
Semantic Bijectivity and the Uniqueness

of Constant-Complement Updates

in the Relational Context

Stephen J. Hegner

Umeå University

Department of Computing Science

SE-901 87 Umeå, Sweden

hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Minor corrections: 08 November 2008

Abstract

Within the context of the relational model, a general technique for establishing that the transla-

tion of a view update defined by constant complement is independent of the choice of complement

is presented. In contrast to previous results, the uniqueness is not limited to order-based updates

(those constructed from insertions and deletions), nor is it limited to those well-behaved comple-

ments which define closed update strategies. Rather, the approach is based upon optimizing the

change of information in the main schema which the view update entails. The only requirement

is that the view and its complement together possess a property called semantic bijectivity relative

to the information measure. It is furthermore established that a very wide range of views have this

property. This results formalizes the intuition, long observed in examples, that it is difficult to find

different complements which define distinct but reasonable update strategies.

1. Introduction

It has long been recognized that there is no ideal solution to the problem of supporting updates to

views of database schemata. Rather, all solutions involve compromise of some sort. At the most

conservative end of the spectrum lies the constant-complement strategy, introduced by Bancilhon and

Spyratos more than a quarter-century ago [BS81]. It has recently seen renewed interest, both on the

theoretical front [Lec03] [Heg04] and as a framework for applications [FGM*07], to no small extent

because it is precisely the strategy which avoids all so-called update anomalies [Heg04, Sec. 1].

The idea behind the constant-complement strategy is simple. Let D be a database schema, with

LDB(D) denoting its set of legal states. An update on D is just a pair (M1,M2) ∈ LDB(D)×LDB(D)
in which M1 is the current state and M2 is the new state after the update. A view of D is a pair

Γ = (V,γ) in which V is the view schema and γ : LDB(D) → LDB(V) is the view mapping. Since a

view is window on the main schema, its state must always be determined by that of the main schema
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D; hence, γ is always taken to be surjective. LetM1 ∈ LDB(D) be the current state of the main schema

D, so that γ(M1) is the current state of the view Γ. A translation of the update request (γ(M1),N2) ∈
LDB(V)×LDB(V) (relative toM1) is an update (M1,M2) on D with the property that γ(M2) = N2. In

general, there are many such translations. However, now let Γ′ = (V′ ,γ′) be a second view of D. The

decomposition mapping for {Γ,Γ′} is γ
∐

γ′ : LDB(D) → LDB(V)
∐

LDB(V′) given on elements by

M 7→ (γ(M)⊎ γ′(M)). Here ⊎ is the disjoint union operator; thus, the decomposition mapping retains

the state of each constituent view. (See 3.4 for details.) The view Γ′ is called a complement of Γ,

and {Γ,Γ′} is called a complementary pair, if this decomposition mapping is injective (or lossless), so

that the state of D is recoverable from the combined states of the two views. A translation (M1,M2)
of the proposed view update (γ(M1),N2) to Γ has constant complement Γ′ if γ′(M1) = γ′(M2). If

{Γ,Γ′} forms a complementary pair, then it is easy to see that there can be at most one translation of

(γ(M1),N2) which has constant complement Γ′, since there can be at most one M2 ∈ LDB(D) with
the property that (γ

∐
γ′)(M2) = (N2,γ

′(M1)). Thus, upon fixing a complement Γ′ to Γ, translations

of view updates become unique.

There is a very desirable feature which limits the choice of complement Γ′. In general, the user of

the view Γwill not know the precise stateM1 of the main schema; rather, only the image γ(M1) will be
known within the context of Γ. Ideally, whether or not the view update (γ(M1),N2) is allowed should
depend only upon γ(M1) and N2, and not upon M1 itself. In other words, given M′

1 ∈ LDB(D) with
the property that γ(M1) = γ(M′

1), the view update (γ(M1),N2) should either be allowed for both M1

and M′
1, or else for neither. In [Heg04, 2.14], it is shown that this condition recaptured by requiring

that the pair {Γ,Γ′} be meet complementary, in the sense that the congruences on LDB(D) defined by
γ and γ′ commute.

Even upon limiting attention to commuting congruences, there is a further complication surround-

ing the constant-complement approach; namely, the translation of a view update to the main schema

is dependent upon the choice of complement, and except in the simplest of situations, there are many

possible complements. In contrast to this theoretical result, in practice it is often clear that there is

a natural translation of view updates to the main schema which is supported by the “obvious” com-

plement, with other more contrived translations supported by equally contrived complements. In

[Heg04], it is argued that there is a key additional property which “good” views have; namely, that

they are monotonic with respect to the natural order on states. In the context of the relational alge-

bra, this amounts to excluding negation. With this additional condition enforced, it has been shown

that the translation of a view update to the main schema is independent of the choice of complement

[Heg04, 4.3], with the limitation that the updates themselves are order realizable; that is, realizable

as sequences of legal insertions and deletions.

In this paper, the issue of relaxing this limitation to order-based updates is addressed with the

context of the classical relational model. Rather than using a syntactic notion of monotonicity based

upon the order structure of database states, a semantic formulation, which characterizes the informa-

tion content of a database state in terms of the set of sentences in a particular family which it satisfies,

is employed. The decomposition mapping is then required to be not only bijective in the ordinary

sense but also a semantic bijection, in the sense that it defines a bijection between (semantic equiv-

alence classes of) the sentences which define the information content. Under this requirement, it is

shown that constant-complement translations of all view updates, order based or not, are always in-

formation optimal, and hence unique and independent of the choice of complement. It is furthermore

shown that when the main schema is constrained by a wide range of classical database dependencies,

and the view mappings are SPJ-mappings, that is, conjunctive queries, these conditions are always
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satisfied. Interestingly, this result is not limited to meet-complementary pairs in the sense of [Heg04,

2.12]; that is, pairs of view which define well-behaved families of updates. Rather, it applies to any

pair of complementary views whose decomposition mapping is a semantic bijection, and any update

defined via constant-complement within that context.

This work is based upon the notions of information content and optimal translations which were

introduced in [Heg08]. In that work, it is argued that view updates should be information optimal, in

that the correct reflection should entail the least information change over all possibilities. However,

the information measure in that case allows for the equivalence of updates which are isomorphic in

a certain sense. This work applies that philosophy under the additional constraint that the update

strategy should be defined by constant complement, with the reflected updates to the main schema

truly unique, and not just isomorphic.

Although the results are vastly different, some of the background material of this paper is similar

or identical to that of [Heg08]. Specifically, much of Section 2, as well as some content of 3.2, 4.2, 4.3,

4.17 and 4.19 is adapted from [Heg08], although numerous changes in detail and often simplifications

have been made to accommodate the specific needs of this work.

2. The Relational Model

The results of this paper are formulated within the relational model, and familiarity with its standard

notions, as presented in references such as [PDGV89] and [AHV95], is assumed. Nevertheless, there

are aspects which must be formulated with particular care. Most important are the need to take all

relational schemata over the same domain, with the same constant symbols, and the need to express

databases themselves as sets of ground atoms. For this reason, the key features which are unique to

this formulation are presented in this section.

2.1 Relational contexts and constant interpretations A relational context contains the logi-

cal information which is shared amongst the schemata and database mappings. Formally, a rela-

tional context D consists of a finite nonempty set AD of attribute names, a countable set Vars(D)
of variables, and for each A ∈ AD , an at-most-countable set ConstD(A) of constant symbols, with

Const(D) =
S

{ConstD(A) | A ∈ AD}. The variables in Vars(D) are further partitioned into two dis-

joint sets; a countable set GenVars(D) = {x0,x1,x2, . . .} of general variables, and special AD-indexed

set AttrVars(D) = {xA | A ∈ AD} of attribute variables. The latter is used in the definition of inter-

pretation mappings; see 2.6 for details.

Databases are represented as ground atoms, as elaborated in 2.2 below. Therefore, it is necessary

that each domain element be bound to a unique constant symbol. Formally, a constant interpretation

for the relational context D is a pair I = (DomI , IntFnI) in which DomI is a countably infinite set,

called the domain of I, and IntFnI :Const(D)→DomI is a bijective function, called the interpretation

function of I. This effectively stipulates the following two well-known conditions [GN87, p. 120]:

Domain closure: (∀x)(
W

a∈Const(D) x = a) (DCA(D))

Unique naming: (¬(a = b)) for distinct a,b ∈ Const(D) (UNA(D))

Since there are countably many constant symbols, the domain-closure axiom is not a finite disjunction.

This is not a problem however, since it is never used in a context in which a first-order constraint is
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necessary. Because the assignment of domain values to constants is fixed, it is not necessary to verify

independently that it holds.

As a notational convention, from this point on, unless stated otherwise, fix a relational context D

and a constant interpretation I = (DomI, IntFnI) for it.

2.2 Tuples and databases An unconstrained relational schema over (D,I) is a pair D =
(Rels(D),ArD) in which Rels(D) is finite set of relational symbols and ArD : Rels(D) → 2AD a func-

tion which assigns an arity, a set of distinct attributes from AD , to each R ∈ Rels(D).
A ground R-atom is a function t : ArD(R) → Const(D) with the property that t[A] ∈ ConstD(A).

The set of all ground R-atoms is denoted GrAtoms(R,D). A ground D-atom is a ground R-atom for

some R ∈ Rels(D), with the set of all ground D-atoms denoted GrAtoms(D). An atom database for

D is a finite subset of GrAtoms(D), with the set of all atom databases for D denoted DB(D).
An R-atom t is defined similarly, except that t[A] is not required to be a constant; rather, t[A] ∈

ConstD(A)∪GenVars(D)∪{xA}. The D-atoms and the set Atoms(D) are defined in the obvious way.
It is convenient to be able to recover the associated relation name from a tuple, and so tagging

is employed, in which tuples are marked with the relation name. Formally, this is accomplished by

introducing a new attribute RName 6∈AD , and then regarding a ground R-atom not as a function t just

on ArD(R) but rather as one on {RName}∪ArD(R) with the property that t[RName] = R. Tagging of

R-atoms will be used from this point on throughout the paper. Nevertheless, in writing such atoms,

the more conventional notation R(a1,a2, . . . ,an) will be used in lieu of the technically more correct

(R,a1,a2, . . . ,an), although tags will be used in formal constructions.

2.3 Formulas and constraint classes The first-order language associated with the relational

schema D is defined in the natural way; however, it is useful to introduce some notation which iden-

tifies particular sets of formulas. Define WFF(D) to be the set of all well-formed first-order formulas

with equality in the language whose set of relational symbols is Rels(D), whose set of constant sym-

bols is Const(D), and which contains no non-nullary function symbols. The variables are those of

D; these formulas are typed only to the extent that for A ∈ ADD, the variable xA may only occur in a

D-atom in a position associated with attribute A. In other words, the conditions forD-atoms identified

in 2.2 are enforced. WFS(D) denotes the subset of WFF(D) consisting of sentences; that is, formulas

with no free variables.

A constraint class C identifies a subset of WFF(D), denoted WFF(D,C ). Of particular interest in
this work are ∃6=, ∃+, ∃∧+, Atoms, and 1, defined as follows.

• WFF(D,∃6=) is the subset of WFF(D) consisting of those formulas in which only existential

quantification is allowed, and in which negation (explicit or implicit) occurs only at the level of

equality atoms. More precisely, negation may only occur in the form ¬(τ1 = τ2), with τ1 and τ2
terms. Negation of other atoms, such as in (∃x1)(∃x2)(R(x)∧(¬S(x)), is prohibited.

• WFF(D,∃+) is the subset of WFF(D,∃6=) in which no negation at all is allowed.

• WFF(D,∃∧+) is the subset of WFF(D,∃+) in which disjunction is also disallowed, so that the

only logical connective which is allowed is conjunction. These formulas define the so-called

conjunctive queries [CGT90, Sec. 4.2].

• WFF(D,Atoms) is just Atoms(D).

• WFF(D,1) is shorthand for WFF(D).
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In each case, the corresponding set WFS(D,C ) of sentences is defined in the obvious way. In partic-

ular, note that WFS(D,Atoms) = GrAtoms(D).

2.4 Atomic models Even though databases are represented as sets of ground atoms, and not as

interpretations in the usual logical sense, it is still essential to have an appropriate notion of model

for a given sentence. This is relatively straightforward; a model for a sentence ϕ is a database which

is consistent with both ϕ and the unique-naming axioms. There is one complication, however. In

representing a database as a set of D-atoms, the closed-world assumption is implicit. On the other

hand, to express what it means for such a representation to satisfy an arbitrary sentence in WFS(D), it
is necessary to state explicitly which atoms are not true as well. Formally, forM ∈ DB(D), define the
diagram ofM to be DiagramD(M) =M∪{¬t | t ∈ GrAtoms(D)\M}. Now, say thatM ∈DB(D) is an
atomic I-model of ϕ ∈WFS(D) if DiagramD(M)∪{ϕ}∪UNA(D) is consistent. AtModI(ϕ) denotes
the set of all atomic I-models of ϕ, with AtModI(Φ) =

T

{AtModI(ϕ) | ϕ ∈Φ} for Φ⊆ WFS(D).

2.5 Schemata with constraints and constrained databases To obtain full relational schemata,

constraints are added to the unconstrained schemata of 2.2. Formally, a relational schema over

(D,I) is a triple D = (Rels(D),ArD,Constr(D)) in which (Rels(D),ArD) is an unconstrained rela-

tional schema over (D,I) and Constr(D) ⊆ WFS(D) is the set of dependencies or constraints of D.

Define the legal (or constrained) databases LDB(D) of D to be AtModI(Constr(D)).
Define the equivalence relation ≡D on WFS(D) by ϕ1 ≡D ϕ2 iff AtModI(ϕ1) ∩ LDB(D) =

AtModI(ϕ2)∩LDB(D) or, equivalently, AtModI({ϕ1}∪Constr(D)) = AtModI({ϕ2}∪Constr(D)).
Thus, ≡D identifies sentences which have identical truth values on allM ∈ LDB(D). The equivalence
class of ϕ1 under ≡D is denoted [ϕ1]≡D

.

2.6 Database morphisms and views Let D1 and D2 be relational schemata over (D,I). There

are two fundamental ways to represent a database morphism f : D1 → D2 in the relational context.

On the one hand, such a morphism may be represented as a function f : DB(D1) → DB(D2), using
expressions from the relational algebra. On the other hand, by providing an interpretation formula

f R ∈WFF(D1) for each R ∈ Rels(D2), the morphism may be represented using the relational calculus

[JAK82]. The equivalence of these two representations is one of the classical results of relational

database theory [PDGV89, Sec. 2.4-2.6]. The interpretation formulation is taken as the basic one in

this work. Formally, given R ∈ Rels(D2), an interpretation for R into D1 is a ϕ ∈ WFF(D) in which

precisely the variables {xA | A ∈ ArD(R)} are free, with xA is used to mark the position in the formula

which is bound to attribute A. The set of all interpretations of R into D1 is denoted Interp(R,D1). A
syntactic morphism f : D1 →D2 is a family f = { f R | R ∈ Rels(D2) and f R ∈ Interp(R,D1)}.

Let t ∈Atoms(R,D2). The substitution of t into f , denoted Subst〈 f , t〉, is the formula in WFF(D1)
obtained by substituting t[A] for xA, for each A ∈ ArD(R). Note that If t is a ground atom, then

Subst〈 f , t〉 ∈ WFS(D1).
For M ∈ DB(D1), define f (M) = {t ∈ GrAtoms(D2) |M ∈ AtModI(Subst〈 f , t〉)}. f is called an

LDB-morphism if it maps legal databases to legal databases; formally, an LDB-morphism has the

property that f (M) ∈ LDB(D2) for each M ∈ LDB(D1). When no qualification is given, database

morphism will always mean LDB-morphism.

Let D be a relational schema over (D,I). A (relational) view of D is a pair Γ = (V,γ) in which

V is a relational schema over (D,I) and γ : D → V is an LDB-morphism which is furthermore LDB-
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surjective in the sense that for every N ∈ LDB(V), there is an M ∈ LDB(D) with γ(M) = N. Surjec-

tivity is required because the state of the view must always be determined by the state of the main

schema D.

3. Updates and View Complements

In this section, some basic definitions and notation regarding updates and their reflections are pre-

sented, as are the key ideas surrounding the constant-complement update strategy.

3.1 Notational convention Throughout this section, takeD to be a relational schema over (D,I).

3.2 Updates and reflections Let Γ = (V,γ) be a view on D. An update on D is a pair (M1,M2) ∈
LDB(D)×LDB(D). M1 is the current state, andM2 the new state. To describe the situation surround-

ing an update request on Γ, it is sufficient to specify the current state M1 of the main schema and the

desired new stateN2 of the view schemaV. The current state of the view can be computed as γ(M1); it
is only the new stateM2 of the main schema (subject to N2 = γ(M2)) which must be obtained from an

update strategy. Formally, an update request from Γ to D is a pair (M1,N2) in which M1 ∈ LDB(D)
(the old state of the main schema) and N2 ∈ LDB(V) (the new state of the view schema). A real-

ization of (M1,N2) along Γ is an update (M1,M2) on D with the property that γ(M2) = N2. The

update (M1,M2) is called a reflection (or translation) of the view update (γ(M1),N2). The set of all
realizations of (M1,N2) along Γ is denoted UpdRealiz〈M1,N2,Γ〉.

3.3 Disjoint union In the construction of complementary views, the disjoint union of two sets will

be used to construct the coproduct of views. As the symbol
∐

will be reserved to denote a formal

coproduct, ⊎ will be used to represent the disjoint union of two sets. Thus, A⊎B is just a “tagged”

version of A∪B, in which it is possible to determine from which of the two sets an element arose.

Note that it is possible for there to be two instances of a given element x in A⊎B, one tagged with A

and the other tagged with B.

3.4 The coproduct of two views The coproduct of two views is the natural one which arises when

complementation is considered. (The terminology of and notation for coproduct is used because this

construction is a true coproduct in the categorical sense [HS73, §18]). Basically, the set of relations

of the coproduct schema is the disjoint union of those of the two component schemata, with each such

relation retaining its interpretation function. The databases are defined similarly via disjoint union.

(Recall that tuples are tagged (see 2.2), so a database for a schema consists of just one big set of

tuples.) Formally, let Γ1 = (V1,γ1) and Γ2 = (V2,γ2) be views of D. The coproduct of Γ1 and Γ2 is

the view Γ1

∐
Γ2 = (V1

∐
V2,γ1

∐
γ2), defined as follows.

(a) Rels(V1

∐
V2) = Rels(V1)⊎Rels(V2).

(b) For i ∈ {1,2} and R ∈ Rels(Vi), (γ1
∐

γ2)
R = γRi .

(c) LDB(V1

∐
V2) = {γ1(M)⊎ γ2(M) |M ∈ LDB(D)}.

(d) Constr(V1

∐
V2) is the set of all first-order sentences which define the constraints on

LDB(V1

∐
V2).
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Note that, in view of (c), γ1
∐

γ2 is surjective by construction. Hence, there is no question that γ1
∐

γ2
is a view.

In general, there is no straightforward representation for Constr(V1

∐
V2), the set of constraints

of this coproduct. Nevertheless, it can be shown that it has a representation as a set of first-order

sentences [Mon76, Ch. 26]. Since this representation is not central to the theme of this paper, it will

not be elaborated further.

It should perhaps also be noted that, strictly speaking, the notation V1

∐
V2 is incomplete, since

this product depends not only upon V1 and V2, but upon the view morphisms γ1 and γ2 as well.

However, since no confusion can result, a more accurate but correspondingly cumbersome notation

will not be introduced.

3.5 Constant-complement realizations and complementary pairs Although the ideas surround-

ing constant-complement update are well known [BS81] [Heg04], it is important to formalize them

within the current context. Let Γ1 and Γ2 be views of D.

(a) {Γ1,Γ2} forms a complementary pair if the underlying function γ1
∐

γ2 : LDB(D) →
LDB(V1

∐
V2) which sendsM 7→ γ1(M)⊎ γ2(M) is injective (and hence bijective).

(b) For (M1,N2) an update request from Γ1 to D, (M1,M2) ∈ UpdRealiz〈M1,N2,Γ1〉 is called a

Γ2-constant realization of (M1,N2) if γ2(M1) = γ2(M2).

The following classical observation [BS81, Sec. 5], which follows immediately from the injectivity

of γ1
∐

γ2, is key to the entire strategy.

3.6 Observation Let {Γ1,Γ2} be a complementary pair, and let (M1,N2) be an update request

from Γ1 to D. Then there is at most one Γ2-constant realization of (M1,N2), and this realization

exists iff there is an M2 ∈ LDB(D) such that (γ1
∐

γ2)(M2) = N2⊎ γ2(M1). In this case, the unique

realization is given by (M1,M2). 2

4. The Theory of Unique Reflections

In this section, the central results on uniqueness of constant-complement translations are developed.

4.1 Notational convention Throughout this section, unless stated specifically to the contrary, take

D, D1, and D2 to be a relational schema over (D,I), Γ = (V,γ), Γ1 = (V1,γ1), and Γ2 = (V2,γ2) to
be views on D, with C a constraint class.

4.2 Information content and separation A central theme of this work is that the information

content of a database may be characterized by the set of sentences from a particular set which it sat-

isfies. Let Σ⊆ WFS(D) and let M ∈ DB(D). The information content of M relative to Σ is the set of

all sentences in Σ which are true for M. More precisely, Info〈M,Σ〉 = {ϕ ∈ Σ | M ∈ AtModI(ϕ)}.
M1,M2 ∈ DB(D) are Σ-equivalent if they have the same information content relative to Σ; i.e.,

Info〈M1,Σ〉 = Info〈M2,Σ〉. Σ is separating for D if whenever M1,M2 ∈ LDB(D) are Σ-equivalent,

it must be the case that M1 = M2.
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4.3 Information-monotone sentences Intuitively, ifM1 ⊆M2, then it should be the case that M2

contains more information than M1; i.e., Info〈M1,Σ〉 ⊆ Info〈M2,Σ〉. However, in general, M1 will

satisfy constraints which M2 does not; for example, if t ∈ M2 \M1, then ¬t is true of M1 but not of

M2. If such negative constraints are excluded, then Σ is termed information monotone. More formally,

The sentence ϕ ∈ WFS(D) is information monotone if for any M1,M2 ∈ DB(D) if M1 ⊆ M2, then

Info〈M1,{ϕ}〉 ⊆ Info〈M2,{ϕ}〉. In other words, ϕ is information monotone if AtModI(ϕ) is closed
under supersets within DB(D); whenever M ∈ AtModI(ϕ), then all M′ ∈ DB(D) with M ⊆ M′ are

also in AtModI(ϕ). The set Σ⊆ WFS(D) is information monotone if each ϕ ∈ Σ has this property.

4.4 Proposition—Key instances of informationmonotone families Any subset ofWFS(D,∃6=)
is information monotone and separating. This includes, in particular, WFS(D,∃+), WFS(D,∃∧+),
and GrAtoms(D).

PROOF: It is immediate that any formula involving only existential quantification and not involving

any negation is information monotone. That allowing negations of equality atoms does not violate

information monotonicity follows from the fact that the equality relation is fixed over all databases. To

see this more clearly, consider adding a new, fixed relation 6= which represents inequality explicitly,

and replacing each atom of the form ¬(τ1 = τ2) with 6=(τ1,τ2). Then, all negation can be removed

from the sentences, and so any such subset is information monotone.

To complete the proof, it suffices to observe that any subset of WFS(D) which contains

GrAtoms(D) is separating, and GrAtoms(D) is contained in both WFS(D,∃+) and WFS(D,∃∧+).
2

The proof of the following observation is immediate, but the statement is of such central impor-

tance that it is worth noting explicitly.

4.5 Observation — Info〈M,Σ〉 determines M for Σ separating Let Σ be an information mono-

tone and separating family on D.

(a) For any M ∈ LDB(D), M is the least element (under ⊆) of AtModI(Info〈M,Σ〉)∩LDB(D).

(b) If M1,M2 ∈ LDB(D), then M1 ⊆M2 iff Info〈M1,Σ〉 ⊆ Info〈M2,Σ〉. 2

A central premise of this work is that it is advantageous to view database morphisms as mappings

between sentences (in an appropriate information-monotone family), rather than just as mappings

from databases to databases. The following definition formalizes this idea.

4.6 Substitution of sentences Let f : D1 → D2 be a database morphism. The association t 7→
Subst〈 f , t〉 defined in 2.6 may be extended in a natural way to all of WFS(D2). Specifically, the in-
terpretation of ϕ in f is the sentence Subst〈 f ,ϕ〉 ∈ WFS(D1) which is obtained by first renaming all

quantified variables so that no two formulas involved in the construction have any such variables in

common, and then replacing each atom ψ which occurs in ϕ with Subst〈 f ,ψ〉. As a specific exam-

ple, suppose that D1 has two relation symbols R11[ABD] and R12[DBC], and that D2 has two relation

symbols R21[AB] and R22[BC]. Let the defining formulas be f R21 = (∃x1)(R11(xA,xB,x1)) and f R22 =
(∃x2)(∃x3)(R11(x2,xB,x3)∧R12(x3,xB,xC)), with the sentence to be interpreted ϕ =
(∃x4)(R21(a,x4)∧R22(x4,c)). Here a and c are constants. Then

Subst〈 f ,ϕ〉 = (∃x1)(∃x2)(∃x3)(∃x4)(R11(a,x4,x1)∧R11(x2,x4,x3)∧R12(x3,x4,c)).
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For more detailed examples, see [JAK82, Sec. 3].

Think of this definition as specifying a function Subst〈 f ,−〉 : WFS(D2) → WFS(D1). The key

feature to keep in mind is that while the underlying function f : LDB(D1)→ LDB(D2)maps databases

of D1 to databases of D2, the interpretation mapping Subst〈 f ,−〉 sends sentences in WFS(D2) to

sentences in WFS(D1). Thus, the direction is reversed. It should perhaps be noted that this definition

extends easily to well-formed formulas which are not sentences, but since such an extension is not

needed here, it will not be elaborated.

The relationship between the mapping of databases and the mapping of models is a close one, as

shown by the following observation, whose straightforward proof is omitted.

4.7 Observation Let f : D1 → D2 be a database morphism, and let M ∈ DB(D1). Then for any

ϕ ∈ WFS(D2), f (M) ∈ AtModI(ϕ) iff M ∈ AtModI(Subst〈 f ,ϕ〉). 2

4.8 Schemata, morphisms, and views of class C To measure information content using the sen-

tences of class C , it is important that the database schemata and views respect that class in a certain

way.

(a) The database schema D is of class C if WFS(D,C ) is separating for D.

(b) The database morphism f : D1 → D2 is of class C if for every ϕ ∈ WFF(D2,C ), Subst〈 f ,ϕ〉 ∈
WFF(D1,C ).

(c) The view Γ = (V,γ) is of class C if both V and γ are of that class.

In view of 4.4, any C which contains GrAtoms(D) is separating, and hence any database schema

D is of such a class C . However, the notion of a database morphism being of class C is more complex,

and warrants closer attention via a few examples.

4.9 Examples —Morphisms of class C Let E1 be the relational schema with two ternary relation

symbol R11[ABC] and R12[ABC], and let E2 be the schema with the single relation symbol R2[AB].

Define the morphism g11 : E1 → E2 by g
R2
11 = (∃z)(R11(xA,xB,z)∧R12(xA,xB,z)). In other words, R2

is the projection of the intersection of R11 and R12. Then g11 is of class C for C ∈ {∃6=,∃+,∃∧+,1},

but not for C = Atoms, since Subst〈gR2
11 , t〉 is not equivalent to a ground atom for t ∈ GrAtoms(E2).

On the other hand, define g12 : E1 → E2 by g
R2
12 = (∃z)(R11(xA,xB,z)∧(¬R12(xA,xB,z))). In this case,

R2 is the projection of the difference of R11 and R12, and g12 is of class C for C = 1, but not for

any of the others listed above, since the sentence Subst〈gR2
12,ϕ〉 will always contain non-removable

internal negation, even for ϕ a ground atom. In particular, g12 is not of class ∃∧+. Finally, define

g13 : E1 → E2 by g
R2
13 = (∃z)(R11(xA,xB,z)∨R12(xA,xB,z)). In other words, R2 is the projection of the

union of R11 and R12. Then g13 is of class C for C ∈ {∃6=,∃+,1}, but not for C ∈ {∃∧+,Atoms},
since Subst〈g13,ϕ〉 will always contain non-removable disjunction, even for ϕ a ground atom.

4.10 Notational convention For the remainder of this section, unless stated specifically to the

contrary, take all database schemata to be of class C .
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4.11 Semantic morphisms Let f :D1 →D2 be a database morphism of class C . In addition to the

standard notions of injectivity, surjectivity, and bijectivity for the induced mapping f : LDB(D1) →
LDB(D2), there are corresponding notions associated with the substitution mapping Subst〈 f ,−〉 :
WFS(D2,C ) → WFS(D1,C ). The point of care to be taken is that the identification is only unique up
to the equivalence≡D as defined in 2.5.

(a) f is semantically injective for C if for every ϕ1,ϕ2 ∈WFS(D2,C ), if Subst〈 f ,ϕ1〉≡D1
Subst〈 f ,ϕ2〉,

then ϕ1 ≡D2
ϕ2.

(b) f is semantically surjective for C if for every ϕ1 ∈ WFS(D1,C ), there is a ϕ2 ∈ WFS(D2,C )
with Subst〈 f ,ϕ2〉 ≡D1

ϕ1.

(c) f is semantically bijective for C if it is both semantically injective and semantically surjective

for C .

A view Γ = (V,γ) is said to be semantically bijective for C precisely when the morphism γ has that

property.

It should be stressed that for f to be of class C is causa sine qua non to have any of the above

properties. If f is not of class C , then it is not semantically injective, surjective, or bijective for C , by

definition.

It is easy to see that the morphisms g11, g12, and g13 of 4.9 are semantically injective; that is,

logically distinct formulas in E2 give rise to logically distinct formulas in E1. This is true more

generally; surjectivity of the underlying database mapping translates to semantic injectivity provided

the morphism is of the appropriate class.

4.12 Proposition — Underlying surjectivity ⇒ semantic injectivity Let f : D1 → D2 be a

database morphism of class C . If the associated function f : LDB(D1) → LDB(D2) is surjective,

then f is semantically injective for C . In particular, for every view Γ = (V,γ) of class C , the mor-

phism γ is semantically injective for C .

PROOF: Let ϕ1,ϕ2 ∈ WFS(D2,C ) with ϕ1 6≡D2
ϕ2. Then there exists an N ∈ LDB(D2) which is

an atomic model of one but not the other. Without loss of generality, assume that N ∈ AtModI(ϕ1)\
AtModI(ϕ2). Then for anyM ∈ f−1(N),M ∈AtModI(Subst〈 f ,ϕ1〉)\AtModI(Subst〈 f ,ϕ2〉). Hence,
Subst〈 f ,ϕ1〉 6≡D1

Subst〈 f ,ϕ2〉, and so f is semantically injective. 2

For this work, semantic surjectivity on its own is not of central importance. Rather, the key

property is semantic bijectivity. Examples illustrating these ideas are found in 4.16 below. First,

however, it is essential to introduce some supporting ideas.

The semantic bijectivity of a morphism f : D1 → D2 entails nothing more than a bijective corre-

spondence between the equivalence classes of sentences of class C in D1 and those of D2. This is

formulated precisely as follows.

4.13 Observation — Characterization of semantic bijectivity Let f : D1 → D2 be database

morphism of class C . Then f if semantically bijective for C iff it induces a natural bijection between

WFF(D2,C )/≡D2
and WFF(D1,C )/≡D1

via [ϕ]≡D2
7→ [Subst〈 f ,ϕ〉]≡D1

. 2
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4.14 The reconstruction morphism Let f : D1 → D2 be a database morphism. If the induced

function f : LDB(D1) → LDB(D2) is bijective, then there is trivially a function g : LDB(D2) →
LDB(D1) for which is inverse to f . What is remarkable is that there is database morphism g :D2→D1

in the logical sense which induces g. This is a consequence of Beth’s theorem from model theory

[Mon76, Thm. 22.4]. This g is called the reconstruction morphism for f and is denoted RcMor( f ).
Observe that f and RcMor( f ) are inverses for the mappings on sentences as well, up to the logical

equivalence defined by the schemata. More precisely, for any ϕ1 ∈ WFS(D1),
Subst〈 f ,Subst〈RcMor( f ),ϕ1〉〉 ≡D1

ϕ1, and for any ϕ2 ∈ WFS(D2),
Subst〈RcMor( f ),Subst〈 f ,ϕ2〉〉 ≡D1

ϕ2.

Unfortunately, there is no guarantee that RcMor( f ) will be of the same class as f . When it is,

however, semantic bijectivity is guaranteed.

4.15 Proposition — Semantic bijectivity ⇔ class C reconstruction Let f : D1 → D2 be a

database morphism of class C whose underlying function f : LDB(D1)→ LDB(D2) is bijective. Then
f is semantically bijective for C iff RcMor( f ) is of class C .

PROOF: Let ϕ1 ∈ WFS(D1,C ). If RcMor( f ) is of class C , then there is a ϕ2 ∈ WFS(D2,C )
such that Subst〈RcMor( f ),ϕ1〉 ≡D2

ϕ2, and since Subst〈 f ,−〉 ◦Subst〈RcMor( f ),−〉 is the identity

on WFS(D1), up to equivalence of≡D1
, Subst〈 f ,ϕ2〉 ≡D1

ϕ1. Hence f is semantically surjective, and

since it is semantically injective by 4.12, it is semantically bijective for C .

Conversely, if f is semantically bijective for C , then given ϕ1 ∈ WFS(D1,C ), there is a ϕ2 ∈
WFS(D2,C ) such that Subst〈 f ,ϕ2〉 ≡D1

ϕ1. Since Subst〈RcMor( f ),−〉◦Subst〈 f ,−〉 is the identity
on WFS(D2), up to equivalence of≡D2

, it must be the case that Subst〈RcMor( f ),ϕ1〉 ≡D2
ϕ2, whence

RcMor( f ) is of class C . 2

4.16 Examples— Semantic bijectivity and reconstruction morphisms It is clear from 4.15 that

every bijectivemorphism is semantically bijective for class 1; that is, when all first-order sentences are

considered. However, this is not a very useful property within the context of this work, since the set of

all first-order sentences on a schema is not information monotone except in trivial cases. In particular,

owing to a special property to be developed in 4.18, the choice C = ∃∧+ will yield the most fruitful

results. It is therefore necessary to establish useful conditions under which semantic bijectivity holds

for more restricted classes. To set the stage for this, some illustrative examples based upon a set

of four schemata are presented. Let E3 be the relational schema with three unary relation symbols

R31[A], R32[A], and R33[A], constrained by the single sentence (∀x)(R33(x) ⇔ R31(x)∧R32(x)). In

other words, the state of R33 is the intersection of that of R31 and R32. Let E4 have a corresponding

set of three unary relation symbols R41[A], R42[A], and R43[A], but this time constrained by the single

sentence (∀x)(R43(x) ⇔ ((R41(x)∧¬R42(x))∨(¬R42(x)∧R41(x)))). In other words, the state of R43 is

the symmetric difference of that of R41 and R42. Define E5 to have the two unary symbols R51[A] and
R52[A], with no other constraints, and define E6 to have the two unary relation symbols R61[A] and
R63[A], again with no other constraints.

First of all, consider the morphism h3 : E3 → E5 which identifies R51 with R31 and R52 with

R32. Formally, h
R51
3 = R31(xA) and h

R52
3 = R32(xA). It is trivial that h3 is of class C for any C ∈

{∃6=,∃+,∃∧+,Atoms,1}. The reconstruction mapping for h3 is g3 : E5 → E3 defined by g
R31
3 =

R51(xA), g
R32
3 = R52(xA), and g

R33
3 = R51(xA)∧R52(xA). This morphism is of class C for C ∈
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{∃6=,∃+,∃∧+,1}, but not for C = Atoms, since the interpretation formula for R33 is not equivalent

to any atomic formula. Consequently, h3 and g3 are semantic bijections for C ∈ {∃6=,∃+,∃∧+,1}.
Next, consider the morphism h4 : E4 → E5 which identifies R51 with R41 and R52 with R42. For-

mally, h
R51
4 = R31(xa) and h

R52
4 = R32(xa). Just as was the case for h3, this morphism h4 is is of

class C for any C ∈ {∃6=,∃+,∃∧+,Atoms,1}. The reconstruction mapping is g4 : E5 → E4 given by

g
R41
4 = R51(xA), h

R42
4 = R52(xA), and g

R43
4 = (R51(xA)∧(¬R52(xA)))∨(R52(xA)∧(¬R51(xA))). This time,

amongst the possibilities C ∈ {∃6=,∃+,∃∧+,Atoms,1}, the reconstruction mapping g4 is of class C

only for C = 1. The definition of g
R43
4 excludes all other possibilities.

A similar failure of the reconstruction morphism to be of classes other than 1 may occur even

when the schemata themselves have no nontrivial constraints. For example, let h5 : E5 → E6 be

defined by h
R61
5 = R51(xA) and h

R63
5 = (R51(xA)∧(¬R52(xA)))∨(R51(xA)∧(¬R51(xA))). In other words,

R63 constrained by the interpretation morphism to be the symmetric difference of R51 and R52. It is

easily seen that h5 is bijective on databases, with the reconstruction morphism g5 : E6 → E5 defined

by g
R51
5 = R61(xA) and g

R52
5 = (R61(xA)∧(¬R63(xA)))∨(R63(xA)∧(¬R61(xA))). However, amongst the

possibilities C ∈ {∃6=,∃+,∃∧+,Atoms,1}, both h5 and g5 are of class C only for C = 1, and so

cannot possibly be semantically bijective for any other of the classes.

These examples suggest that for a morphism f : D1 → D2 which is bijective on databases to fail

to be semantically bijective, there must be some nonmonotonicity of information, either in the con-

straints of the domain schema D1, or else in the interpretation formulas defined by the interpretation

morphism itself. That this is indeed the case, at least for certain common contexts, will now be

shown.

4.17 Universal models Traditional database dependencies take the form of generalized universal-

existential Horn clauses of the following form.

(∀x1)(∀x2) . . .(∀xn)((A1∧A2∧ . . .∧An) ⇒ (∃y1)(∃y2) . . .(∃yr)(B1∧B2∧ . . .∧Bs))

The Ai’s and the Bi’s are atoms, but of course not ground atoms. indeed, the quantified variables must

occur in these atoms. There is a rich variety of alternatives; for a detailed taxonomy and comparison

of properties consult [Fag82].

Given a set S of ground atoms, one may attempt to construct a least model containing S by using

so-called forward chaining — repeatedly unifying the left-hand side (the Ai’s) with known facts (qua

ground atoms) in S in order to deduce new ones from the right-hand side (the Bi’s). The new facts are

added to S and the process is repeated until no new rules apply. This is a classical form of inference

for propositional Horn clauses [DG84]. It also applies to so-called universal models the first-order

case, but with some limitations. In its general form, it has seen recent application in the context of

data exchange [FKMP05] and in the realization of canonical reflections for view updates which lie

outside of the scope of constant complement [Heg08]. The process is, in turn, based upon the classical

chase inference procedure [BV84].

There are a few complications relative to the propositional setting. First of all, it may be necessary

to generate “generic” constants, because of the existential quantifiers, so the least model may only be

unique up to a suitable renaming of such constants. Second, the process may not always terminate,

but rather continue endlessly to generate new tuples [FKMP05, Example 3.6] [Heg08, 4.14]. Nev-

ertheless, there are wide classes of constraints for which the procedure is known to terminate. One

possibility is to work with full dependencies which do not involve any existential quantification. A
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broader solution is to work with the so-called weakly acyclic tuple-generating dependencies (tgds),

together with the classical equality-generating dependencies (egds) [FKMP05, Thm. 3.9].

When they exist, such universal models have a simple characterization [Heg08, Sec. 3] [FKMP05,

Sec. 3.1]. An endomorphism on D is a function h : Const(D) → Const(D) which preserves attribute

types, in the precise sense that for each A ∈ AD and each a ∈ ConstD(A), h(a) ∈ ConstD(A). If h is

additionally a bijection, then it is called an automorphism of D. For S⊆ Const(D), call h S-invariant

if h(a) = a for all a∈ S. Given a database schemaD, an endomorphism onD induces a mapping from

GrAtoms(D) to itself given by sending t ∈ GrAtoms(D) to the tuple t ′ with t ′[RName] = t[RName]
and t ′[A] = t[h(A)] for all A ∈ Art[RName] . This mapping on atoms is also represented by h, as will the

induced mapping from DB(D) to itself given byM 7→ {h(t) | t ∈M}. h(M) is called an endomorphic
image ofM. GivenΦ⊆WFS(D), anM ∈DB(D) is a universal model forΨ if everyM ∈AtModI(Ψ)
is a superset of an endomorphic image ofM.

Say that D admits universal models if M ∪Constr(D) admits a universal model for every M ∈
DB(D) which extends to a model; i.e., for which there exists an M′ ∈ LDB(D) withM ⊆M′.

In the context of database constraints, such universal models may be generated using the inference

procedure described above [FKMP05, Sec. 3.1], provided the procedure terminates. In particular,

the combination of weakly acyclic tgds and all egds noted above has this property. The following

result thus provides a rich class of base schemata which imply semantic bijectivity for ∃∧+ when the

underlying function is bijective.

4.18 Proposition — Universal models ⇒ semantic bijectivity Let f : D1 → D2 be a database

morphism of class ∃∧+ whose underlying function f : LDB(D1)→ LDB(D2) is bijective. IfD1 admits

universal models, then f is semantically bijective for ∃∧+.

PROOF OUTLINE: Space limitations preclude a detailed proof, but it is easy to sketch the main

idea. Let ϕ1 ∈WFS(D1,∃∧+). The basic strategy is to Skolemize ϕ1 into a set G of ground atoms by

replacing each existentially-quantified variable by a distinct new constant not appearing in Constr(D),
and to generate a universal modelM ∈ LDB(D1) for G. Next, mapM to f (M)∈ LDB(D2) and reverse
the process. Represent f (M) as a sentence ϕ′

2 which is the conjunction of the atoms in f (M), and
then “un-Skolemize” ϕ′

2 by replacing all constants which were not in the original ϕ1 or in Constr(D)
by existentially quantified variables. Call the resulting formula ϕ2. It is not difficult to see that

Subst〈 f ,ϕ2〉 ≡D1
ϕ1, from which the result follows. 2

In the context of 4.16 above, note that for E4 the constraint

(∀x)(T4(x) ⇔ ((R4(x)∧¬S4(x))∨(¬S1(x)∧R4(x)))) is not a dependency of the (∀)(∃)-Horn variety,

and does not admit universal models. On the other hand, the alternative (∀x)(T3(x) ⇔ R3(x)∧S3(x))
for E3 is in fact representable as as set of three tgds: (∀x)(T3(x) ⇒ R3(x)), (∀x)(T3(x) ⇒ S3(x)), and
(∀x)((R3(x)∧S3(x)) ⇒ T3(x)), and so does admit universal models by [FKMP05, Thm. 3.9]. Thus,

the assertion of the above proposition is confirmed by this example.

4.19 Update difference and optimal reflections The update difference of an update (M1,M2) on
D with respect to a set Σ ⊆ WFS(D) is a measure of how much M1 and M2 differ in terms of their

information content relative to Σ. Formally, the positive (∆+), negative (∆−), and total (∆) update
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differences of (M1,M2) with respect to Σ are defined as follows:

∆+〈(M1,M2),Σ〉 = Info〈M2,Σ〉 \ Info〈M1,Σ〉

∆−〈(M1,M2),Σ〉 = Info〈M1,Σ〉 \ Info〈M2,Σ〉

∆〈(M1,M2),Σ〉 = ∆+〈(M1,M2),Σ〉∪∆−〈(M1,M2),Σ〉

Given ϕ ∈ ∆〈(M1,M2),Σ〉, it is always possible to determine whether ϕ ∈ ∆+〈(M1,M2),Σ〉 or
ϕ ∈ ∆−〈(M1,M2),Σ〉 by checking whether or notM1 ∈ AtModI(ϕ).

For an update request (M1,N2) from Γ to D, the quality of a realization (M1,M2) is measured

by its update difference, with an optimal realization one which entails the least change of infor-

mation. Formally, let Σ ⊆ WFS(D), let (M1,N2) be an update request along Γ, and let (M1,M2) ∈
UpdRealiz〈M1,N2,Γ〉. The pair (M1,M2) is optimal with respect to Σ if for all (M1,M

′
2) ∈

UpdRealiz〈M1,N2,Γ〉, ∆〈(M1,M2),Σ〉 ⊆ ∆〈(M1,M
′
2),Σ〉.

The definition of optimal which is used here is slightly different than that of [Heg08, 3.5], in which

optimality also requires minimality of update difference with respect to GrAtoms(D). That additional
condition was necessary because the main information measure was not required to be separating.

Here, the separating condition effectively provides the additional minimality.

4.20 Lemma—Distance preservation under semantic bijection Let f :D1 →D2 be a semantic

bijection of class C , and M1,M2,M3 ∈ LDB(D1). Then

∆〈(M1,M2),WFF(D1,C )〉 ⊆ ∆〈(M1,M3),WFF(D1,C )〉

iff ∆〈( f (M1), f (M2)),WFF(D2,C )〉 ⊆ ∆〈( f (M1), f (M3)),WFF(D2,C )〉.

PROOF: The proof follows directly from the bijective correspondence between (semantic equivalence

classes of) sentences in WFF(D1,C ) and those in WFF(D2,C ), as established in 4.13. 2

4.21 Lemma If the views Γ1 = (V1,γ1) and Γ2 = (V2,γ2) are of class C , then so too is Γ1

∐
Γ2.

PROOF: This follows from the definition (4.8(b)), since the set of interpretation functions forV1

∐
V2

into D is simply the (disjoint) union of those for γ1 and for γ2. 2

The definition of complementary views 3.5 is extended to the C context in the following fashion.

4.22 C -complementary pairs The set {Γ1,Γ2} of views is said to be a C -complementary pair if

each view is of class C and, in addition, the morphism γ1
∐

γ2 :D→V1

∐
V2 is semantically bijective

for C .

Finally, it is possible to establish the main result of this paper.

4.23 Theorem Let {Γ1 = (V1,γ1),Γ2 = (V2,γ2)} be a C -complementary pair and let (M1,N1) be
an update request from Γ1 toD. If the Γ2-constant realization of (M1,N1) along Γ1 exists, it is optimal

with respect to WFS(D,C ).

PROOF: Let M2 ∈ LDB(D) be the unique database for which (M1,M2) is the Γ2 constant realiza-

tion of (M1,N1); thus, (γ1
∐

γ2)(M2) = (N1,γ2(M1)). Let M3 ∈ LDB(D) be any database for which

γ1(M3) = N′
1; thus, (M1,M3) is an arbitrary realization of the update request (M1,N

′
1). The up-

date in V1

∐
V2 corresponding to (M1,M2) under γ1

∐
γ2 is u = ((γ1(M1)⊎ γ2(M1)),(N1⊎ γ2(M1))),

Corrected version: 20081108 SDKB2008 page 14



while for (M1,M3) it is u
′ = ((γ1(M1)⊎ γ2(M1)),(N1⊎ γ2(M3))). Clearly ∆〈u,WFS(V1

∐
V2,C )〉 ⊆

∆〈u′,WFS(V1

∐
V2,C )〉, and so in view of 4.20 and 4.21, ∆〈(M1,M2),WFF(D,C )〉 ⊆

∆〈(M1,M3),WFF(D,C )〉 as well. Hence (M1,M2) is optimal, as required. 2

4.24 Corollary — Global uniqueness of constant-complement updates Let {Γ1,Γ2} and

{Γ1,Γ
′
2} be C -complementary pairs, and let (M1,N2) be an update request from Γ1 to D. If (M1,N2)

has both a Γ2-constant realization and a Γ
′
2-constant realization, then these two realizations are iden-

tical. In other words, a constant-complement realization of an update is independent of the choice of

complement, as long as the complementary pair is C -compatible.

PROOF: By construction, an optimal reflection is unique, and so the result follows from 4.23. 2

4.25 Corollary — Universal solutions imply global uniqueness for C = ∃∧+ Assume that D

admits universal solutions, let Γ1 be any view of D which is of class ∃∧+, and let (M1,N2) be an

update request from Γ1 to D. Then for all views Γ2 of class ∃∧+ which are complements of Γ1 and

for which the Γ2-constant translation of (M1,N1) exists, these translations are identical.

PROOF: The proof follows directly from 4.18 and 4.24. 2

4.26 Examples To begin, consider an example which was introduced in [Heg94, 1.1.1] as mo-

tivation for the need to consider restrictions on the nature of “good” complements. It recaptures

ideas similar to those found in E4 of 4.16, but in the context of three views, each of which con-

tains one unary relation symbol. Let E7 have two relation symbols R71[A] and R72[A], with no

constraints other than those imposed by the relational context D. Let Ω7i = (W7i,ω7i) for i ∈
{1,2} be the view which retains R7i but discards R7(3−i). R7i[A] is thus the sole relation symbol

for W7i. In each case, the interpretation formula ω
R7i
7i is the identity on R7i, and so the coproduct

morphism ω71

∐
ω72 is also an identity and trivially semantically bijective for any reasonable choice

for C . The pair {Ω71,Ω72} is as well behaved as can be, and C -complementary. Now consider a

third view Ω73 = (W73,ω73) which has the single relation symbol R73[A], defined by the formula

ω
R73
73 = (R71(xA)∧¬R72(xA)∨(¬R71(xA)∧R72(xA)). In other words, the value for R3 is the symmet-

ric difference of those for R71 and R72. It is easy to see that any set of two of these three views

forms a complementary pair, but the two pairs which contain Ω73 are not C -complementary for

C ∈ {∃6=,∃+,∃∧+,Atoms}. The interpretation ω
R3
73 involves negation and so Ω73 can never be of

class C for any C which renders WFS(E7,C ) information monotone. Thus, this “undesirable” com-

plement is excluded by the theory. In this example, the schema E7 admits universal solutions, but the

morphism ω7i

∐
ω23 is not of class C for i ∈ {1,2}, and so 4.25 is not applicable.

As a slight variation, reconsider the schema E4 of 4.16, this time with the three views Ω4i =
(W4i,ω4i), with Ω4i for i ∈ {1,2,3} the view which retains R4i but discards the other two relations.

Each view morphism ω4i is very well behaved; each is semantically surjective for any choice of C

listed in 2.4. Furthermore, it is easy to see that any two of these views forms a complementary pair.

However, by an argument virtually identical to that already given in 4.16, for any pair of these views,

the reconstruction morphism cannot be of class C , since including R43 in the view forces a symmetric

difference interpretation. In this case, the each view morphism of the form ω4i

∐
ω4 j is of class C ,

but the constraints of the main schema E4 do not allow the reconstruction to be of class C for any

reasonable choice.
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4.27 Example — Comparison to the order-view approach Upon comparing 4.24 of this paper

to [Heg04, 4.3], two key differences are apparent. On the one hand, the theory of [Heg04] requires

order complements, which is based upon the order structure on the states of the schemata and has

nothing whatever to do with logic or the relational model, while the theory presented here requires

C -complements, which are logic based. Although a detailed study has not been made, partly because

the theory of [Heg04] is limited to so-called meet complements, it does appear the notion of order

complement is strictly more general than that of a C -complement. On the other hand, the uniqueness

theory of [Heg04] is limited to order-realizable updates; that is, updates which can be realized as

sequences of legal insertions and deletions. The theory of this paper imposes no such limitation.

To illustrate this advantage, consider the schema E8 which has the single relation symbol R[ABC],

constrained by the functional dependencies B→C and B→ A. The two views are Π
E8
AB and Π

E8
BC, the

projections onto AB and BC respectively. Both of these are order views; the associated mappings on

database states are open poset morphisms. Thus, the result [Heg04, 4.3] applies, but only to order-

realizable updates, of which there are none for Π
E8
AB. More precisely, the only possible updates on

Π
E8
AB are those which change the A-value of a given tuple, and none of those is an order-realizable

update, so that theory does not address this situation in a systematic way [Heg04, 4.6]. On the other

hand, the theory of this paper imposes no such restriction to order-realizable updates. Since the

coproduct Π
E8
AB

∐
Π

E8
BC is easily seen to be semantically bijective for any reasonable choice for C (the

reconstruction map is the join), all Π
E8
BC-constant updates on Π

E8
AB are allowed.

5. Conclusions and Further Directions

The constant-complement update strategy for views has been examined from the point of view of

information content. Specifically, in this approach, the decomposition mapping for the pair of views

is required not only to be bijective on states but also on the sentences which define the information

content of the component views. From this perspective, it has been shown that under very broad

conditions, the translation of the view update is independent of the choice of complement. In partic-

ular, in a traditional database context — well-behaved dependencies and view mappings defined by

conjunctive queries — the translation never depends upon the choice of complement.

Further investigations are appropriate for the following topics.

Extension to other logical models The theory presented here is couched squarely within the classi-

cal relational model. In principle, it applies as well to other models which admit a first-order log-

ical formalism, such as the nested relational model [PDGV89, Ch. 7] and the Higher-Order Entity-

Relationship Model (HERM) [Tha00]. However, the extent to which the cornerstone ideas such as

identifying a suitable class C or characterizing semantic bijectivity via universal models translate to

realistic data modelling within those frameworks requires further investigation.

Rapprochement with the order-based approach The order-based framework for the constant-

complement approach, as reported in [Heg04], has the great advantage that it is not tied to a particular

data model. Rather, schemata are modelled as ordered sets and view mappings as poset morphisms.

While the framework presented here is much more specific, being limited to the relational model, it

also supports a broader result which is not limited to order-realizable updates. Each approach has its

advantages and disadvantages. A rapprochement of the two appears to be a fruitful topic for future

investigation. In particular, it would be interesting to identify the extent to which the ideas of this
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paper can be recast without the specific need for an underlying logic. In this regard, element-based

variations of the order-based model, such as that employed in [Heg06], would perhaps form the

foundation for a fruitful common ground.

Information morphisms and the inversion of schema mappings Recently, there have been significant

advances in the theory of data exchange and inversion of schema mappings [FKMP05] [Fag07]. Al-

though these topics have nothing to do with constant-complement updates, the ideas of information

content, and in particular the idea of characterizing database morphisms not by how they map mod-

els but rather how they map sentences might prove useful in understanding and characterizing such

operations.
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