Specification and Implementation of Programs for
Updating Incomplete Information Databases
(Preliminary Report)
Stephen J. Hegner
Department of Computer Science and Electrical Engineering
Votey Building
University of Vermont
Burlington, VT 05405
hegner@uvm
..!(decvax,ihnp4)!dartvax!uvm-gen!hegner

Abstract

The problem of updating incomplete information databases is viewed as a programming problem. From this point of view, formal denotational semantics are developed for two applicative programming languages, BLU and HLU. BLU is a very simple language with only five primitives, and is designed primarily as a tool for the implementation of higher-level languages. The semantics of BLU are formally developed at two levels, possible worlds and clausal, and the latter is shown to be a correct implementation of the former. HLU is a "user level" update language. It is defined entirely in terms of BLU, and so immediately inherits its semantic definition from that language. This demonstrates a level of completeness for BLU as a level of primitives for update language implementation. The necessity of a particular BLU primitive, masking, suggests that there is a high degree of inherent complexity in updating logical databases.

0. Introduction

Database systems may be viewed as consisting of two components. A database schema specifies the general structure of admissible data, and remains constant. Database instances, on the other hand, record the actual state of the world at a given point in time, and changes upon update. In the case of complete information, there is exactly one instance associated with the system at any given point, whereas in the incomplete information case, there is a collection of alternative instances, or possible worlds.

In the complete information case, the representation of the system state is a usually a direct one (such as a set of relations in the relational case), although indirect representation is also possible, as in the negation as failure, or closed world clausal representation [3].

In the case of incomplete information, on the other hand, direct representation is
impractical, due to the potential size of the set of possible worlds. Therefore, a method of indirect representation must be employed. These include template methods [12], as well as the use of logic [16]. Approaches which combine these two philosophies have also been suggested [11]. The key point is that, regardless of the method of representation, the foundations rest in possible world semantics.

It is our thesis that for the purposes of updating an incomplete information database, similar principles should apply. Fundamental semantics should be at the possible worlds level, while the representation and manipulation mechanism needs to be at an indirect level to be practicable.

In this work, we present the foundations for understanding the process of updating incomplete information databases. The basic idea is to regard updates to databases as specifi ed in an update programming language. To such a language, we assign an instance semantics which describes how its programs behave at the level of possible worlds. Any other implementation, using an indirect form of possible worlds representation, must respect this instance semantics.

We actually develop two update programming languages, HLU and BLU. HLU (for High-level Language for Updates) is our "user level" language for expressing updates. It has only two basic sorts or primitive data types, <possible-worlds> and <masks>. Its syntax is summarized by the following set of productions.

```
<HLU-program> }
    (assert <possible-worlds>) |
    (clear <mask>) |
    (insert <possible-worlds>)
    (delete <possible-worlds>) |
    (modify <possible-worlds> <possible-worlds>) |
    (where <possible-worlds> <HLU-program>) |
    (where <possible-worlds>
        <HLU-program> <HLU-program>)
```

HLU may be implemented at various levels, including instances, templates, and logic. The formal semantics is presented in Section 3; here we give an informal sketch for motivational purposes. but independently of any particular implementation. It is always assumed that there is a particular extant collection of possible worlds, denoted by S , which is the current state of the database system. For any representation W of <possible-worlds>, let $\mathbf{p w}(\mathrm{W})$ denote the actual collection of possible worlds represented. Each HLU program modifi es the current state. The program (assert w) modifi es the database state S to one in which the the only possible worlds are those common to S and $\mathbf{p w}(W)$. It monotonically increases the information in the state S, by reducing the membership in the collection of possible worlds of S. The program (mask m) modifi es the database state to be a view of its previous state, by masking out all information of a certain nature specifi ed by the mask. For example, in the clause world, the program (mask $\{\mathbf{A}, \mathbf{B}\}$) would remove from S all information regarding the truth values of A and B. The program (insert w) generalizes the notion of insertion into a complete information database. The programs (delete \mathbf{W}) and (modify \mathbf{W} V) similarly generalize the notions of deletion from and modifi cation of complete information databases in a manner which will be made precise later. The control program (where W P Q) splits S into two parts,
$S \cap p \mathbf{w}(\mathrm{~W})$ and $\mathrm{S} \backslash \mathbf{p w}(\mathrm{W})$. The program P is then run on the first set of worlds and the program Q on the second, and the results are then combined. The program (where W P) is equivalent to (where W P I), where I is the identity program.

We do not implement HLU directly. Rather, the semantics of HLU is expressed formally as programs in a more basic language, which we have named BLU (for Basic Language for Updates. Despite the fact that BLU has only fi ve very elementary primitive operations, it is more than powerful enough to support the implementation of HLU. Indeed, it is a major claim of this work that the BLU primitives are precisely those needed for update language implementation. Underlying this claim is the mask-assert paradigm, which states that all updates are founded upon the composition of two operations; a masking which projects out certain information, and so constitutes a decrease in information content of the database, followed by an assertion which restricts the set of possible worlds, and so constitutes an increase in information content.

Two implementations of BLU are provided. First, we defi ne the possible worlds instance semantics. Then, we provide an algorithmic clause-level implementation, based upon the resolution method of clausal inference. Because HLU is defi ned in terms of BLU, these immediately provide implementations of HLU also.

The core of our presentation is based initially upon propositional logic. This enables us to concentrate on core issues, without becoming bogged down in the details of a full relational framework. Nonetheless, even if "grounding techniques" are employed to convert a fi nite relational framework to an equivalent propositional one, both conceptual and practical problems remain. These issues are briefly addressed at the end of the paper.

Remark This paper is in the form of an extended abstract. Due to space limitations, proofs are generally omitted, and topics are often treated in a terse and/or somewhat informal fashion. It is anticipated that more formal and elaborated versions of these results will appear elsewhere.

1. Foundations of Propositional Database Systems

Since database systems founded upon propositional logic underly many of the developments in this work, it is essential that we begin with a fi rm understanding of precisely what is meant by a database system and related concepts within a propositional framework. Such is the purpose of this section.

1.1 Propositional Logic

Familiarity with propositional logic, as discussed in, e.g., [6], is assumed. The primary purpose of this section is to establish a notational base.

A propositional logic is a pair $\mathbf{L}=(\mathbf{P}, \mathbf{C})$, with \mathbf{P} a set of proposition names (denoted $\operatorname{Prop}(\mathbf{L})$) and the nonlogical symbols $\mathbf{C}=\{\Lambda, v, \neg, \Rightarrow, \Leftrightarrow,()$,$\} . In this work, \mathbf{P}$ is generally taken to be fi nite, and is usually taken to be a sequence of symbols named by a single letter indexed by an initial segment of natural numbers; e.g., $\mathbf{P}=$ $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$. These indices give \mathbf{P} an implicit order. In this work, the set of nonlogical symbols is always the same as given above. Thus, as an abuse of notation, we
always identify the propositional logic with its set of propositional symbols.
A structure for \mathbf{L} is a function $s: \mathbf{A} \rightarrow\{0,1\}$ and may be represented naturally as an n-tuple over $\{0,1\}$, with the i-th entry the value of $s\left(A_{i}\right)$. The set of all structures for \mathbf{L} is denoted Struct[L].
$\mathbf{W F}[\mathbf{L}]$ denotes the set of well-formed formulas (wff's) for \mathbf{L}. $\overline{\mathbf{s}}: \mathbf{W F}[\mathbf{L}] \rightarrow\{0,1\}$ denotes the natural extension of the structure s to $\mathbf{W F}[L]$. For $\Phi \subseteq \mathbf{W F}[L]$, $\operatorname{Prop}[\Phi]=$ $\{A \in L \mid A$ occurs in some formula $\phi \in \Phi\}$, while $\operatorname{Mod}[\Phi]=\{s \in \operatorname{Struct}[L] \mid$ $\bar{s}(\phi)=1$ for each $\phi \in \Phi\rangle$. Conversely, for $S \subseteq$ Struct $[\mathrm{L}]$, $\boldsymbol{S a t}[\mathrm{S}]=$ $\{\phi \in \mathbf{W F}[\mathbf{L}] \mid \bar{s}(\phi)=1$ for all $\mathbf{s} \in S\}$. Dep[S] defi nes the dependency set of S; it consists of all proposition letter which occur in every Φ for which $\operatorname{Mod}[\Phi]=\mathrm{S}$. Finally, the theory of Φ is $\boldsymbol{T h}[\Phi]=\{\phi \mid \Phi=\{\phi\}$.

We also assume familiarity with resolution and the associated language of clauses, as described in [2]. Lit[L] denotes the set of all literals over L, while CF[L] denotes the set of all clauses over L. Lit[$[\mathrm{\phi}]$ denotes just the set of literals occurring in the clause ϕ. The length of a clause ϕ is the number of distinct literals occurring in that clause, while the length of a set Φ of clauses is the sum of the lengths of its constituents. The notation Length $[\Phi]$ is used to denote the length of the set of clauses Φ. \square is reserved to denote the empty clause, as is $\mathbf{0}$; the two are entirely synonymous. $\mathbf{1}$ denotes a tautological clause which is "always true". Resolvent $\left(\phi_{1}, \phi_{2}, A\right)$ is the resolvent, with respect to atom A, of the clauses ϕ_{1} and ϕ_{2}, if it exists.

1.2 Database Schemata and Instances

In the logical approach to relational database systems, as described in, for example, [20] or [8], a database schema \mathbf{E} is given by a fi nite set of relation names \mathbf{R}, a fi nite set of constant names \mathbf{K}, and a set of typing and domain closure constraints TC. A ground fact is just a formula of the form $R\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, in which $R \in \mathbf{R}$, each $\mathrm{a}_{\mathrm{i}} \in \mathbf{K}$, and which satisfi es all typing constraints. (For now, just think of a typing and domain closure constraint as rules stating precisely which constant names may occur in which positions in an elementary fact, and that these are the only elementary facts possible.) Since both \mathbf{R} and \mathbf{K} are taken to be fi nite, so too is the collection of elementary facts. The grounding of \mathbf{E} yields a propositional schema \mathbf{D}, whose atom names are precisely the elementary facts of \mathbf{E}.

Upon grounding, the state of \mathbf{E} may be completely represented by an interpretation $s: \operatorname{Prop}[D] \rightarrow\{0,1\}$, with $s\left(R\left(a_{1}, a_{2}, \ldots, a_{k}\right)\right)=1$ if and only if the tuple $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is "in" the relation R in the state s .

The viability of the grounding technique is at the root of the justifi cation for using a propositional logic to study updates to incomplete information databases, and is invoked explicitly in [22] and at least implicitly in [7]. We shall have more to say on this issue in Section 5; for now we proceed to the formal development of the propositional framework.
1.2.1 Definition (a) A (propositional) database schema is a pair $\mathbf{D}=$ $(\operatorname{Prop}[D], \operatorname{Con}[D])$, in which $\operatorname{Prop}[D]$ is a propositional logic and $\mathbf{C o n}[D] \subseteq \mathbf{W F}[\operatorname{Prop}[D]]$, is the set of integrity constraints. In general, we may use any notation given for a propositional logic; so, for example, WF[D] denotes the set of well-formed formulas over the propositional logic associated with \mathbf{D}.
(b) A database for \mathbf{D} is any $s \in \operatorname{Struct}[\operatorname{Prop}[D]]$; s is legal if $s \in \operatorname{Mod}[\operatorname{Con}[D]]$ also. We write $\mathbf{D B}[\mathbf{D}]$ for the set of all databases for \mathbf{D}, and $\mathbf{L D B}[\mathbf{D}]$ for just the legal ones.
1.2.2 Definition An incomplete information database for \mathbf{D} is a subset of $\mathbf{D B}[\mathbf{D}]$; IDB[D] denotes the set of all incomplete information databases for D. Similarly, a legal incomplete information database is a subset of LDB[D], and we write ILDB[D] to denote the set of all legal incomplete information databases for \mathbf{D}. Each member \mathbf{s} of $S \in \operatorname{ILDB}[D]$ is called a possible world of S.
1.2.3 Notational Convention Throughout the rest of this paper, the symbols \mathbf{D} and D_{i}, for i an integer, shall denote arbitrary propositional database schemata, without the need to explicitly designate them as such.

Crucial to the entire theory presented here is the way in which the complete information case extends to the incomplete information case. This is formalized at the level of database instances by the following identifi cation maps.

1.2.4 Definition Let \mathbf{D} be a database schema. The natural identification maps

$$
\begin{aligned}
\mathrm{DB}[\mathrm{D}] & \rightarrow \mathrm{IDB}[\mathrm{D}] \\
\mathrm{LDB}[\mathrm{D}] & \rightarrow \mathrm{ILDB}[\mathrm{D}]
\end{aligned}
$$

are those which send each element to its corresponding singleton; i.e., $\mathrm{S} \mapsto\{\mathrm{S}\}$.

1.3 Deterministic Database Morphisms

On the logical level, a database morphism is an interpretation between theories. The idea of regarding a database morphism as such was first explicitly proposed by Jacobs [13,14], although it has been implicit in the defi nition of queries at least since the early work of Codd [4]. It is also the basis for an extensive study of database decomposition [9], to which the reader is referred for more motivation and discussion.
1.3.1 Definition $\quad A$ (deterministic) morphism $f: D_{1} \rightarrow D_{2}$ is an assignment Prop $\left[D_{2}\right]$ $\rightarrow \mathbf{W F}\left[\mathbf{D}_{1}\right]$. (Note the direction!) f extends naturally to $\bar{f}: \mathbf{W F}\left[\mathbf{D}_{2}\right] \rightarrow \mathbf{W F}\left[\mathbf{D}_{1}\right]$ by substituting $f\left(A_{i}\right)$ for each occurrence of A_{i}. If $f: D_{1} \rightarrow D_{2}$ and $g: D_{2} \rightarrow D_{3}$ are morphisms, the composition $g \circ f: D_{1} \rightarrow D_{3}$ is defi ned by

$$
\operatorname{Prop}\left[D_{3}\right] \xrightarrow{g} \mathbf{W F}\left[D_{2}\right] \xrightarrow{\bar{f}} \mathbf{W F}\left[\mathbf{D}_{1}\right]
$$

Defi ne $\mathrm{f}^{\prime}: \mathbf{D B}\left[\mathbf{D}_{1}\right] \rightarrow \mathbf{D B}\left[\mathbf{D}_{2}\right]$ by $\mathbf{s} \mapsto\left(\mathrm{A}_{\mathrm{i}} \mapsto \overline{\mathrm{s}}\left(\mathrm{f}\left(\mathrm{A}_{\mathrm{i}}\right)\right)\right)$. f^{\prime} is extended to operate on incomplete information databases IDB[D] \rightarrow IDB[D] by the rule $S \mapsto \cup\{f(s) \mid s \in S\}$. As a slight abuse of notation, we use the symbol f' to denote both of these structure mappings.
1.3.2 Fact Let $f: D_{1} \rightarrow D_{2}$ and $g: D_{2} \rightarrow D_{3}$ be database morphisms. Then $(g \circ f)^{\prime}=g^{\prime} \circ f^{\prime} . \square$

The morphism $f: \mathbf{D}_{1} \rightarrow \mathbf{D}_{2}$ is correct if either of the equivalent conditions of the second part of 1.3 .3 is met. It is easy to see that the composition of correct morphisms is itself correct.

In a complete relational database, there is an implicit closed world assumption which states that tuples which are not presented are assumed to designated false statements. A request to insert a tuple t means that whatever knowledge currently
exists regarding the truth value of the information represented by t should be replaced with the fact that it is true. The truth values of other tuples are not affected. In a deletion, whatever knowledge is currently present regarding that tuple is replaced by the knowledge that the information represented by the tuple is now false. Modifi cation is slightly more complex. Here we wish to change a a tuple to a tuple u, provided that t is present. If t is absent, we do nothing. Thus, the truth value of the information associated with t becomes false regardless, while the truth value of the information associated with u becomes true if either it were true before, or else the truth value of t is true. Relative to the propositional framework, this is all formalized as follows.
1.3.3 Definition Let \boldsymbol{D} be a database schema, and let $A_{i}, A_{j} \in \operatorname{Prop}[D]$.
(a) insert $\left[A_{i}\right]: \mathbf{D} \rightarrow \mathbf{D}$ is given by

$$
A_{k} \mapsto \begin{cases}1 & (k=i) \\ A_{k} & (k \neq i)\end{cases}
$$

(b) delete $\left[A_{i}\right]: \mathbf{D} \rightarrow \mathbf{D}$ is given by

$$
A_{k} \mapsto \begin{cases}0 & (k=i) \\ A_{k} & (k \neq i) .\end{cases}
$$

(c) modify $\left[\mathrm{A}_{\mathrm{i}}, \mathrm{A}_{\mathrm{j}}\right]: \mathbf{D} \rightarrow \mathbf{D}$ is given by

$$
A_{k} \mapsto\left\{\begin{array}{cl}
0 & (k=i) \\
A_{i} \vee A_{j} & (k=j) \\
A_{k} & (k \neq i, j) .
\end{array}\right.
$$

Note that the defi nition of f^{\prime} on incomplete information databases immediately tells us how to interpret these update operations on such databases; namely, update each possible world individually. It should also be noted that the above update operations are not necessarily correct. In the deterministic case, the updated database is computed, and then checked for compliance with the integrity constraints. If those constraints are not satisfi ed, the update is rejected. In the incomplete information case, it is possible to interpret the update somewhat differently. We update each possible world individually, and then those which are not legal are eliminated. In either case, the process of enforcing integrity constraints is not immediately representable as a morphism operation. For this reason, we shall, unless otherwise mentioned, ignore integrity constraints in the basic handling of updates.

It is convenient to extend the defi nition of insertion to include not just atom names, but literals as well, with insert $\left[\neg A_{k}\right]$ defi ned as delete $\left[A_{k}\right]$. Then, the insertion operation may be extended to sets of consistent literals by just inserting them all. The modify operation has a similar extension; in modify[$\left.\Phi_{1}, \Phi_{2}\right]$, if each literal in Φ_{1} is true, we delete the literals of Φ_{1} and then insert the literals of Φ_{2}. The formal defi nitions follow.
1.3.4 Definition Let \mathbf{D} be a database schema, and let Φ_{1} and Φ_{2} be consistent sets of literals over Prop[D].
(a) insert[P]: $\mathbf{D} \rightarrow \mathbf{D}$ is given by

$$
\left.\begin{array}{rl}
A_{k} & \mapsto \begin{cases}\mathbf{1} & \left(A_{k} \in \Phi_{1}\right) \\
\mathbf{0} & \left(\neg A_{k} \in \Phi_{1}\right) \\
A_{k} & \left(A_{k}, \rightarrow A_{k} \in \Phi_{1}\right)\end{cases} \\
\text { (b) modify }\left[\Phi_{1}, \Phi_{2}\right]: \mathbf{D} \rightarrow \mathbf{D} \text { is given by }
\end{array}\right\} \begin{array}{ll}
\mathbf{1} & \left(\Lambda \Phi_{1}=\mathbf{1} \text { and }\left(\left(A_{k} \in \Phi_{1} \mid \Phi_{2}\right) \text { or }\left(\neg A_{k} \in \Phi_{2}\right)\right)\right) \\
A_{k} & \mapsto \begin{cases}0 & \left(\Lambda \Phi_{1}=\mathbf{1} \text { and }\left(\left(\neg A_{k} \in \Phi_{1} \mid \Phi_{2}\right) \text { or }\left(A_{k} \in \Phi_{2}\right)\right)\right) \\
A_{k} & \left(\Lambda \Phi_{1}=\mathbf{0}\right)\end{cases}
\end{array}
$$

1.4 Nondeterministic Database Morphisms

Incomplete information may arise in a database system in two distinct ways. First, the database itself may not represent complete information, but rather a set of possible alternatives. We have already examined this type of incompleteness in the previous two subsections. Second, a database mapping, such as an update, may itself be incompletely specifi ed (such as in a request to insert $\mathrm{A}_{1} \vee \mathrm{~A}_{2}$). To represent the latter type of incompleteness, we introduce the concept of a nondeterministic morphism.
1.4.1 Definition (a) A nondeterministic morphism of database schemata $F: D_{1} \circ \rightarrow D_{2}$ is a set of deterministic morphisms from D_{1} to D_{2}. Thus, each $f \in F$ is a function $f: \operatorname{Prop}\left[D_{2}\right] \rightarrow \mathbf{W F}\left[D_{1}\right]$. We shall always use the " $\circ \rightarrow$ " arrow to denote nondeterministic morphisms, while the ordinary " \rightarrow " will be used to denote deterministic morphisms, so no confusion can result.
(b) If $F: D_{1} \circ \rightarrow D_{2}$ and $G: D_{2} \circ \mathbf{D}_{3}$, then $G \circ F: D_{1} \circ \rightarrow D_{3}$ is defined to be $\{g \circ f \mid f \in F$ and $g \in G\}$.
(c) For $F: \mathbf{D}_{1} \circ \rightarrow \mathbf{D}_{2}$, defi ne the extension $F^{\prime}: \mathbf{D B}\left[\mathbf{D}_{1}\right] \rightarrow \mathbf{I D B}\left[\mathbf{D}_{2}\right]$ by $s \rightarrow\left\{\mathrm{f}^{\prime}(\mathrm{s}) \mid f \in \mathrm{~F}\right\}$. Define $\bar{F}: \operatorname{IDB}\left[D_{1}\right] \rightarrow \operatorname{IDB}\left[D_{2}\right]$ by $S \mapsto \cup\left\{F^{\prime}(s) \mid s \in S\right\}$.

1.4.2 Fact Let $F: D_{1} \circ \rightarrow \mathbf{D}_{2}$ and $G: D_{2} \circ \mathbf{D}_{3}$. Then ($\left.G \circ F\right)^{\prime}=\left(G^{\prime} \circ F^{\prime}\right)$.

It is essential that the defi nitions of nondeterministically specifi ed updates (such as the insertion of $A_{1} \vee A_{2}$) be extensions of the deterministic cases. In other words, a request to nondetermistically insert A_{1} should be identical in action to a request to deterministically perform the update. The following defi nition formalizes the obvious embedding.
1.4.3 Definition Let $\mathrm{f}: \mathrm{D}_{1} \rightarrow \mathrm{D}_{2}$ be a deterministic database morphism. The corresponding nondeterministic morphism is $\langle\mathrm{f}\}$.

We now turn to the issue how to interpret a nondeterministic update request such as "insert $\left[\mathrm{A}_{1} \vee \mathrm{~A}_{2}\right]$ ". The idea is to regard such a request as a nondeterministic morphism, each of whose components is a deterministic insertion request (to a possibly incomplete information database). Thus, to extend the operation of insertion to nondeterministically specifi ed updates, it is necessary to express it as a nondeterministic morphism, each of whose components is a deterministic insertion request. The deletion and modifi cation operations extend in a similar fashion. The formalization is contained in the following.
1.4.4 Definition Let $\Phi \subseteq$ WF[D].
(a) The literal base of Φ, denoted $\mathbf{L B}[\Phi]$, is the set
$\{\Psi \subseteq \mathbf{L i t}[\mathbf{D}] \mid \Psi$ is consistent and $\Psi=\Phi\}$.
(b) For $l \in \mathbf{L i t}(\mathbf{D}), l$ is irrelevant if for every $\Psi \in \mathbf{L B}(\Phi), l \in \Psi$ implies that $\Psi \backslash\{l\}$, $\Psi \backslash\{\neg l\} \in \mathbf{L B}(\Phi)$ also. Ψ is minimal if it contains no irrelevant elements.
(c) $\Psi \in \mathbf{L B}[\Phi]$ is complete if it is minimal, and, for any other $\Lambda \in \mathbf{L B}[\Phi], \Psi \subseteq \Lambda$ implies that $\Psi=\Lambda$.
(c) Inset $[\Phi]=\{\Phi \in \mathbf{L B}[\Phi] \mid \Psi$ is complete $\}$. Inset $[\Phi]$ is called the literal insertion set for Φ.

1.4.5 Defi nition Let $\Phi \subseteq \mathbf{W F}[\mathbf{D}]$.

(a) Define the nondeterministic morphism insert $[\Phi]: \mathbf{D} \circ \rightarrow \mathbf{D}$ as $\{$ insert[$\Psi]: \mathbf{D} \rightarrow \mathbf{D} \mid \Psi \in \mathbf{I n s e t}[\Phi]\}$.
(b) Defi ne the nondeterministic morphism delete[$[\Phi]: \mathbf{D} \circ \mathbf{D}$ as insert $[\Psi]: \mathbf{D} \rightarrow \mathbf{D}$, with $\Psi=\left\{\neg(\wedge \phi) \mid \phi \in \Phi_{1}\right\}$.
(c) Define the nondeterministic morphism modify $\left[\Phi_{1}, \Phi_{2}\right]: \mathbf{D} \circ \mathbf{D}$ as $\left\{\operatorname{modify}\left[\Psi_{1}, \Psi_{2}\right]: \mathbf{D} \rightarrow \mathbf{D} \mid \Psi_{1} \in \operatorname{Inset}\left[\Phi_{1}\right]\right.$ and $\left.\Psi_{2} \in \mathbf{I n s e t}\left[\Phi_{2}\right]\right\}$.
1.4.6 Discussion It is important to understand these concepts intuitively. As a concrete example, let $\Phi=\left\{\mathrm{A}_{1} \vee \mathrm{~A}_{2}\right\}$. The literal base of Φ consists of sets of literals, with each set suffi ciently rich to semantically entail Φ. A minimal such set contains no literals which are totally irrelevant to the truth value of Φ. Thus, $\left\{A_{1}, \neg A_{2}, A_{3}\right\}$ is in the literal base of Φ, but is not minimal, since A_{3} is irrelevant. A complete set contains enough literals to span all truth values which need to be known. Thus, $\left\{A_{1}\right\}$, while minimal, is not complete for Φ. In fact, $\operatorname{Inset}(\Phi)=\left\{\left\{A_{1}, A_{2}\right\},\left\{A_{1}, \neg A_{2}\right\},\left\{\neg A_{1}, A_{2}\right\}\right.$. This defi nes precisely the updates which must be performed to implement the insertion of $A_{1} \vee A_{2}$. Each possible world is replace by three new worlds, one for each of the three deterministic updates insert $\left[\left\{A_{1}, A_{2}\right\}\right]$, insert $\left[\left\{\neg A_{1}, A_{2}\right\}\right]$, and insert $\left[\left\{A_{1}, \neg A_{2}\right\}\right]$. Note that these three correspond precisely to the three possible ways in which truth values can be assigned to A_{1} and A_{2} such that $A_{1} v A_{2}$ is true.
1.4.7 Remark The update semantics which we have just described is very similar to that proposed by Wilkins in [22], although we have arrived at it in quite a different manner. However, there is one very signifi cant difference. Her approach is somewhat syntactic, in that a request of the form insert $\left[\left\{A_{1} \vee \neg A_{1}\right\}\right]$ is treated nontrivially. In our framework, such an update request would result in the identity update, since the empty set is complete for $\left\{A_{1} \vee \neg A_{1}\right\}$. However, in her approach, the update request would result in what is equivalent to performing each of the four deterministic updates insert $\left[\left\{A_{1}, A_{2}\right\}\right]$, insert $\left[\left\{\neg A_{1}, A_{2}\right\}\right]$, insert $\left[\left\{A_{1}, \neg A_{2}\right\}\right]$, and insert $\left[\left\{\neg A_{1}, \neg A_{2}\right\}\right]$, which amounts to masking all information regarding A_{1}. We prefer our defi nition, because the update only depends upon the semantics of formulas, and not upon the representation. Nonetheless, the action of masking all information about one or more proposition letters is important in its own right, and will be examined more closely in the next subsection.

1.5 Masks and Congruences

Whenever we have a database morphism $f: D_{1} \rightarrow D_{2}$ and two states $s_{1}, s_{2} \in$ $\mathbf{D B}\left(\mathbf{D}_{1}\right)$ for which $r=f^{\prime}\left(s_{1}\right)=f^{\prime}\left(s_{2}\right)$, the state r does not contain enough information to recover its preimage; some information is masked. All we know is that the preimage is a member of $f^{-1}(r)$; a member of an equivalence class of states of $\mathbf{D B}\left(\mathbf{D}_{1}\right)$. If f is an
update operation, it is critical to identify the information which it masks.
1.5.1 Definition Let $F: D \circ \mathbf{D}_{1}$. Defi ne Congruence $[F]$ to be the equivalence relation on D defi ned by $\left\{\left(s_{1}, s_{2}\right) \mid f\left(s_{1}\right)=f\left(s_{2}\right)\right.$ for all $\left.f \in F\right\}$. This equivalence relation is called the mask congruence of F. A mask is any such equivalence relation.

There is a particularly important class of mask congruences, which is defi ned as follows.
1.5.2 Definition A symbolwise nondeterministic morphism $F: \mathbf{D}_{1} \circ \rightarrow \mathbf{D}_{2}$ is an assignment $F: \operatorname{Prop}\left[\mathrm{D}_{2}\right] \rightarrow \mathbf{2}^{\mathbf{W F F}\left[\mathbf{D}_{1}\right]}$. The corresponding nondeterministic morphism is given by $\left\{f \mid f(A) \in F(A)\right.$ for all $\left.A \in \operatorname{Prop}\left[D_{2}\right]\right\}$.

1.5.3 Definition Let $\mathrm{P} \subseteq \operatorname{Prop}[\mathrm{D}]$.

(a) Defi ne the nondeterministic morphism mask[P]: $\mathbf{D} \circ \rightarrow \mathbf{D}$ symbolwise by

$$
A_{k} \mapsto\left\{\begin{array}{cc}
\{0,1\} & \left(A_{k} \in P\right) \\
A_{k} & \left(A_{k} \notin P\right)
\end{array}\right.
$$

(b) Let $\mathrm{P} \subseteq \operatorname{Prop}[\mathrm{D}]$. Defi ne the simple mask for P to be the congruence induced by the morphism mask[P]:D $\rightarrow \mathbf{D}$. This mask is denoted by $\mathbf{s}--\operatorname{mask}[P]$. \mathbf{s}-mask[$\mathbf{D}]$ denotes the collection of all simple masks over \mathbf{D}.

The following result is crucial. It says that an insertion masks precisely those proposition letters upon which the inserted formula depends.
1.5.4 Theorem Let $\Phi \subseteq \mathbf{W F}(\mathbf{D})$. Then Congruence(insert[$\Phi[$)) = s--mask[Prop[Inset[Ф]]]]. \square

2. Specifi cation of the Programming Language BLU

In the previous section, we gave precise defi nitions for basic update operations to incomplete information databases. However, they were just defi nitions; little was presented which indicated just how one might compute the results of update requests. In this section, we develop a simple applicative programming language BLU. The primary purpose of this language is as a tool for the specifi cation and implementation of higher level update languages, rather than as an end in itself.

2.1 The Syntax of BLU

The syntactic specifi cation of BLU is specifi ed as an algebraic signature. Due to space limitations, we must be brief and somewhat informal. The reader is referred to the excellent references [5] and [17] for a much more detailed development of the relevant issues.
2.1.1 Definition (a) The algebraic signature (or syntax of) BLU is defi ned as follows.
(i) There are two sorts, which represents fundamental data types. S denotes the sort of states, and \mathbf{M} denotes the sort of masks.
(ii) There are fi ve operation symbols. Together with their arities, they are given below.

```
        assert:S }\times\mathbf{S}->\mathbf{S
    combine:S }\times\mathbf{S}->\mathbf{S
complement:S }->\mathbf{S
    mask:S }\timesM->
    genmask:S }->\mathrm{ M
```

(b) There are two countable families of variables, one for each sort. Var[S] = $\{\mathbf{s} 0, \mathrm{~s} 1, \mathrm{~s} 2, \cdots\} ; \operatorname{Var}[\mathbf{M}]=\{\mathrm{m} 0, \mathrm{~m} 1, \mathrm{~m} 2, \cdots\} ;$
(c) Terms are built up in the standard way. However, we use a Lisp-like list formalism, rather than the more conventional mathematical formalism.
(i) Each si $\in \operatorname{Var}[\mathbf{S}]$ is an \mathbf{S}-term, and each mi $\in \operatorname{Var}[\mathbf{M}]$ is an \mathbf{M}-term.
(ii) If \mathbf{s}_{0} and \mathbf{s}_{1} are \mathbf{S}-terms, and \mathbf{m} is an \mathbf{M}-term, then (assert $\mathbf{s}_{0} \mathbf{s}_{1}$), (combine $\mathbf{s}_{0} \mathbf{s}_{1}$), (complement \mathbf{s}_{0}), and (mask \mathbf{s}_{0}) are S-terms, and (genmask m) is an M-term.

Think of terms for BLU as just s-expressions which have the right sorts for their arguments. For example, the following is an S-term for BLU.
(combine (assert (s1
(mask (genmask s1)
(assert s2 so))))
(assert (complement s2) s0))

2.1.2 Defi nition A BLU program is an expression of the form (lambda <varlist> <S-term>)

subject to the following conditions.
(i) <varlist> is a list of variables starting with s0, and containing precisely the variables which occur in the succeeding \mathbf{S}-term.
(ii) <S-term> is an S-term which contains the variable s0.

Thus, BLU programs are syntactically similar to the lambda forms of Lips and Scheme [19]. The convention of requiring that so be present is one of convenience; we will always assume that s 0 identifi es the program state. This is done to facilitate the defi nition of the form of HLU programs given in the introduction, in which the system state is implicit. so will always denote the system state in their implementation.
2.1.3 Example and Discussion The following is a simple BLU program
(lambda (s0 s1 s2)
(combine (assert s1
((mask (genmask s1)
(assert s2 so)))
(assert (complement s2) s0))))
Ultimately (in HLU) we will have need for variables which can take on programs as values; that is, we will need to give programs first-class citizenship. Therefore, we use the Scheme formalism [19] define for the assignment of a program value to a variable, as in

```
(define insert
    (lambda (s0 s1 s2)
        (combine
            (assert s1
                            ((mask (genmask s1)
                                    (assert s2 so)))
        (assert (complement s2) s0)))))
```

This example names the program of the previous example insert by assigning the variable of the same name to have the program defi nition as its value.

2.2 Fundamental Denotational Semantics of BLU

In assigning a denotational semantics to a programming language, we assume the existence of a set S of underlying states, and we seek a systematic way of assigning a function $S \rightarrow S$ to each program. In general programming languages, the real challenge lies in addressing looping and recursion; sophisticated methods of dealing with limits must be employed [17]. However, in BLU, there are no looping or recursive constructs, so the formalities of specifying the semantics are quite straightforward.

In this section, we give a simple denotational semantics for BLU at the level of structures; the state set S will be IDB[D] for our reference database schema \mathbf{D}. On a more formal level, while the syntax of BLU is defi ned using an algebraic signature, the semantics is defi ned by actual algebras for this signature. As in the previous subsection, here we present a somewhat informal sketch.
2.2.1 Defi nition An implementation \mathbf{A} of BLU consists of the following.
(i) The designation of two sets $\mathbf{A}[\mathbf{S}]$ and $\mathbf{B}[\mathbf{S}]$ which are the concrete domains for the sorts.
(ii) The assignment of functions of the appropriate arities to each function symbol. For example, to genmask we assign a function $\mathbf{A}[$ genmask $]$: $\mathbf{A}[\mathbf{S}] \times \mathbf{A}[\mathbf{M}] \rightarrow \mathbf{A}[\mathbf{S}]$.

Running a BLU program in an implementation \mathbf{A} just amounts to binding appropriate concrete domain values to the argument list of the lambda expression and then "evaluating the term." Although this process may be given a formal defi nition, we shall not do so here, but rather rely on the reader's intuition of that process.

We now turn to specifying the actual instance-level semantics for BLU. In the following, it is assumed that there is a reference database schema \mathbf{D} upon which the constructions are based.
2.2.2 Defi nition The BLU implementation BLU - -I is defi ned as follows.
(a) Sorts:
(i) $\mathbf{B L U}--[\mathbf{S}]=\mathbf{I D B}[\mathbf{D}]$.
(ii) $\mathbf{B L U}--[[\mathrm{M}]=\mathbf{s}-\mathrm{mask}[\mathrm{D}]$.
(b) Operators:
(i) combine: $(\mathrm{X}, \mathrm{Y}) \mapsto \mathrm{X} \cup \mathrm{Y}$
(ii) assert: $(\mathrm{X}, \mathrm{Y}) \mapsto \mathrm{X} \cap \mathrm{Y}$
(iii) complement : $\mathrm{X} \mapsto \mathbf{I L D B}[\mathrm{D}] \backslash X$
(iv) mask: $(R, X) \mapsto\{y \mid(\exists x \in X) R(x, y)\}$
(v) genmask: $\mathrm{X} \mapsto \mathrm{s}--\operatorname{mask}[\operatorname{Dep}[\mathrm{X}]]$

Observe fi rst of all that the the three operations combine, assert, and complement are precisely those which make IDB[D] into a Boolean algebra under the usual set-theoretic operations. mask performs, at the level of instances, precisely the masking operation described in 1.5. genmask generates the mask corresponding to the set of all proposition letters upon which the set of possible worlds depends.

The remarkable fact is the simplicity of this collection of operations. We are only allowed the usual set theoretic manipulations, plus the operations of generating and applying masks, and yet we claim that this is a complete set of primitives for the implementation of update programs for incomplete information databases.

2.3 Fundamental Clausal Semantics for BLU

The instance-level semantics for BLU described in the previous section provides us with the fundamental defi nition of how BLU programs should behave. However, direct implementation of BLU as a manipulator of sets of possible worlds would be ineffi cient, if not impossible, for any reasonably size language. Therefore, we need to identify a means of representing and manipulating such states at a higher level, and emulate the implementation BLU-J at that level. In this subsection, we present an implementation BLU--C of BLU at the level of clauses which is an emulation of $\mathbf{B L U}-\boldsymbol{-}$. A key feature of the defi nition of $\mathbf{B L U}-\mathbf{-}$ is that its operations are not specifi ed merely as abstract operations, but rather as resolution-based algorithms operating on sets of clauses. Thus, it is a relatively straightforward task to actually implement BLU--C.

We begin by sketching what it means for one implementation of a BLU to be an emulation of another. Basically, we want to represent each state of BLU--I with one or more states of BLU--C in such a way that performing operations in BLU $-\mathbf{- C}$ and then examining the corresponding state in BLU - - is exactly the same as mapping the arguments of the computation down to BLU--J and performing the computation there.
2.3.1 Defi nition Let \mathbf{A} and \mathbf{B} be implementations of BLU. Formally, an emulation e of \mathbf{B} by \mathbf{A} is a surjective morphism of the defi ning algebras. This means that it is given by a pair of surjective functions $\mathrm{e}[\mathbf{S}]: \mathbf{A}[\mathbf{S}] \rightarrow \mathbf{B}[\mathbf{S}]$ and $\mathrm{e}[\mathbf{M}]: \mathbf{A}[\mathbf{M}] \rightarrow \mathbf{B}[\mathbf{M}]$ which respect the operations of BLU. For example, for mask we require that $\mathrm{e}[\mathbf{S}]($ (A[mask] sm) $)=(\mathbf{B}[$ mask $] \mathrm{e}[\mathbf{S}](\mathbf{s}) \mathrm{e}[\mathbf{M}](\mathrm{m}))$
2.3.2 Defi nition (a) The BLU implementation BLU --C is defi ned as follows.
(a) Sorts:
(i) $\mathbf{B L U}--\mathbf{C}[\mathrm{S}]=2^{\mathrm{CFD}]}$
(ii) $\operatorname{BLU}--C[M]=2^{\text {Prop }[D]}$
(b) Operators:
(i) combine, assert, and complement are defi ned by Algorithm 2.3.3.
(ii) mask is defi ned by Algorithm 2.3.5.
(v) genmask is defi ned by Algorithm 2.3.8.
(b) The canonical emulation e_{CI} of $\mathbf{B L U}-\boldsymbol{-}$ by $\mathbf{B L U}--\mathbf{C}$ is defi ned as follows.
(i) $\mathrm{e}_{\mathrm{cl}}[\mathbf{S}]: \Phi \mapsto \operatorname{Mod}[\Phi]$
(ii) $\mathrm{e}_{\mathbf{c l}}[\mathbf{M}]: \mathrm{P} \mapsto \mathbf{s}--\operatorname{mask}[\mathrm{P}]$.

The algorithms for the computation of the three Boolean-algebraic functions combine, assert and complement are quite straightforward. We next present them, in an Ada-like syntax, together with a statement of their complexity.

```
2.3.3 Algorithms
function BLU--I[assert] ( \(\Phi_{1}, \Phi_{2}\) : CF[D])
            returns CF[D] is
    begin
    return \(\Phi_{1} \cup \Phi_{2}\);
    end;
function BLU--I[combine] ( \(\Phi_{1}, \Phi_{2}\) : CF[D])
                returns CF[D] is
    begin
        return \(\left\{\phi_{1} \vee \phi_{2} \mid \phi_{1} \in \Phi_{1}\right.\) and \(\left.\phi_{2} \in \Phi_{2}\right\} ;\)
    end;
function BLU--I[complement] ( \(\Phi_{1}\) : CF[D])
            returns CF[D] is
    begin
        \(\Psi \leftarrow\{\square\} ;\)
        C ( \(\Phi_{1}, \Psi\) ) ;
        return \(\Psi\);
    end;
procedure \(C\) ( \(\Gamma\) : in \(C F[D], \Delta: C F[D]\) in out )
            is
-- support procedure for \(C\) [complement].
    begin
        if \(\Gamma=\varnothing\)
            then return;
            else
                \(\gamma \leftarrow\) any element of \(\Gamma\);
                \(\Gamma \leftarrow \Gamma \backslash\{\gamma\} ;\)
            for each \(\delta \in \Delta\) loop
                \(\Delta \leftarrow \Delta \backslash\{\delta\} ;\)
                for each \(\lambda \in \operatorname{Lit}[\{\gamma\}]\) loop
                    \(\Delta \leftarrow \Delta \cup\{\delta \vee \neg \lambda\} ;\)
                    end loop;
            end loop;
                C ( \(\Gamma, \Delta\) ) ;
        end if;
    end;
```

2.3.4 Theorem (a) The algorithms defi ned in 2.3.3 are correct, in the sense that they respect the emulation defi ned in 2.3.2(b).
(b) Their worst case time and space complexities are as follows.
(i) BLU $--1[$ assert $]: ~ \Theta\left(\right.$ Length $\left[\Phi_{1}\right]+$ Length $\left.\left[\Phi_{2}\right]\right)$.
(ii) $\mathbf{B L U}-\boldsymbol{-}[$ combine $]: ~ \Theta\left(\right.$ Length $\left[\Phi_{1}\right] \times$ Length $\left.\left[\Phi_{2}\right]\right)$.
(iii) BLU - I[complement]: $\Theta\left(\varepsilon^{\mathbf{L e n g t h}\left(\Phi_{1}\right)}\right)$, where $\varepsilon=e^{1 / e}$.
(c) The bounds specifi ed in (b) are in fact problem complexity bounds; no algorithms of lower worst case asymptotic complexity are possible.

Rather than discuss the implications of algorithm and problem complexity on a case-by-case basis as they are presented, we defer the discussion until Section 4, where they will be considered within a more global context.

We now turn to the implementation of mask in BLU--C. It is quite a bit less straightforward than the implementation of the three Boolean algebra operations, and involves the use of two auxiliary algorithms. rclosure simply closes up the set of clauses Φ under resolution with the proposition letters in P. drop eliminates all clauses which involve the proposition letters in its argument. Thus, we can compute a mask by repeating each of these steps on each letter to be masked. In effect, the rclosure step ensures that, when we discard those clauses involving the masked letters, there are enough others around to completely describe the constraints on those which are left. It would trivially be suffi cient to close up Φ_{1} under total resolution; what is somewhat remarkable is that it suffi ces to close it up under just those proposition letters which are to be masked.

```
2.3.5 Algorithms
function rclosure ( }\Phi:C=C[D], P: s-mask[D]
                return CF[D] is
    begin
        \Gamma\leftarrow\mp@subsup{\Phi}{1}{};
        for each A AP loop
            \Gamma+}\leftarrow\mathrm{ all }\gamma\in\Gamma with A\in\operatorname{Lit}({\gamma}
            \Gamma _ { - } \leftarrow \text { all } \gamma \in \Gamma ~ w i t h ~ \neg A \in \operatorname { L i t } ( \{ \gamma \} )
            for each }\mp@subsup{\gamma}{+}{}\in\mp@subsup{\Gamma}{+}{}\mathrm{ loop;
            for each }\mp@subsup{\gamma}{-}{}\in\mp@subsup{\Gamma}{-}{}\mathrm{ loop;
                \Gamma\leftarrow\Gamma\cupresolvent(\mp@subsup{\gamma}{+}{\prime},\mp@subsup{\gamma}{-}{\prime},A);
            end loop;
            end loop;
        end loop;
        return \Gamma;
    end;
```

```
function drop ( \(\Phi\) : CF[D], P: s-mask[D])
return CF[D] is
    begin
        \(\Psi \leftarrow \varnothing\);
        for each \(\phi \in \Phi\) loop
            if \(\operatorname{Lit}[\operatorname{Prop}[\{\phi\}] \cap P=\varnothing\)
                then
                \(\Psi \leftarrow \Psi \cup \phi ;\)
                end if;
    end loop;
    return \(\Psi\);
    end;
function BLU--C[mask] ( \(\Phi\) : CF[D], P: s-mask[D])
                return CF[D] is
    begin
    \(\Psi \leftarrow \varnothing\);
    for each \(A \in P\) loop
            \(\Psi \leftarrow\left(\right.\) Drop \(\{A\}\) (Rclosure \(\left.\left.\Phi_{1}\{A\}\right)\right) ;\)
    end loop;
    return \(\Psi\);
    end;
```

2.3.6 Theorem \quad (a) The algorithm BLU - -I[mask] defi ned in 2.3.5 is correct, in the sense that it respects the emulation of 2.3.2(b).
(b) The worst-case time and space complexity is bounded by \mathbf{O} (Length $[\Phi]^{\left.{ }^{\text {CardP] }}\right) \text {, }}$ where Card denotes cardinality. Furthermore, as long as $\operatorname{Card}(P) \ll \operatorname{Card}[\operatorname{Prop}[D]]$ and Length $[\Phi] \ll \operatorname{Maxclause}[\Phi]$, where Maxclause denotes the maximum length of a set of consistent clauses over P and " \ll " means "suffi ciently smaller than", this lower bound may be realized. (The precise characterization of these conditions is too complex to develop here.)

Thus, the computation of a mask for a set of clauses is inherently a very hard problem, in the worst case. This is not surprising. Essentially, computing a mask is computing a projection on a schema. In fact, there is a relational schema with only one relational symbol of only fi ve arguments, and constrained by only three functional dependencies, with a projection onto four of its columns which is not fi nitely axiomatizable in fi rst-order logic [10]. If we ground such a schema and use fi nite domain closure, we get a very large number of dependencies in the view, relative to the base schema. In short, a fast algorithm for computing mask implies a fast algorithm for solving the implied constraint problem for views [14], and that is simply not possible.

The fi nal operation which we need to implement at the clause level is genmask. In testing the dependency of Φ upon A, the basic idea is to take two copies of Φ, assign A to be true in one and false in the other, and then look for truth assignments on the other letters which yield a difference. We need a few auxiliary defi nitions.

Defi nition 2.3.7 Let P be a set of propositions, and Φ a set of clauses.
(a) CLS[Φ] denotes the set of all consistent subsets of $\operatorname{Lit}[\Phi]$ which contain either A or else \neg A for each $A \in \operatorname{Prop}[\Phi]$.
(b) For $A \in \operatorname{Prop}[\Phi]$, Ldiff $[A, \Phi]$ denotes the set of all pairs $\left(L_{1}, L_{2}\right) \in \mathbf{C L S}[\Phi] \times \mathbf{C L S}[\Phi]$ which differ only in that $A \in L_{1}$ and $\neg A \in L_{2}$.

2.3.8 Algorithm

```
function unitres ( }\Phi:C=C[D], L: CLS[\Phi]
    returns Boolean is
-- Unit resolution computation.
    begin
        \Psi}\leftarrow\Phi
        for each l \in L loop
            for each }\phi\in\Phi\mathrm{ loop
                if }\phi=\psi\vee\neg
                    then }\Psi\leftarrow\Psi\{\phi}\cup{\psi}
                    end if;
            end loop;
        end loop;
    return \Psi;
    end;
```

function BLU--I[genmask] (Φ : CF[D])
returns P : s-mask[D] is
begin
$\mathbf{x} \leftarrow \varnothing$;
for each $A \in \operatorname{Prop}[\Phi]$ loop
for each $\left(L_{1}, L_{2}\right) \in \operatorname{Ldiff}[A, \Phi]$ loop
if unitres $\left(\Phi, L_{1}\right) \neq$ unitres $\left(\Phi, L_{2}\right)$
then
$\mathbf{x} \leftarrow \mathbf{x} \cup\{\mathrm{A}\} ;$
exit loop;
end if;
end loop;
end loop;
return X;
end;
2.3.9 Theorem \quad (a) The algorithm BLU - - [genmask] defi ned in 2.3.7 is correct, in the sense that it respects the emulation of 2.3.2(b).
 Card denotes cardinality.
(c) The problem of deciding whether a set of clauses depends upon a particular proposition letter is NP-complete. \square.

3. Specifi cation of the Programming Language HLU

In this section, we demonstrate the utility of BLU by defi ning the semantics of the language HLU, which was informally described in the introduction, entirely in terms of BLU. The development of HLU is divided into two parts. In 3.1, we present a formal semantic description of simple-HLU, which is a subset of full HLU which contains all
of the constructs except the two involving the where construct. These are implemented directly in BLU. In 3.2, we provide the defi nitions of the two where constructs, using a form of macro expansion.

3.1 Direct Semantics for Simple-HLU

3.1.1 Defi nition The algebraic signature simple-HLU is defi ned as follows.
(a) The sorts are the same as for BLU, namely $\{\mathbf{S}, \mathbf{M}\}$.
(b) There are five operation symbols. Together with their arities, they are given below.

```
assert: \(\mathbf{S} \times \mathbf{S} \rightarrow \mathbf{S}\)
    clear: \(\mathbf{S} \times \mathbf{M} \rightarrow \mathbf{S}\)
insert: \(\mathbf{S} \times \mathbf{S} \rightarrow \mathbf{S}\)
delete: \(\mathbf{S} \times \mathbf{S} \rightarrow \mathbf{S}\)
modify: \(\mathbf{S} \times \mathbf{S} \rightarrow \mathbf{S}\)
```

These five operation symbols correspond to the first fi ve operations listed for HLU in the introduction. The arities seem different because in the "user's syntax" of HLU, the system state is hidden. In each of the fi ve cases above, the fi rst argument corresponds to the system state. Thus, the "user level" HLU program (insert x), using the syntax described in the introduction, is more properly represented as (insert sO X).

We now turn to expressing the semantics in terms of BLU. The process is very simple. We use the define convention outlined in 2.1.3 to express each simple-HLU program as a BLU program.
3.1.2 Defi nition The BLU-based semantics for simple-HLU is given as follows.

```
(define HLU-assert
    (lambda (s0 s1) (assert so s1)))
(define HLU-clear
    (lambda (s0 s1) (mask s0 s1)))
(define HLU-insert
    (lambda (s0 s1)
        (assert (mask s0 (genmask s1)) s1)))
(define HLU-delete
    (lambda (s0 s1)
                                    (assert (mask s0 (genmask s1))
                                    (complement s1))))
(define HLU-modify
    (lambda (s0 s1 s2)
        (combine
            (assert (assert
                        (mask
                        (assert (mask (assert s0 s1)
                                    (genmask s1))
                                    (complement s1)))
                            (genmask s2))
                    s2)
            (assert s0 (complement s1)))))
```

Note how insert, delete, and modify all conform to our "mask and assert paradigm." In insert and delete, the mask corresponding to the insertion state is generated, applied to the system state, and the insertion state is then asserted upon the system state. To assert formal compliance with the defi nitions of 1.4.5, we need to defi ne the clause-level implementation.
3.1.3 Definition We defi ne simple-HLU--C and simple-HLU--S as the BLU--I and BLU --C based implementations of simple-HLU, respectively.

As long as we understand the ideas of lambda expression evaluation, there is nothing further to explain regarding this defi nition. All of the work was done in the defi nitions of the implementations of BLU. The formal statement of correctness is as follows.
3.1.4 Theorem The defi nitions of HLU-insert, HLU-delete, and HLU-modify, implemented in simple-HLU, are logically equivalent to those defi ned in 1.4.5.]
3.1.5 Example Consider the simple-HLU--C update program (insert $\left(\left\{\mathrm{A}_{1} \vee \mathrm{~A}_{2}\right\}\right.$) with system state $\Phi=\left\{\neg A_{1} \vee A_{3}, A_{1} \vee A_{4}, A_{4} \vee A_{5}, \neg A_{1} \vee \neg A_{2} \vee \neg A_{5}\right\}$. This translates to the following BLU program.
(assert (mask $\left.\left.\Phi \quad\left\{A_{1}, A_{2}\right\}\right)\right) \quad r\left\{A_{1} \vee A_{2}\right\}$)).
First we compute (genmask $\quad\left\{\mathrm{A}_{1} \vee \mathrm{~A}_{2}\right\}$) to be $\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}\right\}$. Next, (mask $\Phi \quad{ }^{\prime}\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}\right\}$) $=\quad\left\{A_{4} \vee A_{5}, A_{3} \vee A_{4}\right\}$. Finally, (assert $\quad\left\{A_{4} \vee A_{5}, A_{3} \vee A_{4}\right\}^{\prime}\left\{A_{1} \vee A_{2}\right\}$) $=$ $\left\{A_{1} \vee A_{2}, A_{4} \vee A_{5}, A_{3} \vee A_{4}\right\}$.

3.2 Direct Semantics for full HLU

3.2.1 Defi nition The algebraic signature HLU is defi ned as follows.
(a) There are three sorts. In addition to the two sorts \mathbf{S} and \mathbf{M}, there is an additional sort \mathbf{P}, which represents the abstract data type of BLU programs.
(b) The operator names consist of those of simple-HLU, together with the two listed below.
where1: $\mathbf{S} \times \mathbf{P} \rightarrow \mathbf{S}$
where2: $\mathbf{S} \times \mathbf{P} \times \mathbf{P} \rightarrow \mathbf{S}$
where1 and where2 represent the "where" construction of HLU with one and two program arguments, respectively. To handle this construction, we defi ne them as macros which force the expansion of these program arguments. We borrow both the name syntax and the semantics from the TI Implementation of Scheme [21]. We also assume that the reader is familiar with Lisp/Scheme quasi-quote syntax as well as the defi nition of the primitives cdr and cons; refer to [23] for an explanation. The actual macro semantics is very easy; the key point is that a call to this macro is to return a BLU program as its value. The first name in the list following the syntax is the name of the expanded macro; the rest of the elements in the list are the formal arguments. The following list is the body, which is expanded at the call. The only technical "problem" is argument naming; the returned function must have a formal argument list free of name collisions; in a call of the form (where sp1 p2) we must ensure that the formal parameter lists of p1 and p2 do not have collisions with one another or with s. To address this, we defi ne a few simple support functions.
3.2.2 Definitions (a) Let $\Lambda=\left(\lambda_{1} \cdots \lambda_{m}\right)$ be a list of atoms names, and let σ be a string. Defi ne (atomappend $\sigma \Lambda)=\left(\lambda_{1} \cdot \sigma \cdots \lambda_{m} \cdot \sigma\right.$).
(b) Let foo be any BLU program. (arglist 'foo) returns the list of formal arguments for foo.
3.2.3 Defi nition The BLU-based semantics for HLU is defi ned as follows.
(a) The semantics of operations in simple-HLU is exactly as given in 3.1.2.
(b) The semantics of where1 is defi ned as follows.

```
(syntax (where1 s0 s1 p0)
    (lambda , (append
        '(s0 s1)
        (atomappend ".0"
                            (cdr (arglist pO))))
        (combine
            (,p0 ,(cons '(assert s0 s1)
                                    ,(atomappend ".0"
                                    (cdr (arglist pO)))))
            (assert s0 (complement s1)))))
```

(c) The semantics of where 2 is defi ned as follows.

```
(syntax (where2 s0 s1 p0 p1)
    (lambda
, (append
    '(s0 s1)
            (atomappend ".0"
                                    (cdr (arglist p0)))
            (atomappend ".1"
                (cdr (arglist p1))))
                (combine
            (,pO , (cons
                                '(assert s0 s1)
                        , (atomappend ".0"
                            (cdr (arglist pO)))))
            (,p1 , (cons '(assert s0 s1)
                , (atomappend ".1"
                    (cdr (arglist pO))))))))
```

In the expansion of (where2 s0 p1 p2), the first argument of p1 and of p2 remains as $\mathbf{s 0}$ (recall the convention defi ned in 2.1.2). However, the rest of the arguments of p 1 have the string ".1" appended to them, and the rest of the arguments of p2 have ". 2" appended to them. This ensures that there are no formal argument naming collisions. The case of where 1 is similar. Let us examine an example at the clause level.
3.2.5 Example Let the system state Φ be as in 3.1.4, and consider the program

$$
\text { (where } \quad \prime\left\{A_{5}\right\} \text { (insert } \quad\left\{A_{1} \vee A_{2}\right\} \text {)). }
$$

First, let us expand the more general program
(where s1 (insert s2)).
Using 3.2.3 and 3.1.2, we get
(lambda (s0 s1 s1.0)
(combine
((lambda (assert (mask s0 (genmask s1))
s1))
((assert s0 s1) s1.0))
(assert s0 (complement s1))))
We may use lambda variable substitution to reduce this to the following program.
(lambda (s0 s1 s1.0)
(combine
(assert (mask (assert s0 s1)
(genmask s1.0)) s1.0))
(assert s0 (complement s1))))
Now we can perform the actual parameter substitution and evaluation, with $\mathbf{s} 0 \leftarrow \Phi$; $\boldsymbol{s} 1 \leftarrow\{A\} ;$ s $1.1 \leftarrow\left\{A_{1} \vee A_{2}\right\}$. We already know that (genmask ${ }^{\prime}\left\{A_{1} \vee A_{2}\right\}$) $=\left\{A_{1}, A_{2}\right\}$, and that (assert $\Phi\left\{A_{5}\right\}$) $=\Phi \cup\left\{A_{5}\right\}$. Now (mask $\Phi \cup\left\{A_{5}\right\}\left\{A_{1}, A_{2}\right\}$) is computed as in 3.1.5 to yield $\left\{A_{4} \vee A_{5}, A_{3} \vee A_{4}, A_{5}, A_{1} \vee A_{2}\right\}$. Thus, (assert $\left\{A_{4} \vee A_{5}, A_{3} \vee A_{4}, A_{5}\right\}$ ' $\left\{A_{1} \vee A_{2}\right\}$) $=\quad\left\{A_{4} \vee A_{5}, A_{3} \vee A_{4}, A_{5}, A_{1} \vee A_{2}\right\}$. Next, (complement $\left\{A_{5}\right\}$) $=\left\{\neg A_{5}\right\}$, and (assert $\Phi,{ }^{\prime}\left\{\neg A_{5}\right\}$) $=\Phi \cup\left\{\neg A_{5}\right\}$. Thus, the fi nal result is

$$
\text { (combine }\left\{A_{4} \vee A_{5}, A_{3} \vee A_{4}, A_{5}, A_{1} \vee A_{2}\right\} \quad\left\{\neg A_{1} \vee A_{3}, A_{1} \vee A_{4}, A_{4} \vee A_{5}, \neg A_{1} \vee \neg A_{2} \vee \neg A_{5}\right\} \text {). }
$$

We leave it to the reader to expand this into the 16 clauses yielded by Algorithm 2.3.3.

3.3 Comparison to Other Work

3.3.1 The work of Wilkins In [22], Wilkins presents semantics and algorithms for updates of the form (assert ϕ), (where ϕ (insert ω)), (where $\phi \wedge$ t (delete t)), and (where $\phi \wedge$ (modify t w)) are presented, with ϕ and w arbitrary wff's, and t a ground fact. (We have altered her syntax slightly to conform with ours.) With the exception noted in 1.4.7, the semantics of her update algorithms are identical to ours. However, the actual algorithms are very different. Specifi cally, her algorithms introduce new auxiliary proposition letters at each update. In effect, she defers the computation of the mask component via the retention of historical information. Her update algorithms are unquestionably faster than ours. In fact, they are linear in the sizes of the database and update formulas. However, the price is repaid when the database is queried. Each update adds at least one new proposition letter. Thus, after a large number of updates, query processing becomes very expensive, since the query solver must constantly eliminate auxiliary symbols from formulas. It would seem that, after a large number of updates, a system based upon her algorithms would have its query evaluation mechanism greatly slowed by the presence of the large number of auxiliary symbols employed. To "clean up" the knowledge base, masking of these auxiliary symbols would be necessary. However masking is inherently a hard problem (see 2.3.6), and so her algorithms would not seem to offer a superior alternative to ours.
3.3.2 The flock approach In [7], an alternative for updating logical databases is proposed. This strategy may be broadly characterized as minimal change. For example, in inserting α into the database, rather generating a database independent mask for α, we look for minimal ways to alter the database so that the insertion of α will be consistent. However, this defi nition of minimality is a purely syntactic one, and so the spirit of the approach differs fundamentally from ours. While it is possible to obtain a semantic version of minimal change, at the expense of a greatly complicated masking function, space limitations preclude presentation in this paper.
3.3.3 A tabular approach Both of the works mentioned above are basically propositional in nature. In [1], Abiteboul and Grahne present a structure-oriented approach to update specifi cation, and implementation using the notion of tables of Imieliński and Lipski [12]. As such, their approach directly uses relations. It is interesting to note that two of their basic update operators are precisely union and intersection, which, at the instance level, are precisely our combine and assert. Set-theoretic difference is also one of their primitives; it can easily be realized as a combination of intersection and absolute complement. Thus, of their six primitives, three are essentially identical to three of our fi ve BLU primitives. Their other three primitives are rela-tion-by-relation versions of these same primitives. At the propositional level, these correspond to possible-world by possible-world logical operations of \wedge, v , and \nRightarrow. These primitives are also suffi cient in power to realize HLU, although it appears that they are strictly less powerful than those of BLU, in that genmask cannot be realized.

A detailed comparison of the two approaches is warranted.
Another paper promoting a relational approach is [15]. It deals more with pragmatics of individual examples, and so differs in emphasis from our work.

4. Towards a Practical Implementation

We briefly examine the practicability of the defi nitions presented herein, together with some of our future directions.

Notice that there are two ways in which a possible world defi nition (qua clause) may be an argument to an HLU program. First, the system state itself is such an argument. Second, any user-supplied update parameter is such an argument also. In general, we would expect the system state to have a much larger and more complex representation than a typical user supplied parameter. Now we may observe from the defi nition of HLU that the BLU primitives complement and genmask only take user supplied parameters as arguments. Thus, even though these problems have inherently high degrees of complexity for the clausal representation, they will likely be applied only to arguments which are small and simple enough to be manageable. The clausal implementations of assert and combine are quite respectable in terms of performance, even though they do take the system state as arguments in several HLU defi nitions.

It seems likely that the bottleneck in any clausal implementation of HLU base upon BLU is going to be the implementation of mask. The masking problem is inherently diffi cult; yet it is essential to an implementation. The question is whether there is another, much effi cient implementation of HLU which avoids masking entirely. The answer is no. Masking is itself a form of insertion; just as (insert ${ }^{\prime}\left\{A_{1} \vee A_{2}\right\}$) says that three of the four truth values of $\left(A_{1}, B_{1}\right)$, so too does (mask $\left\{A_{1}, A_{2}\right\}$) say that all four are possible. At any rate, the inherent complexity of inserting $\left\{A_{1} \vee A_{2}\right\}$ is no less than masking $\left\{A_{1}, A_{2}\right\}$.

Thus, it is clear that the worst case in any clausal implementation of HLU is going to be intolerably bad. The question remains, however, as to whether there is some other "reasonable" implementation which admits more effi cient execution. If so, the representation must be far removed from the clausal one, else we could effi ciently reduce the clausal approach to it. Care must be taken in expressing the problem; for example, we might demand that all sets of clauses be fully expanded to include all consequences. Masking then becomes trivial. Of course, other operations then become intolerably slow.

The most promising approach to take, from a practical point of view, would seem to be to look for an incomplete implementation which nonetheless covers many interesting cases. Currently, we are pursuing two avenues in this spirit. The first is to implement a small version of HLU in Lisp. The implementation is based substantially upon the BLU defi nition, although a number of correctness-preserving optimizations are employed. The implementation is initially for a propositional logic, although we plan to extend it to the first order situation sketched in the next section in the near future. The purpose of this implementation is to study empirically the bottlenecks in such a system.

The second avenue is to examine in more detail other realizations. Foremost, we are looking at the template model [12], and particularly the work on updates for it
[1]. Although this model is not able to represent all possible worlds, it can represent many important cases arising in practice. A comparison of these two approaches will hopefully shed light on some of the more practical aspects of the problem.

5. Extension to a First-Order Relational Framework

5.1 Problem Statement

Despite the fact that database schemata are not propositionally based, there is ample justifi cation for an initial examination of the update problem on propositional schemata. First, the propositional framework provides a "stripped down" testbed; if the problems cannot be adequately formulated and solved at the propositional level, there is little hope of a more general solution at the relational level. Second, it may be argued that relational databases are fi nite, and so may be represented logically as a set of ground clauses. Nonetheless, we argue that it is not suffi cient, from a practical point of view, to invoke this grounding assumption and limit the investigation to the propositional case.
5.1.1 Motivating example Consider a simple relational schema with a single ternary relational symbol R[NDT], and attributes $\mathrm{N}=$ name; $\mathrm{D}=$ department; $\mathrm{T}=$ telephone. Further consider an update request expressed informally as "Jones has a new telephone number." Implicit in this request is that Jones' new telephone number is not known. Assume that the appropriate domain closure axioms are present [20], so we know, in particular, that there is a fi nite set of constant symbols $\mathbf{T}=\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, . ., \mathrm{t}_{n}\right\}$ which represent all possible telephone numbers. Then it is possible to express this update request directly in HLU. Let JD denote Jones' department, and ϕ be the clause which is the enormous disjunction $\bigvee\{(J o n e s, J D, t) \mid t \in T\}$. Then the appropriate update request in HLU is (insert $\{\phi\}$). However, there are at least two problems. First of all, we must know Jones' department in order to specify the update, even though it is totally irrelevant, and remains unchanged. Second, in a realistic application, the collection of telephone numbers would indeed be enormous, making the direct expression of this update request all but impossible.

5.2 Solution Sketch

The overall goal of this component of our work is to extend the framework and algorithms already developed to a fi rst-order framework in which updates such as the example given above are easily handled. The key idea is to maintain the same set of possible worlds as the purely propositional case, but to employ representation techniques which admit much more effi cient manipulation.

We follow the idea of grounding as described at the beginning of 1.2, with some important extensions. There are two kinds of constant symbols, internal and external. The external constant symbols correspond exactly to those of the purely propositional framework. They have unique naming relative to other external constant symbols, and are visible to the user in the query and update languages. The internal constant symbols, on the other hand, do not have unique naming enforced, and are not directly visible to the user. They are countably infi nite in number, although only a fi nite number are active at any given time. There is a modified close world assumption stating that the external and active internal constant symbols are the only ones
known, and, furthermore, that each internal constant symbol is equal to some external constant symbol. Essentially, the modifi ed internal symbols correspond to null values, as described by Reiter in [20].

Also present in the extension is a Boolean algebra of types. These correspond

 to the Boolean categories of McSkimin and Minker[18]. Reiter has proposed a similar framework.[20]. The constant dictionary is used to classify each external and active internal constant symbol, and has one entry for each. An entry for an external symbol contains just one component; that which identifi es the smallest type to which it belongs. An entry for an internal symbol u contains what McSkimin and Minker call a Boolean category expression. It identifi es the underlying type ty(u), together with a list of inclusion exceptions ie(u) and a list of exclusion exceptions ee(u). The semantics is that the actual value of u, which is some external symbol, is either of type $\operatorname{ty}(u)$ or a member of the set ie(u), but is not a member of ee(u). The lists of inclusion and exclusion exceptions may contain internal as well as external symbols. As a simple example, to represent the fact that Jones has an unknown telephone number, we active an internal symbol u, and designate it to have type $\tau_{\text {telno }}$ the type of all telephone numbers. The fact about Jones would be represented as the single literal R(Jones, JD, u). "Jones" would be an external constant; JD might be internal or external.To render this representation useful, resolution must be extended to make use of it. This is done by employing a special case of semantic resolution developed by McSkimin and Minker[18]. Basically, when resolving $R(a, \ldots)$ and $R(b, \ldots)$ on the fi rst argument (for example), we turn to the constant dictionary to determine the intersection of the constant values represented. This intersection is effectively the unifi cation.

It is quite possible to use the full П- σ clause framework of McSkimin and Minker[18] to represent universal quantifi cation as well, although it will add substantially to the complexity of the computations.

To make the extension complete, it is also necessary to augment the query language, so that queries such as that illustrated at the beginning of this section may be formed. The key idea here is to allow variables in the "where" part of HLU programs. These variables defi ne an instance-by-instance environment for the action of the where. As a concrete example, here is our example query expressed in this extended language.
(where ((Jones $=x) \quad\left(y \in \tau_{u}\right)$)
(insert ($\left(\exists \mathbf{w} \in \tau_{\text {telno }}\right)$ ($\left.\left.\mathbf{R} \mathbf{x} \mathbf{y} \mathbf{w}\right)\right)$))
Here x is bound to "Jones", while y is bound to the universal type τ_{u} from the calling environment, on a case-by-case basis. This means that, for every binding of (x, y) satisfying these constraints, perform the insertion specifi ed. (Of course, assuming that Jones has a unique department, there will only be one such binding.) The"existence of w" statement in the insertion is converted to an internal constant, constrained to type $\tau_{\text {telno }}$.

There are, of course, many subtleties to this process which space limitations prohibit us from expressing. However, the key point should be evident. It is possible to extend the purely propositional framework described in this paper to a useful subset of relational logic. Since resolution has a direct extension, so too do our algorithms.

References

1. S. Abiteboul and G. Grahne, "Update semantics for incomplete databases," pp. 1-12 in Proc. 1985 VLDB Conference, ().
2. C.-L. Chung and R. C.-T. Lee, Symbolic Logic and Mechanical Theorem Proving, Academic Press (1973).
3. K. L. Clark, "Negation as Failure," pp. 293-322 in Logic and Data Bases, ed. H. Gallaire and J. Minker, Plenum Press (1978).
4. E. F. Codd, "Relational completeness of database sublanguages," pp. 65-98 in Data Base Systems, ed. R. Rustin, Prentice-Hall (1972).
5. H. Ehrig and B. Mahr, Fundamentals of Algebraic Specification 1, Springer-Verlag (1985).
6. H. B. Enderton, A Mathematical Introduction to Logic, Academic Press (1972).
7. R. Fagin, G. M. Kuper, J. D. Ullman, and M. Y. Vardi, "Updating Logical Databases," pp. 1-18 in Advances in Computing Research, ed. P. Kanellakis, JAI Press (1986).
8. H. Gallaire, J. Minker, and J. M. Nicolas, "Logic and databases: a deductive approach," ACM Computing Surveys 16(2) pp. 153-185 (1984).
9. S. J. Hegner, Relational Database Decomposition: Logical and Algebraic Foundations, monograph in preparation, to appear (1987).
10. R. Hull, "Finitely specifi able Implicational Dependency Families," JACM 31(2) pp. 210-226 (1984).
11. T. Imieliński, "On algebraic query processing in logical databases," pp. 285-318 in Advances in Data Base Theory, ed. H. Gallaire, J. Minker, and J. M. Nicolas, Plenum Press (1984).
12. T. Imieliński and W. Lipski, Jr., "Incomplete information in relational databases," JACM 31 pp. 761-791 (1984).
13. B. E. Jacobs, "On database logic," JACM 29(2) pp. 310-332 (1982).
14. B. E. Jacobs, A. R. Aronson, and A. C. Klug, "On interpretations of relational languages and solutions to the implied constraint problem," ACM TODS 7(2) pp. 291-315 (1982).
15. A. Keller and M. W. Wilkins, "Approaches for updating databases incomplete information with nulls," pp. 332-340 in Proc. International Conference on Database Engineering, (24-27 April 1984).
16. H. J. Levesque, "The Logic of Incomplete Knowledge Bases," pp. 165-186 in On Conceptual Modelling, ed. M. L. Brodie, J. Mylopoulos, and J. W. Schmidt, Springer-Verlag (1984).
17. E. G. Manes and M. A. Arbib, Algebraic Approaches to Program Semantics, Springer-Verlag (1986).
18. J. R. McSkimin and J. Minker, "A Predicate calculus based semantic network for deductive searching," pp. 205-238 in Associative Networks, ed. N. V. Findler, Academic Press (1979).
19. J. Rees and W. Clinger, "Revised ${ }^{3}$ report on the algorithmic language Scheme," SIGPLAN Notices 21(12) pp. 37-79 (December 1986).
20. R. Reiter, "Towards a Logical Reconstruction of Relational Database Theory," pp. 191-238 in On Conceptual Modelling, ed. M. L. Brodie, J. Mylopoulos, and J. W. Schmidt, Springer-Verlag (1984).
21. Texas Instruments, TI Scheme Language Reference Manual, Texas Instruments, Inc. (1985).
22. M. W. Wilkins, "A Model Theoretic Approach to Updating Logical Databases," Report No. STAN-CS-86-1096,, Department of Computer Science, Stanford University (January 1986).
23. P. H. Winston and B. K. P. Horn, Lisp, Second edition, Addison-Wesley (1984).
