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ABSTRACT

An algebraic approach to continuous-time linear systems ispresented which closely parallels
the discrete-time decomposable systems approach of Arbib and Manes, as well as the olderk[z]-
module theory of linear systems of Kalman. The focal point ofthe presentation is a class of
topological rings, termedR+-rings, which play the same role for continuous time thatk[z] does
for discrete-time. Each such ringRdefines a class of toplogical modules, termed the(R)-modules,
which may be naturally identified with a class of locally equicontinuous semigroups, called the(R)-
semigroups. Thus, just as discrete-time linear dynamics are coextensive withk[z]-modules, so too
are continuous-time linear dynamics coextensive with(R)-modules. This identification underlies
the development of a purely algebraic theory of behavior andrealization for continuous-time linear
systems. The specific choice ofRdetermines the type of dynamics allowed. For example, taking R
to be the ring of all measures on the nonnegative reals yieldsdynamics described by the class of all
semigroups, while choosingR to be the ring of allL1 measures yields dynamics whose responses
vanish at infinity.

A central focus of this paper is the construction of free and cofree dynamics, and hence the
behavior, of a system. Just as a behavior in the discrete-time case may be thought of as ak[z]-
module homomorphism from the freek[z]-modulek[z]⊗ I to the cofreek[z]-moduleL(k[z],Y),
so too may a behavior in the continuous-time case be viewed assuitably continuous(R)-module
homomorphism from a suitable topologization and completion of R⊗ I to a suitable topologization
of the spaceL(R,Y) of continuous linear maps.



1. Motivation — A Review of the Discrete-Time Concepts
In providing a motivating overview of our presentation, letus begin by recalling some of the
basic algebraic aspects of sequential machine behavior andrealization. LetM = (Q,δ, I ,Y,h) be a
sequential machine. HereQ is thestate set, I the input set, andδ : Q× I → Q thedynamics. Y is
theoutput setandh : Q→Y theoutput map. We may think ofM as being described by dynamical
equations of the form

q(t +1) = δ(q(t), i(t)) (1)

y(t) = h(q(t)).

It is well known that a more global picture of the behavior maybe obtained by extendingδ to
a right actionδ∗ : Q× I ∗→Q of the free monoidI ∗. β◦δ : Q× I ∗→Y then gives thebehaviorof
the machine.

Placing into a categorical framework this process of extracting the behavior from the local
dynamics has been the subject of a number of investigations,including that of Arbib and Manes
([AM1], [AM2], [AM3], [AM4], [AM5]), Bainbridge ([B1]), Eh rig and his co-workers ([EKKK],
[EK]) and Goguen ([G]). The following quick review (specialized to the above example of se-
quential machines) follows most closely the approach of Arbib and Manes. Fixing the setI , de-
fine the categoryDyn(−× I) of −× I -dynamicsto have as objects pairs of the form(Q,δ) with
δ : Q× I →Q; a morphismk : (Q,δ)→ (Q′,δ′) (called adynamorphism) is a functionk : Q→Q′

such thatk◦δ = δ′ ◦ (k×1). Consider thefree-×I -dynamics(Q× I ∗,µ) overQ, as defined by the
following diagram.

Q× I ∗× I Q× I ∗

Q× I Q

µ

ρ×1I ρ

δ

-

? ?

-

Q
ι

1Q

�

�
�

�
�

�
�+

(2)

Thefree action µ: Q× I ∗× I →Q× I ∗ is just concatenation(q,w,a) 7→ (q,wa). ι : q 7→ (q,λ),
whereλ is the empty string.ρ is the uniquereachability map, and is just the extensionδ∗ of δ to
strings that we seek.

The dual construction for the output side is depicted in the diagram below.
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Q× I Q

[I ∗→Y]× I [I ∗→Y]

δ

σ×1I σ

µ′

-

? ?

- Y
ε

h

-

Q
Q

Q
Q

Q
Qs

(3)

[I ∗→Y] is the set of all functions fromI ∗ to Y. ([I ∗→Y]× I ,µ′) is thecofree-×I -dynamics
overY; µ′ : ( f , i) 7→ f (i ·−); ε : f 7→ f (λ). σ is the uniqueobservability mapfor M; σ(q) = ρ(q,−).
σ◦ρ is thetotal behaviorof M.

The above example illustrates a general categorical construction specialized to the category of
sets and functions. Similar constructions work, with varying degrees of success, in several other
categories. For details, consult [AM2]. The context which is of direct interest to us here is that
of linear systems. In this case, we fix a (commutative, with unit) ring K , and work within the
category ofK -modules and their homomorphisms (K -linear maps). Thus, relative to the set-based
framework just described, sets becomeK -modules, functions becomeK -module homomorphisms,
and the cartesian product−×− translates to the tensor product−⊗−.

Unfortunately, this direct translation does not provide quite what we want. For consider a
dynamicsδ : Q⊗ I → Q. Linearity of this mapping means thatδ(q,0) = δ(q⊗ 0) = 0 for any
q∈ Q. In other words, in such a dynamics, the zero input always drives the machine to the zero
state in one step, which is quite unreasonable. Rather, the transition function of a linear system is
typically taken to be of the formδ(q, i) = f (q)+ g(i) for some linearf : Q→ Q andg : I → Q.
Such a function is affine, but not linear. While we could develop a theory of linear systems based
upon such affine transformations, there is an alternate approach which retains almost all of the
characteristics of the set-based approach. Specifically, we take advantage of the decomposability
of the state-transition map to yield the theory of decomposable system in a category of Arbib
and Manes [AM1]. The following summarizes that approach forlinear systems over the ringK .
(For another discussion of the relationship between the decomposable systems approach and the
approach described above, see [AM4, sec. 6]). A (decomposable) linear system(in the category
of K -modules) is a 6-tupleM = (Q, f , I ,g,Y,h) whereQ (thestate space), I (the input space), and
Y (theoutput space) are allK -modules, andf : Q→ Q (thestate-transition map), g : I → Q (the
input map), andh : Q→Y (theoutput map) are allK -linear. The dynamics are described by the
equations

q(t +1) = f (q(t))+g(i(t)) (4)

y(t) = h(q(t)).

Dynamics in the decomposable systems framework are with respect to the identity; thus, a
dynamicsis a pair(Q,δ) with δ : Q→ Q, and adynamorphism k: (Q,δ)→ (Q′,δ′) is aK -linear
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mapk : Q→Q′ such thatk◦δ = δ′ ◦k. Just as a dynamics(Q,δ : Q× I →Q) in the set-based case
gave rise to an actionδ∗ : Q× I ∗→ Q, so too does a dynamics(Q,δ : Q→ Q) in the linear case
provide such an action. The ring (quamonoid) in this case isK [z], the ring of polynomials overK
in the single variablez. Multiplication is convolution.δ : Q→ Q defines the action on the simple
polynomialz, with linearity and multiplication providing the others. The analogs of diagrams (2)
and (3) are provided by the following.

I§ I§

Q Q

z

ρ ρ

f

-

? ?

-

Y§ Y§

σ σ

z
-

? ?

I
η

g

-

Q
Q

Q
Q

Q
Qs

Y
ε

h

-

Q
Q

Q
Q

Q
Qs

(5)

(I§,z) is the free dynamicsover I . I§ = {(i0, i1, .., ik, . . .) | ik = 0 for all but finitely manyk}.
z : (i0, i1, . . .) 7→ (0, i0, i1, . . .) is the right shift.η : i 7→ (i,0,0, ..,0, ...). It is not difficult to see that
I§∼= I ⊗K [z]. By specializingI to beQ andg : Q→Q to be the identity, we can explicitly recover
the module action off asρ : Q§ ∼= Q⊗K [z]→ Q. More generally,ρ : I§→ Q is thereachability
mapof M, and tells us the state ofM at time 0 due to input(i0, i1, . . .) ∈ I§, with ik occurring at
time−k.

Similar ideas hold for the output side.(Y§,z) is the cofree dynamicsover I . Y§ =
{(y0,y1, ..,yk, . . .) | yk ∈Y}, with z : (y0,y1,y2, . . .) 7→ (y1,y2, . . .) the left shift.ε : (y0,y1, . . .) 7→ y0.
Furthermore,Y§

∼= L(K [z],Y) (L = linear maps).σ is called theobservability map, andσ(q) is the
output sequence observed when starting in state q with all further inputs 0.

For I = Km andY = K p, the above framework is essentially Kalman’sK [z]-module approach
[K1].

2. Continuous Time — The Basic Ideas
Before presenting the mathematical details, we provide an informal overview of how these alge-
braic representations of the discrete-time case are extended to continuous time; in particular we
highlight the critical differences which arise.

Dynamics and Systems

The major goal of this work is to extend the above constructions to the domain of continuous-time
linear systems. In other words, the dynamics of equations (4) are to be replaced by
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dq(t)/dt = f (q(t))+g(i(t)) (6)

y(t) = h(q(t)).

This immediately imposes some natural restrictions. Firstof all, K is now eitherR (the field
of real numbers) or elseC (the field of complex numbers), andK -modules are locally convex
topological vector spaces overK . Thus, our underlying categoryK must be one whose objects are
locally convex spaces, and whose morphisms are continuous linear mappings. In fact, everything
in sight must be given a topological as well as algebraic flavor, and all constructions must be
translated to this framework. In particular, any tensor products must be topological and module
actions must posess some sort of continuity.

Assuming that we have established a working domain with these additional features, let us
reexamine the nature of a dynamics under the interpretation(6). To admit unique solutions in the
context of (6), we takef to be the infinitesimal generator of a one-parameter semigroup of oper-
ators (the parameter beingR+, the nonnegative reals). In an earlier paper [H2], we presented a
categorical framework for continuous-time linear systemswhich dealt exclusively with infinitely
differentiable systems;i.e., systems for whichf in (6) above is everywhere defined and contin-
uous. Unfortunately, many examples occurring in practice do not have differentiable dynamics,
and this shortcoming motivated, at least in part, the present paper. Here we takef to be the in-
finitesimal generator of a locally equicontinuous semigroup of operators in the sense of K ōmura
[K5]. On the other hand, to get a satisfactory algebraic characterization, we still requireg andh
to be continuous linear operators. However, this does not present an unrealistic constraint, since
we allow distributions as inputs, and interpret the first equation of (6) in the following well-known
operational sense, which effectively defines the reachability mapσ.

q(t) = ef t ·x(0)+

Z t

0
ef (t−s)g(i(s))ds (7)

In the above,ef t is semigroup generated byf , and the integral is interpreted as distributional
convolution. The continuous-time analogI$ of I§ (from which the input signali(s) is taken) is
first approximated as finite linear combinations of dirac impulses,i.e., I$ = {∑k

j=1a jk · δtk | a jk ∈
K ∧ tk ∈ R+}. From a purely algebraic point of view, the only essential difference in the input
signals between the discrete and continuous-time cases in this first approximation is that in the
latter nonzero discrete values may occur at any timet ≥ 0, while in the former case inputs may
occur only at those time points indexed by integers. The truly interesting additional dimension,
which makes the continuous-time case so much richer than itsdiscrete-time counterpart, is that
we may utilize the density ofI$ in suitable spaces ofI -valued distributions to yield a much richer
space of input signals, including all of the traditional “smooth” inputs.

It is important to note that, with this model,q(t) is only well-defined in the case that the input
i, regarded as a distribution, can be truncated at timet. This representation is in agreement with
those forwarded by Kalman and Hautus [KH] and Kamen [K3].
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A simple example will help illustrate both the generality and the limitations of this framework.
Consider a transmission line with series inductanceL, series resistanceR, shunt capacitanceC,
and shunt conductanceA, all per unit length. We work with a unit length of such line, driven
at x = 1 and terminated atx = 0 with a short circuit. We furthermore assume that the behavior
of this line is governed by the standard wave equations, and that the loss is small enough that
the characteristic impedance is given byZo =

√
L/C. See,e.g., [BSH]. LetV(x, t) represent the

voltage accross the line at positionx (0≤ x≤ 1) at timet, and letJ(x, t) similarly represent the
current on the line. The state spaceQ is {(V(x),J(x)) ∈ C ′c(0,1]× C ′c[0,1] | V(x)−Zo · J(x) =
0 in some neighborhood ofx = 1}. The requirement that the voltage be 0 atx = 0 is recaptured
by the fact that the voltage distribution be inC ′c(0,1], the space of all scalar-valued distributions
with compact support contained in the half-open interval(0,1]. C ′c[0,1] is defined similarly, and
V(x)−Zo ·J(x) = 0 in some neighborhood of 1 states that the impedance atx = 1 be matched.

We drive the line with an impedance matched generator atx = 1, so thatI takes values in the

field K , and the input over time has the form like

(
Zo

−1

)
· i(t), with i(t) a real-valued signal

(represented as a distribution). (The current is negative since it is travelling to the left.) It is
straightforward to show that the dynamics are represented by the following differential equation.

d
dt

(
V(x, t)
I(x, t)

)
=

(
−R

L −1
L ·

∂
∂x

− 1
C ·

∂
∂x −A

C

)(
V(x, t)
J(x, t)

)
+

(
Zo

−1

)
i(t) (8)

Now consider the output representation. We would like to observe the (natural) voltage-current
pair at x = 1. However, the state is a distribution, and not necessarilyan ordinary function of
time. Therefore, it does not make sense to sample the values at x = 1 directly. There are two
ways to address this issue. The first is to restrict the state distribution to a half-open neighborhood
(1− ι,1], whereι is some small number. This is easily realized by using the natural surjections
ρ1 : C ′c(0,1]→ C ′c(1− ι,1] andρ2 : C ′c[0,1]→ C ′c(1− ι,1] (see [T]). In this case, the output space
Y is C ′c(1− ι,1], and we get an output equation of the form

y(t) =

(
ρ1 0
0 ρ2

)
q(t) (9)

The second approach is to regard the output spaceY as consisting of just pairs of real numbers
(V, I) ∈ K ×K , representing values averaged about the pointx = 1. In this case,h becomes an
evaluation of the state distribution on a certain test function pair(ϕ1,ϕ2) ∈ C

′
c(1− ι,1]2. Typically,

this test function would have unit area. The output equationwould then take the following form,
with “∗” representing distributional convolution.

y(t) =

(
ϕ1∗ (−) 0

0 ϕ2∗ (−)

)
q(t) (10)

The reader may find it instructive to compare this representation to that presented by Helton in
[H6], in which he argues against requiring thatg andh be continuous.
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Behavior

One of the cornerstones of the algebraic approach to discrete-time linear systems outlined in Sec-
tion 1 is that is provides a natural bijective correspondence betweencanonical internal represen-
tations(represented by equations (4)) andinput-output behaviors(represented by theK[z]-module
homomorphismσ◦ρ) in diagram (5). The approach presented here recaptures this natural corrre-
spondence completely within the context of continuous-time systems. In this paper, we focus upon
the construction of the behavior from the internal representation, although we do disucss canonical
realization briefly in the concluding section.

A key feature of our approach is that the notion of system is further parameterizable, both
by choice of the underlying categoryK and by choice of the class of dynamics permitted. This,
in turn, defines the exact nature of a typical behaviorσ ◦ ρ. The categoryK itself may be var-
ied by regulating the degree of completeness of its objects;e.g., sequentially-complete spaces,
quasi-complete spaces, and complete spaces. (The morphisms themselves are always taken to be
continuous linear maps.) More importantly, however, the ring K [z] of the discrete-time case may
be replaced by any member of a family of topological rings, which we termR+-rings. The table
given below illustrates a few of the more important examples, which are elaborated in the next
section. In each case,I andY are locally convex spaces. The measures inI$ are I -valued mea-
sures (or distributions) in the sense of Schwartz [S2], and the outputs inY$ are functions from the
nonnegative reals intoY.

Type of Dynamics Inputs inI$ Outputs inY$

locally equicontinuous measures with continuous
semigroups compact support functions

infinitely differentiable distributions with C∞

semigroups compact support functions
equicontinuous uniform bounded bounded and uniformly

semigroups additive measures continuous functions
bounded L1 bounded continuous

semigroups measures functions
stable L1 continuous functions

semigroups measures which vanish at∞
finite-response Radon continuous functions with

semigroups measures scalar-compact suppport

There is a fundamental measure/test-function duality betweenI$ andY$, so that, in general, the
more measures inI$, the fewer functions inY$. There is no single choice of topological ring which
provides a biggest version of each. Rather, the choice is a modelling problem; one of choosing the
best framework for the systems being considered. Note also that bounded semigroups and stable
semigroups take the same space of inputs. The distinction comes in that this space is topologized
differently in each case, so that the underlyingtopologicalring is not the same.
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Key to our approach is that the notion of a system may be viewedas being in either of two fun-
damental forms; its dynamics(Q,γ) may be a (sufficiently continuous) module dynamics (in which
γ is a module homomorphism), or a semigroup dynamics (in whichγ is a (Co)-semigroup of op-
erators of a certain class. The correspondence is completely bidirectional; any topological module
in the appropriate category uniquely defines a corresponding semigroup, and from any such semi-
group we may recover the corresponding module. This association is crucial to the development
of the theory, because while the semigroup model is much morenatural from a system-theoretic
point of view, the module approach provides the mathematical formulation necessary to establish
the key results in a natural algebraic fashion.

3. R+-Rings and the Representation of(Co) Semigroups
Fundamental to our approach is that interesting classes of(Co) semigroups have natural repre-
sentations as certain topological modules overR+-rings. In this section, the characterization of
such representations is presented, and several important examples are provided. Due to their ex-
tremely technical functional-analytic nature, we have chosen to defer detailed development and
proofs of many of the results to a separate work [H4]. Here we have attempted to emphasize the
system-theoretic aspects.

We freely use concepts, terminology, and notation from the theory of locally convex spaces;
we refer the reader [K6] and [K7] for details. Although we have eschewed the use of advanced
category theory, we do occasionally employ some elementaryterminology and concepts; the reader
is directed to [HS] as a clarifying reference.

Essential Background

3.1 Notions Based Upon Precompact Subsets of an l.c.s.Throughout this work, l.c.s. will
serve as an abbreviation for locally convex topological vector space. Given an l.c.s.E,U(E) will
denote the set of all balanced, closed, and convex neighborhoods of 0, andP (E) will denote the
set of all closed absolutely convex precompact subsets. Following [K6, §21,6, §21,7, §23,9], we
defineE′c to be the dual ofE with the topology of uniform convergence on precompact subsets
of E, and we letE′′c be the corresponding bidual. Since we shall not consider other topologies
on the dual in this work, these will frequently be abbreviated to E′ andE′′, respectively. If the
natural injectionE→ E′′c is continuous (it will then be an embedding as well), thenE is termed
almost polar reflexive. If it is surjective as well (hence an isomorphism), thenE is polar reflexive.
Examples abound; every Fréchet (or (F)) space and, more generally, every strict (LF) space is polar
reflexive. (See [H4].) In addition, we shall term an l.c.s.a(PF) spaceif it is the polar dual of a
Fréchet space. Generally speaking, (PF) spaces enjoy the same properties relative to compact sets
that (DF) spaces do relative to bounded sets.

The spaceE is c-completeif every precompact subset is relatively compact. Every polar reflex-
ive space is c-complete [K6, §23,9(1)]. More generally, a subsetH of E is c-densein E if every
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precompactS⊆ E is contained in the closure (inE) of H ∩T, for some precompactT ⊆ E. If E is
almost polar reflexive, thenE′′ is the c-completion ofE.

If E andF are l.c.s.’s, thenLc(E,F) denotes the space of all continuous linear mappings from
E to F with the topology of uniform convergence on precompact subsets ofE. Lc(E) denotes
Lc(E,E). L(E,F) andL(E) denote the same spaces, but without any assigned topology.

A bilinear mappingb : E×F→G on l.c.s.’s is termedc-hypocontinuousif it is hypocontinuous
with respect to the precompact subsets ofE andF . A c-hypocontinuous topological algebrais an
l.c.s. R which is endowed with a c-hypocontinuous multiplication∗R : R×R→ R and a distin-
guished element 1 such that(R,+,∗R) is a commutative ring with unit 1. We shall always denote
multiplication in such a ringR by ∗R, or by just∗ if no confusion can result.

3.2 Theorem – Characterization of Precompactness in Lc(E,F) Let E and F be l.c.s.’s, and
suppose that E is almost polar reflexive. Then H⊆ Lc(E,F) is precompact if and only if the
following two conditions are satisfied.

(a) H is equicontinuous.

(b) H(K) is precompact for each K∈ P (E).

PROOF: ((a), (b)⇒ H precompact) is a special case of Ascoli’s Theorem [B4, Ch. X,§2.5, Thm.
2].
(H precompact⇒ (b)) Let K ∈ P (E) and letU ∈ U(F). SinceH is precompact, there are
h1, . . . ,hn ∈ H such that given anyh ∈ H, h− hi ∈ { f | f (K) ⊆U/2} for somei ∈ [1,n]. Triv-
ially {h1, . . . ,hn} is equicontinuous, so there is aV ∈U(E) such thathi(V)⊆V/2 for all i ∈ [1,n].
SinceK is precompact, there arek1, . . . ,km ∈ K such that given anyk ∈ K, k− ki ∈ V for some
i ∈ [1,m]. Now let x ∈ H(K); thenx = h(k) for someh ∈ H andk ∈ K. By the preceding there
are hi and k j such thath− hi ∈ { f | f (K) ⊆ U/2} and k− k j ∈ V. But thenh(k)− hi(k j) =
(h(k)−hi(k))+(hi(k)−hi(k j)) ∈U/2+U/2⊆U . Hence{hi(k j) | i ∈ [1,n] ∧ j ∈ [1,m]} ⊆H(K)
is a finite set of points which areU -close to anyx∈H(K). ThusH(K) is precompact.
(H precompact⇒ (a)) Let H ⊆ Lc(E,F) be precompact; we must show that it is equicontinu-
ous. First note that there is a natural embedding′ : Lc(E,F)→ L ε(F ′,E′), whereε defines the
equicontinuous subsets ofF ′. Since′ is continuous,H ′ ⊆ L ε(F ′,E′) is also precompact, and since
ε defines precompact sets [K6, §21,6(3)], Ascoli’s Theorem may be invoked to deduce thatH ′(x)
is precompact inE′ for eachx∈ F ′. Also, by (H precompact⇒ (b)) above,H(K) is precompact
for eachK ∈ P (E), soH ′ is an equicontinuous subset ofL(F ′,E′). Hence we may apply Ascoli’s
Theorem again to deduce thatH ′ is precompact inLc(F ′,E′). Now use (H precompact⇒ (b)) once
again to ascertain thatH ′(K) is precompact for eachK ∈ P (F ′). Finally, transpose again to get
thatH ′′ is equicontinuous inL(E′′,F ′′). SinceE is almost polar reflexive, we have thatE→ E′′ is
continuous, soH ′′|E ⊆ L(E,F ′′) is also equicontinuous. Since eachh∈ H ′′ is the bitranspose of an

element ofH, H ′′(E)⊆ F. The topology whichF ′′ induces onF is finer than the initial topology,
soH ′′|E = H ⊆ L(E,F) is also equicontinuous.2
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3.3 Corollary – Characterization of c-Hypocontinuity Let E, F, G be l.c.s.’s, and assume
further that E is almost polar reflexive. Let b: E×F→G be a bilinear mapping which is hypocon-
tinuous with respect to the precompact subsets of E and the finite subsets of F. Then:

(a) b is c-hypocontinuous.

(b) b(K1×K2) is precompact for K1 ∈ P (E), K2 ∈ P (F).

(c) The transpose b1 : E×G′→ F ′ (resp. b2 : G′×F → E′ is hypocontinuous with respect to
the precompact subsets of E (resp. F).

PROOF: (a) In view of the hypotheses, we may define a continuous linear mappingb̄ : F →
Lc(E,G) defined on elements byx 7→ b(−,x). For anyK ∈ P (F), b̄(K) is precompact, and so
equicontinuous by the above theorem. But the equicontinuity of b̄(K) is equivalent to the hypocon-
tinuity of b with respect to the precompact subsets ofF, as was to be proved.
(b) Argue as above, noting that by the above theorem,b̄(K) maps precompact sets into precompact
sets.
(c) This is just the transpose of (b).2

3.4 Completion Operators and Categories Recall that the full completion operator̂on an
l.c.s. provides, for each complete l.c.s.F and morphismf : E→ F, a unique extension̂f : Ê→ F
such thatf = f̂ ◦ i, with i : E→ Ê the natural embedding. This construction is generalized as
follows. Let ˜ be an operator which defines subsets of l.c.s.’s such that forany continuous linear
mapping f : E→ F of l.c.s.’s,S∈ ˜(E) implies that f (S) ∈ ˜(F). For example,̃ may define
all bounded subsets, all precompact subsets, or just all subsets. Call an l.c.s.E ˜-completeif
the closure of eachS∈ ˜(E) is complete. Thẽ -completionẼ (or (E) ˜ ) of an l.c.s.E is the
intersection of all subspacesF of Ẽ such thatE ⊆ F andF is ˜-complete. AsẼ is surely˜-
complete, there is at least one suchF. Furthermore, ifS∈ ˜(E), thenS∈ ˜(F) for all ˜-complete
F with E ⊆ F ; hence the closure ofS is in ˜(Ẽ) and is complete, sõE is ˜-complete. On the
other hand, ifF is ˜-complete andf : E→ F is a continuous linear mapping, we may extendf to
f̃ : Ẽ→ F by restricting f̂ to Ẽ. It is straightforward to verify that̃f is the unique morphism such
that f = i ◦ f̃ , with i : E→ Ẽ the natural embedding. An operator˜ meeting the above conditions is
called apartial completion operator. Some particular examples to keep in mind are the following.

(a) All subsets; this yields just thefull-completion operator, denoted̂ .

(b) All bounded subsets; this yields thequasi-completion operator.

(c) All precompact subsets; this yields thec-completion operator, which we denote by ˇ .

(d) All Cauchy sequences; this yields thesequential-completion operator.

(e) All finite sets; this yields the identity operator.

LCS denotes the category of all l.c.s.’s with continuous linearmaps as morphisms, and for any
partial completion operator̃ , L̃CS denotes the full subcategory ofLCS whose objects are the
˜-complete l.c.s.’s.
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Occasionally, it will be useful to compare partial completion operators. We writẽ 1 ≤ ˜2 if
every space which is̃ 2-complete is alsõ 1-complete. In the above examples, we have(e) ≤
(d)≤ (c)≤ (b)≤ (a).

Semigroup Representation by Modules

3.5 R+-Rings It is easy to see that, under addition, the nonnegative realsR+ form a com-
mutative topological monoid with identity 0. AnR+-ring is a pair(R, i) in which R is a c-
hypocontinuous topological algebra andi : R+→ R is a continuous mapping subject to the fol-
lowing conditions.

(r1) i is a monoid homomorphism for the additive structure ofR+ and the multiplicative
structure ofR.

(r2) span(i(R+)) is c-dense inR.

(r3) R is almost polar reflexive.

(r4) R′ is complete.

TheR+-ring (R, i) will often be abbreviated to justRwheni is clear from context or irrelevant.
For anyR+-ring (R, i), span(i(R+)) forms a subring ofR. We shall denote this subring by

∆(R), and term it theskeletonof R. i(t) is often denoted byδt , since it turns out to be the Dirac
delta centered att in most examples which we consider. In view of (r2), we may always extend
the hypocontinuity of∗∆(R) and∗R to Ř. Thus,∆̃(R) andR̃areR+-rings for any partial completion
operator˜ which defines precompact sets. It is furthermore the case that (∆(R)) ˇ = Ř, and this
space is polar reflexive. It is not necessarily the case thatŘ = R̂; however, in most examples
which we consider,R′ will be a strict (LF) space, and hence both complete (yielding (r4)) and
bornological (guaranteeing thatR′′ = Ř is complete).

A morphism f: (R, i)→ (S, j) of R+-rings is a continuous linear mappingf : R→ Ssuch that
f ◦ i = j. The density of∆(R) in R ensures that a morphism ofR+-rings is a ring homomorphism
in the usual sense. In fact, there can be at most one morphism from (R, i) to (S, j), as the value of
any f : (R, i)→ (S, j) is determined by its values on∆(R), and f (δt) = δt .

3.6 (R)-Modules Given anR+-ring (R), an(R)-moduleis an l.c.s.E together with a bilinear
actionb : R×E→ E which is c-hypocontinuous and which satisfies the usual module axioms. A
morphismf : (E,b)→ (F,c) of (R)-modules is just a continuous linear map which is also a module
homomorphism.

Note: We shall always use the term(R)-module (with parentheses around theR) for a c-
hypocontinuous module action, whileR-module shall mean just a module over the (ordinary) ring
R.
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3.7 (R)-Semigroups We use the definition of K ōmura [K5] in defining a locally equicontinuous
semigroup(E,T) as anR+-indexed familyT : R+ → L(E) of operators on the l.c.s.E. This
specifically mandates, in addition to the semigroup axioms and the equicontinuity of{T(t) | 0≤ t ≤
ε} for anyε≥ 0, that limt→0T(t)e= e for anye∈ E. For the sake of brevity, we shall refer to such
semigroups of operators as justsemigroups. We letgT denote the infinitesimal generator of such
a semigroup. IfE is sequentially complete, thengT is densely defined and uniquely determinesT
[K5].

A morphism f: (E,T)→ (F,S) of semigroups is a continuous linear mappingf : E→ F such
that, for eacht ∈R+, f ◦T(t) = S(t)◦ f .

Let Rbe anR+-ring, and let(E,b), be an(R)-module. Define the mappingTb : R+→ L(E) by
Tb = (e 7→ b(δt,e)). We callTb thesemigroup associated with(E,b), and any semigroup arising
in this fashion an(R)-semigroup. This terminology is justified by the following proposition.

3.8 Proposition Let (R, i) be anR+-ring, and let(E,b) be an(R)-module. ThenTb is a semi-
group, and, furthermore, if either E or R is sequentially complete, thengTb is densely defined and
so uniquely determinesTb.

PROOF: Consult [H4].2

We now turn to the converse characterization; namely, that each (R)-semigroup determines a
unique(R)-module. Given a semigroup(E,T), define itsnatural responserT : E→ C (R+,E) by
e 7→ (t 7→ T(t)e). HereC (R+,E) is the space of all continuous functions fromR+ to E, endowed
with the topology of uniform convergence on compact subsetsof R+. It is easy to verify thatrT

is continuous. Define the mappingI(R,E) : Lc(R,E)→ C (R+,E) by f 7→ (t 7→ f (δt)). We then
have the following.

3.9 (R)-Semigroup Characterization Theorem Let (E,T) be a semigroup and let R be an
R+-ring. Then(E,T) is an(R)-semigroup if and only if there is a unique continuous linearmap-
pingν : E→ Lc(R,E) such that the following diagram commutes.

E Lc(R,E)

C (R+,E)

-

Z
Z

Z
Z

Z
Z~ ?

ν

rT I(R,E)

PROOF: Consult [H4].2
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In other words, a semigroup(E,T) is an(R)-semigroup if and only if its natural response may
be interpreted as an element ofLc(R,E), when this space is regarded (viaI(R,E)) as a subspace of
C (R+,E)). Let bT,R : R×E→ E denote the bilinear mapping corresponding toν : E→ L(R,E)
in the above diagram. It is easy to see thatbT,R recovers precisely the(R)-module action corre-
sponding to the semigroup(E,T); thus we callbT,R the(R)-module associated with(E,T). This
completes our characterization of the natural correspondence between(R)-semigroups and(R)-
modules. To emphasize this, we state it as a formal result.

3.10 Theorem — Natural Correspondence Let R be anR+-ring. operator. Then the(R)-
semigroups and the(R)-modules are in a natural correspondence, characterized bythe following.

(a) Let (E,T) be an(R)-semigroup. ThenTbT,R = T.

(b) Let b: R×E→ E be an(R)-module. ThenbTb,R = b.

(c) An h∈ L(E,F) is a morphism of(R)-semigroups h: (E,T)→ (F,S) if and only if it is a
morphism of the corresponding(R)-modules h: (E,bT,R)→ (F,bS,R). 2

Categorically speaking, if we fix a categoryK of l.c.s.’s, and then defineCSG(R,K ) to be the
category of all(R)-semigroups over spaces inK , with morphisms precisely the(R)-semigroup
morphisms whose underlying functions areK -morphisms, and if we define the category of(R)-
modulesMOD(R,K ) similarly, then the above result says precisely that these two categories are
naturally equivalent.

3.11 More on the Issue of CompletenessIt is well known that to ensure a unique solution
to the differential equation (6), the mapf , which is taken to be the infinitesimal generator of a
semigroup(Q,T), must be densely defined [K5, Thm. 3]. We know by 3.8 that if(Q,T) is an(R)
semigroup for any sequentially completeR+-ring R, or if Q itself is sequentially complete, then this
will be the case. In particular, ifQ is sequentially complete, then the(R)-semigroups and(∆(R))-
semigroups coincide, and each such semigroup will have a densely defined infinitesimal generator.
Unfortunately, there does not seem to be a nice algebraic wayto characterize exactly those(∆(R))-
semigroups which have densely defined infinitesimal generators, unless the underlying spaces are
sequentially complete. This is apparently a consequence ofthe fact that having a densely defined
infinitesimal generator is not an “algebraic” property of a semigroup. To get aggregate completion
of a class of semigroups, we must mandate sequential completeness of either the underlyingR+-
ring or else the underlying space of each semigroup. For moreon this issue, consult [H4].

Example Generation

So far, our presentation has been completely abstract. We now turn to the issue of explicitly
identifying ways of producingR+-rings. In view of 3.9, to characterize the natural responses of
(R)-semigroups, it suffices to provide a characterization ofLc(R,E). We next provide a way to
explicitly produce the desiredR+-ring, based upon this set of responses.
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3.12 Definition Let F denote an operator which assigns to each l.c.s.E a corresponding l.c.s.
F (R+,E) of continuous functions fromR+ to E. WhenE = K , we writeF (R+,E) asF (R+).
F is called anR+-ring generatorif it satisfies the following conditions.

(g1) For eacht ∈ R+, the point measure(δt : ϕ 7→ ϕ(t)) ∈ F ′(R+).

(g2) For each l.c.s.E andt ∈ R+, F (R+,E) is closed under the left translation operator
τt : f 7→ f (·+ t), and the translation inclusionF (R+)→ F (R+,F (R+)) given by
ϕ 7→ (t 7→ τt(ϕ)) is continuous.

(g3) There is a natural isomorphismF (R+,E)∼= Lc(∆(F ′(R+)),E) given by f 7→ (δt 7→
f (t)), where∆(F ′(R+)) is defined to be the subspace ofF ′(R+) spanned by{δt | t ∈
R+} with the induced topology.

(g4) F (R+) is complete.

3.13 Theorem LetF be anR+-ring generator. ThenF ′(R+) is anR+-ring with multiplication
convolution of measures on the functions inF (R+). Furthermore,(E,T) is a (∆(F ′(R+)))-
semigroup if and only if its responserT lies inF (R+,E).

PROOF: Consult [H4].2

Whenever we extract theR+ ring F ′(R+) from the R+-ring generatorF , we shall always
assume that the multiplication is convolution of measures.

In [S1], Laurent Schwartz defined a wide class of spaces ofm-times differentiable functions,
which he termedHm spaces. From these, he defined, for an arbitrary l.c.s.E, the spaces̃Hm(E),
which consist of precisely those functionsf ∈C (R+,E) which have the property thatt 7→ 〈 f (t),e′〉 ∈
Hm for eache′ ∈E′, endowed with the topology of uniform convergence on equicontinuous subsets
of E′.† He then proceeded to provide a wealth of examples. We may drawupon this wealth, as
shown by the following.

3.14 Theorem For m= 0 or m= ∞, everyH̃m space in the sense of Schwartz such thatF (R+)
is complete and polar reflexive defines anR+-ring generator.

PROOF: Consult [H4].2

RequiringF (R+) to be complete and polar reflexive is not very constraining, and is satisfied by
all reasonable examples ofH̃m, including those cases for whichF (R+) is a Fréchet space or, more
generally, a strict (LF) space. However, the framework of Schwartz admits some rather anomalous
examples which do not meet this criterion. See [H4] for a morecomplete discussion.

†We only consider those spaces which satisfy hypotheses(Hm,m+l ) and(H5) as well as(H1) through(H4), of the
framework of [S1]. In addition, Schwartz actually worked with the domainRn rather thanR+, but his results all easily
translate to our framework. To avoid undue pedantry, we shall refer to his work as though he usedR+.
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Specific Examples

We now proceed to give a number of specific examples. In general, we attempt to give system-
theoretic insight into the properties of each example, but omit proofs. In all cases, elaboration,
with complete proof, may be found in[H4], even when not explicitly cited.

3.15 Example — All Semigroups The spaceC (R+,E) defines anR+-ring generator. It is one
of the H̃m(E) spaces of Schwartz, andC (R+) is a Fréchet space, so it is anR+-ring generator.
It is also the most general of such generators, in that every semigroup is an∆(R+)-semigroup.
Indeed, for any(C ′(R+))-semigroup(E,T), sinceC (R+,E) ∼= Lc(∆(C ′(R+)),E), I(R,E) must
be the identity, up to isomorphism. Thus, in the notation of 3.9,ν = rT ; i.e., (E,T) is a semigroup.
C ′(R+) is a Fréchet space and consists of all measures onR+ with compact support, in the sense
of Bourbaki [B3].

Yamamoto [Y, Thm. 3.24] has shown that every semigroup(E,T) on a complete l.c.s. admits the
structure of aC ′(R+)-module which is hypocontinuous with respect to the precompact subsets of
C ′(R+) and the finite subsets ofE. He uses this result to construct a module action for a dynamics
described by a semigroup, in much the same way as we have. On the other hand, he does not
specifically address the converse question of constructinga semigroup from a module action, so
he does not need to postulate c-hypocontinuity with respectto the precompact subsets ofE, as we
have.

3.16 Note — Finite Nonzero Differentiability It is tempting to propose thatCm(R+,E), the
space of all functionsf : R+ → E which are m-times differentiable, is anR+-ring generator.
However, the associated ring action of convolution is not everywhere defined. For example, ifm=
1, thenδ′(0)∗δ′(0) = δ′′(0), which is inC2(R+), but not inC1(R+). This is why the requirement
of m= 0 orm= ∞ is necessary. Form= ∞ we have the following.

3.17 Example — Infinitely Differentiable Semigroups LetE(R+,E) denote the space of all
infinitely differentiable functionsR+→ E, with the topology of uniform convergence of functions
and all derivatives on compact subsets ofR+. The spaceE(R+,E) defines anR+-ring generator,
since it is one of thẽHm(E) spaces of Schwartz andE(R+) is a Fréchet space as well. It character-
izes those responses which are infinitely differentiable, which Waelbroeck [W] has termed simply
differentiable. E ′(R+) is a (PF) space which consists of all distributions onR+ with compact
support, in the sense of Schwartz [S3]. This class of dynamics has several interesting properties,
including that its semigroups have continuous infinitesimal generators, and thatE(R+) is reflex-
ive, so that the strong dual and polar dual coincide. For these and other reasons, it has been used
as the basis of several algebraic approaches to continuous-time linear systems, including [BDM],
[K2],[KH], and [H2].
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3.18 Example — Equicontinuous Semigroups A semigroup(E,T) is equicontinuousif the
entire family of operators{T(t) | t ∈R+} is an equicontinuous subset ofL(E). To characterize the
responses of such semigroups, letBυ(R+,E) denote the space of all functions inC (R+,E) which
are bounded and uniformly continuous. Endow this space withthe topology of uniform conver-
gence onR+; that is, with the topology defined by seminorms of the formf 7→ supt∈R+

| f (t)|. Bυ
is anR+-ring generator, and we furthermore have the following characterization.

3.19 Proposition Let (E,T) be a semigroup. Then the following are equivalent.

(a) (E,T) is an equicontinuous semigroup of operators.

(b) For each e∈ E, the functionrT(e) is uniformly continuous.

(c) (E,T) is an(∆(B ′υ(R+)))-semigroup.

PROOF: Consult [H4].2

Bυ(R+,E) is not anH̃m(E) space in the sense of Schwartz, so that the class of spaces admissible
asR+-ring generators extends beyond the class ofH̃m(E) spaces.
Bυ(R+) is a Banach space with the supremum norm, but the spaceB ′υ(R+) is not a Banach

space under the polar topology. Rather, it is a (PF) space whosecompactsets are the unit balls
of the strong (Banach) dual. It consists of a special subspace of the space of all regular bounded
additive measures [DS] onR+, which we term theuniform bounded additive measures. These
“measures” are extremely general, and do not possess the countable additivity usually associated
with measures. The reader is referred to [H4] for further description.

It is interesting to note that in equicontinuous semigroupsthe convergence is actually uniform
on bounded sets. Indeed every equicontinuous subset ofL(E) is bounded inLb(E) (the topology
of uniform convergence on bounded sets) [K7, §39, 3(1)].

3.20 Example — Stable Semigroups A common form of stability mandates that the natural
response decay to 0 as time approaches infinity. To recapturethis in terms of semigroups, call
a semigroup(E,T) stableif lim t→∞ T(t)e= 0 for eache∈ E. To characterize such semigroups
as module actions, for any l.c.s.E, let Co(R+,E) denote the (topological) subspace ofBυ(R+,E)
consisting of those functionsf : R+→ E such that limt→∞ f (t) = 0. The (PF) spaceC ′o(R+) is
an R+-ring generator, and the uniformly stable semigroups are then precisely the∆((C ′o(R+)))-
semigroups.C ′o(R+) is the space of all integrable (i.e., L1) measures. (See,e.g., [H7, Chap. 4,
§5]). LikeBυ(R+,E), Co(R+,E) is not anH̃m(E) space in the sense of Schwartz.

3.21 Example — Bounded Semigroups A substantially weaker form of system theoretic sta-
bility than that discussed in the previous parargraph postulates that the response does not continue
to grow indefinitely. If the underlying spaceE of a semigroup is a Banach space, this is often
formalized by stating that supt∈R+

‖T(t)e‖ is finite for eache∈ E. In our more general context,
call a semigroup(E,T) boundedif, for eache∈ E, {T(t)e | t ∈ R+} is a bounded subset ofE. In
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an attempt to represent such semigroups, letB(R+,E) denote the space of all bounded functions
in C (R+,E) topologized by seminorms of same form as those ofBυ(R+,E). B(R+) is a Banach
space; unfortunately limt→0δt 6= δ0 in B ′(R+), so it cannot be anR+-ring. Indeed, the function
t 7→ sin(t2) is surely inB(R+), yet sin((t + ε)2) 6→ sin(t2) asε→ 0 uniformly over allt ∈ R+.
In other words, limε→0δε ∗ sin(t2) 6= sin(t2). From this it is easy to show that distributional con-
volution onB ′(R+) is not c-hypocontinuous. This is why we use uniformly continuous functions
in the above example; the translation of uniformly continuous functions is continuous under the
supremum-norm topology.

To recapture the bounded semigroups, we endowB(R+) with another topology, weaker and
rather more complex. DefineL1

1↓ denote the set of all strictly positive and nonincreasingL1 func-
tions in C (R+). For each such functionζ, define the spaceB([R+,ζ],E) to have as members
all f ∈ C (R+,E) with the property that{ζ(t)· f (t) | t ∈ R+} is bounded inE, topologized by
seminorms of the formf 7→ supt∈R+

ζ(t)·α( f (t)), with α a continuous seminorm onE. Clearly
B(R+,E) ⊆ B([R+,ζ],E); we let ιζ : B(R+,E)→ B([R+,ζ],E) denote the continuous natural
inclusion. Furthermore, ifζ1(t) ≥ ζ2(t) for all t ∈ R+, then we have a continuous natural in-
clusion ιζ1ζ2

: B([R+,ζ1],E)→ B([R+,ζ2],E). This yields a directed system, and we assign to
B(R+,E) the projective limit topology lim

←
ιζαζβ

(B([R+,ζβ],E), which we denote byB←(R+,E).

B←(R+,E) is the same space algebraically asB(R+,E), but its topology is stricly weaker than
that of the latter. It is not a (PF) space. Also,B ′←(R+) is the same space algebraically asC ′o(R+),
but its topology is strictly stronger, since it has a larger dual. Nonetheless,B← is indeed anR+-
ring generator, and the(∆(B ′←(R+)))-semigroups are precisely the bounded ones. This shows
strikingly that the same algebraic ring may underly more than one distinctR+-ring.

We note thatB←(R+,E) is indeed añHm(E) space, which Schwartz [S1] denotes byB0
c(E).

However, we have constructed this space in quite a differentfashion than did he.
A semigroup(E,T) with E barrelled is a bounded semigroup if and only if it is equicontinu-

ous. Indeed, ifE is barrelled, then every simply bounded subset ofL(E) is equicontinuous [K7,
§39,3(2)], hence, by 3.19, every bounded semigroup onE is equicontinuous, and hence its re-
sponse is in fact inBυ(R+,E). Since Banach and Fréchet spaces, as well as (LF) spaces, are
always barrelled, in most interesting examples a bounded response translates into equicontinuity.
Nonetheless, it is possible to construct a bounded semigroup whose response is not uniformly
continuous, so boundedness does not automatically imply uniform continuity for semigroups.

3.22 Finite-Response SemigroupsUtilizing C (R+,E) as the space of outputs yields all(Co)
semigroups, as shown in 3.15. By restricting the outputs to be inB←(R+,E), in Bυ(R+,E) and
then inCo(R+,E), we obtained successively more restricted classes of semigroup responses. Con-
tinuing to the extreme, we may consider only those elements of C (R+,E) which have compact
support; that is, only thosef : R+→ E which vanish for allt greater than somet f . This is the
spaceCκ(R+,E), denotedD0(E) in [S1]. Unfortunately, this choice does not generate anR+-
ring. Rather, we must work with the larger spaceCσκ(R+,E) of all functions inC (R+,E) with
scalar-compact support. This space is anH̃m(E) space (denoted̃D0(E) in [S1]), andC ′σκ(R+) is
complete, so it is anR+-ring generator. A continuous functionf : R+→ E is in Cσκ(R+,E) pre-
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cisely in the case that, for eache′ ∈ E′, theK -valued functiont 7→ 〈 f (t),e′〉 has compact support.
The topology on this space is defined as follows. On the spaceCσκ(R+), assign the usual strict
inductive limit topology of the spacesC (K), where the latter is the space of all functions inC (R+)
with support contained in the compact setK, with the topology defined by the supremum norm.
Then, the topology ofCσκ(R+,E) is defined by the fundamental system of neighborhoods of the
form { f | (∀e′ ∈U◦)(t 7→ 〈 f (t),e′〉 ∈V)}, asU ranges overU(E) andV overU(Cκo(R+)). Call
a semigroup(E,T) with response inCσκ(R+,E) afinite-response semigroup.
Cσκ(R+,E) andCκ(R+,E) do in fact agree, algebraically as well as topologically, whenE is a

Banach space. In particular, they agree whenE = K , so thatCσκ(R+) = Cκ(R+). Thus, we cannot
hope to get anR+-ring generator which admits precisely those responses inCσκ(R+,E). We note
also thatC ′σκ(R+) is the space of all Radon measures onR+ [H7, Ch. 4, §4].

We may alternately takem = ∞ here and work with the spaceC∞
σκ(R+,E) of all infinitely

differentiable functions inCσκ(R+,E). The dualC ′∞κ (R+) of C∞
κ (R+) (often denotedD ′ in the

literature), has been used as the basis in some approaches tocontinuous time systems (e.g., [K3]).

3.23 Other Useful Examples One may develop a host of other examples. We mention just
two. Starting with periodic functions and their associateddistributions [B2], a theory ofperi-
odic semigroupsmay be developed. Similarly, we may develop a theory of semigroups withre-
sponse rapidly decaying at infinityby using the spaceS(R+,E) of functions inC (R+,E) such that
limt→∞(1+ t2) f (t) = 0 for all natural numbersk. The seminorms defining the topology are of the
form f 7→ supt∈R+

α((1+ t2)k f (t)), with α ranging over continuous seminorms onE andk ranging
over the natural numbers. See [H7, Chap. 2, Example 11], for details on the related spaces.

3.24 Simple Examples It is also possible to construct some extremely simple examples. For
example, let Con(R+,E) denote the space of all constant functions inC (R+,E), endowed with the
norm f 7→ | f (0)|. Clearly, Con(R+,E) ∼= K under the associationf 7→ f (0). Nonetheless, Con
satisfies all of the criteria for anR+-ring generator. Note also that Con′(R+)∼= K , andδs = δt for
anys, t ∈R+. In other words, suitably interpreted,K itself is anR+-ring generator, albeit a trivial
and rather uninteresting one.

4. Behavior
In order to discuss behavior properly, we need to fix two parameters. First of all, a base category
K of l.c.s.’s from which all of the spaces of interest will be taken must be identified.K will always
be taken to be a full subcategory of the categoryLCS of all locally convex spaces, with continuous
linear maps as morphisms. Second, a baseR+-ring R must be established. Its underlying space
is aK -object, upon which all dynamics will be based. Having established these two parameters,
the categoryDyn(R,K ) is defined to be that whose objects are the(R)-semigroups(E,T) such
thatE is aK object and whose morphisms are just the associated semigroup morphisms, which
are termeddynamorphisms, in agreement with [AM1]. (Thus,Dyn(R,K ) is just the category
CSG(R,K ) described earlier.) An(R,K )-systemis a 6-tuple(Q,T, I ,Y,g,h) such that(Q,T) is
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an (R,K ) semigroup,I andY are objects ofK , andg : I → Q and h : Q→ Y are continuous
linear maps. It should be remembered that to ensure thatgT is densely defined for each(R,K )-
system, we must either takeR to be sequentially complete or else require eachK object to be
sequentially complete. However, these requirements do notaffect the abstract constructions, since
the infinitesimal generator is never explicitly utilized.

4.1 Definitions — Free and Cofree Dynamics It is now necessary to make precise the ex-
tensions, to the continuous-time case, of free and cofree dynamics as presented for discrete time
in Section 1. LetI be aK object. A free (R,K )-dynamicsover I is an(R,K )-dynamics(I$,Σ$)
together with aK morphismη : I→ I$ such that for any(R,K )-dynamics(Q,T) andK morphism
g : I → Q, there is a unique dynamorphismρ : (I$,Σ$)→ (Q,T) such that the following diagram
commutes.

I I$

Q

-

Z
Z

Z
Z

Z
Z~ ?

η

g ρ

(I$,Σ$)

(Q,T)

ρ

?

(The triangle on the left says thatg= ρ◦η asK morphisms, while the arrow on the right says that
ρ is also a dynamorphism.)

Dually, letY be aK object. Acofree(R,K )-dynamicsoverY is an(R,K )-dynamics(Y$,Σ$)
together with aK morphismε : Y$→ Y such that for any other(R,K )-dynamics(Q,T) andK
morphismh : Q→Y, there is a unique dynamorphismσ : (Q,T)→ (Y$,Σ$) such that the following
diagram commutes.

Q

Y$ Y-

Z
Z

Z
Z

Z
Z~?

ε

σ h

(Q,T)

(Y$,Σ$)

σ
?

If they exist, free dynamics and cofree dynamics are unique up to isomorphism (seee.g., [HS,
Prop. 26.7]), so we may speak ofthe free dynamics andthe cofree dynamics, without essential
ambiguity.

Let M = (Q,T, I ,g,Y,h) be an(R,K )-system. If both free dynamics overI and cofree dynamics
overY exist, thenρ is called thereachability map, σ theobservability map, andσ◦ρ thebehavior
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of M. Thus, to construct the behavior ofM, it suffices to construct the free dynamics overI and
the cofree dynamics overY, relative to(R,K ).

Construction of Free Dynamics

To construct free(R,K )-dynamics for a specific pair(R,K ), it is easiest to first perform the nec-
essary constructions forK = LCS, and then to extend the results to partial completions ofK .

Let R be anR+-ring, and letI be any l.c.s..R⊗c I denotes the tensor product ofR andI (as
vector spaces), equipped with the strongest locally convextopology making the canonical bilinear
mappingp : R× I → R⊗ I c-hypocontinuous. (We reserve the symbolp to denote this mapping.)
Recalling that∗R denotes the ring multiplication ofR, define the bilinear mapping∗R,I : R× (R⊗c

I)→ R⊗c I by (r,s⊗ i) 7→ (r ∗Rs)⊗ i. It is well-known that it is anR-module action [CE, Ch. 2];
we need to establish that it is an(R)-module action by demonstrating its c-hypocontinuity.

4.2 Lemma Let R be anR+-ring and let I be a l.c.s.. Then R⊗c I is an (R)-module under the
action∗R,I .

PROOF: In view of 3.3, it suffices to show that it is hypocontinuous with respect to the precompact
subsets ofRand finite subsets ofR⊗c I .

We first establish that∗R,I is hypocontinuous with respect to the precompact subsets ofR. Using

the corresponding trilinear mapping∗R× I : R×R× I → R⊗c I given byR×R× I
1×p
−→ R× (R⊗c

I)
∗R⊗I
−→ R⊗c I , and givenV ∈U(R⊗c I), it must be established that (i) given anyK1, K2 ∈ P (R),

there is aU ∈U(I) such that(∗R× I)(K1×K2×U) ⊆V, and that (ii) given anyK1 ∈ P (R) and
K3⊆ P (I), there is aW ∈U(R) such that(∗R× I)(K1×W×K3)⊆V.

To show claim (i), letV, K1, andK2 be as stated. By 3.3(b),K1∗K2 is precompact. Therefore,
there is aU ∈U(I) such thatp((K1∗K2)×U)⊆V. Sincep((K1∗K2)×U) = (∗R× I)(K1×K2×
U), (i) is proved.

To show claim (ii), letV, K1, andK3, be as stated. Sincep is c-hypocontinuous, there is aY ∈
U(R) such thatp(Y×K3)⊆V. Since multiplication inR is c-hypocontinuous, there is aU ∈U(R)
such thatK1∗U ⊆Y, sop((K1∗U)×K3)⊆V. As p((K1∗U)×K3) = (∗R× I)(K1×U×K3), (ii)
is proved.

The hypocontinuity of∗R,I with respect to the finite subsets ofR⊗c I follows immediately from
claim (ii) and the fact that∗R is commutative.2

We let ΣR⊗ I denote the semigroup action corresponding to∗R,I ; i.e., T∗R,I . Clearly, ((ΣR⊗
I)(t))(r ⊗ i) = ((δt ∗ r)⊗ i). Now, given a l.c.s.I , defineη : I → R⊗c I by i 7→ δo⊗ i. η is
surely continuous, as it is the restriction ofp : R× I → R⊗ I to R×{δo}. We have the following
fundamental result.

4.3 Theorem Let R be anR+-ring, and let I be a l.c.s.. Then((R⊗c I ,ΣR⊗ I),η) is a free
(R)-semigroup over I (i.e., it is a free(R,LCS)-dynamics over I). Given another(R)-semigroup
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(Q,T) and continuous linear mapping g: I → Q, the unique(R)-semigroup morphismρ making
the diagram below commute is defined by r⊗ i 7→ bT,R(r,g(i)).

I R⊗c I

Q

-

Z
Z

Z
Z

Z
Z~ ?

η

g ρ

(R⊗c I ,ΣR⊗ I)

(Q,T)

ρ

?

PROOF: The proof is in terms of the associated(R)-module actions. It is well-known thatR⊗ I is
a freeR-module, withη as defined [CE, Ch. 2]. By the above lemma, we know that it is also an

(R)-module. It is clear thatR× I
1×g
−→ R×Q

b
−→ Q is c-hypocontinuous, whenceρ is continuous.

2

Let M = (Q,T, I ,g,Y,h) be an(R,LCS)-system. The above construction defines the space of
inputs and the reachability map forM. Let us first consider inputs in∆(R)⊗c I . View the el-
ementδt ⊗ I as an impulse input applied to the system at time−t with weight i. (Note the
time reversal.) The responseρ(δt ⊗ i) is the resulting state at time 0. Thus,∆(R)⊗ I is re-
garded as an input space of finite linear combinations ofI -valued impulses occurring at times
≤ 0. The reachability mapρ gives the response at time 0 to such a train of impulses. That is,
ρ(∑n

k=1 δtk⊗ ik) = ∑n
k=1bT,R(δtk,g(ik)) = ∑n

k=1T(tk)g(ik). Note the direct analogy to the discrete-
time case, in which an input may be regarded to be of the form∑n

k=1 δk⊗ ik(= . . . , ik, . . . , i1, i0))
and the response to be∑n

k=1T(k)g(ik) = ∑n
k=1 f kg(ik), where f = T(1) [AM1]. The only differ-

ence, other than the topological considerations required for differentiation, is that the set of times
at which an input is allowed to occur is the nonpositive realsR− in the continuous-time case (recall
the time reversal) and the nonpositive integersN− in the discrete-time case, and thatf assumes the
role of a continuous rather than discrete generator. Thus, if we first examine the input signals and
reachability map of a continuous-time linear system in terms of its skeleton input set∆(R)⊗ I , we
see that it is not all that different from its discrete-time counterpart. What does make continuous-
time linear systems richer than their discrete-time counterparts is the ability to complete∆(R) and
∆(R)⊗ I to obtain a much more diversified set of inputs, tailored to the specific situation.

Let r⊗ i ∈R⊗c I . If r = δt for somet, we already know thatρ(r⊗ i) = T(t)g(i). If r ∈Rmore
generally, we can approximater as closely as desired by a sum of the form∑n

j=1a j ·δt j with a j ∈K ,
since∆(R) is dense inR. ∑n

j=1a j ·δt j ⊗ i then approximatesr⊗ i. Sinceρ is continuous,ρ(r⊗ i) is
approximated by∑n

j=1a j ·T(t j)g(i).
Now suppose thatr is represented by a functionϕr : R+ → K . Then, using the density of

∆(R) in R, there must be a net of sums∑nα
j=1a j ·T(t j)g(i) which converges to theQ-valued integral

R ∞
0 ϕr(t)T(t)g(i)dt. Regardingϕr(t) as an input signal to the systemM, the time scale is reversed,

so if we viewϕ : R−→ K , the state at timet = 0 is q(0) =
R 0
−∞ T(−t)(ϕr(t)·g(i))dt, which is in
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agreement with the classical result for finite-dimensionalsystems [PA, 6-1, Thm. 2]. The extension
to a sum of the form∑n

k=1 rk⊗ ik of such inputs is by simple linearity. For general inputs of the
form µ⊗ i ∈ R⊗c I , this above formula also works, since we may view(t 7→ T(t)) ∈ Lc(R,E), by
3.9, and then view

R ∞
0 µ T(t)g(i)dt ∈ E as the weakly continuous linear functional onE′ given by

e′ 7→ µ(t 7→ 〈T(t)g(i),e′〉)
It is useful to have a more concrete representation of the spaceR⊗ I . In harmony with the notion

of vector-valued distribution of Schwartz [S2], we callLc(R′, I) the space of allI -valued(R)-
distributions. An elementf ∈ L(R′, I) is termedfinite dimensionalif f (R′) is a finite-dimensional
subspace ofI , and the subspace consisting of these mappings is denotedF(R′, I). Now, for any
test functionϕ ∈ R′ andµ∈ Lc(R′, I), we have a natural action〈µ,ϕ〉 = ϕ(µ) ∈ I and a natural
injectionΦ : R⊗ I → F(R′, I) via µ⊗ i 7→ (ϕ 7→ 〈µ,ϕ〉·i). Conversely, anyf ∈ F(R′, I) has a unique
decomposition of the form∑n

j=1µj ·i j with eachµj ∈ R′′ and eachi j ∈ I , so every∑n
j=1µj ⊗ i j is a

representation off in R′′⊗ I . Thus, ifR is c-complete (soR′′ = R), then the space of inputsR⊗ I
may be identified with the space of all finite-dimensionalI -valued(R)-distributions.

If I = Km for some finitem, then every linear map intoI is finite dimensional, soR⊗c I ∼= Rm,
both algebraically and topologically. However, ifI is not finite dimensional, thenF(R′, I) is always
a proper subset ofL(R′, I), and the topology induced onF(R′, I) by R⊗c I is generally strictly
finer than the topology induced as a subspace ofLc(R′, I). To understand this situation further,
we pursue construction of a free(R,K )-dynamics in the case thatK is L̃CS for some partial
completion operator̃ . In the abstract sense, all that need be done is to complete the spaces
involved in the construction for theLCS case given in 4.3. However, there are a few details which
must be addressed to ensure that this extension is well-defined. We proceed as follows.

4.4 Lemma Let E and F be l.c.s.’s such that for any linear f: E→ F, if f|A ( f restricted to A)
is continuous for each A∈ P (E), then f∈ L(E,F). Then for any partial completion operator̃,
Lc(E,F) is ˜-complete whenever F is.

PROOF: For the case of̃ = ̂, this is just Theorem 32.2 of [T] specialized to precompact sets.
However, the proof in [T] goes through for any partial completion operator with only inessential
changes. We therefore omit the proof, and refer the reader to[T] instead.2

4.5 Proposition Let E be an almost polar reflexive l.c.s. such that E′ is complete, and let F be
any l.c.s.. Then, for any partial completion operator˜, Lc(E,F) is ˜-complete whenever F is.

PROOF: We show thatE satisfies the conditions of the above lemma. Letf : E→ F be a linear
map which is continuous on eachK ∈ P (E). Then, in particular,f sends precompact sets into
precompact sets. Letf ∗ : F∗→E∗ denote the algebraic transpose off . Now eachg∈ f ∗(F ′) maps
precompact subsets ofE into precompact subsets ofK , just by definition of f ∗. Each suchg is
continuous on precompact sets, sinceK is locally compact. Thusg∈ Ê′ by Grothendieck’s com-
pletion theorem [K6, §21,9,(2)]. SinceE′ is already complete, we must in fact have a continuous
f ′ : F ′→ E′, and sof ′′ : E′′→ F ′′ is also continuous. SinceE is almost polar reflexive, this may
be written asf ′′|E : E→ F ′′. Then, noting thatF ′′ induces a topology onF which is finer than the
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initial topology, we have thatf is continuous, as required.2

4.6 Proposition Let R be anR+-ring, and let(E,b) be an(R)-module. Let˜ be a partial
completion operator. Then b extends uniquely to an(R)-module action R× Ẽ→ Ẽ.

PROOF: First extend the codomain ofb to be Ẽ; b : R×E→ Ẽ. Next, convert this to a linear
mappingb̄ : E→ Lc(R, Ẽ). By the above theorem,(Lc(R, Ẽ))˜ = Lc(R, Ẽ), sob̄ extends tõE→
Lc(R, Ẽ). An application of 3.3(a) now shows that the corresponding bilinear mappingR× Ẽ→ Ẽ
is c-hypocontinuous.2

Let ˜ be a partial completion operator, letI be a l.c.s., and letR be a˜-completeR+-ring.
Denote by∗̃R,I the unique extension of the(R)-module action∗R,I to R⊗̃c I guaranteed by the
above theorem, and letΣR⊗̃c I denote the associated(R)-semigroup action.η : I →R⊗̃c I denotes
the extension of the mapη defined previously. We then have the following extension of 4.4.

4.7 Theorem Let ˜ be a partial completion operator, let I be ã-complete l.c.s., and let R be
anR+-ring. Then((R⊗̃c I ,ΣR⊗̃c I), ˜η) is a free(R)-semigroup over I (i.e., it is a free(R, L̃CS)-
dynamics over I). For(Q,T) an (R, ˜LCS)-dynamics and g: I →Q a continuous linear mapping,
the unique morphism required is justρ̃ as shown below, withρ defined as in 4.4.

I R⊗̃c I

Q

-

Z
Z

Z
Z

Z
Z~ ?

η̃

g ρ̃

(R⊗̃c I ,ΣR⊗̃c I)

(Q,T)

ρ̃
?

PROOF: Follows immediately from 4.4 and the previous proposition. 2

Unfortunately, we do not have a completely satisfactory concrete representation ofR⊗̃c I is the
most general case. The best that we can do is to study its relationship to the projective tensor
product, about which a great deal more is known. Specifically, theprojective tensor product R⊗π I
carries the strongest locally convex topology making the canonical bilinear mappingp : R× I →
R⊗ I continuous [K7, §41]. In general, this topology is strictlyweaker than the topology onR⊗c I .
Nontheless, there are substantial ties between these two tensor products, as shown by the following
result.

4.8 Proposition Let E and F be two arbitrary l.c.s.’s.

(a) The precompact subsets of E⊗π F are precisely the subsets of closed absolutely convex
hulls of sets of the form K1⊗K2, with K1 and K2 precompact.
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(b) The precompact subsets of E⊗c F and E⊗π F are identical.

(c) The continuous bijection E⊗c F → E⊗π F may be extended to a continuous bijection
E ⊗̌c F → E ⊗̌π F, whose restriction to each precompact subset is a topological isomor-
phism.

(d) If E is polar reflexive, then the canonical injectionΦ : E⊗π F→ Lc(E′,F) is a continuous
embedding whose image isF(E′,F).

(e) If E and F are (PF) spaces, then E⊗c F and E⊗π F carry the same topology.

PROOF: (a) SinceE⊗π F carries the strongest locally convex topology making the natural projec-
tion p : E×F → E⊗F continuous, the precompact subsets ofE⊗π F must be exactly those sets
K whose inverse imagep−1(K) is precompact inE×F . Since the precompact subsets ofE×F
are precisely the products of precompact sets inE andF, the result follows.
(b) Sincep : E×F→E⊗cF is c-hypocontinuous, we have immediately that the closed absolutely
convex hull ofp(K1×K2) is precompact inE⊗c F . However,E⊗c F carries a finer topology than
doesE⊗π F, and hence must have no more precompact sets. The result thusfollows from (a).
(c) Follows immediately from (b), since a continuous bijection of compact spaces is necessarily a
homeomorphism.
(d) Letβ : E×F→ Lc(E′,F) given on elements by(µ, i) 7→ (ϕ 7→ 〈µ,ϕ〉·i) be the bilinear mapping
corresponding toΦ. For K ∈ P (E′), V ∈ U(F), we haveβ(K◦×V) ⊆ { f | f (K) ⊆ V}, so that
β is continuous, and so,a fortiori, c-hypocontinuous. ThusΦ is continuous. In fact, if we let
F1 ∈ L(E′,F) denote the subspace consisting of the maps with a one-dimensional image (repre-
sented inE⊗c F by elements of the formµ⊗ i), then it is easy to see thatβ is ontoF1, and that
β(K◦×V) = { f ∈ F1 | f (K) ⊆ V}, so thatβ is an open mapping. Translating back, this means
precisely thatΦ is an embedding. SinceE is polar reflexive,E⊗F = E′′⊗F = F(E′,F) by the
standard characterization [K7, §43,1], whenceΦ is surjective.
(e) If E andF are (PF) spaces, then every c-hypocontinuous bilinear mapping on E×F is con-
tinuous. The proof follows almost verbatim the standard onethat every hypcontinuous bilinear
mapping on (DF) spaces is continuous [K7, §40,2(10)]. It suffices to note that the compact subsets
of (PF) spaces are correspond exactly to the bounded subspaces in their (DF) counterparts, and to
substitute “compact” for “bounded” throughout.2

From the preceding proposition, we may deduce thatR⊗̃c I is naturally isomorphic to a subspace
of I -valued(R)-distributions, provided that̃ ≤ ˇ . The compact sets will be exactly those induced
by Lc(R+, I). However, in the general case, the induced topology will be strictly finer, and any
attempt to go beyond c-completion may run into injectivity problems. More to the point, it is
certainly possible to extend the continuous injectionR⊗c I → R⊗π I to the completionsR⊗̂c I →
R⊗̂π I , but there is no guarantee that this extension will be injective. If it were not injective, this
would imply the existence of nonzero elements ofR⊗̂c I which correspond to the zero mapping in
L(R′, I), rendering any model ofR⊗̂c I as a subspace ofL(R′, I) somewhat meaningless. We know
of no work addressing this issue, and we can offer no futher insight into it at the present time.
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Another characterization ofR⊗̌c I is provided in [H5]. There we show that ifI is polar reflexive,
so too isR⊗̌c I , and the latter is naturally isomorphic to the polar dual ofLc(R, I ′). But in that
framework as well, it seems impossible to obtain anything a concrete representation beyond c-
completion.

To obtain a truly concrete representation ofR⊗̂c I , we can offer no better alternative than to
restrict attention to those cases in whichR⊗c I = R⊗π I . Item (e) of the preceding proposition
provides such conditions; namely, require bothR andI to be (PF) spaces. This is not as extreme
a constraint as might first appear. We know from the previous section that most of the important
examples ofR+-rings are (PF) spaces. Furthermore, wheneverI is a Banach space or the dual of a
Fréchet space, it will be a (PF) space as well.

Since the natural injectionR⊗π I → Lc(R′, I) is an embedding, and sinceLc(R′, I) is ˜-
complete wheneverI is, we know thatR⊗̃c I will be a (topological) subspace ofLc(R′, I), the
space of allI -valued(R)-distributions. It is pertinent to ask when it will be all ofLc(R′, I). It
turns out to be rather easy to give an answer for the case that˜ is the full completion operator̂ .
Following [K7, §43,1], we say that an l.c.s.E has theapproximation propertyif F(E,E) is dense
in Lc(E).

4.9 Proposition Let R be a completeR+-ring with the approximation property, and let I be a
complete lcs.

(a) R⊗̂π I is naturally isomorphic (topologically as well as algebraically) to Lc(R′, I).

(b) If R is of the formF ′(R+), withF (R+) an H̃m space in the sense of Schwartz[S1], then R
has the approximation property.

PROOF: (a) This follows immediately from [K7, §43,1(1)] and 4.5.
(b) For a proof that everỹHm space has the approximation property, see [S1, Prop. 16]. However, if
R′ has the approximation property, then so too doesR. This follows from [K7, §43,4(9)], noting that
in that statement and its proof, “quasi-complete” may be everywhere replaced with “c-complete”.
2

We note that all of theR+-ring examples given in the previous section have the approximation
property, although we do not have any general approach for establishing those results beyond (b)
above. For related work on the approximation property and spaces of distributions, consult [S2].

Cofree (R)-Modules and Dynamics

The cofree constructions are much simpler than their free counterparts. We proceed as follows.
Let R be anR+-ring, and letY be a l.c.s.. Define the bilinear mappingZ(R,Y) : R×Lc(R,Y)→
Lc(R,Y) by (r, f ) 7→ f (r ∗−). It is easy to see thatZ(R,Y) defines anR-module action. We need
to establish its c-hypocontinuity to show that it is in fact an (R)-module action.
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4.10 Lemma For anyR+-ring R and l.c.s. Y ,Z(R,Y) is an(R)-module action onLc(R,Y).

PROOF: LetW ∈U(Lc(R,Y)); it suffices to takeW = { f | f (K)⊆V} for someK ∈ P (R) andV ∈
U(Y). Let g∈ Lc(R,Y). Sinceg is continuous and multiplication inR is c-hypocontinuous, there
is aU ∈U(R) such thatg(U ∗K)⊆V. ThusZ(R,Y)(U×{g})⊆W. Next, keepV as above and let
K1 ∈ P (R). PutU = { f | f (K ∗K1)⊆V}. By 3.3(b),K ∗K1 is precompact, soU ∈U(Lc(R,Y)).
Note thatZ(R,Y)(K1×U)⊆W. HenceZ(R,Y) is hypocontinuous with respect to the precompact
subsets ofRand the finite subsets ofLc(R,Y), so, by 3.3(a), it is c-hypocontinuous.2

Let R be anR+-ring and letY be a l.c.s.. We let[ΣR,Y] denote the semigroup action corre-
sponding toZ(R,Y); i.e., TZ(R,Y). Clearly,[ΣR,Y](t) f = f (δt ∗−). Furthermore, ifR= F ′(R+),
thenLc(R,Y) ∼= F (R+,Y), and[ΣR,Y](t) corresponds to the left translation operatorτt . Define
ε : Lc(R,Y)→Y by f 7→ f (δ0). Sinceε( f ) = Z(R,Y)(δo, f )(0), it is surely continuous.

4.11 Theorem Let R be anR+-ring, let K be L̃CS for some partial completion operator̃
(including the identity completion operator), and let Y be aK object. Then((Lc(R,Y), [ΣR,Y]),ε)
is a cofree(R)-semigroup over Y inK . If (Q,T) is any(R)-semigroup inK and h: Q→Y is a con-
tinuous linear mapping, then the unique(R)-semigroup morphismε : (Q,T)→ (Lc(R,Y), [ΣR,Y])
such that the following diagram commutes is given by q7→ (r 7→ h(b(r,q))).

Q

Lc(R,Y) Y-

Z
Z

Z
Z

Z
Z~?

ε

σ h

(Q,T)

Lc(R,Y), [ΣR,Y]

σ
?

PROOF: It is well-known thatZ(R,Y) is a cofreeR-module overY, with ε as defined [CE, Ch. 2].
By the previous lemma,Z(R,Y) is an(R)-module. The continuity ofσ follows form the fact that

σ = Q
σQ
−→ Lc(R,Q)

−·h
−→ Lc(R,Y), whereνQ is theν of 3.9. SinceLc(R,Y) is aK object whenever

Y is (4.8), upon translating to(R)-semigroups, the result is proved.2

Let M = (Q, f , I ,g,Y,h) be an(R,K )-system.σ of the above corollary is the observability map
of M. Its interpretation is very simple.σ(q) gives the output trajectory of the system fort ≥ 0
with q the state att = 0, and input 0 for allt > 0. The output att ≥ 0 is justσ(q)(t). Again, we
have a close correspondence with the discrete-time case, where the space of output signals may be
considered to beY§ = {ϕ | ϕ : N→Y} as shown in the introduction, wheras in the continuous-time
case it is a subset of{ϕ | ϕ : R+→Y continuously}.
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5. Complementary Directions
It is possible to develop a realization theory for(R,K )-systems as well. As has been known for
some time, defining the systemM to be reachable if its reachability mapρ is surjective, and ob-
servable if its observability mapσ is injective, is not adequate in the continuous-time case, or
even in the topologized discrete-time case [H1]. Rather, a satisfactory realization theory must
be based upon more refined factorizations which take topology into account, such as (open surjec-
tions, injections), (surjections, embeddings), or (densemaps, closed embeddings). The appropriate
algebraic formulation is that of an image-factorization system(E,M) in the categoryK [AM1].
The details of this formulation are not significantly different in principle from those presented in
[H2], and so we do not pursue a complete formulation here, butrather we direct the reader to that
reference. A detailed development may also be found in the technical report [H3].

It is possible to achieve a duality theory for continuous-time systems of the form developed
in this work as well. However, the algebraic machinery required is the much more substantial
enriched category theory[K4]. Basically, we are required to consider “structured” categories in
which the set of morphisms forms not just a set, but a locally convex space. The details will be laid
out in a separate report [H5].
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Appendix — Polar Reflexivity and Ascoli’s Theorem
With the aid of Ascoli’s theorem, we obtain some very useful results relating precompactness and
equicontinuity ofLc(E,F) whenE is almost polar reflexive.

A.1 Theorem – Characterization of Precompactness in Lc(E,F) Let E and F be l.c.s.’s,
and suppose that E is almost polar reflexive. Then H⊆ Lc(E,F) is precompact if and only if the
following two conditions are satisfied.

(a) H is equicontinuous.

(b) H(K) is precompact for each K∈ P (E).

PROOF: ((a), (b)⇒ H precompact) is a special case of Ascoli’s Theorem [B4, Ch. X,§2.5, Thm.
2].
(H precompact⇒ (b)) Let K ∈ P (E) and letU ∈ U(F). SinceH is precompact, there are
h1, . . . ,hn ∈ H such that given anyh ∈ H, h− hi ∈ { f | f (K) ⊆U/2} for somei ∈ [1,n]. Triv-
ially {h1, . . . ,hn} is equicontinuous, so there is aV ∈U(E) such thathi(V)⊆V/2 for all i ∈ [1,n].
SinceK is precompact, there arek1, . . . ,km ∈ K such that given anyk ∈ K, k− ki ∈ V for some
i ∈ [1,m]. Now let x ∈ H(K); thenx = h(k) for someh ∈ H andk ∈ K. By the preceding there
are hi and k j such thath− hi ∈ { f | f (K) ⊆ U/2} and k− k j ∈ V. But thenh(k)− hi(k j) =
(h(k)−hi(k))+(hi(k)−hi(k j)) ∈U/2+U/2⊆U . Hence{hi(k j) | i ∈ [1,n] ∧ j ∈ [1,m]} ⊆H(K)
is a finite set of points which areU -close to anyx∈H(K). ThusH(K) is precompact.
(H precompact⇒ (a)) Let H ⊆ Lc(E,F) be precompact; we must show that it is equicontinu-
ous. First note that there is a natural embedding′ : Lc(E,F)→ L ε(F ′,E′), whereε defines the
equicontinuous subsets ofF ′. Since′ is continuous,H ′ ⊆ L ε(F ′,E′) is also precompact, and since
ε defines precompact sets [K6, §21,6(3)], Ascoli’s Theorem may be invoked to deduce thatH ′(x)
is precompact inE′ for eachx∈ F ′. Also, by (H precompact⇒ (b)) above,H(K) is precompact
for eachK ∈ P (E), soH ′ is an equicontinuous subset ofL(F ′,E′). Hence we may apply Ascoli’s
Theorem again to deduce thatH ′ is precompact inLc(F ′,E′). Now use (H precompact⇒ (b)) once
again to ascertain thatH ′(K) is precompact for eachK ∈ P (F ′). Finally, transpose again to get
thatH ′′ is equicontinuous inL(E′′,F ′′). SinceE is almost polar reflexive, we have thatE→ E′′ is
continuous, soH ′′|E ⊆ L(E,F ′′) is also equicontinuous. Since eachh∈ H ′′ is the bitranspose of an

element ofH, H ′′(E)⊆ F. The topology whichF ′′ induces onF is finer than the initial topology,
soH ′′|E = H ⊆ L(E,F) is also equicontinuous.2

A.2 Corollary – Characterization of c-hypocontinuity Let E, F, G be l.c.s.’s, and assume
further that E is almost polar reflexive. Let b: E×F→G be a bilinear mapping which is hypocon-
tinuous with respect to the precompact subsets of E and the finite subsets of F. Then:

(a) b is c-hypocontinuous.

(b) b(K1×K2) is precompact for K1 ∈ P (E), K2 ∈ P (F).
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(c) The transpose b1 : E×G′→ F ′ (resp. b2 : G′×F → E′ is hypocontinuous with respect to the
precompact subsets of E (resp. F).

PROOF: (a) In view of the hypotheses, we may define a continuous linear mappingb̄ : F →
Lc(E,G) defined on elements byx 7→ b(−,x). For anyK ∈ P (F), b̄(K) is precompact, and so
equicontinuous by the above theorem. But the equicontinuity of b̄(K) is equivalent to the hypocon-
tinuity of b with respect to the precompact subsets ofF, as was to be proved.
(b) Argue as above, noting that by the above theorem,b̄(K) maps precompact sets into precompact
sets.
(c) This is just the transpose of (b).2
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