
Some Open Problems
Related to the Implied Constraint Problem

Stephen J. Hegner
Department of Computer Science and Electrical Engineering

Votey Building
University of Vermont
Burlington, VT 05405

U. S. A.

Phone: (802)656-3330
CSnet: hegner%uvm.edu@csnet-relay

USEnet: ..!uvm-gen!hegner

Address through August 1990:

Universitetet i Oslo
Matematisk Institutt

Postboks 1053 Blindern
0316 Oslo 3
NORWAY

Phone: +47-2-45-58-88
Net: m hegner s@use.uio.uninett



In this note I will identify several open problems of interest to me on the general topic of
identifying the constraints on a view of a database schema. Informally, given a base schema
and a view mapping, we wish to characterize exactly those states of the view schema which
can arise as the image of a state of the base schema. More formally, we may proceed as
follows.

A database schema is a pair D = (R,C), with R a finite first-order language and C a
set of sentences in the language of R. In the traditional relational setting, R is just the
set of relation names of the schema and C is the set of constraints. However, we do not
explicitly disallow function symbols in R; all of the problems given here make equal sense
with function symbols allowed. We let DB(D) = DB(R) denote the set of all structures of
the language of R (the databases of D) and we let LDB(D) denote the set of all models of
C (the legal databases of D).

If D1 = (R1,C1) and D2 = (R2,C2) are database schemata, a database mapping γ :
D1 → D2 is just an interpretation of the language of R2 into the language of R1, in the sense
given in a mathematical context in [?] and in a database context in [?]. (This just amounts to
expressing γ as a query in the relational calculus.) Such an interpretation induces in a natural
way a mapping γ∗ : DB(D1) → DB(D2). We call γ correct if γ∗(LDB(D1)) ⊆ LDB(D2), and
we call γ a view if γ∗(LDB(D1)) = LDB(D2).

We consider problems in which we are given a schema D1 = (R1,C1) (the base schema),
a second finite first-order language R2, (the view language), and an interpretation γ of the
language of R2 in the language of R1. We are interested in identifying various ways of
finding and/or testing a set of sentences Φ such that γ : D1 → (R2, Φ) is correct and/or a
view. In other words, we seek to determine the constraints C2 = Φ on the “view” schema
D2 = (R2,C2), implied, through γ, by the constraints on the base schema D1. We identify
four specific problems. Except for the work of Klug [?] and Jacobs, Aronson, and Klug [?]
on the testing problem, I am not aware of any work at all on these problems.

The Testing Problem This is the weakest form of the implied constraint problem which
we consider. We are given a single sentence ϕ in the language of R2, and we ask whether
or not γ : D1 → (R2, {ϕ}) is correct. In general, this problem is undecidable. (Just
take R1 = R2, γ = identity, and we are asking whether C1 |= ϕ in the language of R1;
the implication problem for first-order logic). However, the question is semi-decidable; if
γ : D1 → (R2, {ϕ}) is correct, we can detect this. The proof, as well as much further
discussion on this issue, may be found in [?]. To achieve decidability, we must enforce some
restrictions; the open problem is to determine useful ones. In other words, for “interesting”
classes of database schemata and mappings, establish necessary and/or sufficient conditions
for the testing problem to be decidable.

The Finiteness Problem In this problem, we assume that C1 is a finite set, and we
ask if there is a finite Φ such that γ : D1 → (R2, Φ) is a view. We note that it is quite
easy to produce very simple examples such that no such finite Φ exists. For example, take
R1 = {R[ABCD]}, C1 = {B → D, C → D, DA → B}, R2 = {R[ABC]}, and γ = πABC .

1



The problem of identifying conditions under which there exists such a finite Φ is therefore
nontrivial, even in very simple and practical settings.

The Axiomatiziability Problem Here we continue to assume that C1 is finite, and ask if
Φ exists at all as a set of first-order sentences It is not difficult to construct simple examples
in which C1 is finite, and yet no first-order Φ exists. For example, take R1 = {R[AB]},
C1 = {A → B, B → A}, R2 = {R[A], R[B]}, and γ = (πA, πB). Then Φ must express the
constraint that the cardinality of the instance of R[A] is the same as that of R[B]. This is
not first-order in general, although it is when restricted to at-most-countable databases. As
a general open problem, we seek necessary and or sufficient conditions such that the view is
first-order axiomatizable. As a more specific open problem, we ask if there is a nice natural
example of a view which is not first-order, even when attention is restricted to databases
which are at most countable.

The Algorithmic Problem Here we ask specifically how to compute Φ effectively. More
to the point, identify important special cases of base schemata and database mappings such
that the axiomatization of the view is recursive. As a related open problem, we may ask also
if it is possible to find cases in which the computation is also tractable (polynomial time).

Variations for Logic Databases In addition to the traditional framework of relational
databases, this general problem also has application to logic databases. Within the latter
framework, we regard C1 as the set of sentences comprising the “base” logic database, and
we ask how to compute a set of sentences Φ which define the “view” logic database. The
additional complication that arises from this point of view is that C1 will now vary as the
base schema is updated. We must therefore additionally characterize admissible families of
constraints C1 so that Φ is effectively computable for each member of this family.

References
[Ende72] Enderton, H. B. A Mathematical Introduction to Logic, Academic Press, 1972.

[JaAK82] Jacobs, B. E. , A. R. Aronson, and A. C. Klug, “On interpretations of rela-
tional languages and solutions to the implied constraint problem,” ACM TODS,
7,2(1982), pp. 291-315.

[Klug82] A. C. Klug, “Calculating constraints on relational expressions,” ACM TODS, 5,
(1980), pp. 260-290.

2


