of views of D, call a complement Γ2 ∈ V of Γ1 minimal relative
to V if there is no complement Γ ′

2 ∈ V with the property that Γ ′
2 ≺D Γ2. Call

Γ2 optimal relative to V if for every other complement Γ ′
2 ∈ V , it must be the

case that Γ2 �D Γ ′
2. Less formally, a complement is minimal relative to V if no

other complement in V is smaller, and it is optimal relative to V if every other
complement in V is at least as large. Thus, there may be many incomparable
minimal complements, but there is at most one optimal complement, or, better
put, all optimal complements must have the same congruence.

If each member of {Γ1, Γ2} is a minimal (resp. optimal) complement of the
other relative to V , then it is called a minimal complementary pair (resp. optimal
complementary pair) relative to V .

Summary 2.3 (Fully commuting pairs and meet complements). The
pair {Γ1 = (V1, γ1), Γ2 = (V2, γ2)} of views of D is said to be fully commut-
ing [14, Def. 2.12] if Congr(Γ1) ◦ Congr(Γ2) = Congr(Γ2) ◦ Congr(Γ1), with “◦”
denoting the ordinary composition of relations. If {Γ1, Γ2} furthermore forms a
complementary pair, then it is called meet-complementary pair, and Γ1 and Γ2

are called meet complements of one another. In the case that {Γ1, Γ2} forms a
fully commuting pair, the view whose congruence is Congr(Γ1) ◦ Congr(Γ2) is
called the meet of Γ1 and Γ2, and is denoted Γ1 ∧ Γ2.

The importance of full commutativity is that is recaptures dependency
preservation in an abstract fashion. Specifically, if {Γ1, Γ2} forms a fully com-
muting pair, with N1 ∈ LDB(Vi) for i ∈ {1, 2}, then there is an M ∈ LDB(D)
with γi(M) = Ni for i ∈ {1, 2} iff λ〈Γ1, Γ1 ∧ Γ2〉(N1) = λ〈Γ2, Γ1 ∧ Γ2〉(N2). If
{Γ1, Γ2} is furthermore a complementary pair, then this M is necessarily unique
[14, Thm. 2.14].

In the context of projections on universal schemata constrained by full de-
pendencies (including FDs in particular), the meet, when it exists, is always
the projection on the columns common to the two views [14, Prop. 2.17]. For
example, in the context of E0 of Sec. 1, ΠE0

ABC ∧ΠE0

CD = ΠE0

C .

Minimal and optimal meet complements are defined in the natural way. Let
Γ be a view of the D, and let V be any set of views ofD. Define MeetSet〈V ;Γ 〉 to
be the subset of V which identifies just those views which are meet complements
of Γ . A minimal (resp. optimal) meet complement of the view Γ relative to the
set V of views is a minimal (resp. optimal) complement relative toMeetSet〈V ;Γ 〉.

Final post-workshop submission: 20110502 SDKB2010 page 6



Summary 2.4 (The constant-complement approach to view update).
While the results of this paper are presented and may be understood without
any reference to the constant-complement view-update strategy, the latter forms
the motivation for exploring the notion of optimal complement in the first place.
Therefore, a brief sketch of this approach is presented. For details, consult [3]
and [14].

An update on the database schema D is a pair (M1,M2) ∈ LDB(D) ×
LDB(D). M1 is the current state, and M2 the new state. To describe the sit-
uation surrounding an update request on the view Γ = (V, γ), it is sufficient
to specify the current state M1 of the main schema and the desired new state
N2 of the view schema V. The current state of the view can be computed as
γ(M1); it is only the new state M2 of the main schema (subject to N2 = γ(M2))
which must be obtained from an update strategy. Formally, an update request
from Γ to D is a pair (M1, N2) in which M1 ∈ LDB(D) (the old state of the
main schema) and N2 ∈ LDB(V) (the new state of the view schema). A realiza-
tion of (M1, N2) along Γ is an update (M1,M2) on D with the property that
γ(M2) = N2. The update (M1,M2) is called a reflection (or translation) of the
view update (γ(M1), N2). Thus, the realization (M1,M2) tells how to reflect the
view update (γ(M1), N2) to the main schema D when the state of D is M1.

Given a second view Γ ′ = (V′, γ′) of D which is a complement of Γ ,
the realization (M1,M2) of (M1, N2) is defined by constant complement Γ ′ if
γ′(M1) = γ′(M2). It is easy to see that there can be only one realization
of (M1, N2) which is defined by constant complement Γ ′, given explicitly by
(M1, (γ × γ′)

−1
(N2, γ

′(M1))) if and only if the latter exists, so the transla-
tion truly is defined by Γ ′. The family S ⊆ LDB(D) × LDB(V) of update re-
quests on Γ is defined by constant complement Γ ′ if for every (M1, N2) ∈ S,
(M1, (γ × γ′)−1(N2, γ

′(M1))) exists and is a realization of (M1, N2). Update re-
flections which are defined by constant complement have many desirable prop-
erties; see in particular [14, Sec. 1] for an overview with examples.

If the pair {Γ, Γ ′} is meet complementary, an important additional property
is guaranteed; namely, that whether an update to the state of Γ is allowed with
constant complement Γ ′ is independent of the state of Γ ′. Specifically, the view
update (N,N ′) to Γ is allowed iff λ〈Γ, Γ ∧ Γ ′〉(N) = λ〈Γ, Γ ∧ Γ ′〉(N ′); that is,
iff the update keeps the meet view constant. Examples have already been given
in introduction. This property is crucial because it provides a form of closure to
Γ ; all allowable update operations may be identified locally.

Definition 2.5 (Types of complements and complementary pairs). As
observed in the discussion surrounding the examples of Sec. 1, there are several
distinct levels of optimality of a complementary view which arise when combining
notions of ordinary and meet complements. Because it is precisely such notions of
optimality which will be addressed in Sec. 3, it is important to identify and label
these systematically. Relative to a base set V of views of the schema D, there
are four principal types of complements of a given view Γ , defined as follows.

Type 0: An optimal complement of Γ of type 0 relative to V is an ordinary
optimal complement of Γ relative to V , as described in Summary 2.2 above.
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Type 1: An optimal complement of Γ of type 1 relative to V is an optimal meet
complement of Γ relative to V , as described in Summary 2.3 above.

Type 2: An optimal complement of Γ of type 2 relative to V is is simultaneously
an optimal meet complement of Γ (and hence of type 1) and a minimal
complement relative to V .

Type 3: An optimal complement of Γ of type 3 relative to V is is simultaneously
an optimal meet complement of Γ (and hence of type 1) and an optimal
complement of Γ relative to V (and hence of type 0).

For i ∈ {0, 1, 2, 3}, if each member of {Γ1, Γ2} is an optimal complement of the
other of type i, then {Γ1, Γ2} is called an optimal complementary pair of type i
relative to V .

These four types are summarized in Table 2.

Type of complement
Set of possible complements

V MeetSet〈V;Γ 〉

0 optimal —

1 — optimal

2 minimal optimal

3 optimal optimal

Table 2. Types of optimal complements for the view Γ

Note that this is not a linear hierarchy. While type 3 ⇒ type 0 and type 3 ⇒
type 2 ⇒ type 1, no other subsumptions hold.

To illustrate these classifications in the context of the examples of Sec. 1, let
Π-Views〈Ei〉 denote the set of all views of the schema Ei (for i ∈ {0, 2, 2, 3})
which are defined by projections. This notion is formalized more carefully in
Definition 3.2, but the main idea should already be clear. In this context, the
following hold.

(E0:) The set {ΠE0

ABC , Π
E0

CD} is an optimal complementary pair for all four
types relative to Π-Views〈E0〉.

(E1:) The set {ΠE1

ABC , Π
E1

BCD} is an optimal complementary pair of type 1
relative to Π-Views〈E1〉. It is not an optimal complementary pair for any
of the other three types. Neither {ΠE1

ABC , Π
E1

CD} nor {ΠE1

ABC , Π
E1

BD} is an
optimal complementary pair for any of the four types, although in both
cases each element of the pair is a minimal complement of the other relative
to Π-Views〈E1〉.

(E2:) The set {ΠE2

ABC , Π
E2

CD} is an optimal complementary pair of types 1 and
2 relative to Π-Views〈E2〉. It is not an optimal complementary pair for types
0 or 3; indeed, there is no view which is an optimal complement of ΠE2

ABC

of type 0 relative to Π-Views〈E2〉.

(E3:) The pair {ΠE3

ABC , Π
E3

CD} is not an optimal complementary pair relative
to Π-Views〈E3〉 for any of the four types.
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Although the above examples illustrate situations in which the optimality prop-
erties are symmetric between the two views, this need not be the case. For
example, ΠE0

ABC is an optimal complement of ΠE0

BCD of all four types relative to

Π-Views〈E0〉, while Π
E0

BCD is not an optimal complement of ΠE0

ABC for any of
the four types.

The type classification described in Definition 2.5 has important interpreta-
tions within the context of constant-complement update. If Γ ′ forms a type-3
complement to Γ within the context V of views under consideration, then every
update to Γ which is supported by any complement in V is supported by Γ ′,
and whether the update is supported or not may be determined from the state
of Γ alone. If Γ ′ forms a type-1 or type-2 complement, every update to Γ which
is supported in an independent fashion, that is, without further knowledge of
the state of the main schema, is supported by constant complement Γ ′. Other
constant complement updates to Γ may be possible, but whether or not they
are realizable may depend upon the state of that complement. Type 2 provides
the further strength that no other complement supports a superset of those view
updates supported by constant-complement Γ ′. Type 0 provides no support at
all for independence.

From the discussions of Summary 2.4 and Definition 2.5, it is apparent that the
smaller the complement Γ ′ (in the sense of the ordering �D), the larger the set
of of update requests which are supported. In particular, if there is an optimal
complement, then it must support all update requests which are supported by
any constant complement. This is made more precise in the following.

Proposition 2.6 (Optimal complements and constant-complement up-
dates). Let D be a database schema, V a set of views of D, Γ a view of D,
i ∈ {0, 1, 2, 3}, and Γ ′ an optimal complement of Γ of type i relative to V.
(a) If i ∈ {0, 3}, then every view update which is defined by constant comple-

ment for some complement Γ ′′ ∈ V of Γ is defined by constant complement
Γ ′ as well.

(b) If i ∈ {1, 2, 3}, then every view update which is defined by constant com-
plement for some meet complement Γ ′′ ∈ V of Γ is defined by constant
complement Γ ′ as well. 2

In that which follows, in particular for Theorem 3.15 and Theorem 3.23,
both of which identify optimal complements in a given setting, there is a natural
corollary concerning constant-complement updates which follows from the given
theorem and the above proposition. These corollaries will not be stated explicitly,
but they should be kept in mind as a fundamental application of these theorems.

3 Optimal Complements in the Context of Projections of

a Universal Relation

In the classical relational decomposition theory, the standard setting is that
defined by projections on a universal schema which is constrained by a join
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dependency [4] [10], often derived from functional dependencies [2]. Although the
motivation for studying such decompositions has been largely based upon schema
normalization, the ideas apply equally well to the problem of characterizing
complements. In this section, a theory of optimal complements is developed
within the familiar framework of projections on a universal schema.

In that which follows, it is assumed that the reader is familiar with the
standard relational model and its notation, as may be found in [23] and [1].

Notation 3.1 (Universal Relation Schema). Throughout the rest of this
section, unless specifically stated to the contrary, take U to be a finite nonempty
set of attributes and EU the universal relation schema with R[U] its sole relation

symbol. With F a set of constraints, EF
U

denotes this same schema constrained

by F; i.e., Constr(EF
U
) = F. Unless stated to the contrary, F will be taken

to be an arbitrary set of first-order constraints (without non-nullary function
symbols).

The symbol |= will be used to denote semantic entailment of constraints.

Definition 3.2 (Projective views). A projective view or (Π-view) on EF
U

is a projection on some of the attributes of U. More precisely, for U′ ⊆ U,

Π
E

F
U

U′ is the view which is defined on tuples by t 7→ t[U′] and which is extended
to relations in a tuple-by-tuple fashion. The morphism of this view is denoted

π
E

F
U

U′ , and the view schema is E
π
U′ (F)

U′ . As this notation quickly becomes quite
cumbersome, the superscripts will be dropped when the context is clear. The
view which is the projection of EF

U
onto attributes U′ is then denoted by simply

Π
U′ = (E

U′ , πU′ ). The set of all Π-views on EF
U

is denoted Π-Views〈EF
U
〉.

Identification of the constraints on E
U′ is not an easy matter in general.

Investigations of the behavior of various classes of database dependencies under
projection have been reported in [9], [19], and [15]. Since the representation of
such constraints is not an issue for the problems considered in this paper, it will
not be pursued further.

In the notation of Summary 2.2, it is easy to see that for U1,U2 ⊆ U,
U1 ⊆ U2 implies thatΠ

U1
�

E
F
U

Π
U2

. The converse, thatΠ
U1

�
E

F
U

Π
U2

implies

that U1 ⊆ U2, holds in the context of usual data dependencies, but can fail in
certain situations. ΠAB �

E
F
U

ΠA if there is only one possible value for attribute

A. A less trivial example arises when a conditional functional dependency in the
sense of [11] holds for A → B. This means that not only does the usual FD
A→ B hold, but also that the value of attribute B determined for each value of
attribute A is defined by the dependency itself.

Definition 3.3 (Attribute-set collections and join dependencies). An
attribute-set collection over U is any set J of nonempty subsets of U. Let J =
{U1,U2, . . . ,Uk} be an attribute-set collection over U; i.e., Ui ⊆ U for 1 ≤
i ≤ k. A database M ∈ LDB(EU) satisfies the join dependency (or JD) 1 [J ] if
for every sequence 〈t1, t2, . . . , tk〉 of k (not necessarily distinct) tuples for R[U],
there is a tuple t for R[U] with the property that t[Ui] = ti[Ui] for 1 ≤ i ≤ k.
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If U = U1 ∪ U2 ∪ . . . ∪ Uk, then both J and the associated join dependency
1 [J ] are called full. If 1 [J ] is not full, it is said to be embedded. Say that 1 [J ]
is entailed by F if 1 [J ] holds on every M ∈ LDB(EF

U
) (i.e., if F |= 1 [J ]).

Thus, if 1 [J ] is entailed by F, the schema EF
U

decomposes into the views
in {Π

U1
, Π

U2
, . . . , Π

Uk
} in the precise sense that any M ∈ LDB(EU) is recov-

erable from the k-tuple (π
U1

(M), π
U2

(M), . . . , π
Uk

(M)) of view states via the
reconstruction mapping which sends 〈t1, t2, . . . , tk〉 to the U-tuple t which agrees
with ti on all attributes of the latter. This reconstruction mapping is also called
the join.

Properties of JDs are often described in terms of associated graphs and/or
hypergraphs. A full development of these ideas is not needed here, but a few
definitions will prove useful. Say that Ui and Uj are directly connected if Ui ∩
Uj 6= ∅. A subset J ′ ⊆ J is connected if there is an ordering 〈Um1

,Um2
, . . . .Umℓ

〉
of the elements of J ′ such that each element except the first is directly connected
to at least one which precedes it. A connected block is a maximal connected subset
of J . This definition accommodates JDs with disjoint blocks. For example, if
J = {AB,BC,CD,EF, FG,GH}, then {AB,BC,CD} and {DE,EF, FG} are
maximal connected subsets. The blocks are related via the cartesian-product
dependency 1 [ABC,DEF ].

A central focus of classical research on JDs surrounds the property of acyclic-
ity of the underlying hypergraph of a JD. This property of the hypergraph of a
JD has been shown to be equivalent to a long list of “desirable” properties [4].
Although such properties are not a the subject of this work, two of the equivalent
characterizations of such “desirability” do arise indirectly. The first asserts that
pairwise consistency implies global consistency. For this definition, assume that
F = 1 [J ]; that is, that EF

U
is constrained by 1 [J ] alone. Call 1 [J ] pairwise de-

finable if for any M1,M2, . . . ,Mk ∈ LDB(EF
U
), if π

Uj∩Uj′
(Mj) = π

Uj∩Uj′
(Mj′ )

for all j, j′ ∈ {1, . . . , k}, then there is anM ∈ LDB(EF
U
) with π

Ui
(Mi) = π

Ui
(M)

for i ∈ {1, . . . , k}. (In the cases that Uj ∩ Uj′ = ∅, this condition is trivially
satisfied.)

A second “desirable” condition involves representation of 1 [J ] by simple
JDs. Specifically, the JD 1 [J ] is binary (or a BJD) if J consists of exactly two
elements. Binary JDs are an alternate representation ofmultivalued dependencies
or MVDs. Call 1 [J ] BJD-representable if it is equivalent to a set of binary
join dependencies, called a binary basis for 1 [J ]. Then, 1 [J ] is has an acyclic
hypergraph iff it is pairwise definable and iff it has a binary basis [4, Thm. 3.4].

In accordance with customary terminology, a JD which satisfies any of these
“desirable” properties will be called acyclic.

Definition 3.4 (Constructive join dependencies). The classification
scheme of Definition 2.5 involves not only minimality and optimality of ordi-
nary complements, but optimality of meet complements as well. As illustrated
in the examples of the introduction, as well as recaptured in [14, Prop. 2.17], meet
complementation is closely related to dependency preservation. Unfortunately,
as noted in Definition 3.2, the explicit characterization of view dependencies is a
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very difficult issue in general. To sidestep that issue, at least to some degree, the
alternative notion of a constructive join dependency, which involves only states
of the main schema EF

U
, is employed. The idea is to enhance the concept of

pairwise definability identified in Definition 3.3 to the case that the constraint
set F contains not only the JD but other constraints as well.

Continuing with the context of Definition 3.3, the join dependency 1 [J ] =
1 [U1,U2, . . . ,Uk] is said to be constructive (or a CJD) for F if any set of
legal databases on the views {Π

U1
, Π

U2
, . . . , Π

Uk
} which are pairwise consistent

define a legal database of the main schema. Formally, 1 [J ] is a CJD for F if for
any M1, . . .Mk ∈ LDB(EF

U
) with π

Uj∩Uj′
(Mj) = π

Uj∩Uj′
(Mj′) for all j, j′,∈

{1, . . . , k}, there is anM ∈ LDB(EF
U
) with π

Ui
(Mi) = π

Ui
(M) for i ∈ {1, . . . , k}.

Think of π
Ui

(Mi) as a local database on the schema of Π
Ui

. Thus, the
constraints of Π

Ui
are recaptured implicitly via a database, rather than via an

explicit representation. This construction recaptures the essence of dependency
preservation by requiring that any collection of view databases which agree on
their common columns must arise from a single database of the main schema. If
a cover of the dependencies in EF

U
were not embeddable, there would be view

states which would not be so combinable.
It is easy to see that constructibility recaptures the situations of the examples

of Sec. 1. In particular, 1 [ABC,CD] is a CJD for F0 and F2, but not for F1 or
F3. However, 1 [ABC,BCD] is a CJD for F1.

It is important to observe that, unlike pairwise definability, constructibility
is a property of the entire set F of constraints, and not just a JD. Nevertheless,
the constructibility condition excludes cyclic JDs, even those induced by FDs [2,
Sec. 7].

Definition 3.5 (Type classification of Π-complements). If J = {U1,U2}
is an attribute-set collection over U consisting of exactly two elements, so that
1 [J ] is a BJD which holds on EF

U
, then it is immediate that {Π

U1
, Π

U2
} forms a

complementary pair, called a Π-complementary pair, with Π
U1

and Π
U2

called
Π-complements. The notions of minimal and optimal Π-complement are ob-
tained in the natural way by specializing the definitions of Summary 2.2 with
V = Π-Views〈EF

U
〉.

If 1 [J ] is furthermore a CJD with respect to F, then {Π
U1
, Π

U2
} necessarily

forms a meet-complementary pair. This follows immediately from [14, Prop.
2.14]. Such a meet complementary pair ofΠ-views is called a ∧Π-complementary
pair, and Γ1 and Γ2 are called ∧Π-complements of each other. Minimal and
optimal ∧Π-complements for a Π-view Γ are defined by taking V to be the set
MeetSet〈Γ ;Π-Views〈EF

U
〉〉 of all Π-views of EF

U
which are also ∧Π-complements

of Γ .

Definition 3.6 (The natural order on attribute-set collections). If J
consists of more than two elements, then complementary views may still be
obtained from 1 [J ] by partitioning J into two disjoint sets. To show this, first
recall that there is a natural order on full attribute-set collections over U, given
by J1 ≤ J2 iff for each W1 ∈ J1 there is a W2 ∈ J2 such that W2 ⊆ W1 [5,
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Sec. 3]. This ordering induces a natural implication order on full JDs, which is
made explicit in the following.

Lemma 3.7 (Full JD implication via �). Let J1 and J2 be full attribute-set
collections over U. Then 1 [J1] |= 1 [J2] iff J2 ≤ J1.

Proof. The “only if” direction is a special case of a standard inference rule for
JDs, called the covering rule [6]. The “if” part is obtained easily by applying the
specialization of the classical chase inference procedure to full join dependencies
[25, Cor. 5.3]. The details are straightforward and left to the reader. 2

Proposition 3.8 (Complementary pairs from JDs). Let J be a full
attribute-set collection over U with F |= 1 [J ], and let {J1, J2} be a partition of
J ; i.e., J1 ∪ J2 = J and J1 ∩ J2 = ∅. Define Pi =

⋃
Ji for i ∈ {1, 2}.

(a) {Π
P1
, Π

P2
} forms a complementary pair of views of EF

U
.

(b) If 1 [J ] is furthermore a CJD with respect to F, then {Π
P1
, Π

P2
} forms a

meet-complementary pair of views of EF
U
.

Proof. Part (a) follows immediately from Lemma 3.7. For (b), suppose that J =
{U1,U2, . . . ,Uk}. Let M ′

1,M
′
2 ∈ LDB(EF

U
) with π

P1∩P2
(M ′

1) = π
P1∩P2

(M ′
2),

and for i ∈ {1, . . . , k}, define Mi = M ′
1 if Ui ⊆ P1 and Mi = M ′

2 if Ui ⊆ P2.
If Ui ⊆ P1 ∩ P2, then choose Mi arbitrarily as M ′

1 or M ′
2. Then, in particular,

π
Ui∩Uj

(M ′
1) = π

Ui∩Uj
(M ′

2) for any i, j ∈ {1, . . . , k}. Since 1 [J ] is assumed to

be constructive, there is anM ∈ LDB(EF
U
) with π

Ui
(Mi) =M for i ∈ {1, . . . , k}.

From this it follows that π
Pi
(M ′

i) =M for i ∈ {1, 2}, as required. 2

Definition 3.9 (Redundancy and governing JDs). Proposition 3.8 says
nothing about the optimality of the complements. For the decomposition iden-
tified by Proposition 3.8 to yield optimal Π-complements of a given type i (for
i ∈ {0, 1, 2, 3}), it is necessary to establish further conditions on the join depen-
dency which governs the decomposition.

There are two distinct ways in which redundancy may arise. First of all, if
Ui ( Uj (i.e., if Ui is a proper subset of Uj) for (necessarily distinct) i and
j, then Ui may be removed from J without altering the semantics of 1 [J ].
This form is called trivial redundancy, and is a strictly set-theoretic property of
the set J itself. Call the set J reduced if for no distinct i, j is it the case that
Ui ( Uj . This is tantamount to requiring that J form an antichain [8, 1.3]
under set inclusion. It is always a trivial matter to require that J be reduced,
and this will be done from now on.

There are two far less trivial, semantic forms of (non-)redundancy. Let 1 [J ]
be a full and reduced JD on EF

U
which is entailed by F.

(a) Call 1 [J ] JD-essential on EF
U

if it is acyclic and for any full JD ϕ on EF
U

with F |= ϕ and ϕ |= 1 [J ], it must be the case that ϕ = 1 [J ].

(b) Call 1 [J ] JD-covering on EF
U

if for any full JD ϕ on EF
U
, it must be the

case that 1 [J ] |= ϕ.
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Thus, 1 [J ] is JD-essential if it is not implied by any stronger JD which holds on
EF

U
, while it is JD-governing if it implies all other full JDs which hold on EF

U
.

In particular, if 1 [J ] is JD-covering, then it is also JD-essential.
There are analogous notions for CJDs. Let 1 [J ] be a full and reduced CJD

on EF
U

which is entailed by F.

(a′) Call 1 [J ] CJD-essential on EF
U

if for any full CJD ϕ on EF
U

with F |= ϕ

and ϕ |= 1 [J ], it must be the case that ϕ = 1 [J ].
(b′) Call 1 [J ] CJD-covering on EF

U
if for any full CJD ϕ on EF

U
, it must be

the case that 1 [J ] |= ϕ.
Now it is possible to define types of non-redundancy for JDs and CJDs which

correspond to the types of optimality for complements which are given in Table
2. These are shown as types of governing in Table 3.

n for type-n-governing JD
Form of non-redundancy

JD- CJD-

0 covering —

1 — covering

2 essential covering

3 covering covering

Table 3. Types of semantic non-redundancy

For example, the JD 1 [J ] is type 0 governing (on EF
U
) if it is JD-covering,

and it is type 2 governing if it is a CJD which is JD-essential and CJD-covering.

Example 3.10. Consider again the four schemata of Sec. 1. The dependency
1 [ABC,CD] is both JD-covering and CJD-covering on E0, and hence it is gov-
erning of type i on E0 for all i ∈ {0, 1, 2, 3}.

This same dependency is not JD-essential on E1, since both 1 [AB,BC,CD]
and 1 [AB,BD,CD] hold on E1 and each implies 1 [ABC,CD]. Indeed both
1 [AB,BC,CD] and 1 [AB,BD,CD] are JD-essential, so neither can be JD-
covering. The JD 1 [ABC,BCD] is CJD-optimal, but cannot be JD-essential,
since it is implied by 1 [AB,BC,CD]. Thus 1 [ABC,BCD] is governing of type
1 on E1, but for no other type.

The JD 1 [AB,BC,CD] is both JD-essential and CJD-optimal on E2. How-
ever, it is not JD-optimal, since 1 [AB,BD,CD] is also JD-essential. Thus, it is
governing of types 1 and 2 on E2, but not of types 0 or 3.

Each of the six JDs 1 [AB,BC,CD], 1 [AB,BD,CD], 1 [AC,BC,BD],
1 [AC,BD,CD], 1 [AD,BC,CD], and 1 [AD,BD,CD], is both JD-essential
and CJD-essential on E3, and so none can be JD-governing or CJD-governing.
This schema has no governing JD or CJD.

Definition 3.11 (The join-reconstruction property). The types of
Definition 3.9 provide the proper characterizations via JDs to ensure the cor-
responding types of optimality, provided one further condition is imposed, that
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of join reconstruction. Although it is natural to think that when a schema is
decomposed into projections, reconstruction must be defined by the join, this
need not always be the case. For example, let E4 be the universal schema
with the single relation schema R[ABC], constrained by two rather uncon-
ventional dependencies. The first is ψ41 = (∀x)(∀y)(¬R(x, y, x)), which states
the the A and C values of a tuple must not be the same. The second is a
conditional join dependency which takes this restriction into account: ψ42 =
(∀x)(∀y)(∀z)((R(x, y, z′)∧R(x′, y, z)∧(x 6=z)) ⇒ R(x, y, z)). In other words, the
usual join dependency 1 [AB,BC] holds conditionally, for all pairs of tuples
which would not result in a tuple which would be illegal under constraint ψ41.
Nevertheless, the decomposition of E4 into its AB and BC projections is loss-
less. The reconstruction mapping is a conditional join which ignores pairs of view
tuples which would result in a tuple t with t[A] = t[C]. In particular, it is not
the usual join.

It is not the purpose of this paper to investigate this phenomenon in detail.
The above example is included to illustrate that it must not simply be assumed
that reconstruction of projections must be defined by the join. Suffice to say
that it is possible to show that this non-join sort of reconstruction cannot occur
within the context of common database dependencies which are defined by Horn
sentences [9], [17, Def. 21]. For this paper, this difficulty will simply be assumed
away. Say that a universal schema EF

U
has the join-reconstruction property if for

every lossless decomposition of that schema into projections, the reconstruction
mapping is necessarily the join.

Notation 3.12 (Join-reconstruction property assumed). Unless stated
specifically to the contrary, for the rest of this section, assume that EF

U
has the

join-reconstruction property.

Lemma 3.13 (Optimal complementary pairs from JDs). Let J be a full
attribute-set collection over U, let i ∈ {0, 1, 2, 3}, and assume that 1 [J ] is gov-
erning of type i relative to Π-Views〈EF

U
〉. Then for every partition {J1, J2} of

J , {Π⋃
J1
, Π⋃

J2
} forms an optimal complementary pair of type i relative to

Π-Views〈EF
U
〉.

Proof. The requirement that EF
U

have the join-reconstruction property limits
the reconstruction mapping to the join. From Lemma 3.7 follows directly that
smaller optimal complements must arise from JDs and CJDs which are larger in
the ordering ≤ of Definition 3.6. The optimality then follows directly using the
concepts of Definition 3.9 and Table 3. 2

Definition 3.14 (The Π-basis of a view relative to J). It is easy to
extend the result of Lemma 3.13 to projections which are not defined by the
union of some of the elements of J , thus obtaining a theory of optimal Π- and
∧Π-complements for all Π-views on a suitable schema. Given an attribute-set
collection J over U and any U′ ⊆ U, define the elements of J covered by U′ to
be Covered〈J;Π〉〈U

′〉 = {W ∈ J | W ⊆ U′}. The Π-complementary cover to U′

relative to J is given by Covered〈J;Π〉〈U
′〉 = J \ Covered〈J;Π〉〈U

′〉.
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Theorem 3.15 (Governing implies optimal complements). Let J be a
full attribute-set collection over U, let i ∈ {0, 1, 2, 3}, and assume that 1 [J ]
is governing of type i relative to Π-Views〈EF

U
〉. Then for every W ⊆ U, the

view Π
W

has an optimal complement of type i relative to Π-Views〈EF
U
〉, given

explicitly by Π
W′ , with W′ =

⋃
Covered〈J;Π〉〈W〉.

Proof. With W′ =
⋃
Covered〈J;Π〉〈W〉, the view Π

W′ is a complement of Π
W

of the appropriate type, since
⋃
Covered〈J;Π〉〈W〉 ⊆ W, and by Lemma 3.13,

Π
Covered〈J;Π〉〈W〉 and Π

W′ are each (optimal) complements of one another of

type i. On the other hand, an application of Lemma 3.7 shows that any Π-
complement of Π

W
must include at least the attributes included in the members

of Covered〈J;Π〉〈W〉, whence the characterization of the complement holds. 2

Example 3.16. Continue with the discussion of Example 3.10 of the four sche-
mata of Sec. 1. The optimality properties which have already been presented
directly in Definition 2.5 may now be verified formally using Lemma 3.13.

Because the dependency 1 [ABC,CD] is governing of all four types on E0,
{ΠE0

ABC , Π
E0

CD} forms an optimal complementary pair of type i for all four types
relative to Π-Views〈E0〉. It is optimal regardless of whether or not dependency
preservation is required.

The dependency 1 [ABC,BCD] is CJD-optimal on E1, but is not even JD-
essential, so {ΠE1

ABC , Π
E1

BCD} forms an optimal complementary pair of type 1, but
for no other types. In other words, it is optimal for dependency preservation, but
not generally.

On E2, 1 [ABC,CD] is governing of types 1 and 2, so {ΠE2

ABC , Π
E2

CD} forms
an optimal complementary pair of types 1 and 2, but not for types 0 or 3. In
other words, it is optimal for dependency preservation, and, additionally, it is
essential (i.e., minimal) amongst full JDs on E2.

On E3, 1 [AB,BC,CD] is both JD- and CJD-essential, but not governing for
any of the four types, and so {ΠE3

ABC , Π
E3

CD} does not form an optimal comple-

mentary pair in any of these senses. Indeed, {ΠE3

ABC , Π
E3

BD} and {ΠE3

ABD, Π
E3

CD}
form alternate minimal complementary pairs relative to Π-Views〈E3〉. As shown
in Example 3.10, it has six distinct JDs, each of which is both JD-essential and
CJD-essential.

Example 3.17. Let E5 be the universal relational schema whose only relation
symbol is R[ABCDE], constrained by the FDs F5 = {B → C,C → D,D →
E}. Arguing in a fashion similar to that for E2, it is not difficult to see that
1 [AB,BC,CD,DE] is governing of types 1 and 2, but not of types 0 or 3, on
the schema E3.

Let J1 = {AB,DE} and P1 =
⋃
J1 = ABDE. In the notation of Proposition

3.8 and Lemma 3.13, J2 must be {BC,CD}, and so P2 =
⋃
J2 = BCD. Thus,

the ∧Π-complement of ΠE5

ABDE is ΠE5

BCD, and vice-versa. Note that the embed-

ded join dependency 1 [AB,DE] is not satisfied in the schema of ΠE5

ABDE . There
is no requirement that J1 and J2 in Proposition 3.8 and Theorem 3.15 satisfy
any embedded join constraints.
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The use of this schema to illustrate key points continues in Example 3.21
below.

Theorem 3.15 establishes that if EF
U

is governed by a JD of type i, then all
projections have optimal complements of that type. It is also possible to establish
a sort of converse, which states that if all projections have optimal complements
of a given type, then the schema must be governed by a JD of that type. The
only qualification is that the set of all JDs which are generated by the projections
and their complements must be equivalent to a single JD; that is, it must be
BJD representable. The details are sketched below.

Discussion 3.18 (Further properties of representation via BJDs). Re-
call from Definition 3.3 that one of the “desirable” properties of a JD 1 [J ] is
that it be representable by a set of BJDs. There is a further refinement of this
idea which will prove useful. Let ϕ1 = 1 [U11,U12] and ϕ2 = 1 [U21,U22] be
BJDs. Say that {ϕ1, ϕ2} has the subset property if at least one of the following
four conditions holds:

U11 ⊆ U21 and U22 ⊆ U12 U11 ⊆ U22 and U21 ⊆ U12

U21 ⊆ U11 and U12 ⊆ U22 U22 ⊆ U11 and U12 ⊆ U21

In other words, ϕ1 and ϕ2 have an asymmetry relationship in that one element
of ϕ1 is at least as large as one of the elements of ϕ2, and the other element of
ϕ2 is at least as large as the remaining element of ϕ1. The set S of BJDs on EF

U

has the subset property if every pair of elements from S has the property. The
key result is that if 1 [J ] is equivalent to a set of BJDs, then it is equivalent to
a set of BJDs with the subset property [13, Thm. 6].

For i ∈ {0, 1, 2, 3}, call a BJD 1 [W1,W2] optimal of type i relative to
Π-Views〈EF

U
〉 on EF

U
if {Π

W1
, Π

W2
} is an optimal pair of type i relative to

Π-Views〈EF
U
〉.

Call the BJD 1 [W1,W2] primary relative to 1 [J ] if there is a partition
{J1, J2} of J with the property that for i ∈ {1, 2}, Wi =

⋃
Ji and for each

connected block B of J , the subset ofB which is part of Ji is itself connected. Put
another way, this last condition means that the the embedded join dependency
1 [Ji] holds on ΠWi

.
Call a binary basis B of 1 [J ] primary if it consists of BJDs with the subset

property and with the additional property that each ϕ ∈ B is primary relative
to 1 [J ].

Lemma 3.19 (Optimal complements and BJDs). Let J be a full attribute-
set collection over U, and assume that 1 [J ] is acyclic and reduced.
(a) 1 [J ] has a primary basis relative to 1 [J ].
(b) If 1 [J ] is JD-essential (resp. JD-governing), then it has a primary ba-

sis relative to 1 [J ] with the further property that for each 1 [W1,W2] in
that basis, {Π

W1
, Π

W2
} is a minimal (resp. optimal) complementary pair

relative to Π-Views〈EF
U
〉.

(c) If 1 [J ] is constructive, then every full JD ϕ with 1 [J ] |= ϕ is constructive
as well.
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(d) For i ∈ {0, 1, 2, 3}, if 1 [J ] is type i governing on EF
U
, then it has a pri-

mary basis consisting of optimal complementary pairs of type i relative to
Π-Views〈EF

U
〉.

(e) If S is a primary basis of 1 [J ] with the property that every ϕ ∈ S is
constructive, then 1 [J ] is constructive as well.

(f) If S is a binary basis of 1 [J ] consisting of optimal complementary pairs of
type i relative to Π-Views〈EF

U
〉, then 1 [J ] is governing of type i on EF

U
.

Proof outline. To show (a), let B1, . . . , Bℓ denote the connected blocks of 1 [J ].
For each such block Bi, let 〈Ui1, . . . ,Uiℓi〉 denote an ordering of its elements
with the property that each element except the first is connected to at least one
element which precedes it in the ordering. Let 〈n1, . . . , nℓ〉 denote a sequence of
ℓ numbers, with 0 ≤ ni ≤ ℓi for each i and at least one of the numbers not zero.
Define K〈n1,...,nℓ〉 to be the subset of J consisting of the first ni elements of Bi

for each i, and define K ′
〈n1,...,nℓ〉

= J \K〈n1,...,nℓ〉. It is straightforward to verify

that the set of all BJDs of the form 1 [
⋃
K〈n1,...,nℓ〉,

⋃
K ′

〈n1,...,nℓ〉
] is a primary

basis for 1 [J ].

Keeping Lemma 3.7 in mind, the proof of (b) is a simple verification.

Again keeping Lemma 3.7 in mind, part (c) follows directly from the defini-
tion of constructive.

Part (d) is a consequence of (b) and (c).

The details of the proof of (e) depend upon the algorithm of [13]; the idea is as
follows. Let 1 [W1,W2] ∈ S, and let M1,M2 ∈ LDB(EF

U
) with π

W1∩W2
(M1) =

π
W1∩W2

(M2). By the definition of constructive, there is an M ∈ LDB(D) with
π
Wi

(Mi) = π
Wi

(M) for i ∈ {1, 2}. Now, owing to the subset condition, applying
a second 1 [W3,W4] ∈ S will result in a split of only one of W1 and W2.
Assume, say, that W1 ⊆ W3 and W4 ⊆ W2. The consequence of combining
these two JDs is then 1 [W1,W2 ∩W3,W4]; i.e., W2 is split into W2∩W3 and
W4, while W1 is not split. Now, letting W23 denote W2∩W3, ifM1,M23,M4 ∈
LDB(EF

U
) with the property that π

Wj∩Wj′
(Mj) = π

Wj∩Wj′
(Mj′) for j, j′ ∈

{1, 23, 4}, then an M ∈ LDB(EF
U
) with the property that π

Wi
(Mi) = π

Wi
(M)

for i ∈ {1, 23, 4}may be constructed in steps. First, construct anM2 ∈ LDB(EF
U
)

with the property that π
Wi

(Mi) = π
Wi

(M2) for i ∈ {23, 4}, and then combine
that M2 with M1 to obtain an M which agrees with each of M1, M23, and M4

on the associated projections. Continue on with further primary BJDs in an
inductive fashion. The details of this construction are left to the reader.

Finally, (f) follows from the previous assertions. 2

The converse of Theorem 3.15, which follows from Lemma 3.19, as the fol-
lowing.

Theorem 3.20 (Optimal complements imply governing). Let i ∈
{0, 1, 2, 3}, and assume that for every W ⊆ U, Π

W
has an optimal comple-

ment of type i on EF
U

relative to Π-Views〈EF
U
〉. Assume further that the set of

all BJDs of the form 1 [W1,W2] for which {Π
W1

, Π
W2

} is an optimal com-
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plementary pair of type i relative to Π-Views〈EF
U
〉 is equivalent to a single join

dependency. Then that JD is type i governing on EF
U
. 2

Observe that in Theorem 3.20 it is necessary to assume that the BJDs gen-
erate a single join dependency. This corresponds to assuming that there is a
governing JD which is acyclic. Of course, there are cases which lie outside of this
framework, but it is unclear whether they ever occur in real modelling situations.

To conclude the investigation, the idea of working with views which are
sets of projections, rather than single projections, is examined briefly. First,
a motivating example is discussed.

Example 3.21. Continue with the schema E5 of Example 3.17; i.e., with J =
{AB,BC,CD,DE}. Let let U′ = ABE. Then Covered〈J;Π〉〈U

′〉 = {AB}, and

so Covered〈J;Π〉〈U
′〉 = BC ∪ CD ∪ DE = BCDE, whence the optimal com-

plement of ΠE5

ABE of types 1 and 2 relative to Π-Views〈E5〉 must be ΠE5

BCDE .
On the other hand, if U′ = BCE, then Covered〈J;Π〉〈U

′〉 = {BC}, and so

Covered〈J;Π〉〈U
′〉 = AB ∪ CD ∪DE = ABCDE = U, i.e., the optimal comple-

ments of both types relative to Π-Views〈E5〉 is ΠABCDE , which is the identity
view. With that complement, no updates at all are possible under the constant-
complement strategy [3] [14]. This drawback may be remedied, at least to some
degree, by working with views which are defined by sets of projections instead
of single projections. A brief presentation of this extension follows.

Definition 3.22 (
∨
Π-views). A joined Π-view, or

∨
Π-view, is defined by a

set of projections, rather than by just a single projection. Continue with the
context of a full attribute-set collection J on EF

U
, and let J ′ ⊆ J . The

∨
Π-view

defined by J ′, denoted ΠJ′ = (EJ′ , πJ′), has in its schema one relation RW [W]
for each W ∈ J ′. The view morphism πJ′ sends an instance of the universal
relation R[U] to each of its projections defined by J ′. More formally, this view

is the product of the set {Π
EU

W
| W ∈ J ′} of views, as elaborated in [16, 3.4].

The set of all
∨
Π-views on EF

U
is denoted

∨
Π-Views〈EF

U
〉.

For i ∈ {0, 1, 2, 3}, the notions of optimal complement of type i, as well as
optimal complementary pairs of type i, relative to

∨
Π-Views〈EF

U
〉 are defined as

the natural extensions of the corresponding notions relative to Π-Views〈EF
U
〉.

Since the notation to describe such schemata fully becomes cumbersome,
the idea will instead be illustrated by example, using E5 of Example 3.17 and
Example 3.21 as the main schema. For J ′ = {AB,CD}, ΠE5

J′ = ΠE5

{AB,CD} has

two relation symbols RAB[AB] and RCD[CD]. For M ∈ LDB(E5), the view
mapping πE5

J′ = πE5

{AB,CD} : M 7→ (πE5

AB(M), πE5

CD(M)). This view is strictly

weaker than ΠE5

ABCD; i.e., ΠE5

{AB,CD} ≺E5
ΠE5

ABCD, since it does not preserve

information on which AB-projections are associated with which CD-projections.
On the other hand, ΠE5

{AB,BC} is equivalent to ΠE5

ABC , since the embedded

join dependency 1 [AB,BC] holds on E5. (This is thus an example, as promised
in Summary 2.1, of the same congruence defining two distinct views. Clearly,
these views are equivalent in any reasonable sense.)
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The key advantage of
∨
Π-views overΠ-views is that since they form a larger

class, the optimal complements will be smaller in general, thus allowing larger
update sets under the constant-complement strategy. For example, continuing
with E5, as illustrated in Example 3.21 above, the optimal Π-complement of
ΠE5

BC is the identity view. On the other hand, it is easy to see that ΠE5

{AB,CD,DE}

is a
∨
Π-complement of ΠE5

BC which is strictly weaker than the identity view.
Indeed, with M = {R(a1, b1, c1, d1, e1), R(a2, b2, c2, d2, e2)}, the update from
{RBC(b1, c1), RBC(b2, c2)} to {RBC(b1, c2), RBC(b2, c1)} on the state ofΠE5

BC is

possible with
∨
Π-complementΠE5

{AB,CD,DE}, constant, but not with the optimal

Π-complement ΠE5

ABCDE constant.
The formalization and results for the various flavors of optimal Π-

complements extend easily to the
∨
Π-framework. Return to the general frame-

work of EF
U

and an attribute-set collection J over U. For J ′ any attribute-set
collection overU, define Covered〈J;

∨
Π〉〈J

′〉 = {W ∈ J | (∃W′ ∈ J ′)(W ⊆ W′)}.
The

∨
Π-complementary cover to J ′ relative to J is given by

Covered〈J:
∨
Π〉〈J

′〉 = J \ Covered〈J;Π〉〈J
′〉.

The proof of the following theorem is almost identical to that of Theorem
3.15, and is left to the reader.

Theorem 3.23 (Optimal complements for
∨
Π-views). Let i ∈ {0, 1, 2, 3}.

If the schema EF
U

has the join-reconstruction property and the JD 1 [J ] is gov-

erning of type i, then every
∨
Π-view of EF

U
has an optimal complement of type

i relative to Π-Views〈EF
U
〉. More specifically, given J ′ ⊆ J , in each case the op-

timal complement of ΠJ′ of type i relative to
∨
Π-Views〈EF

U
〉 is given by ΠJ′′ ,

with J ′′ = Covered〈J;Π〉〈J
′〉. 2

Example 3.24 (Optimal
∨
Π-complements). Continuing with E5 and the

discussion at the end of Definition 3.22, the optimal complements of ΠE5

{BC,CE}

(which is equivalent to ΠE5

BCE), of all types, relative to
∨
Π-Views〈E5〉, is iden-

tical to those of ΠE5

BC . In each case, that complement is ΠE5

{AB,CD,DE} (which is

equivalent to ΠE5

{AB,CDE}).

Also, ΠE5

{AB,CD} and ΠE5

{BC,DE} are each optimal complements of the other

for type i for i ∈ {0, 1, 2, 3}, relative to
∨
Π-Views〈E5〉. These views are each

strictly smaller than their Π-counterparts ΠE5

ABCD and ΠE5

BCDE.

4 Conclusions and Further Directions

A characterization of optimal complements for views defined by projections on
a universal-relational schema has been developed. To cover a variety of situa-
tions, four distinct notions of optimality were identified. The characterization of
optimality for each notion is rooted in notions of governing dependencies. Specif-
ically, optimal complements of a given type exist precisely in the situation that
a governing join dependency of a corresponding type exists, with “governing”
meaning that all other join dependencies of that type are implied by it.
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There are several key areas for further work on this subject.

Individual complements: The theory developed in Sec. 3 addresses the situation

in which every Π-view or
∨
Π-view of EF

U
has an optimal complement of a

given type. However, there are cases in which some views may have optimal
complements, while others do not. For example, in the context of E2 of Sec. 1,
the view ΠE1

AB has ΠE1

BCD as an optimal complement of all four types relative

to Π-Views〈EF
U
〉, even though ΠE1

ABC has an optimal complement only of type
1. The results of Sec. 3 should be expanded to identify such individual optimal
complements.

Complements in the context of normalization: The theory developed in Sec. 3
addresses only the situation of a universal relational schema as the main schema.
However, in practice, such schemata exist only as part of the design process; the
schemata which are used in practice are multi-relational, and often obtained
from a universal schema after normalization via decomposition. If a lossless
and dependency preserving normalization is employed, then the results of this
paper apply equally well to the result schema. For example, if the single relation
R[ABCD] of E0 of Sec. 1 is decomposed into RABC and RCD, and the two-
way inclusion dependency RABC [C] = RCD[C] is enforced as well, then the
normalized schema is isomorphic to the original one, and all of the results of
the theory apply equally well to it. However, it is usually the case that the two-
way inclusion dependency is replaced with a one-way foreign-key dependency,
in this situation RABC [C] ⊆ RCD[C]. Now, the normalized schema is no longer
isomorphic to the original one, and so which views identify optimal complements
of others may change. This is an important practical question which will be
addressed in a forthcoming paper.

Weaker equivalence of non-isomorphic complements: Consider again the situa-
tion surrounding E3 of Sec. 1, which does not have optimal complements of
any of the four types. Indeed, in Example 3.10 it is shown that this schema has
six incomparable JDs, all of which are both JD- and CJD-essential. However,
the attributes in {B,C,D} are equivalent in the sense that B → C → D → B.
It furthermore turns out that the different minimal complements of a given
schema differ only in a permutation of these elements. Thus, the complements
are equivalent in a sense weaker than true isomorphism but nevertheless mean-
ingful. The theory which characterizes such equivalence will be presented in a
forthcoming paper.

A general algebraic theory of optimal complements: Although the results of
Sec. 3 are focused upon universal relational schemata and views defined by
projection, the underlying framework of Sec. 2 is much more general, suggest-
ing that the kind of results developed for projections on a universal schema
should in fact apply in a more abstract setting. Of particular importance are
the additional kinds of decompositions identified in the normalization question
above, as well as decompositions on relational schemata which involve both
projection and selection, such as those of [18]. An important future direction
is the formalization of such a general framework and its application to other
forms of decomposition.
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Rapprochement with computational approaches: In recent years, there has been
renewed interest in using view complements to manage data warehouses, and
a number of approaches to computing such complements has arisen, the most
comprehensive of which is [21]. Although the goal of that work is much different
than that of this paper, in that it develops ways to compute good complements
via the manipulation of expressions in the relational algebra, there are never-
theless points of similarity which deserve further investigation.
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