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ABSTRACT

An algebraic approach to continuous-time linear systenpsasented which closely parallels
the discrete-time decomposable systems approach of ArWMeanes, as well as the oldklz]-
module theory of linear systems of Kalman. The focal pointhef presentation is a class of
topological rings, terme® . -rings, which play the same role for continuous time tkjat does
for discrete-time. Each such rirgdefines a class of toplogical modules, termed(fRemodules,
which may be naturally identified with a class of locally egpritinuous semigroups, called tff®)-
semigroups. Thus, just as discrete-time linear dynamieseextensive witlk(z-modules, so too
are continuous-time linear dynamics coextensive WRrmodules. This identification underlies
the development of a purely algebraic theory of behaviorraatization for continuous-time linear
systems. The specific choiceRtletermines the type of dynamics allowed. For example, taRin
to be the ring of all measures on the nonnegative reals ytsldamics described by the class of all
semigroups, while choosirgto be the ring of alL! measures yields dynamics whose responses
vanish at infinity.

A central focus of this paper is the construction of free anftee dynamics, and hence the
behavior, of a system. Just as a behavior in the discrete-tmse may be thought of akf]-
module homomorphism from the frdéz-modulek[z] ® | to the cofreek|z]-moduleL(k[Z],Y),

So too may a behavior in the continuous-time case be viewasditebly continuougR)-module
homomorphism from a suitable topologization and completibR® | to a suitable topologization
of the spacé (R)Y) of continuous linear maps.



1. Motivation — A Review of the Discrete-Time Concepts

In providing a motivating overview of our presentation, lex begin by recalling some of the
basic algebraic aspects of sequential machine behaviareatidation. LetM = (Q,d,1,Y,h) be a
sequential machine. Hef@ s thestate setl theinput sefandd: Q x | — Q thedynamicsY is
theoutput seindh : Q — Y theoutput map We may think ofM as being described by dynamical
equations of the form

qt+1) = a(q(t),i(t)) (1)
yt) = h(a(t)).

It is well known that a more global picture of the behavior nieyobtained by extendinyto
a right actiond” : Q x I* — Q of the free monoid*. o d: Q x I* — Y then gives thdehaviorof
the machine.

Placing into a categorical framework this process of exingcthe behavior from the local
dynamics has been the subject of a number of investigatiodsiding that of Arbib and Manes
([AM1], [AM2], [AM3], [AM4], [AM5]), Bainbridge ([B1]), Eh rig and his co-workers ([EKKK],
[EK]) and Goguen ([G]). The following quick review (specmdd to the above example of se-
guential machines) follows most closely the approach ofilAdnd Manes. Fixing the séf de-
fine the categorpyn(— x I) of — x I-dynamicgo have as objects pairs of the forf@, d) with
0: Qx| — Q; amorphisnk: (Q,8) — (Q,d) (called adynamorphisris a functionk : Q — Q'
such thako d =& o (k x 1). Consider thdree-x1-dynamicgQ x | *, 1) overQ, as defined by the
following diagram.

QxI1*xl _H» QxI*

p><1| \ \p 1Q
Qxl 9. Q
)

Thefree action g Q x 1" x| — Q x |I* is just concatenatiofg,w,a) — (g,wa). | : q+— (q,A),
whereA is the empty stringp is the uniquaeachability mapand is just the extensiadi of & to
strings that we seek.

The dual construction for the output side is depicted in tlagdm below.
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[1* — Y] is the set of all functions fromh* to Y. ([I* — Y] x I,X) is thecofree x|-dynamics
overY; W : (f,i)— f(i-—);e: f— f(A). oisthe uniquebservability magor M; o(q) = p(q, —).
oo p is thetotal behaviorof M.

The above example illustrates a general categorical aorigin specialized to the category of
sets and functions. Similar constructions work, with vagydegrees of success, in several other
categories. For details, consult [AM2]. The context whislof direct interest to us here is that
of linear systems. In this case, we fix a (commutative, witlt)juing K, and work within the
category oK -modules and their homomorphisnié-(inear maps). Thus, relative to the set-based
framework just described, sets becokwenodules, functions beconke-module homomorphisms,
and the cartesian produet x — translates to the tensor produet —.

Unfortunately, this direct translation does not provideteuwhat we want. For consider a
dynamicsd: Q® | — Q. Linearity of this mapping means thatqg,0) = d(q® 0) = 0 for any
g € Q. In other words, in such a dynamics, the zero input alwaygedrthe machine to the zero
state in one step, which is quite unreasonable. Rathernahsition function of a linear system is
typically taken to be of the formd(q,i) = f(q) +g(i) for some linearf : Q — Qandg: | — Q.
Such a function is affine, but not linear. While we could deped theory of linear systems based
upon such affine transformations, there is an alternateoagprwhich retains almost all of the
characteristics of the set-based approach. Specificafiyiake advantage of the decomposability
of the state-transition map to yield the theory of decomptesaystem in a category of Arbib
and Manes [AM1]. The following summarizes that approachlifegar systems over the ring.
(For another discussion of the relationship between themeosable systems approach and the
approach described above, see [AM4, sec. 6]).décbmposab)dinear systen(in the category
of K-modules) is a 6-tupl® = (Q, f,1,9,Y,h) whereQ (thestate spacg | (theinput spacg and
Y (theoutput spackare allK-modules, and : Q — Q (thestate-transition map g: |1 — Q (the
input map, andh: Q — Y (the output map are allK-linear. The dynamics are described by the
equations

qt+1) = f(qt)+a(i(t)) (4)
yt) = h(q(t)).

Dynamics in the decomposable systems framework are wiiperedo the identity; thus, a
dynamicss a pair(Q, ) with 8 : Q — Q, and adynamorphism k(Q,d) — (Q',&) is aK-linear
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mapk : Q — Q' such thako d = & ok. Just as a dynami¢®),d: Q x | — Q) in the set-based case
gave rise to an actiod” : Q x I* — Q, so too does a dynami¢®,d: Q — Q) in the linear case
provide such an action. The ringgamonoid) in this case iK [Z], the ring of polynomials oveK

in the single variable. Multiplication is convolution.d : Q — Q defines the action on the simple
polynomialz, with linearity and multiplication providing the othersh& analogs of diagrams (2)
and (3) are provided by the following.

| n |8 z |8
\ pl lp
Q —  Q
o 0\
Ys Ys £ Y

z (5)

(18,2) is thefree dynamicoverl. 18 = {(ig,i1,..,ik,...) | ik = O for all but finitely manyk}.
z: (io,i1,...) — (0,ig,i1,...) is the right shift.n : i — (i,0,0,..,0,...). It is not difficult to see that
182 | @ K[Z. By specializing to beQ andg : Q — Q to be the identity, we can explicitly recover
the module action of asp: Q% = Q® K[z — Q. More generallyp : I® — Q is thereachability
mapof M, and tells us the state & at time O due to inputio,i,...) € 18, with iy occurring at
time —k.

Similar ideas hold for the output side.(Ys,z) is the cofree dynamicsover |. Yg =
{(Yo,Y1,-,Yks---) | Yk €Y}, with Z: (Yo, Y1,Y2,--.) — (Y1,Y2,...) the left shift.€ : (yo,y1,...) — Yo.
FurthermoreYs = L(K[Z],Y) (L = linear maps)o is called theobservability mapando(q) is the
output sequence observed when starting in state q withrétiduinputs 0.

Forl = KMandY = KP, the above framework is essentially Kalmak’z-module approach
[K1].

2. Continuous Time — The Basic ldeas

Before presenting the mathematical details, we providenformal overview of how these alge-
braic representations of the discrete-time case are extetalcontinuous time; in particular we
highlight the critical differences which arise.

Dynamics and Systems

The major goal of this work is to extend the above construstio the domain of continuous-time
linear systems. In other words, the dynamics of equatiopargto be replaced by
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dq(t)/dt = f(q(t)) +g(i(t)) (6)
yt) = h(a(t)).

This immediately imposes some natural restrictions. Fifsll, K is now eitherR (the field
of real numbers) or els€ (the field of complex numbers), ari{i-modules are locally convex
topological vector spaces ovér. Thus, our underlying categot){ must be one whose objects are
locally convex spaces, and whose morphisms are continirmesr Imappings. In fact, everything
in sight must be given a topological as well as algebraic flasad all constructions must be
translated to this framework. In particular, any tensordarcts must be topological and module
actions must posess some sort of continuity.

Assuming that we have established a working domain withetlaeiditional features, let us
reexamine the nature of a dynamics under the interpreté@pnlo admit unique solutions in the
context of (6), we takd to be the infinitesimal generator of a one-parameter sempyod oper-
ators (the parameter beirg),, the nonnegative reals). In an earlier paper [H2], we prieska
categorical framework for continuous-time linear systemisch dealt exclusively with infinitely
differentiable systems;e., systems for whichf in (6) above is everywhere defined and contin-
uous. Unfortunately, many examples occurring in practicendt have differentiable dynamics,
and this shortcoming motivated, at least in part, the pitesaper. Here we také to be the in-
finitesimal generator of a locally equicontinuous semigrofi operators in the sense of K. omura
[K5]. On the other hand, to get a satisfactory algebraic attarization, we still requirg andh
to be continuous linear operators. However, this does resgumt an unrealistic constraint, since
we allow distributions as inputs, and interpret the firstaeun of (6) in the following well-known
operational sense, which effectively defines the reacityabilap o.

at)=e x(0) + [ €' Ig(i(s)ds )

In the aboveg'® is semigroup generated by and the integral is interpreted as distributional
convolution. The continuous-time analbtyof 18 (from which the input signal(s) is taken) is
first approximated as finite linear combinations of dirac insgs,i.e., 1% = {le(:lajk &y | @, €
K rtk € Ry}. From a purely algebraic point of view, the only essentidfiedénce in the input
signals between the discrete and continuous-time caséssifiirst approximation is that in the
latter nonzero discrete values may occur at any tirre0, while in the former case inputs may
occur only at those time points indexed by integers. They tintleresting additional dimension,
which makes the continuous-time case so much richer thatistsete-time counterpart, is that
we may utilize the density dff in suitable spaces ofvalued distributions to yield a much richer
space of input signals, including all of the traditional ‘@oth” inputs.

It is important to note that, with this modej(t) is only well-defined in the case that the input
i, regarded as a distribution, can be truncated at timEhis representation is in agreement with
those forwarded by Kalman and Hautus [KH] and Kamen [K3].
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A simple example will help illustrate both the generalitydahe limitations of this framework.
Consider a transmission line with series inductahgcseries resistanc®, shunt capacitance,
and shunt conductanag all per unit length. We work with a unit length of such linejvén
atx = 1 and terminated at = 0 with a short circuit. We furthermore assume that the beiravi
of this line is governed by the standard wave equations, hatlthe loss is small enough that
the characteristic impedance is givenfyy= \/L/C. See,e.g, [BSH]. LetV(x,t) represent the
voltage accross the line at positian{0 < x < 1) at timet, and letJ(x,t) similarly represent the
current on the line. The state spa@eis {(V(x),J(X)) € C4(0,1] x C4[0,1] | V(X) — Zo - I(X) =
0 in some neighborhood of= 1}. The requirement that the voltage be xat O is recaptured
by the fact that the voltage distribution be (0, 1], the space of all scalar-valued distributions
with compact support contained in the half-open intef@al]. C.[0,1] is defined similarly, and
V(X) — Zy-J(xX) = 0 in some neighborhood of 1 states that the impedanke-gt be matched.

We drive the line with an impedance matched generatar=atl, so that takes values in the
Zo
-1
(represented as a distribution). (The current is negativeesit is travelling to the left.) It is
straightforward to show that the dynamics are represengagbtéfollowing differential equation.

s (55 TECE) () e

Now consider the output representation. We would like tceobsthe (natural) voltage-current
pair atx = 1. However, the state is a distribution, and not necessarnlyrdinary function of
time. Therefore, it does not make sense to sample the vatues-d directly. There are two
ways to address this issue. The first is to restrict the siatglzlition to a half-open neighborhood
(1—1,1], wherer is some small number. This is easily realized by using tharahsurjections
p1: Ci(0,1] — Ci(1—1,1] andp2 : G[0,1] — Ci(1—1,1] (see [T]). In this case, the output space
Y is Ci(1—1,1], and we get an output equation of the form

o= (% o )aw ©

The second approach is to regard the output siea® consisting of just pairs of real numbers
(V,1) € K x K, representing values averaged about the poiatl. In this caseh becomes an
evaluation of the state distribution on a certain test fiamcpair (¢1,¢2) € CL(1—1,1]%. Typically,
this test function would have unit area. The output equationld then take the following form,
with “x” representing distributional convolution.

field K, and the input over time has the form like -i(t), with i(t) a real-valued signal

_( $1x(=) O
o= (#9700 e 10)

The reader may find it instructive to compare this represemtdo that presented by Helton in
[H6], in which he argues against requiring tiggandh be continuous.
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Behavior

One of the cornerstones of the algebraic approach to destiree linear systems outlined in Sec-
tion 1 is that is provides a natural bijective correspon@eimetweercanonical internal represen-
tations(represented by equations (4)) angut-output behaviorgepresented by thi€[z]-module
homomorphisno o p) in diagram (5). The approach presented here recapturesakural corrre-
spondence completely within the context of continuousetaystems. In this paper, we focus upon
the construction of the behavior from the internal représtgon, although we do disucss canonical
realization briefly in the concluding section.

A key feature of our approach is that the notion of system rghéir parameterizable, both
by choice of the underlying category and by choice of the class of dynamics permitted. This,
in turn, defines the exact nature of a typical behagorp. The categoryX itself may be var-
ied by regulating the degree of completeness of its objexts, sequentially-complete spaces,
qguasi-complete spaces, and complete spaces. (The momptiiemselves are always taken to be
continuous linear maps.) More importantly, however, tmg K [z of the discrete-time case may
be replaced by any member of a family of topological ringsictwe termR_ -rings. The table
given below illustrates a few of the more important examplelsich are elaborated in the next
section. In each case,andY are locally convex spaces. The measuretiare |-valued mea-
sures (or distributions) in the sense of Schwartz [S2], fiedbutputs irYg are functions from the
nonnegative reals int@.

| Typeof Dynamics | Inputsinl® | Outputs inYg |
locally equicontinuous measures with continuous
semigroups compact support functions
infinitely differentiable| distributions with c”
semigroups compact support functions
equicontinuous uniform bounded| bounded and uniformly
semigroups additive measures continuous functions
bounded Lt bounded continuous
semigroups measures functions
stable Lt continuous functions
semigroups measures which vanish ato
finite-response Radon continuous functions with
semigroups measures scalar-compact suppport

There is a fundamental measure/test-function duality beti® andYsg, so that, in general, the
more measures if?, the fewer functions ifYg. There is no single choice of topological ring which
provides a biggest version of each. Rather, the choice isdelivag problem; one of choosing the
best framework for the systems being considered. Note Aobibunded semigroups and stable
semigroups take the same space of inputs. The distinctioresadn that this space is topologized
differently in each case, so that the underlyingologicalring is not the same.



Key to our approach is that the notion of a system may be viesdzbing in either of two fun-
damental forms; its dynami¢®, y) may be a (sufficiently continuous) module dynamics (in which
y is a module homomorphism), or a semigroup dynamics (in whiisha (C,)-semigroup of op-
erators of a certain class. The correspondence is complatiitectional; any topological module
in the appropriate category uniquely defines a correspgngimigroup, and from any such semi-
group we may recover the corresponding module. This associs crucial to the development
of the theory, because while the semigroup model is much materal from a system-theoretic
point of view, the module approach provides the mathemidcanulation necessary to establish
the key results in a natural algebraic fashion.

3. R.-Rings and the Representation ofC,) Semigroups

Fundamental to our approach is that interesting class€€4)fsemigroups have natural repre-
sentations as certain topological modules dverrings. In this section, the characterization of
such representations is presented, and several impowrantpdes are provided. Due to their ex-
tremely technical functional-analytic nature, we havessgto defer detailed development and
proofs of many of the results to a separate work [H4]. Here axehattempted to emphasize the
system-theoretic aspects.

We freely use concepts, terminology, and notation from bteoty of locally convex spaces;
we refer the reader [K6] and [K7] for details. Although we bBaschewed the use of advanced
category theory, we do occasionally employ some elemetganyinology and concepts; the reader
is directed to [HS] as a clarifying reference.

Essential Background

3.1 Notions Based Upon Precompact Subsets of an l.c.s.Throughout this work, I.c.s. will
serve as an abbreviation for locally convex topologicateespace. Given an |.c.E, U(E) will
denote the set of all balanced, closed, and convex neighbdshof 0, andP(E) will denote the
set of all closed absolutely convex precompact subsetsowioly [K6, 821,6, §821,7, 823,9], we
defineE; to be the dual oE with the topology of uniform convergence on precompact stgs
of E, and we letE be the corresponding bidual. Since we shall not considegrdtipologies
on the dual in this work, these will frequently be abbrewite E' andE”, respectively. If the
natural injectionE — E! is continuous (it will then be an embedding as well), tfers termed
almost polar reflexivelf it is surjective as well (hence an isomorphism), tiers polar reflexive
Examples abound; every Fréchet (or (F)) space and, moeraln every strict (LF) space is polar
reflexive. (See [H4].) In addition, we shall term an |.c.&P&) spaceif it is the polar dual of a
Fréchet space. Generally speaking, (PF) spaces enjogihe groperties relative to compact sets
that (DF) spaces do relative to bounded sets.

The spacé& is c-completef every precompact subset is relatively compact. Evenapraflex-
ive space is c-complete [K6, §823,9(1)]. More generally, lasetH of E is c-densan E if every



precompacEC E is contained in the closure () of HN T, for some precompadt CE. If Eis
almost polar reflexive, theB” is the c-completion oE.

If E andF are l.c.s.’s, the.(E,F) denotes the space of all continuous linear mappings from
E to F with the topology of uniform convergence on precompact stssfE. L.(E) denotes
Lc(E,E). L(E,F) andL (E) denote the same spaces, but without any assigned topology.

A bilinear mappingy: E x F — Gonl.c.s.s is termed-hypocontinuous it is hypocontinuous
with respect to the precompact subset&@&ndF. A c-hypocontinuous topological algebigman
l.c.s.R which is endowed with a c-hypocontinuous multiplicatiag: R x R — R and a distin-
guished element 1 such th@, +, xR) is a commutative ring with unit 1. We shall always denote
multiplication in such a rindR by g, or by justx if no confusion can result.

3.2 Theorem — Characterization of Precompactness ind(E,F) LetE andF bel.c.s’s, and
suppose that E is almost polar reflexive. TherCH.¢(E,F) is precompact if and only if the
following two conditions are satisfied.

(a) H is equicontinuous.
(b) H(K) is precompact for each k P(E).

PROOF ((a), (b)= H precompact) is a special case of Ascoli’'s Theorem [B4, CIg§25, Thm.
2].

(H precompact= (b)) LetK € P(E) and letU € U(F). SinceH is precompact, there are
hi,...,hn € H such that given an € H, h—h; € {f | f(K) CU/2} for somei € [1,n]. Triv-
ially {hy,...,hy} is equicontinuous, so there i%/ac U(E) such thaty(V) CV/2foralli € [1,n].
SinceK is precompact, there aiq, ...,k € K such that given ank € K, k—k; € V for some

i € [1,m]. Now letx € H(K); thenx = h(k) for someh € H andk € K. By the preceding there
are hy andk; such thath—h € {f | f(K) CU/2} andk—k; € V. But thenh(k) — hi(kj) =
(h(k) —hi(k)) + (hi(k) —hi(kj)) e U/2+U/2CU. Hencefhi(kj) |i € [1,n] A j € [1,m]} C H(K)

is a finite set of points which até-close to anyk € H(K). ThusH (K) is precompact.

(H precompact=- (a)) LetH C L¢(E,F) be precompact; we must show that it is equicontinu-
ous. First note that there is a natural embedding¢(E,F) — L¢(F’,E’), wheree defines the
equicontinuous subsets Bf. Since’ is continuousH’ C L¢(F’,E’) is also precompact, and since
¢ defines precompact sets [K6, §21,6(3)], Ascoli's Theorery brainvoked to deduce that'(x)

is precompact irE’ for eachx € F’. Also, by H precompacts- (b)) aboveH(K) is precompact
for eachK € P(E), soH’ is an equicontinuous subsetlofF’, E’). Hence we may apply Ascoli’s
Theorem again to deduce thdtis precompactihc(F’,E’). Now use H precompact- (b)) once
again to ascertain that’(K) is precompact for eac € P(F’). Finally, transpose again to get
thatH” is equicontinuous i (E”,F”). SinceE is almost polar reflexive, we have tHat— E” is
continuous, sd)-l"’E C L(E,F") is also equicontinuous. Since edthk H” is the bitranspose of an

element oiH, H”(E) C F. The topology whict" induces orF is finer than the initial topology,
soH"’E =H CL(E,F) is also equicontinuousl]



3.3 Corollary — Characterization of c-Hypocontinuity Let E, F, G be l.c.s’s, and assume
further that E is almost polar reflexive. Let B x F — G be a bilinear mapping which is hypocon-
tinuous with respect to the precompact subsets of E and tite $imbsets of F. Then:

(a) b is c-hypocontinuous.
(b) b(K1 x K3) is precompact for Ke P(E), K2 € P(F).

(c) The transpose E x G — F’ (resp. b : G’ x F — E’ is hypocontinuous with respect to
the precompact subsets of E (resp. F).

PrROOFE (a) In view of the hypotheses, we may define a continuousatimeappingb : F —
L¢(E,G) defined on elements by+— b(—,x). For anyK € ?P(F), b(K) is precompact, and so
equicontinuous by the above theorem. But the equicontimdiib(K) is equivalent to the hypocon-
tinuity of b with respect to the precompact subsetf phis was to be proved.

(b) Argue as above, noting that by the above theot®iK) maps precompact sets into precompact
sets.

(c) This is just the transpose of (.

3.4 Completion Operators and Categories Recall that the full completion operatoron an
|.c.s. provides, for each complete l.d=sand morphisnf : E — F, a unique extensiofi: E — F
such thatf = foi, with i : E — E the natural embedding. This construction is generalized as
follows. Let ™ be an operator which defines subsets of |.c.s.’s such thainpcontinuous linear
mappingf : E — F of l.c.s’s,Se 7 (E) implies thatf(S) € ~(F). For example,” may define

all bounded subsets, all precompact subsets, or just aflessib Call an I.c.sE ~-completeif

the closure of eacl$ e ~(E) is complete. The -completionE (or (E) ) of an l.c.s.E is the
intersection of all subspacés of E such thatE C F andF is ~-complete. AsE is surely -
complete, there is at least one suchFurthermore, iSe ~(E), thenSe ~(F) for all ~-complete

F with E C F; hence the closure @is in ~(E) and is complete, s& is ~-complete. On the
other hand, ifF is ~-complete and : E — F is a continuous linear mapping, we may extefnit
f:E—F by restrlctlngf to E. It is straightforward to verify thaf is the unique morphism such
thatf =io f, withi : E — E the natural embedding. An operatomeeting the above conditions is
called apartial completion operatarSome particular examples to keep in mind are the following.

(@) All subsets; this yields just tHall-completion operatgrdenoted™.

(b) All bounded subsets; this yields thaasi-completion operator

(c) All precompact subsets; this yields ttreompletion operatgmwhich we denote by ~
(d) All Cauchy sequences; this yields thequential-completion operator

(e) Allfinite sets; this yields the identity operator.

LCS denotes the category of all l.c.s.’s with continuous lineeps as morphisms, and for any
partial completion operator, LCS denotes the full subcategory bCS whose objects are the
~-complete l.c.s.’s.



Occasionally, it will be useful to compare partial compdetioperators. We writé'; < "5 if
every space which iS2-complete is also j-complete. In the above examples, we hége<
(d) <(c) < (b) < (a).

Semigroup Representation by Modules

3.5 R;-Rings Itis easy to see that, under addition, the nonnegative Ral$orm a com-
mutative topological monoid with identity 0. AR, -ring is a pair(R,i) in which R is a c-
hypocontinuous topological algebra andR, — R is a continuous mapping subject to the fol-
lowing conditions.

(r1) i is a monoid homomorphism for the additive structuréRaf and the multiplicative
structure ofR.

(r2) spani(R;)) is c-dense iR
(r3) Ris almost polar reflexive.
(r4) R is complete.

TheR-ring (R,i) will often be abbreviated to ju wheni is clear from context or irrelevant.

For anyR. -ring (R)i), sparii(R;)) forms a subring oR. We shall denote this subring by
A(R), and term it theskeletonof R. i(t) is often denoted by, since it turns out to be the Dirac
delta centered &tin most examples which we consider. In view of (r2), we mayagisvextend
the hypocontinuity ofizr) and+g to R Thus A( R) andR areR_. -rings for any partial completlon
operator™ which defines precompact sets. It is furthermore the casg &)~ = R, and this
space is polar reflexive. It is not necessarily the case RhatR; however, in most examples
which we considerR’ will be a strict (LF) space, and hence both complete (yig/di)) and
bornological (guaranteeing thRt = Ris complete).

A morphism f: (Ri) — (S ) of R.-rings is a continuous linear mappirig R — Ssuch that
foi = j. The density ofA(R) in R ensures that a morphism Bf, -rings is a ring homomorphism
in the usual sense. In fact, there can be at most one morphismR,i) to (S, j), as the value of
anyf: (Rji) — (S j) is determined by its values dx(R), andf (&) = &.

3.6 (R)-Modules Given anR.-ring (R), an(R)-moduleis an |.c.s.E together with a bilinear
actionb : Rx E — E which is c-hypocontinuous and which satisfies the usual feoaikioms. A
morphismf : (E,b) — (F,c) of (R)-modules is just a continuous linear map which is also a medul
homomorphism.

Note: We shall always use the ter(R)-module (with parentheses around tRg for a c-
hypocontinuous module action, whikkmodule shall mean just a module over the (ordinary) ring
R.
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3.7 (R)-Semigroups We use the definition of K.omura [K5] in defining a locally exquitinuous
semigroup(E, T) as anR.-indexed familyT : Ry — L(E) of operators on the l.c.€. This
specifically mandates, in addition to the semigroup axionasthe equicontinuity of T(t) |0 <t <
e} foranye > 0, that lim_,o T (t)e= efor anye € E. For the sake of brevity, we shall refer to such
semigroups of operators as jusmigroups We letgr denote the infinitesimal generator of such
a semigroup. IE is sequentially complete, they is densely defined and uniquely determifies
[K5].

A morphism f: (E, T) — (F,S) of semigroups is a continuous linear mappinge — F such
that, foreach e Ry, foT(t) = St)o f.

Let Rbe anR_ -ring, and let(E, b), be an(R)-module. Define the mappin, : R — L(E) by
Tp = (e— b(d,€)). We call T, thesemigroup associated wille, b), and any semigroup arising
in this fashion an{R)-semigroup This terminology is justified by the following proposition

3.8 Proposition Let(R i) be anR-ring, and let(E,b) be an(R)-module. ThefM is a semi-
group, and, furthermore, if either E or R is sequentially gbete, thergr, is densely defined and
S0 uniquely determin€egk,.

PROOF Consult [H4].O

We now turn to the converse characterization; namely, thah éR)-semigroup determines a
unique(R)-module. Given a semigroufe, T), define itsnatural responser : E — C(R,E) by
e— (t— T(t)e). HereC(R4,E) is the space of all continuous functions frén. to E, endowed
with the topology of uniform convergence on compact subsei, . It is easy to verify that
is continuous. Define the mappih@R.E) : L¢(R E) — C(R4,E) by f — (t — f(&)). We then
have the following.

3.9 (R)-Semigroup Characterization Theorem Let (E,T) be a semigroup and let R be an
R.y-ring. Then(E,T) is an(R)-semigroup if and only if there is a unique continuous lineap-
pingv : E — L¢(R, E) such that the following diagram commutes.

L¢(R,E)
rr I(RE)

C(R4,E)

PROOF Consult [H4].O
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In other words, a semigrouje, T) is an(R)-semigroup if and only if its natural response may
be interpreted as an elementlaf( R, E), when this space is regarded (Vi&® E)) as a subspace of
C(R4,E)). Letbtr: Rx E — E denote the bilinear mapping correspondingtoE — L (R E)
in the above diagram. It is easy to see thak recovers precisely théR)-module action corre-
sponding to the semigrouy(fe, T); thus we callbt r the (R)-module associated witfE, T). This
completes our characterization of the natural correspoceli®etweer{R)-semigroups andR)-
modules. To emphasize this, we state it as a formal result.

3.10 Theorem — Natural Correspondence Let R be arR,-ring. operator. Then th¢R)-
semigroups and theR)-modules are in a natural correspondence, characterizethbyollowing.

(a) Let(E, T) be an(R)-semigroup. Thefip,, =T.
(b) Letb: Rx E — E be an(R)-module. Thett, g =b.

(c) An he L(E,F) is a morphism of R)-semigroups h (E, T) — (F,S) if and only if it is a
morphism of the correspondiri@r)-modules h (E,btr) — (F,bgr). O

Categorically speaking, if we fix a categofy of I.c.s.’s, and then defin€SG(R, X)) to be the
category of all(R)-semigroups over spaces ik, with morphisms precisely théR)-semigroup
morphisms whose underlying functions akgmorphisms, and if we define the category(&)-
modulesMOD (R, X)) similarly, then the above result says precisely that thesecategories are
naturally equivalent.

3.11 More on the Issue of Completenessit is well known that to ensure a unique solution
to the differential equation (6), the mdp which is taken to be the infinitesimal generator of a
semigroup(Q, T), must be densely defined [K5, Thm. 3]. We know by 3.8 th&QifT) is an(R)
semigroup for any sequentially compl®e-ring R, or if Q itself is sequentially complete, then this
will be the case. In particular, @ is sequentially complete, then tig)-semigroups andA(R))-
semigroups coincide, and each such semigroup will have setiedefined infinitesimal generator.
Unfortunately, there does not seem to be a nice algebraidovetyaracterize exactly tho$A(R))-
semigroups which have densely defined infinitesimal geoeyatinless the underlying spaces are
sequentially complete. This is apparently a consequenteedict that having a densely defined
infinitesimal generator is not an “algebraic” property ofesrsgroup. To get aggregate completion
of a class of semigroups, we must mandate sequential coenplet of either the underlyir), -
ring or else the underlying space of each semigroup. For miotéis issue, consult [H4].

Example Generation

So far, our presentation has been completely abstract. \Wetmm to the issue of explicitly
identifying ways of producindr . -rings. In view of 3.9, to characterize the natural respsre
(R)-semigroups, it suffices to provide a characterizatioh gfR,E). We next provide a way to
explicitly produce the desireld_ -ring, based upon this set of responses.
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3.12 Definition Let ¥ denote an operator which assigns to each IEE&.corresponding l.c.s.
F (R4, E) of continuous functions fromR.. to E. WhenE =K, we write ¥ (R4,E) as ¥ (R4).
F is called arR . -ring generatorif it satisfies the following conditions.

(91) Foreach € R, the point measur&; : ¢ — ¢(t)) € F'(Ry).

(92) For each l.c.sE andt € R, F(R4,E) is closed under the left translation operator
Tt : f— f(-+1t), and the translation inclusioff (R) — ¥ (R4, #(R4)) given by
¢ — (t— 1¢(¢)) is continuous.

(93) There is a natural isomorphisfi(R,E) = L¢(A(F'(R+)),E) given by f — (& —
f(t)), whereA(F'(R.)) is defined to be the subspace®f(R. ) spanned by{é |t €
R} with the induced topology.

(94) F(R,)is complete.

3.13 Theorem Let¥ be anR.-ring generator. Ther¥’' (R, ) is anR .-ring with multiplication
convolution of measures on the functions#r{R.). Furthermore,(E,T) is a (A(F'(R4)))-
semigroup if and only if its response lies in ¥ (R, E).

PrROOF Consult [H4].O

Whenever we extract thB, ring ¥'(R.) from the R -ring generator¥, we shall always
assume that the multiplication is convolution of measures.

In [S1], Laurent Schwartz defined a wide class of spaces-tines differentiable functions,
which he termed™ spaces From these, he defined, for an arbitrary I.&sthe spacesi™(E),
which consist of precisely those functiohs C(R-, E) which have the property that- (f(t),€) €
H™for eache€’ € E’, endowed with the topology of uniform convergence on equiicoious subsets
of E'.T He then proceeded to provide a wealth of examples. We may dpem this wealth, as
shown by the following.

3.14 Theorem Form=0o0rm= oo, everyﬁm space in the sense of Schwartz such thaR ;)
is complete and polar reflexive definesRin-ring generator.

PROOF Consult [H4].O

Requiring¥ (R.) to be complete and polar reflexive is not very constrainimg, ia satisfied by
all reasonable examples i, including those cases for which(R_.) is a Fréchet space or, more
generally, a strict (LF) space. However, the framework divéartz admits some rather anomalous
examples which do not meet this criterion. See [H4] for a ntamplete discussion.

"We only consider those spaces which satisfy hypoth@dgs,.|) and(Hs) as well asH;) through(Ha), of the
framework of [S1]. In addition, Schwartz actually workedhvihe domairR" rather tharR ., but his results all easily
translate to our framework. To avoid undue pedantry, wel safdr to his work as though he us&d..
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Specific Examples

We now proceed to give a number of specific examples. In geneeaattempt to give system-
theoretic insight into the properties of each example, boit @roofs. In all cases, elaboration,
with complete proof, may be found[id4], even when not explicitly cited.

3.15 Example — All Semigroups The space&” (R, E) defines arR_.-ring generator. It is one
of the ﬁm(E) spaces of Schwartz, and(R..) is a Fréchet space, so it is & -ring generator.

It is also the most general of such generators, in that evamjigroup is am\(R.)-semigroup.
Indeed, for any(C’(R))-semigroup(E, T), sinceC(R4,E) = L¢(A(C'(Ry)),E), I (R E) must
be the identity, up to isomorphism. Thus, in the notation.8f3@=rt; i.e., (E,T) is a semigroup.
C'(R4) is a Fréchet space and consists of all measurd® owith compact support, in the sense
of Bourbaki [B3].

Yamamoto [Y, Thm. 3.24] has shown that every semigr@e ) on a complete |.c.s. admits the
structure of aC’ (R )-module which is hypocontinuous with respect to the precachpubsets of
C'(R+) and the finite subsets &. He uses this result to construct a module action for a dyoami
described by a semigroup, in much the same way as we have. édstlibr hand, he does not
specifically address the converse question of construetisgmigroup from a module action, so
he does not need to postulate c-hypocontinuity with resjoettte precompact subsetsiefas we
have.

3.16 Note — Finite Nonzero Differentiability It is tempting to propose that™ (R ,E), the
space of all functiond : R. — E which are m-times differentiable, is @ -ring generator.
However, the associated ring action of convolution is nerrgwhere defined. For examplenif=
1, thend (0) x & (0) = &"(0), which is inC?(R, ), but not inc*(R.). This is why the requirement
of m= 0 orm=  is necessary. Fan= « we have the following.

3.17 Example — Infinitely Differentiable Semigroups Let E(R.,E) denote the space of all
infinitely differentiable function® . — E, with the topology of uniform convergence of functions
and all derivatives on compact subsetdof. The spaceE(R ., E) defines arR_.-ring generator,
since it is one of th&I™(E) spaces of Schwartz ari{ R, ) is a Frechet space as well. It character-
izes those responses which are infinitely differentiableicty Waelbroeck [W] has termed simply
differentiable Z£'(R.) is a (PF) space which consists of all distributionsRn with compact
support, in the sense of Schwartz [S3]. This class of dynsimés several interesting properties,
including that its semigroups have continuous infinitesigemerators, and tha& (R.) is reflex-
ive, so that the strong dual and polar dual coincide. Forefzesl other reasons, it has been used
as the basis of several algebraic approaches to contirtiraadinear systems, including [BDM],
[K2],[KH], and [H2].
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3.18 Example — Equicontinuous Semigroups A semigroup(E, T) is equicontinuousf the
entire family of operator§T (t) | t € Ry} is an equicontinuous subsetlofE). To characterize the
responses of such semigroups,B{R_, E) denote the space of all functionsdi{R ., E) which
are bounded and uniformly continuous. Endow this space thghtopology of uniform conver-
gence orR; that is, with the topology defined by seminorms of the fdrm> supcg, [f(t)]. By
is anR . -ring generator, and we furthermore have the following elstarization.

3.19 Proposition Let(E,T) be a semigroup. Then the following are equivalent.
(@) (E,T) is an equicontinuous semigroup of operators.
(b) For each ec E, the functiorr(e) is uniformly continuous.
(c) (E,T)isan(A(B/(R+)))-semigroup.

PROOF Consult [H4].O

B,(R4,E) is notanH™(E) space in the sense of Schwartz, so that the class of spacessizlen
asR, -ring generators extends beyond the classl BfE) spaces.

B,(R4) is a Banach space with the supremum norm, but the spg@®. ) is nota Banach
space under the polar topology. Rather, it is a (PF) spacesedwnpactsets are the unit balls
of the strong (Banach) dual. It consists of a special sulespathe space of all regular bounded
additive measures [DS] oR_, which we term thauniform bounded additive measures. These
“measures” are extremely general, and do not possess tmeatxbe additivity usually associated
with measures. The reader is referred to [H4] for furtherctigsion.

It is interesting to note that in equicontinuous semigrailygsconvergence is actually uniform
on bounded sets. Indeed every equicontinuous subdgtEfis bounded irL,(E) (the topology
of uniform convergence on bounded sets) [K7, §39, 3(1)].

3.20 Example — Stable Semigroups A common form of stability mandates that the natural
response decay to 0 as time approaches infinity. To recaptigeén terms of semigroups, call
a semigrougE, T) stableif lim¢_.., T(t)e= O for eache € E. To characterize such semigroups
as module actions, for any |.cE, let (R4, E) denote the (topological) subspace®f(R.,E)
consisting of those functions: R, — E such that lin.. f(t) = 0. The (PF) space} (R ) is

an R -ring generator, and the uniformly stable semigroups aea threcisely thé\((G)(R+)))-
semigroups.C,(R.) is the space of all integrabléd., L') measures. (See.g, [H7, Chap. 4,
§5]). Like By(R.,E), Go(Ry4,E) is not anH™(E) space in the sense of Schwartz.

3.21 Example — Bounded Semigroups A substantially weaker form of system theoretic sta-
bility than that discussed in the previous parargraph patgs that the response does not continue
to grow indefinitely. If the underlying spade of a semigroup is a Banach space, this is often
formalized by stating that sy, [T (t)e] is finite for eache € E. In our more general context,
call a semigrougE, T) boundedf, for eachec E, {T(t)e|t € R, } is a bounded subset &: In

15



an attempt to represent such semigroupsBleR ;. , E) denote the space of all bounded functions
in C(R4+,E) topologized by seminorms of same form as thos&gfR ,E). B(R.) is a Banach
space; unfortunately lim,o& # dp in B'(R.), so it cannot be aR,-ring. Indeed, the function

t — sin(t?) is surely inB(R.), yet sir((t +€)?) /4 sin(t?) ase — 0 uniformly over allt € R,

In other words, lina_.o 8 * Sin(t?) # sin(t?). From this it is easy to show that distributional con-
volution onB’(R.) is not c-hypocontinuous. This is why we use uniformly contins functions

in the above example; the translation of uniformly contimsidunctions is continuous under the
supremum-norm topology.

To recapture the bounded semigroups, we endgd® ) with another topology, weaker and
rather more complex. Defirleh denote the set of all strictly positive and nonincreadihdunc-
tions in C(R+). For each such functiog, define the spac8(|R.,{],E) to have as members
all f € C(R4,E) with the property tha{{(t)-f(t) |t € R;} is bounded inE, topologized by
seminorms of the fornf — supcg, {(t)-a(f(t)), with a a continuous seminorm d&. Clearly
B(R4,E) C B([R4,(],E); we letiz : B(R4,E) — B([R4,{],E) denote the continuous natural
inclusion. Furthermore, if1(t) > {o(t) for all t € R, then we have a continuous natural in-
clusionizz, : B([R+,{1],E) — B([R4,{2],E). This yields a directed system, and we assign to
B(R.,E) the projective limit topology limn ¢, (B([R ., {g],E), which we denote by (R, E).

B_(R4,E) is the same space algebraicallyB&R ;,E), but its topology is stricly weaker than
that of the latter. It is not a (PF) space. Als#, (R, ) is the same space algebraically@sR . ),
but its topology is strictly stronger, since it has a largeald Nonetheles<B.  is indeed arR , -
ring generator, and theA(B._(R)))-semigroups are precisely the bounded ones. This shows
strikingly that the same algebraic ring may underly moretbae distincR , -ring.

We note thatB._ (R, ,E) is indeed arH™(E) space, which Schwartz [S1] denotesBY(E).
However, we have constructed this space in quite a diffdestion than did he.

A semigroup(E, T) with E barrelled is a bounded semigroup if and only if it is equidout
ous. Indeed, iE is barrelled, then every simply bounded subset () is equicontinuous [K7,
839,3(2)], hence, by 3.19, every bounded semigroufcda equicontinuous, and hence its re-
sponse is in fact imB,(R4,E). Since Banach and Fréchet spaces, as well as (LF) spaees, ar
always barrelled, in most interesting examples a boundggbrese translates into equicontinuity.
Nonetheless, it is possible to construct a bounded senpgwhose response is not uniformly
continuous, so boundedness does not automatically implgramcontinuity for semigroups.

3.22 Finite-Response SemigroupsUtilizing C(R+,E) as the space of outputs yields &)
semigroups, as shown in 3.15. By restricting the outputsetitB._ (R, ,E), in B,(R4,E) and
then inG(R+, E), we obtained successively more restricted classes of seaggesponses. Con-
tinuing to the extreme, we may consider only those elemehts(B.,E) which have compact
support; that is, only thosé : R, — E which vanish for allt greater than somg. This is the
space(k (R ,E), denotedD®(E) in [S1]. Unfortunately, this choice does not generateRan
ring. Rather, we must work with the larger spacs (R4, E) of all functions inC(R.,E) with
scalar-compact support. This space |sHa[P(E) space (denoteDO( ) in [S1]), andCl (R+) is
complete, so it is aR_-ring generator. A continuous functioh: Ry — E is in Cok (R4, E) pre-
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cisely in the case that, for eaehe E’, theK-valued functiort — (f(t),€) has compact support.
The topology on this space is defined as follows. On the spge@R.), assign the usual strict
inductive limit topology of the spaced(K), where the latter is the space of all functiongifR.;)
with support contained in the compact $etwith the topology defined by the supremum norm.
Then, the topology ot s« (R, E) is defined by the fundamental system of neighborhoods of the
form {f | (V€ e U°)(t — (f(t),€) € V)}, asU ranges overl(E) andV over U(( ko(R+)). Call
a semigroudE, T) with response iCo« (R 1, E) afinite-response semigroup

Cox(R+,E) and (R4, E) doin fact agree, algebraically as well as topologicallyewk is a
Banach space. In particular, they agree wkea K, so thatCy« (R4 ) = Ge(R+). Thus, we cannot
hope to get aR, -ring generator which admits precisely those responsesifR ., E). We note
also thatC (Ry) is the space of all Radon measurescon[H7, Ch. 4, §4].

We may alternately taken = « here and work with the spac€}, (R+,E) of all infinitely
differentiable functions inCok(R+,E). The dualG;”(R+) of G°(R4) (often denotedD’ in the
literature), has been used as the basis in some approact@stilouous time systems.g, [K3]).

3.23 Other Useful Examples One may develop a host of other examples. We mention just
two. Starting with periodic functions and their associatkstributions [B2], a theory operi-

odic semigroupsnay be developed. Similarly, we may develop a theory of seajgs withre-
sponse rapidly decaying at infiniby using the spacé(R., E) of functions inC(R., E) such that

lim¢ _.(1412)f(t) = O for all natural numberk. The seminorms defining the topology are of the
form f — supcg, a((1+t2)kf(t)), with o ranging over continuous seminormsBrandk ranging
over the natural numbers. See [H7, Chap. 2, Example 11]dtild on the related spaces.

3.24 Simple Examples It is also possible to construct some extremely simple exesag-or
example, let CofR_, E) denote the space of all constant functiong’{iR;,E), endowed with the
norm f — |f(0)|. Clearly, CoriR;,E) = K under the associatioh+— f(0). Nonetheless, Con
satisfies all of the criteria for aR . -ring generator. Note also that C¢R ) = K, andds = & for
anys, t € R,. In other words, suitably interpreteld, itself is anR_ -ring generator, albeit a trivial
and rather uninteresting one.

4. Behavior

In order to discuss behavior properly, we need to fix two paans. First of all, a base category
K of l.c.s.’s from which all of the spaces of interest will b&ea must be identifiedX’ will always

be taken to be a full subcategory of the catedd®s of all locally convex spaces, with continuous
linear maps as morphisms. Second, a Haseing R must be established. Its underlying space
is a K-object, upon which all dynamics will be based. Having els&dabd these two parameters,
the categonDyn(R, X) is defined to be that whose objects are (R¢-semigroupsE, T) such
thatE is a X object and whose morphisms are just the associated serignogphisms, which
are termeddynamorphismsin agreement with [AM1]. (ThusPyn(R, X) is just the category
CSG(R, X) described earlier.) AiR, X)-systemis a 6-tuple(Q,T,I,Y,g,h) such thatQ,T) is
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an (R X) semigroup,l andY are objects ofX, andg: 1 — Q andh: Q — Y are continuous
linear maps. It should be remembered that to ensuregthéd densely defined for eadiR, X)-
system, we must either talk® to be sequentially complete or else require eédclobject to be
sequentially complete. However, these requirements daffextt the abstract constructions, since
the infinitesimal generator is never explicitly utilized.

4.1 Definitions — Free and Cofree Dynamics It is now necessary to make precise the ex-
tensions, to the continuous-time case, of free and cofreardics as presented for discrete time
in Section 1. Lel be a’X object. Afree (R, X)-dynamicsoverl is an (R, X)-dynamics(1 %, 3%
together with ax. morphismn : 1 — 1® such that for anyR, K)-dynamicsQ, T) and X morphism
g:1 — Q, there is a unique dynamorphigm (1%,2%) — (Q, T) such that the following diagram
commutes.

| ———— |8 (1%,59%)
g P P

Q (QT)

(The triangle on the left says that= p on as K morphisms, while the arrow on the right says that
p is also a dynamorphism.)

Dually, letY be aX object. Acofree(R, X)-dynamicoverY is an(R, X)-dynamics(Ys, Zg)
together with aX morphisme : Yg — Y such that for any othefR, X)-dynamics(Q,T) and X
morphismh: Q — Y, there is a unique dynamorphism (Q, T) — (Ys, Zg) such that the following
diagram commutes.

(QT)

(0} h (0}

Ys 5 Y (Y3,2g)

If they exist, free dynamics and cofree dynamics are uniquéousomorphism (see.g, [HS,
Prop. 26.7]), so we may speak thfe free dynamics anthe cofree dynamics, without essential
ambiguity.

LetM = (Q,T,I1,g,Y,h) be an(R, X)-system. If both free dynamics ovieand cofree dynamics
overY exist, therp is called theeachability mapo theobservability mapando o p thebehavior
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of M. Thus, to construct the behavior bf, it suffices to construct the free dynamics ovend
the cofree dynamics ovéf, relative to(R, X).

Construction of Free Dynamics

To construct freéR, K)-dynamics for a specific paiR, X), it is easiest to first perform the nec-
essary constructions fakl = LCS, and then to extend the results to partial completion& of

Let R be anR.-ring, and letl be any l.c.s..R®| denotes the tensor product Bfand! (as
vector spaces), equipped with the strongest locally cotmealogy making the canonical bilinear
mappingp: Rx | — R® 1 c-hypocontinuous. (We reserve the sympdb denote this mapping.)
Recalling thatg denotes the ring multiplication d®, define the bilinear mappings : Rx (R®c
) — R®cl by (r,s®i) — (r xrs) ®i. It is well-known that it is arR-module action [CE, Ch. 2];
we need to establish that it is &R)-module action by demonstrating its c-hypocontinuity.

4.2 Lemma LetRbearR,-ringandletlbeal.c.s.. Then®:l is an (R)-module under the
actionxg|.

PROOF In view of 3.3, it suffices to show that it is hypocontinuoushwespect to the precompact
subsets oR and finite subsets AR ®c|.
We first establish thatr | is hypocontinuous with respect to the precompact subs&sldsing

the corresponding trilinear mapping x| : RxRx | — R®cI given byRx Rx | PP Rx (R®¢

1) i R®cl, and giverv € U(R®cl), it must be established that (i) given aly, K, € P(R),

there is aJ € U(l) such that(xg x 1) (K1 x Kz xU) CV, and that (ii) given anK; € P(R) and
Kz C P(l), thereis aV € U(R) such thatxr x ) (K1 xW x K3) C V.

To show claim (i), leV, K1, andK5 be as stated. By 3.3(li; x Ko is precompact. Therefore,
there is dJ € U(l) such thatp((K1xKz) xU) CV. Sincep((K1xKz) xU) = (xg x 1) (Ky x Ko X
U), (i) is proved.

To show claim (ii), letv, K1, andKs, be as stated. Singeis c-hypocontinuous, there isYac
U(R) such thap(Y x K3) CV. Since multiplication irRis c-hypocontinuous, there idhe U(R)
such thaK; «xU CY, sop((K1xU) x K3) CV. Asp((K1xU) x K3) = (xp x ) (K1 x U x K3), (ii)
is proved.

The hypocontinuity okgr | with respect to the finite subsets®Rf¢ | follows immediately from
claim (ii) and the fact thatr is commutative D

We let>R® | denote the semigroup action corresponding#g; i.e., T, Clearly, (R®
D) (rei)=((&xr)®i). Now, given a l.c.sl, definen: | — R®¢l by i— 3 ®i. nis
surely continuous, as it is the restrictionpf Rx 1 — R®1 to Rx {8,}. We have the following
fundamental result.

4.3 Theorem Let R be arR,-ring, and let | be a l.c.s.. Thef(R®¢1,=R®1),n) is a free
(R)-semigroup over | (i.e., itis a fre@R,LCS)-dynamics over I). Given anothéR)-semigroup
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(Q,T) and continuous linear mapping:d — Q, the uniqugR)-semigroup morphismp making
the diagram below commute is defined byir— bt r(r,9(i)).

| R&cl (Recl,ZR@1)
g P P
Q (Q,T)

PROOF The proof is in terms of the associatéR)-module actions. It is well-known th&® 1 is
a freeR-module, withn as defined [CE, Ch. 2]. By the above lemma, we know that it is ais

(R)-module. It is clear thaR x | 9 Rx Q b, Q is c-hypocontinuous, whengeis continuous.
O

LetM = (Q,T,l1,9,Y,h) be an(R LCS)-system. The above construction defines the space of
inputs and the reachability map ft. Let us first consider inputs iA(R) @ 1. View the el-
ementd ® | as an impulse input applied to the system at tirtewith weighti. (Note the
time reversal.) The responged; ® i) is the resulting state at time 0. ThuA(R) ® | is re-
garded as an input space of finite linear combinations-edlued impulses occurring at times
< 0. The reachability map gives the response at time 0 to such a train of impulses. Bhat i
P(Treq O ®ik) = Yr_1bT.R(G,9(ik)) = Sk_1 T (t)9(ik). Note the direct analogy to the discrete-
time case, in which an input may be regarded to be of the fpfm & ®ix(=...,ik,...,i1,i0))
and the response to gf_; T(k)g(ik) = Sh_; fg(ix), wheref = T(1) [AM1]. The only differ-
ence, other than the topological considerations requivedifferentiation, is that the set of times
at which an input is allowed to occur is the nonpositive réalsn the continuous-time case (recall
the time reversal) and the nonpositive integgrsin the discrete-time case, and tHaassumes the
role of a continuous rather than discrete generator. THhug ffirst examine the input signals and
reachability map of a continuous-time linear system in geahits skeleton input s&(R) ® I, we
see that it is not all that different from its discrete-tinmiaterpart. What does make continuous-
time linear systems richer than their discrete-time coqnates is the ability to complet&(R) and
A(R) ®1 to obtain a much more diversified set of inputs, tailored ®gpecific situation.

Letr ®i € R®cl. If r =& for somet, we already know that(r ®i) =T (t)g(i). If r € Rmore
generally, we can approximates closely as desired by a sum of the quﬁl_laj -O; with gj € K,
sinceA(R) is dense iR 31, aj-&; ®i then approximates®i. Sincep is continuousp(r @i) is
approximated by, aj-T(t;)g(i).

Now suppose that is represented by a functiapy : Ry — K. Then, using the density of
A(R) in R, there must be a net of surg#":laj -T(tj)g(i) which converges to th@-valued integral
Jo &r(t)T(t)g(i)dt. Regardingp, (t) as an input signal to the systdvh the time scale is reversed,

so if we viewd : R_ — K, the state at time=0isq(0) = /%, T(—t)(¢;(t)-g(i))dt, which is in
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agreement with the classical result for finite-dimensi@yatems [PA, 6-1, Thm. 2]. The extension
to a sum of the fornf;_, rk ® ix of such inputs is by simple linearity. For general inputs t
form p®i € R®¢l, this above formula also works, since we may vigw- T (t)) € L¢(R E), by
3.9, and then view;’ pu T(t)g(i)dt € E as the weakly continuous linear functional Bhgiven by
& p(t e (T(t)g(i),€))

Itis useful to have a more concrete representation of theegpal. In harmony with the notion
of vector-valued distribution of Schwartz [S2], we cali(R,I) the space of all-valued (R)-
distributions An elementf € L(R,I) is termedfinite dimensionaif f(R) is a finite-dimensional
subspace of, and the subspace consisting of these mappings is deRoRd ). Now, for any
test functionp € R andp € L¢(R,I), we have a natural actiofy,¢) = ¢(n) € | and a natural
injection®: Re | — F(R,I) viap®i— (¢ — (1 ¢)-i). Conversely, anf € F(R,1) has a unique
decomposition of the forny |, j-ij with eachy; € R” and eachj € I, so everyy|_; yj @ijis a
representation of in R’ ®1. Thus, ifRis c-complete (s&®’ = R), then the space of inpuB® |
may be identified with the space of all finite-dimensiohahlued(R)-distributions.

If | = K™ for some finitem, then every linear map intbois finite dimensional, s& ¢ = R™,
both algebraically and topologically. Howeverl i not finite dimensional, theR(R', 1) is always
a proper subset df (R, 1), and the topology induced dR(R,I) by R®c1 is generally strictly
finer than the topology induced as a subspack @R/,l). To understand this situation further,
we pursue construction of a frd®, X)-dynamics in the case th& is LCS for some partial
completion operator . In the abstract sense, all that need be done is to completspidices
involved in the construction for theCS case given in 4.3. However, there are a few details which
must be addressed to ensure that this extension is welledkefie proceed as follows.

4.4 Lemma LetE and F bel.c.s’s such that for any linear & — F, if f|5 (f restricted to A)
is continuous for each A P(E), then fe L(E,F). Then for any partial completion operator,
L¢(E,F) is “-complete whenever F is.

PROOF For the case of = 7, this is just Theorem 32.2 of [T] specialized to precompats.s
However, the proof in [T] goes through for any partial contigle operator with only inessential
changes. We therefore omit the proof, and refer the readdi] iastead.O

4.5 Proposition Let E be an almost polar reflexive I.c.s. such thatfscomplete, and let F be
any l.c.s.. Then, for any partial completion operatarL¢(E,F) is ~-complete whenever F is.

PROOF. We show thak satisfies the conditions of the above lemma. LetE — F be a linear
map which is continuous on eathe P(E). Then, in particular,f sends precompact sets into
precompact sets. Lét : F* — E* denote the algebraic transposefofNow eachg € f*(F’) maps
precompact subsets & into precompact subsets f, just by definition off*. Each suchyis
continuous on precompact sets, sicés locally compact. Thug € E’ by Grothendieck’s com-
pletion theorem [K6, §21,9,(2)]. Sind€ is already complete, we must in fact have a continuous
f':F' — E’, and sof” : E” — F” is also continuous. Sinde is almost polar reflexive, this may
be written as |’é : E — F”. Then, noting thaF” induces a topology oR which is finer than the
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initial topology, we have that is continuous, as requiredl

4.6 Proposition Let R be anR.-ring, and let(E,b) be an(R)-module. Let™ be a partial
completion operator. Then b extends uniquely t¢Rpmodule action R E — E.

PROOF. First extend the codomain @fto beE; b: Rx E — E. Next, convert this to a linear
mappingb : E — L¢(R,E). By the above theorenfl¢(R,E))™ = L¢(R,E), sob extends tcE —
L:(R E). An application of 3.3(a) now shows that the corresponditigear mappingR x E — E
is c-hypocontinuous

Let ~ be a partial completion operator, letoe a l.c.s., and leR be a ™ -completeR . -ring.
Denote by+g; the unique extension of th@r)-module action«g to R®c| guaranteed by the
above theorem, and 18R ®¢ | denote the associatéR)-semigroup action; : | — R®¢| denotes
the extension of the mapdefined previously. We then have the following extension.df 4

4.7 Theorem Let " be a partial completion operator, let | be'acomplete I.c.s., and let R be
anR,-ring. Then((R®c1,2R&c1),7n) is a free(R)-semigroup over | (i.e., it is a fre@R, LCS)-
dynamics over ). FofQ,T) an (R, "LCS)-dynamics and gl — Q a continuous linear mapping,
the unique morphism required is jystas shown below, with defined as in 4.4.

n ~ _ ~
| R®cl (RRcl,ZR®cl)
9 p p
Q (Q,T)

PROOF Follows immediately from 4.4 and the previous proposition

Unfortunately, we do not have a completely satisfactoryccete representation ®®.| is the
most general case. The best that we can do is to study itsoredatp to the projective tensor
product, about which a great deal more is known. Specificddgprojective tensor product Kl
carries the strongest locally convex topology making theocgcal bilinear mapping : Rx | —
R® 1 continuous [K7, 841]. In general, this topology is striatigaker than the topology dRxc|.
Nontheless, there are substantial ties between these mwortproducts, as shown by the following
result.

4.8 Proposition Let E and F be two arbitrary I.c.s’s.

(a) The precompact subsets ofs F are precisely the subsets of closed absolutely convex
hulls of sets of the form &2 K, with K; and Ky precompact.
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(b) The precompact subsets oftks F and E®F are identical.

(c) The continuous bijection B F — E ®F may be extended to a continuous bijection
E ®.F — E ®rF, whose restriction to each precompact subset is a topofbgsomor-
phism.

(d) If E is polar reflexive, then the canonical injectidn: E @ F — L¢(E’,F) is a continuous
embedding whose imageR$E’, F).

(e) If E and F are (PF) spaces, thend&: F and E®xF carry the same topology.

PROOF (@) SinceE @ F carries the strongest locally convex topology making thenah projec-
tion p: E x F — E®F continuous, the precompact subset&abF must be exactly those sets
K whose inverse imagp~1(K) is precompact ifE x F. Since the precompact subsetsfok F

are precisely the products of precompact sets andF, the result follows.

(b) Sincep: E x F — E®¢F is c-hypocontinuous, we have immediately that the closedlakely
convex hull ofp(Kj x K3) is precompact it ®c F. HoweverE ®¢F carries a finer topology than
doeskE ®rF, and hence must have no more precompact sets. The resutotlougs from (a).

(c) Follows immediately from (b), since a continuous bijestof compact spaces is necessarily a
homeomorphism.

(d) LetB: ExF — L¢(E’,F) given on elements big, i) — (¢ — (1, ¢)-i) be the bilinear mapping
corresponding teb. ForK € P(E'), V € U(F), we haveB(K° xV) C {f | f(K) CV}, so that

[ is continuous, and s@ fortiori, c-hypocontinuous. Thu® is continuous. In fact, if we let
F1 € L(E’,F) denote the subspace consisting of the maps with a one-diomahsmage (repre-
sented inE ®¢ F by elements of the formqu® i), then it is easy to see th@tis ontoF;, and that
B(K°xV)={f eF| f(K)CV}, so thatB is an open mapping. Translating back, this means
precisely thatd is an embedding. Sinde is polar reflexiveE @ F = E”" @ F = F(E/,F) by the
standard characterization [K7, §43,1], whedzés surjective.

(e) If E andF are (PF) spaces, then every c-hypocontinuous bilinear mggmE x F is con-
tinuous. The proof follows almost verbatim the standard tivag every hypcontinuous bilinear
mapping on (DF) spaces is continuous [K7, 840,2(10)]. itised to note that the compact subsets
of (PF) spaces are correspond exactly to the bounded sudsspetheir (DF) counterparts, and to
substitute “compact” for “bounded” throughout.

From the preceding proposition, we may deduceRw@t| is naturally isomorphic to a subspace
of I-valued(R)-distributions, provided that < ™. The compact sets will be exactly those induced
by L¢(R4,!1). However, in the general case, the induced topology willtbetly finer, and any
attempt to go beyond c-completion may run into injectivitpllems. More to the point, it is
certainly possible to extend the continuous injecf®R: | — R®y| to the completionR&¢ | —
R&r!, but there is no guarantee that this extension will be injectlf it were not injective, this
would imply the existence of nonzero element®Rof | which correspond to the zero mapping in
L (R,1), rendering any model ®®&®.| as a subspace bf(R, 1) somewhat meaningless. We know
of no work addressing this issue, and we can offer no futheght into it at the present time.

23



Another characterization &y | is provided in [H5]. There we show thatlifs polar reflexive,
so too isR®¢ 1, and the latter is naturally isomorphic to the polar duaLgfR,1’). But in that
framework as well, it seems impossible to obtain anythingaceete representation beyond c-
completion.

To obtain a truly concrete representationRf. |, we can offer no better alternative than to
restrict attention to those cases in whRlk:| = R®xl. Item (e) of the preceding proposition
provides such conditions; namely, require b&handl to be (PF) spaces. This is not as extreme
a constraint as might first appear. We know from the previaesien that most of the important
examples oR -rings are (PF) spaces. Furthermore, whenévern Banach space or the dual of a
Fréchet space, it will be a (PF) space as well.

Since the natural injectioR®;1 — L¢(R,I) is an embedding, and sinde;(R,1) is ~-
complete whenever is, we know thatR®. | will be a (topological) subspace &f.(R1), the
space of alll-valued(R)-distributions. It is pertinent to ask when it will be all &f(R,1). It
turns out to be rather easy to give an answer for the case tigthe full completion operator.
Following [K7, 843,1], we say that an I.cB.has theapproximation propertyf F(E,E) is dense
inL¢(E).

4.9 Proposition Let R be a completB. -ring with the approximation property, and let | be a
complete Ics.

(a) R®xl is naturally isomorphic (topologically as well as algelically) to L¢(R,1).

(b) If R is of the form#’(R.), with 7 (R.) an H™ space in the sense of Schwd4], then R
has the approximation property.

PROOF (@) This follows immediately from [K7, §43,1(1)] and 4.5.

(b) For a proof that everid™ space has the approximation property, see [S1, Prop. 16&yekier, if
R has the approximation property, then so too deeshis follows from [K7, §43,4(9)], noting that
in that statement and its proof, “quasi-complete” may beyavikere replaced with “c-complete”.
O

We note that all of th&R . -ring examples given in the previous section have the appratkon
property, although we do not have any general approach fabkshing those results beyond (b)
above. For related work on the approximation property aratap of distributions, consult [S2].

Cofree (R)-Modules and Dynamics

The cofree constructions are much simpler than their fraent@yparts. We proceed as follows.
Let R be anR,-ring, and letY be a |.c.s.. Define the bilinear mappidgR Y) : Rx Lc(RY) —
Lc(RY) by (r, f) — f(rx—). Itis easy to see that(RY) defines arR-module action. We need
to establish its c-hypocontinuity to show that it is in fant(&)-module action.
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4.10 Lemma ForanyR,-ringRandl.c.s.YZ(RY) is an(R)-module action or.¢(R,Y).

PROOF LetW € U(L¢(RY)); it suffices to tak&V = {f | f(K) CV} for someK € P(R) andV <
U(Y). Letge L¢(R)Y). Sinceg is continuous and multiplication iR is c-hypocontinuous, there
isaU € U(R) such thag(U «K) CV. ThusZ(R,Y)(U x {g}) CW. Next, keep/ as above and let
Ki € P(R). PutU = {f | f(KxKz) CV}. By 3.3(b),K*«Kj is precompact, s € U(Lc(R)Y)).
Note thatZ(R Y) (K1 xU) CW. HenceZ(R,Y) is hypocontinuous with respect to the precompact
subsets oR and the finite subsets &f.(R,Y), so, by 3.3(a), it is c-hypocontinuous.

Let R be anR-ring and letY be a l.c.s.. We lefXr,Y| denote the semigroup action corre-
sponding taZ(R,Y); i.e, Tzry). Clearly,[2r,Y](t)f = f(& * —). Furthermore, iR= F'(R,),
thenLc(RY) = F(R.,Y), and[Zg,Y](t) corresponds to the left translation operatar Define
€:Lc(RY)—=YDbyf— f(d). Sincee(f) =Z(RY)(d, f)(0), it is surely continuous.

4.11 Theorem Let R be amR_-ring, let X be LCS for some partial completion operator

(including the identity completion operator), and let Y b& abject. Ther{(L¢(R)Y), [ZR,Y]),€)

is a cofreg(R)-semigroup over Y it. If (Q, T) is any(R)-semigroup ik and h: Q — Y is a con-
tinuous linear mapping, then the uniq(®)-semigroup morphisra: (Q,T) — (L¢(R)Y), [ZRr,Y])

such that the following diagram commutes is given by ¢r — h(b(r,q))).

Q (QT)
o h o

Le(RY) —¢ Y Le(RY), 2R, Y]

PROOF It is well-known thatZ(R)Y) is a cofreeR-module ovelY, with € as defined [CE, Ch. 2].
By the previous lemm& (R,Y) is an(R)-module. The continuity o follows form the fact that
0=0Q A L:(R Q) =h Lc(RY), wherevg is thev of 3.9. Sincd_¢(R,Y) is a X object whenever
Y is (4.8), upon translating t@R)-semigroups, the result is proved.

LetM = (Q, f,1,0,Y,h) be an(R, X)-system.o of the above corollary is the observability map
of M. Its interpretation is very simpleo(q) gives the output trajectory of the system far 0
with q the state at = 0, and input O for alt > 0. The output at > 0 is justa(q)(t). Again, we
have a close correspondence with the discrete-time casewiie space of output signals may be
considered to b&¥ = {¢ | § : N — Y} as shown in the introduction, wheras in the continuous-time
caseitisasubsetdfy | ¢ : R, — Y continuously.
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5. Complementary Directions

It is possible to develop a realization theory {6, X)-systems as well. As has been known for
some time, defining the systelh to be reachable if its reachability mapis surjective, and ob-
servable if its observability map is injective, is not adequate in the continuous-time case, o
even in the topologized discrete-time case [H1]. Rathemtsfactory realization theory must
be based upon more refined factorizations which take togalig account, such as (open surjec-
tions, injections), (surjections, embeddings), or (denaes, closed embeddings). The appropriate
algebraic formulation is that of an image-factorizatiosteyn(E, M) in the categoryX’ [AM1].
The details of this formulation are not significantly di#at in principle from those presented in
[H2], and so we do not pursue a complete formulation hererdiber we direct the reader to that
reference. A detailed development may also be found in tttenieal report [H3].

It is possible to achieve a duality theory for continuousdisystems of the form developed
in this work as well. However, the algebraic machinery reggiiis the much more substantial
enriched category theorjK4]. Basically, we are required to consider “structuredit@gories in
which the set of morphisms forms not just a set, but a locallywex space. The details will be laid
out in a separate report [H5].
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Appendix — Polar Reflexivity and Ascoli's Theorem

With the aid of Ascoli’'s theorem, we obtain some very usedsluits relating precompactness and
equicontinuity ofL¢(E,F) whenE is almost polar reflexive.

A.1 Theorem — Characterization of Precompactness in §E,F) Let E and F be l.c.s’s,
and suppose that E is almost polar reflexive. Thefi H¢(E,F) is precompact if and only if the
following two conditions are satisfied.

(a) H is equicontinuous.
(b) H(K) is precompact for each Kk P(E).

PROOF ((a), (b)= H precompact) is a special case of Ascoli’'s Theorem [B4, CIg§25, Thm.
2].

(H precompact= (b)) LetK € P(E) and letU € U(F). SinceH is precompact, there are
hi,...,hn € H such that given an € H, h—h; € {f | f(K) CU/2} for somei € [1,n]. Triv-
ially {hy,...,hn} is equicontinuous, so there i%/ac U(E) such thaty(V) CV/2foralli € [1,n].
SinceK is precompact, there alq, ..., ky € K such that given ank € K, k—k; € V for some

i € [1,m]. Now letx € H(K); thenx = h(k) for someh € H andk € K. By the preceding there
are hj andk; such thath—h; € {f | f(K) CU/2} andk—k;j € V. But thenh(k) — hi(kj) =
(h(k) —hi(k)) + (hi(k) —hi(kj)) e U/24+U/2CU. Hencefhi(kj) |i € [1,n] A j € [1,m]} C H(K)

is a finite set of points which até-close to any € H(K). ThusH (K) is precompact.

(H precompact= (a)) LetH C L¢(E,F) be precompact; we must show that it is equicontinu-
ous. First note that there is a natural embedding¢(E,F) — L¢(F’,E’), wheree defines the
equicontinuous subsets Bf. Since’ is continuousH’ C L¢(F’,E’) is also precompact, and since
¢ defines precompact sets [K6, §21,6(3)], Ascoli's Theorery brainvoked to deduce that'(x)

is precompact irE’ for eachx € F’. Also, by H precompacts- (b)) aboveH (K) is precompact
for eachK € P(E), soH’ is an equicontinuous subsetlofF’, E’). Hence we may apply Ascoli’s
Theorem again to deduce thdtis precompactihc(F’,E’). Now use H precompact- (b)) once
again to ascertain that’(K) is precompact for eac € P(F’). Finally, transpose again to get
thatH” is equicontinuous i (E”,F"). SinceE is almost polar reflexive, we have tHat— E” is
continuous, sd)-l"’E C L(E,F") is also equicontinuous. Since edth H” is the bitranspose of an

element oiH, H”(E) C F. The topology which=" induces orF is finer than the initial topology,

soH"’E =H CL(E,F) is also equicontinuousl]

A.2 Corollary — Characterization of c-hypocontinuity Let E, F, G be l.c.ss, and assume
further that E is almost polar reflexive. Let B x F — G be a bilinear mapping which is hypocon-
tinuous with respect to the precompact subsets of E and tite $ubsets of F. Then:

(a) b is c-hypocontinuous.
(b) b(K1 x Ky) is precompact for Ke P(E), Kz € P(F).
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(c) The transpose: E x G — F’ (resp. b : G’ x F — E’ is hypocontinuous with respect to the
precompact subsets of E (resp. F).

PrROOFE (a) In view of the hypotheses, we may define a continuousatimeappingb : F —
Lc(E,G) defined on elements by— b(—,x). For anyK € P(F), b(K) is precompact, and so
equicontinuous by the above theorem. But the equicontimdiib(K) is equivalent to the hypocon-
tinuity of b with respect to the precompact subsetf phis was to be proved.

(b) Argue as above, noting that by the above theot®iK) maps precompact sets into precompact
sets.

(c) This is just the transpose of (la).
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