
Pairwise-Definable Subdirect Decompositions
of General Database Schemata†

Stephen J. Hegner
Department of Computer Science and Electrical Engineering

Votey Building
University of Vermont

Burlington, Vermont 05405 USA

(802)656-3330
Internet: hegner@uvm.edu

USEnet: ..uunet!uvm-gen!hegner

This paper appeared in Proceedings of the Third Symposium on Mathematical Fundamentals
of Database and Knowledge Base Systems, 5-9 May 1991, Rostock, Germany Springer-Verlag
Lecture Notes in Computer Science Vol. 495, 1991, pp. 243-257.

Abstract

One of the most important results in the theory of decomposition of universal relational
schemata is the equivalence of acyclicity of the hypergraph of the schema to numerous
desirable properties regarding simplicity of constraints, correctness of query evaluation al-
gorithms, and complexity of integrity maintenance. In this paper, we show that the thrust
of these results is not specific to the relational model, but rather applies in a much more
general context in which schemata are just sets and views are defined by surjective functions.
This is accomplished by replacing the notion of hypergraph of a schema (which is specific
to the relational model) with the much more general notion of pairwise definability, which
is meaningful in the context of any decomposition into a set of views.

†Much of the research reported herein was performed while the author was visiting the Mathematics
Department of the University of Oslo, Norway. He wishes to thank in particular the members of the Com-
putational Linguistics Group for their kind hospitality during his stay there.

0. Introduction
A cornerstone of the theory of universal relational database schemata is that of acyclic de-
compositions. In that work, numerous desirable properties, including the simplicity of con-
straints, the correctness of certain efficient query evaluation algorithms, and the complexity
of maintaining the integrity of a decomposed database, are all shown to be equivalent to
the property that the underlying hypergraph of the schema be acyclic [FMU82],[BFMY83].
With the growing importance of new data models, such as object-oriented models [Ala89],
as well as extensions of the relational model to contexts including deduction [CGT90] and
incomplete information [GMN84],[Rei84], it is important to have an understanding of the
extent to which these results may be extended to more general classes of database schemata.
The purpose of this paper is to initiate an investigation which will hopefully provide the
foundation for such an understanding.

Our starting point is the main characterization theorem for acyclic schemata, as developed
in [BFMY83, Thm. 3.4]. For reference, we reproduce that result below.

0.1 Theorem – the classical characterization of acyclicity The following prop-
erties are equivalent on a universal relational schema R = (R[U], {1 [U1, U2, .., Un]}) with
single relation symbol R over attribute set U , governed by the single full join dependency 1

[U1, U2, .., Un], and viewed as being decomposed into the set of projections
{RU1 [U1], . . . , RUn [Un]}.

(S1) Every pairwise consistent n-tuple of relations (r1, . . . , rn) on RU1 [U1] × . . . ×
RUn [Un] is globally consistent.

(S2) R has a join tree.

(S3) R has the running intersection property.

(S4) R has a monotone join expression.

(S5) R has a sequential join expression.

(S6) The join dependency 1 [U1, U2, .., Un] is equivalent to a set of multivalued depen-
dencies.

(S7) The join dependency 1 [U1, U2, .., Un] is equivalent to a set of conflict-free multi-
valued dependencies.

(S8) R has a full reducer.

(S9) The underlying hypergraph of R is acyclic.

(S10) The underlying hypergraph of R is closed-acyclic.

(S11) The underlying hypergraph of R is chordal and conformal.

(S12) Graham’s algorithm succeeds with input R. 2

1

These twelve equivalent properties may be partitioned into two groups. Items (S1)–(S8)
deal with properties of the schema which are useful in an application sense. They tell us
why acyclic decompositions are desirable. Properties (S9)–(S12), on the other hand, serve
primarily as a characterization. They tell us how to determine whether or not a schema has
properties (S1)–(S8).

The principal result of this paper states that properties (S1)–(S8), suitably recast, hold
in a much more general setting. More specifically, we work within the most general possi-
ble framework — database schema are just sets and database mappings are just functions.
Within this framework, we identify new properties (T1)–(T7) of decompositions, and estab-
lish that they have the following characteristics.

• For each i, 1 ≤ i ≤ 7, (Ti) reduces to (Si) when specialized to traditional
relational decompositions.

• The properties (T1)–(T7) are all equivalent to one another.

In addition, we may include a property (T8) which reduces to (S8) for traditional rela-
tional decompositions, provided we add somewhat more structure to our general framework.
(We must work within a framework which supports the concept of database size to generalize
the notion of full reducer.)

In short, our result establishes that the “desirable” properties of acyclic schemata are not
special properties which make sense only in a relational setting; rather, they are very general
properties which make sense in any reasonable database setting. On the other hand, we offer
no generalizations of (S9)–(S12). This is to be expected, since these characterizations deal
primarily with a structure, particular to the relational model, which permit us to characterize
algorithmically when a schema has properties (S1)–(S8). We cannot expect such algorithms
to extend to a much less structured framework.

Throughout this paper, we assume familiarity with the standard notation and terminol-
ogy of the relational model, as may be found in [Mai83] and [PDGV89]. Specific familiarity
with the theory of acyclicity in the relational model ([FMU82],[BFMY83] or [Mai83, Ch. 13])
will prove very helpful in understanding the generalizations, but is not absolutely necessary,
since our discussion includes reviews of the key ideas.

In many cases, the proofs of the results are presented here are rather involved, and space
limitations have forced us to omit them, giving this paper the form of an extended abstract.
A full paper with all proofs will be available.

1. Schemata and Decompositions
In this section, we formulate the key definitions for the set-based framework in which our
generalization of Theorem 0.1 will live. Many of these concepts are developed in more
detail in [Heg89] and [Heg90] — our emphasis here is on how they generalize the traditional
relational framework.

2

1.1 Universal relational schemata and projective views We begin by briefly recall-
ing the relational framework in which the traditional acyclicity theory is presented, recast in a
way compatible with our more general framework. By a universal relational schema we mean
a pair R = (R[U], Φ) in which R is a relation symbol, U is a finite set of attributes, and Φ is
a set of implicational dependencies [Fag82],[FV86]. The set of all relations which satisfy each
of the constraints in Φ (the legal databases) of R is denoted by LDB(R). If Ψ is another set of
constraints, we say that Φ and Ψ are logically equivalent if LDB((R[U], Φ)) = LDB((R[U], Ψ)).

In this work, the most important types of dependencies are join dependencies and mul-
tivalued dependencies, with which we assume familiarity. We shall always regard a multi-
valued dependency as a join dependency on two projections; for our purposes, the multi-
valued dependency W →→ V (with W ∩ V = ∅) on attribute set U is the join dependency
1 [W ∪ V, U \ V].

The schema (R[U], {1 [U1, . . . , Un]}) with U = ∪n
i=1Ui is called a simple universal rela-

tional schema, and is often denoted, for emphasis, by R[U1, . . . , Un].
For W ⊆ U , the W -projection view of R is the pair ΠW = (RW , πW). RW is the universal

relational schema (RW [W], πW (Φ)) in which RW is a relation symbol on the attributes W .
πW : R → RW is the relational calculus query defining the projection onto the attributes of
W . πW

′ : LDB(R) → LDB(RW) denotes the underlying function which sends each relation
over U to its projection on the attributes of W . Finally, πW (Φ) is the projection of the family
Φ of implicational dependencies onto the attributes W ; that is, the set of all dependencies
which are satisfied by every member of LDB(RW). It is well known that such a projection of
implicational dependencies itself has a basis consisting of implicational dependencies [Fag82,
6.3], so that πW

′ is surjective. In the case that Φ = {1 [U1, . . . , Un]} and W ⊆ Ui for some i,
π(Φ) contains no nontrivial dependencies — that is, there are no constraints on LDB(RW).

It is important to understand in particular the nature of Π∅ = (R∅, π∅). Assuming that
LDB(R) contains at least one nonempty relation, as well as the empty relation ∅ (which is
always the case in nontrivial examples), LDB(R∅) has two legal states, the empty relation ∅
and {()}, the relation containing only the empty tuple. For any M ∈ LDB(R),

π∅
′(M) =

{
{()} if M 6= ∅;
∅ if M = ∅.

Thus, Π∅ distinguishes between empty and nonempty relations, but preserves no further
information.

The traditional acyclicity theory is usually applied to the simple schema R[U1, . . . , Un],
which is often denoted in the literature by just {U1, . . . , Un}, and the decomposition is
actually into the projective views {ΠU1 , . . . ΠUn}.

1.2 Set-based schemata and views To abstract the notions of the previous paragraph,
we discard the information that the schemata are defined by a relation symbol R[U] plus
some constraints Φ, and just use the fact that there is an underlying set LDB(R) of legal
states. More precisely, a set-based database schema D is entirely defined by a set of legal
databases (or legal states), which we denote by LDB(D). A morphism f : D1 → D2 is just a
function f ′ : LDB(D1) → LDB(D2). A set-based view of D is a pair Γ = (VΓ, µΓ) in which

3

V is a set-based database schema and γ : D → V is a set-based morphism with the property
that γ′ : LDB(D) → LDB(V) is surjective. The set of all views of D is denoted View(D).

The congruence Congr(Γ) of Γ (denoted ≡Γ in [BS81]) is the equivalence relation on
LDB(D) defined by (M1,M2) ∈ Congr(Γ) iff γ′(M1) = γ′(M2). Given set-based views Γ1 =
(VΓ1 , µΓ1) and Γ2 = (VΓ2 , µΓ2), a view morphism f : Γ1 → Γ2 is a set-based database
morphism f : V1 → V2 such that the following diagram commutes.

D

V1 V2

�

γ1 J
JĴ
γ2

-f

It is easy to show [Heg90, 1.2] that there is at most one set-based view morphism Γ1 → Γ2

between two views of the same schema. This morphism exists iff Congr(Γ1) ⊆ Congr(Γ2).
When it exists, we denote the unique f of the above diagram by λ(Γ1, Γ2). This furthermore
allows us to regard Γ2 as a view of V1 when Γ2 ≤ Γ1. We call this new view of V1 the
relativization of Γ2 to Γ1 and denote it by Λ(Γ1, Γ2) = (V2, λ(Γ1, Γ2)). The relativization is
relational if Γ1 and Γ2 are [Heg90, 3.4].

If Γ1 = (VΓ1 , µΓ1) and Γ2 = (VΓ2 , µΓ2) are set-based views such that there are mor-
phisms f : Γ1 → Γ2 and g : Γ2 → Γ1, then the above uniqueness result guarantees that
g ◦ f : Γ1 → Γ1 and f ◦ g : Γ2 → Γ2 are identity morphisms. Thus, in the standard
categorical sense [HS73, 5.13], f and g are isomorphisms. We say that Γ1 and Γ2 are (set-
based) isomorphic in this case. It is trivial to verify that Γ1 and Γ2 are isomorphic iff
Congr(Γ1) = Congr(Γ2). We write [Γ1] to denote the equivalence class of all views which are
(set-based) isomorphic to Γ1, and [View(D)] to denote the set of all such equivalence classes.

Upon identifying isomorphic views, view morphism induces a partial order on equivalence
classes. As a convenient notation, we write [Γ2] ≤ [Γ1] just in case there is a morphism
f : Γ1 → Γ2. In an abstract decomposition theory, we do not distinguish between isomorphic
views, and, as an abuse of notation, we also write Γ2 ≤ Γ1.

1.3 Example To make sure that there is no confusion, we illustrate these ideas with
a simple relational example. Let E = (R[ABC], {1 [AB, BC], B → C}). LDB(E) is just
the set of all databases which satisfy the join dependency 1 [AB,BC]. In ΠAB, EAB is
defined by the single relation symbol RAB[AB]; there are no nontrivial constraints on this
schema. The projective views ΠBC = (EBC , πBC) and ΠB = (EB, πB) are defined similarly,
noting that the functional dependency B → C is a constraint of EBC . We regard these as
set-based schemata and views by “forgetting” the relational structure, and working with the
underlying LDB(−)’s. We clearly have that ΠB ≤ ΠAB and ΠB ≤ ΠAB. The morphism
λ(ΓAB, ΓB) is just the projection of RAB onto RB. In other words, the unique morphism
ΠAB → ΠB just recaptures that we may factor the projection πB on RABC through RAB.

1.4 The decomposition morphism of a set of views In the simple relational case,
the decomposition mapping ∆〈U1, . . . , Un〉 : R[U1, . . . , Un] → V1 × . . . × Vn is defined on

4

elements by M 7→ (πU1
′(M), . . . , πUn

′(M)). We think of this mapping as defined by the set
of views {ΠU1 , . . . , ΠUn}, and generalize this concept to the set-based case as follows. Given
a schema D and a set X = {Γ1, . . . , Γn} of views with Γi = (VΓi

, µΓi
), the decomposition

morphism ∆〈X〉 : D → V1 × . . .×Vn is given on elements by M 7→ (γ1
′(M), . . . , γn

′(M)).
We call X a subdirect decomposition1 if ∆〈X〉 is injective. In the case that X consists of just
two elements, we call it a subdirect complementary pair. The set ∆〈X〉′(LDB(D)) is called
the decomposed database; a subdirect decomposition then is precisely one in which we can
recover the original database state from that of the decomposed database. A left inverse of
∆〈X〉 is known as a reconstruction map.

In the general set-based case, we cannot speak directly of join dependencies. Rather,
we must work with the underlying decomposition, and our generalization of Theorem 0.1
will thus make use of properties of subdirect decompositions, rather than properties of join
dependencies. To this end, given a join dependency 1 [U1, . . . , Un], we define the decom-
position of 1 [U1, . . . , Un] to be the set of views {ΠU1 , . . . , ΠUn}. It is immediate that if
Φ |= 1 [U1, . . . , Un] for the schema R = (R[U], Φ), then {ΠU1 , . . . , ΠUn} is a subdirect
decomposition of R. Unfortunately, the converse is not always the case; there exists a de-
composition into projections such that the join is not a reconstruction map. See [Var82, p.
183] for an example. However, such a counterexample requires that Φ contain embedded de-
pendencies; when Φ consists entirely of total dependencies [Fag82], there is a natural bijective
correspondence between subdirect decompositions into projections and join dependencies, as
recaptured by the following.

1.5 Proposition Let R be the universal relational schema (R[U], Φ), with Φ a set of
total implicational dependencies, and suppose that U1, . . . , Un ⊆ U with

⋃n
i=1 Ui = U . Then

{ΠU1 , . . . , ΠUn} is a subdirect decomposition of R iff Φ |= 1 [U1, . . . , Un].

Proof: Consult [Var82, Cor. 4]. 2

Note in particular that the above result holds when Φ = {1 [U1, . . . , Un]}, which is the
context in which acyclicity theory is usually considered. Thus, for this most fundamental
example, the context in which the classical acyclicity theory is usually formulated, subdirect
decompositions generalize join-based decompositions without compromise.

1.6 Consistency of views In the context of a universal relational schema R = (R[U], Φ),
let W1,W2 ⊆ U . The classical definition states that two instances M1 ∈ πW1

′(LDB(R))
and M2 ∈ πW2

′(LDB(R)) are consistent if they agree on their common columns; i.e., if
λ(ΠW1 , ΠW1∩W2)

′(M1) = λ(ΠW2 , ΠW1∩W2)
′(M2). The utility of this notion is that only con-

sistent pairs (M1,M2) can arise from a common state of R. Note in particular that in the
case that Ui∩Uj = ∅, consistency amounts to agreement on the view Π∅; i.e., one projection
may be empty iff the other is.

To generalize this idea to the set-based case, let Γ1 = (VΓ1 , µΓ1), Γ2 = (VΓ2 , µΓ2),
and Γ = (VΓ, µΓ) be arbitrary views of the set-based schema D with the property that

1The terminology is borrowed from universal algebra; see [Gra68, §20] for details.

5

Γ ≤ Γ1 and Γ ≤ Γ2. We say that M1 ∈ LDB(V1) and M2 ∈ LDB(V2) are Γ-consistent if
λ(Γ1, Γ)′(M1) = λ(Γ2, Γ)′(M2). It is immediate that if D is the universal relational schema R,
Γ1 = ΠW1 , and Γ2 = ΠW2 , then ΠW1∩W2-consistency is just consistency in the relational sense,
as defined above. However, to complete the generalization, we need to identify a canonical
Γ which takes the place of ΠW1∩W2 . Unfortunately, this is not possible in general. However,
there is a special case which serves our purposes completely. In the case that Congr(Γ1) ◦
Congr(Γ2) = Congr(Γ2) ◦ Congr(Γ1), with “◦” denoting ordinary relational composition, we
say that Γ1 and Γ2 have commuting congruences, and that {Γ1, Γ2} is a fully commuting
pair. In the case that {Γ1, Γ2} is a subdirect decomposition of D in addition to being a
fully commuting pair, we call it a fully commuting complementary pair. In the case that
the constraints other than the governing join dependency embed into the projections, the
relational notion of consistency reduces to commuting congruences, as recorded formally in
the following proposition.

1.7 Proposition For the schema R = (R[U], Φ∪{1 [U1, . . . , Un]}), every pair of views in
{ΠU1 , . . . , ΠUn} has commuting congruences with Congr(ΠUi

) ◦ Congr(ΠUj
) = Congr(ΠUi∩Uj

)
iff {πUi

′(Φ) | 1 ≤ i ≤ n} ∪ {1 [U1, . . . , Un]} |= Φ. (We regard each ϕ ∈ πUi
′(Φ) as an

embedded constraint; by definition, M ∈ LDB(R) satisfies ϕ iff πUi
′(M) does.) 2

This result is of fundamental importance in establishing the various equivalent notions
of schema simplicity. It is also very useful in other contexts. For example, in [Heg90], we
show that the notion of commuting congruences is of fundamental importance in the support
of view updates. Within that context, we have provided a detailed study, with examples,
of the conditions under which the congruences of more general relational views commute.
However, the use of the notion of commuting congruences actually predates database theory,
and arose initially in the context of universal algebra, in an attempt to generalize certain
nice properties of subdirect decompositions of groups, rings, and Boolean algebras. Consult
[Fle55] and [Wen67] for details.

1.8 The bounded weak partial lattice of views In the set-based context, the set
[View(D)] of all equivalence classes of views (equivalent views having the same congruence)
has a natural lattice-like structure which will prove useful. This structure is compatible with
the ordering ≤ defined in 1.2, but is not completely defined by it. Specifically, for any two
equivalence classes of views [Γ1] and [Γ2], we define their join to be the equivalence class of
views whose congruence is Congr(Γ1)∩Congr(Γ2), and denote this class by [Γ1]∨ [Γ2]. As an
abuse of notation, we shall often write just Γ1∨Γ2, with the understanding that this notation
identifies some canonical representative. This operation is clearly associative, and we write∨n

i=1 Γi for Γ1 ∨ . . . ∨ Γn. Note that the join operation is none other than the supremum
operation associated with the order ≤. Remarkably, in the universal relational context of
R[U1, . . . , Un], we actually have that ΠUi

∨ΠUj
is isomorphic to the view which computes the

relational join M 7→ πUi
′(M) 1 πUj

′. However, our terminology is motivated from lattice-
theoretic considerations, and the identity of terminology is something of a coincidence.

6

We also have a meet operation, but it must be defined more carefully. Specifically, for
any views Γ1 and Γ2, we define their meet as follows.

[Γ1]∧[Γ2] =

{
{Γ | Congr(Γ) = Congr(Γ1) ◦ Congr(Γ2)} if {Γ1, Γ2} is a fully commuting pair;
undefined otherwise.

As with the case of join, we will often write Γ1 ∧ Γ2 to denote a canonical representative
of [Γ1] ∧ [Γ2]. However, unlike the join, the meet is a partial operation, and not simply the
infimum under ≤. Under the ordering ≤, while the infimum of a pair of views always exists,
their meet is only defined if the congruences of those views commute.

There are two special views in [View(D)]. The view whose congruence is the identity
relation on LDB(D) is called the identity view, and its canonical representative is denoted
Γ>(D). The view whose congruence is LDB(D) × LDB(D) is called the zero view and its
canonical representative is denoted Γ⊥(D). Note that Γ⊥(D) ≤ Γ ≤ Γ>(D) for any view D.

The structure [View(D)] = ([View(D)],∨,∧, [Γ>(D)], [Γ⊥(D)]) is called the view algebra
of D. It is a bounded weak partial lattice, in the sense of [Gra78, pp. 40-44]. It is similar to
a bounded lattice (with greatest element [Γ>(D)] and least element [Γ⊥(D)]), the difference
being that meet is only a partial operation.

Given a subset X ⊆ [View(D)], Span(X) denotes the closure of X under the operations
of join and meet. In other words, it is the smallest set of views such that X ⊆ Span(X), and
Γ1, Γ2 ∈ Span(X) implies Γ1 ∨ Γ2 ∈ Span(X), and if it is defined, Γ1 ∧ Γ2 ∈ Span(X) also.
We sometimes call Span(X) the partial sublattice generated by X. Note, however, that it
need not have a greatest or least element. There are two important characterizations which
may be expressed in terms of [View(D)].

1.9 Proposition — characterization of subdirect decomposition Let D be a set-
based schema, and let X = {Γ1, . . . , Γn} be a set of views of D with Γi = (VΓi

, µΓi
). Then X

is a subdirect decomposition of D iff
∨

i∈I Γi = Γ>(D); that is, iff
⋂

i∈I Congr(Γi) = 1LDB(D),
the identity relation on LDB(D).

Proof outline: This is essentially a restatement of a well-known theorem of universal
algebra; see, e.g., [Gra68, §20, Thm. 2]. 2

1.10 Consistency dependencies The notion of consistency gives rise to an impor-
tant class of dependencies which are always satisfied by decomposed databases. In the
context of the simple universal relational schema R[U1, U2, . . . , Un], the tuple of instances
(M1, . . . , Mn) ∈ ∆〈U1, . . . , Un〉′(LDB(R)) satisfies the [Ui, Uj]-consistency dependency if λ(ΠUi

, ΠUi∩Uj
)′(Mi) =

λ(ΠUj
, ΠUi∩Uj

)′(Mj). We denote this dependency by ³ [Ui, Uj], and write (M1, . . . , Mn) |=
³ [Ui, Uj] to denote that (M1, . . . , Mn) satisfies it.

Generalizing to the set-based case, let X = {Γ1, . . . , Γn} be a set of views of the schema
D, with Γi = (VΓi

, µΓi
) for 1 ≤ i ≤ n. The tuple of instances (M1, . . . , Mn) ∈ LDB(V1) ×

. . .× LDB(Vn) satisfies the [Γi, Γj]-consistency dependency for X if Γi ∧ Γj exists, and that,
whenever (M1, . . . , Mn) ∈ LDB(V1) × . . . × LDB(Vn), the condition λ(Γi, Γi ∧ Γj)

′(Mi) =
λ(Γj, Γi ∧ Γj)′(Mj) holds. We denote this dependency by³ [Γi, Γj], and write (M1, . . . , Mn) |= ³ [Γi, Γj]

7

to denote that (M1, . . . , Mn) satisfies this dependency. It is immediate that, on R[U1, . . . , Un],
³ [ΠUi

, ΠUj
] is ³ [Ui, Uj].

2. The Principal Characterizations
In this section, we elaborate the generalizations, to the set-based framework, of the properties
(S1)–(S7) of Theorem A.

2.1 The Context Throughout this section, we let D be a set-based schema, with X =
{Γ1, .., Γn} a subdirect decomposition of D and Γi = (VΓi

, µΓi
). Unless specifically stated

otherwise, we also let R denote the simple universal relational schema R[U1, U2, .., Un].
When we apply general set-based decomposition theory to the simple relational schema
R[U1, . . . , Un], we take the set of views X to be {ΠU1 , . . . , ΠUn}.

The Principal Characterization

In the classical theory on simple universal relational schemata, the “defining” notion is that
of acyclicity of the underlying hypergraph. Since it is not at all clear how to generalize the
notion of underlying hypergraph to the general set-based context, in our more general con-
text, we seek an alternate defining notion. The one we provide, called pairwise definability,
recaptures what appears to be a very basic notion of simplicity of a decomposition.

2.2 Pairwise definability The business of characterizing subdirect decompositions
amounts to identifying the types of constraints which are necessary to describe the set of
decomposed databases. In general, to determine whether or not (M1, . . . ,Mn) ∈ LDB(V1)×
. . .× LDB(Vn) is a decomposed database, we must examine the entire n-tuple (M1, . . . , Mn)
globally, as a single entity. However, in some cases, the checking can be much more lo-
cal, considering only certain pairs of the form (Mi,Mj). It is this sort of localization
of constraints on the decomposed schema which provides the cornerstone for our gener-
alized notion of simplicity. Specifically, the set of set-based views X is pairwise definable if
there is a set Y of pairs of elements of X such that ∆〈X〉′(LDB(D)) = {(M1, . . . , Mn) ∈
LDB(V1) × . . . × LDB(Vn) | (∀{Γi, Γj} ∈ Y)((M1, . . . , Mn) |= ³ [Γi, Γj]}. In words, the de-
composition of D defined by the set of views X is pairwise definable if all of the constraints
on the decomposed database are of two forms:

(i) The local constraints on each LDB(Vi).

(ii) A set of constraints which state the certain pairs of the views are consistent, in that
they agree on their common data.

In the simple relational case, each Y ∈ X is of the form {ΠUi
, ΠUj

}, and pairwise definability
asserts that that it suffices to check for consistency on the components defined by these pairs
of projections.

Although it is not usually identified as an equivalent characterization of acyclicity in the
relational case, it is in fact so, and we record this fact formally.

8

2.3 Proposition The simple universal relational schema R[U1, . . . , Un] is acyclic iff it
is pairwise definable. 2

Even in the simple relational case, we feel that pairwise definability provides a much more
natural characterization of “desirable” decompositions than does hypergraph acyclicity. We
now proceed to establish generalizations of each of the conditions (S1)-(S7) of Theorem 0.1,
each equivalent to pairwise definability.

Generalization of Condition (S1)

2.4 Pairwise and total consistency In the context of the simple universal relational
schema R[U1, . . . , Un], the tuple of instances (M1, . . . , Mn) ∈ LDB(RU1)× . . .× LDB(RUn) is
pairwise consistent if, for every pair {Ui, Uj}, we have λ(ΠUi

, ΠUi∩Uj
)′(Mi) = λ(ΠUj

, ΠUi∩Uj
)′(Mj).

(M1, . . . , Mn) is globally consistent if it is a decomposed database; i.e., if it is in
∆〈U1, . . . , Un〉′(LDB(R)). Condition (S1) states that 1 [U1, . . . , Un] is acyclic iff every pair-
wise consistent database over R[U1, . . . , Un] is globally consistent. Note that pairwise con-
sistency is apparently a slightly stronger condition than pairwise definability, since in the
former, we require that all pairs of component views be consistent, while in the latter we
require only that sufficiently many be consistent. Of course, the two conditions turn out to
be equivalent, since they both characterize acyclicity.

Using the ideas developed in the previous section, this is easy to generalize to the set-
based context. We say that the tuple of instances (M1, . . . , Mn) ∈ LDB(V1)× . . .×LDB(Vn)
is pairwise consistent on X if, for every pair {Γi, Γj} ∈ X, if Γi and Γj have commuting
congruences, then λ(Γi, Γi ∧ Γj)

′(Mi) = λ(Γj, Γi ∧ Γj)′(Mj). In view of Proposition 1.7, it is
clear that this definition generalizes the one above for the universal relational context. As in
the relational case, (M1, . . . ,Mn) is globally consistent on X if it is a decomposed database;
i.e., if it is in ∆〈X〉′(LDB(D)). We define the generalization (T1) of (S1) as follows.

(T1) Every pairwise consistent tuple of instances (M1, . . . ,Mn) on X is globally con-
sistent.

Generalization of Condition (S2)

2.5 Compatibility trees For the universal relational schema R[U1, . . . , Un], the com-
plete intersection graph is the undirected graph which has as nodes the members of
{U1, U2, .., Un}, with the edge from Ui to Uj labelled by Ui ∩ Uj. An intersection graph
for R is any subgraph of the complete intersection graph which is obtained by deleting only
edges, and not nodes. A join graph is an intersection graph with the property that for every
i and j, there is a path from Ui to Uj which contains every attribute common to Ui and Uj

in every edge label on that path. A join tree is a join graph which is a tree.
To generalize this idea to the set-based context, we employ the notion, established in

Proposition 1.7, that view meet generalizes attribute set intersection. The complete meet
graph M(X) for the set of views X of the schema D is an undirected graph whose nodes are
exactly the members of X. The edge labels are taken from the set {Γi ∧ Γj | Γi, Γj ∈ X}.

9

There is a labelled edge from Γi to Γj precisely in the case that {Γi, Γj} is a fully commuting
pair. In this case, the label is Γi ∧Γj. Any subgraph G of M(X) containing all of the nodes
of X is called a meet graph of X. For any view Γ of D and views Γi, Γj ∈ X, a Γ-path from
Γi to Γj is a path from Γi to Γj such that Γ ≤ label(e) for each edge e in the path. A meet
graph G is called a compatibility graph if for every Γi, Γj ∈ X and every view Γ with the
property that Γ ≤ Γi and Γ ≤ Γj, there is a Γ-path from Γi to Γj. A compatibility tree is a
compatibility graph which is a tree.

It is immediate that the notions of complete meet graph, meet graph, compatibility
graph, and compatibility tree reduce to complete intersection graph, intersection graph, join
graph, and join tree, respectively, in the the setting of a simple universal relational schemata.
In particular, existence of a compatibility tree, when restricted to the traditional relational
case, reduces to existence of a join tree. We thus have the following generalization (T2) of
(S2).

(T2) X has a compatibility tree.

Generalization of Condition (S3)

2.6 The running meet property The universal relational schema R[U1, . . . , Un] has
the running intersection property if there is a permutation σ of {1, .., n} such that for every
i, 1 < σ(i) ≤ n, there is a j with σ(j) < σ(i) such that (

⋃i−1
k=1 Uσ(k)) ∩ Uσ(i) ⊆ Uσ(j).

This generalizes to the set-based case by defining the set of views X of the schema D to
have the running meet property if there is a permutation σ of {1, .., n} such that for each
i, 1 < σ(i) ≤ n, there is a j with σ(j) < σ(i) such that (

∨i−1
k=1 Γσ(k)) ∧ Γσ(i) ≤ Γσ(j). In

view of Proposition 1.7, it is immediate that the running meet property, when restricted
to traditional relational views, yields precisely the running intersection property. Thus, we
define (T3), the generalization of (S3), as follows.

(T3) X has the running meet property.

Generalization of Condition (S4)

2.7 Monotone and commuting join expressions In the context of the traditional
relational schema R[U1, . . . , Un], the join expressions are the smallest class closed under the
following operations.

(i) Each Ui is a join expression.

(ii) If J1 and J2 are join expressions, then so too is (J1 1 J2).

Evaluation of such an expression on an n-tuple (M1, . . . , Mn) ∈ LDB(RU1)× . . .×LDB(RUn)
is in the obvious manner — we just substitute Mi for Ui and evaluate. Such an expression is
called complete if it is an inverse to the decomposition map ∆〈U1, . . . , Un〉′, and it is called
monotone if each pair of relations which is joined in the evaluation of any (M1, . . . ,Mn) ∈
∆〈U1, . . . , Un〉′(LDB(D)) is consistent.

10

To convert these ideas to a more general setting requires a bit of work. First of all,
let us identify an alternate representation. A join plan [Mai83, Def. 13.4] for the universal
relational schema R[U1, . . . , Un] is a nonempty binary tree which has the following properties.

(i) Each node has either zero or two sons.

(ii) The leaves are labelled with (some of) the elements of {U1, U2, .., Un}.
(iii) Each nonleaf node is labelled with the union of the attributes labelling its two

sons.

There is a simple bijective correspondence between join plans and join expressions. Specifi-
cally, the join expression associated with the simple tree consisting of only one node (labelled
Ui) is just Ui. For the tree with left subtree Tl and right subtree Tr of the root, the asso-
ciated join expression is (J (Tl) 1 J (Tr)), where J (Tl) and J (Tr) are the join expressions
for Tl and Tr, respectively. We call the tree complete (resp. monotone) if its underlying join
expression is.

The generalization to the set-based case proceeds as follows. A generalized join plan for
X is a binary tree which has the following properties.

(i) Each node has either zero or two sons.

(ii) The leaves are labelled with the elements of X.

(iii) Each nonleaf node is labelled with the join (“∨”) of the labels of its two sons.

As in the relational case, we call a generalized join plan complete if it reconstructs the
schema D; i.e., if the congruence of the view labelling the root is the identity on LDB(D).
To directly generalize the notion of a monotone join plan, we would need to have available an
order structure on the databases of each schema. Instead, we use a condition which does not
require an order structure. Call a generalized join plan fully commuting if, for each non-leaf
node of the tree, the views which labels its two sons form a fully commuting pair. In other
words, we replace the order-based property of monotonicity with the more basic property of
commuting congruences.

It is unfortunately not the case that monotonicity reduces exactly to full commutativity.
As a specific example, consider the schema R[AB, BC,CD]. Then the join plan correspond-
ing to the expression ((AB 1 CD) 1 BC) is clearly not monotone, although it is fully
commuting. The “problem” is that 1 [AB,CD] is not an embedded dependency of the
schema. If we only allow such cross dependencies on disjoint sets of attributes when they
are necessary, we can repair the situation. Specifically, let us call the join plan T normal if,
whenever W1 and W2 are the labels of two sons of a node k in T , then W1 ∩W2 = ∅ implies
that 1 [W1,W2] |= 1 [U1, . . . , Un]. In other words, if there is a join on disjoint attributes,
then that join is “necessary” in the sense that it embeds into the governing join dependency.
We then have the following.

2.8 Proposition

11

(a) The relational schema R[U1, . . . , Un] has a complete monotone join plan iff it has a
complete fully commuting join plan.

(b) A complete normal join plan for the relational schema R[U1, . . . , Un] is monotone iff
it is fully commuting. 2

We are thus justified in defining (T4), the generalization of (S4), as follows.

(T4) X admits a fully commuting complete generalized join plan.

Generalization of Condition (S5)

2.9 Sequential join expressions Condition (S5) generalizes (S4) slightly by requiring
that the join expression (or, equivalently, join plan) be sequential. A join plan (resp. gen-
eralized join plan) is sequential if the right subtree of each nonleaf node is a leaf. In other
words, in each step of the evaluation, one of the operands is a basic projection which has yet
to be joined with anything else. We have the following generalization (T5) of (S5).

(T5) X admits a fully commuting complete sequential generalized join plan.

Generalization of Condition (S6)

Condition (S6) stipulates that the the governing join dependency of the decomposition be
equivalent to a set of multivalued dependencies. The usual characterizations of logical equiv-
alence of sets of dependencies are model theoretic. However, model theoretic notions are
difficult to carry over directly to the set-based framework. Therefore, to accommodate our
generalization, we present the following alternate characterization, in terms of the partial
sublattice generated by each set of dependencies.

2.10 Proposition — algebraic characterization of the equivalence of a join de-
pendency to a set of multivalued dependencies Let Ψ = {1 [Wi1,Wi2] | 1 ≤ i ≤ k}
be a set of multivalued dependencies on the attribute set U of the universal relational schema
R[U1, . . . , Un]. Then Ψ is logically equivalent to {1 [U1, . . . , Un]} iff Span({ΠWij | 1 ≤ i ≤
k , 1 ≤ j ≤ 2}) = Span({ΠU1 | 1 ≤ i ≤ n}). In other words, Ψ and {1 [U1, . . . , Un]} are
logically equivalent iff they generate the same partial sublattice of [View(R)]. 2

2.11 Equivalence of decompositions Generalizing to the context of the set-based
schema D, we say that two sets of views X1 and X2 of D are decomposition equivalent if
Span(X1) = Span(X2). A set Ψ = {{Yi1, Yi2} | 1 ≤ i ≤ k} of subdirect complementary pairs
(generalizing a set of multivalued dependencies) is decomposition equivalent to a set X of
views (generalizing a single join dependency) if Span(X) = Span({Yij | 1 ≤ i ≤ k , 1 ≤ j ≤
2}). In light of the previous proposition, the following condition generalizes (S6).

(T6) There is a set Ψ of subdirect complementary pairs which is decomposition equiv-
alent to X.

12

Generalization of condition (S7)

2.12 Conflict-free multivalued dependencies Condition (S7) extends (S6) by requir-
ing that the governing join dependency be equivalent to a set of conflict-free multivalued
dependencies. The definition of conflict-freedom of a set of multivalued dependencies, as
given in the literature, is a rather technical one. (See, e.g., [BFMY83, Sec. 8, Def. A].)
Furthermore, it is a syntactic one, in that a set of multivalued dependencies which is con-
flict free may be logically equivalent to one which is not. (See, e.g., [BFMY83, Example
8.2].) Therefore, we do not reproduce the original definition here, but rather we provide the
following equivalent — and we feel much more intuitive — characterization.

2.13 Proposition — algebraic characterization of conflict-free sets of multival-
ued dependencies Let Ψ be a set of multivalued dependencies over the set U of at-
tributes. Then Ψ is equivalent to a conflict-free set of multivalued dependencies iff for any
1 [W1,W2] ∈ Ψ, {ΠW1 , ΠW2} is a meet complementary pair of views of the schema (R[U], Ψ).
2

If we combine the previous proposition to Proposition 1.7, we see that Ψ is conflict free
iff for any ψ ∈ Ψ, the remaining dependencies in Ψ have an embedded cover in the decompo-
sition. In other words, the decomposition does not “split” dependencies across components
of the schema, except for the multivalued dependency used to do the decomposition. For
another result relating commuting congruences to embedded covers, see [Heg90, 3.10].

2.14 Conflict-free meet-complementary decompositions Generalizing the relational
notion in light of the above, we say that a family Ψ of subdirect complementary pairs of
views of the set-based schema D is conflict free if any {Ω1, Ω2} ∈ Ψ is fully commuting. The
generalization of (S7) then becomes the following.

(T7) There is a set Ψ of meet complementary pairs which is decomposition equivalent
to X.

The Generalized Characterization Theorem

We now are in a position to state the main theorem of this paper, the promised generalization
of Theorem 0.1. In addition to listing the properties (T1)-(T7), we include our fundamental
notion of pairwise definability as condition (T0).

2.15 The main theorem Let D be a set-based database schema, and let X be a subdirect
decomposition of D. Then the following conditions are equivalent.

(T0) X is pairwise definable.

(T1) Every pairwise consistent tuple of instances (M1, . . . , Mn) on X is globally con-
sistent.

(T2) X has a compatibility tree.

13

(T3) X has the running meet property.

(T4) X admits a fully commuting complete generalized join plan.

(T5) X admits a fully commuting complete sequential generalized join plan.

(T6) There is a set Ψ of subdirect complementary pairs which is decomposition equiv-
alent to X.

(T7) There is a set Ψ of meet complementary pairs which is decomposition equivalent
to X. 2

3. The Order-Based Characterization
In this section, we develop the context necessary to generalize the notion of a full reducer,
namely schemata with certain order properties.

3.1 Full reducers in the relational case Suppose we are working with the simple
universal relational schema R[U1, . . . , Un], and we are given a state ~M = (M1, . . . ,Mn) ∈
LDB(RU1) × . . . × LDB(RUn), but it is not necessarily the case that ~M ∈
∆〈U1, . . . , Un〉′(LDB(R[U1, . . . , Un])). In other words, ~M may not be a decomposed database.

It is easy to see that there is a largest (under relation-by-relation inclusion) ~N = (N1, . . . , Nn)

∈ LDB(RU1) × . . . × LDB(RUn) such that ~N ⊆ ~M and ~N ∈
∆〈U1, . . . , Un〉′(LDB(R)[U1, . . . , Un]). Indeed, ~N if found by simply joining the Mi’s and

discarding those tuples which do not join. We call ~N the full reduction of ~M . A sequen-
tial full reducer (called just a full reducer in the literature) is a program which computes

this ~N is a nice way. More precisely, the semijoin operation Ui >< Uj applied to a pair
(Mi,Mj) ∈ LDB(RUi

) × LDB(RUj
) yields πUi

′(Mi 1 Mj); this result is often denoted by
Mi >< Mj. A (sequential) full reducer is a sequence of replacement operations of the form
Mi ← Mi >< Mj. The classical result (condition (S8) of Theorem 0.1) states that we may

compute the largest compatible state (~N in the above discussion) with a sequential full
reducer iff R[U1, . . . , Un] is acyclic.

3.2 Ordered schemata and morphisms To generalize the notion of reduction to the
set-based context, we must incorporate a notion of relative database size into our model. This
is accomplished by augmenting set-based schemata with an order structure. Specifically,
an ordered database schema is a set-based schema D equipped with a partial order ≤ on
LDB(D). Any relational schema may be regarded as an ordered schema under relation-by-
relation inclusion. On a product schema V1 × . . . × Vn we use the product ordering; i.e.,
(M1, . . . , Mn) ≤ (N1, . . . , Nn) iff Mi ≤ Ni for all i. An order view Γ = (VΓ, µΓ) of D is a
view with the property that V is an order schema and γ′ is an order-preserving function; i.e.,
for any M, N ∈ LDB(D), M ≤ N implies that γ′(M) ≤ γn

′. The subdirect decomposition
X of the set-based schema D into order views is an order decomposition if ∆〈X〉 is a section
(isomorphism into); i.e., for any M,N ∈ LDB(D), ∆〈X〉′(M) ≤ ∆〈X〉′(N) iff M ≤ N .

14

3.3 Full and pairwise reduction Now assume that X is an order decomposition of
the set-based D. Let ~M ∈ LDB(V1) × . . . × LDB(Vn). We say that ~M has a full reduction

if there is a largest (under the induced product ordering) ~N ∈ ∆〈X〉′(LDB(D)) with the

property that ~N ≤ ~M . We call ~N the full reduction of ~M with respect to X, and use the
explicit notation FullRed(~M, X) = (FullRed(~M,X, 1), . . . , FullRed(~M,X, n) to denote it. It
is immediate that this notion generalizes the relational one described in 3.1 above.

Continuing in the same context, let {i, j} ⊆ {1, . . . , n}, and let ~M = (Mi,Mj) ∈
LDB(Vi) × LDB(Vj). We say that ~M admits a (Γi, Γj)-pairwise reduction if the following
two conditions are met.

(i) {Γi, Γj} is fully commuting.

(ii) There is a largest ~N = (Ni, Nj) ∈ ∆〈{Γi, Γj}〉′(LDB(D)) such that ~N ≤ ~M .

We call Ni ∈ LDB(Vi) the (Γi, Γj)-pairwise reduction of Mi by Mj, and denote it by

PairRed(~M, Γi, Γj). In view of Proposition 1.7 and the discussion of 3.1, it follows that
in the context of the simple universal relational schema R[U1, . . . , Un], for any Ui and Uj

and ~M = (Mi,Mj) ∈ LDB(RUi
)×LDB(RUj

), PairRed(~M, ΠUi
, ΠUj

) always exists, and is just
Mi >< Mj.

Given ~M = (M1, . . . , Mn) ∈ LDB(V1)×. . .×LDB(Vn), i ∈ {1, . . . , n}, and P ∈ LDB(Vi),

define the i-substitution of P in M to be Subst(~M, i, P) = (M1, . . . , Mi−1, P, Mi+1, . . . , Mn).
In other words, we replace Mi with P , and leave the rest of the n-tuple unchanged. Define
Pair(~M, i, j) to be (Mi,Mj). Finally, given a finite sequence S = (Γi11 , Γi12), . . . , (Γim1 , Γim2) ∈
X ×X, define, for 0 ≤ j ≤ m and ~M ∈ LDB(V1)× . . .× LDB(Vn),

Seqred〈S, j〉(~M) =

~M if j = 0;

Subst(Seqred〈S, j − 1〉(~M), ij1,

PairRed(Pair(Seqred〈S, j − 1〉(~M), ij1, ij2), Γij1 , Γij2)) if j > 0.

Define Seqred〈S〉(M) = Seqred〈S, m〉(M). In words, the above formula just applies the

pairwise reductions defined by S to ~M in a sequential fashion. The sequence S is a pairwise
full reducer for X if Seqred〈S〉(M) = FullRed(M,X) for every ~M ∈ LDB(V1)×. . .×LDB(Vn).

This definition requires that both FullRed(~M, X) always exist, and that it be computable by
a sequence of pairwise reductions. We say that X admits a pairwise full reducer if such an
S exists. We have as our generalization of (S8) the following condition.

(T8) X admits a pairwise full reducer.

3.4 Remarks concerning this generalization In the simple universal relational case,
the full reduction of any ~M ∈ LDB(RU1)× . . . LDB(RUn) always exists, regardless of whether
or not a sequential full reducer exists to compute it. However, in our generalization, we do not
stipulate that the full reduction always exist. This is not a weakness of the generalization, but
rather a consequence of the fact that constraints can prevent the existence of a full reduction,
even in the relational context. Suppose now that, rather than working in the context of the

15

simple universal relational schema R[U1, . . . , Un], we work with a more complex universal
relational schema R = (R[U],{1 [U1, . . . , Un]} ∪ Φ) for which Φ forces the embedding of
some tuple-generating dependencies [Fag82] into the view schemata. Then, the process of
deleting tuples from one of the LDB(RUi

)’s during the reduction process may yield an illegal
state, since a dependency in πUi

′(Φ) may fail to be satisfied. Indeed, the full reduction of
some n-tuples may not exist. Since such a universal relational schema must be subsumed
by any general set-based generalization, we must therefore accomodate the reality that a
full reduction in the general case will only exist under certain circumstances. We do this
by stipluating that it only need exist in the case that we have a sequential full reducer to
compute it.

In any case, we have the following augmentation of the main theorem.

3.5 Extended Theorem 2.15 Let D be an order schema, and let X be an order de-
composition of D. Then the following may be added as an equivalent condition to Theorem
2.15.

(T8) X admits a pairwise full reducer. 2

4. Conclusions and Further Directions
In this paper, we have laid down the foundations for the generalization of the classical notion
of relational schema acyclicity to much more general classes of schemata. We have shown
that the key characterizations of schema acyclicity are not particular to the relational model,
but rather are fundamental properties which define “pairwise” or “two-at-a-time” properties
of general schemata. It will be an interesting next step to ascertain what sort of results
can be obtained by applying these notions to other types of schemata. Particularly, a few
years ago we proposed a generalization of the notion of acyclicity for relational schemata
which admit both horizontal and vertical decompositions [Heg88]. Unfortunately, we never
published the full details, primarily because they are so complicated. In part, our feeling
that such complexity was not inherent to the results has motivated this present work, and
it is our conjecture that those same results may be obtained much more easily by applying
the present general framework to that context, rather than by the direct methods of that
previous paper. However, the details remain to be elaborated.

In [Fag83], Fagin identifies various types of acyclicity, and particularly notes that there
is a stronger notion (γ-acyclicity) than the usual one (which is termed α-acyclicity there).
γ-acyclicity has some particularly nice properties regarding simplicity of query evaluation.
An interesting and potentially useful extension of the work presented here will be to ascertain
whether γ-acyclicity has a similar generalization.

References
[Ala89] Alagić, S., Object-Oriented Database Programming, Springer-Verlag, 1989.

16

[BS81] Bancilhon, F. and Spyratos, N., “Update semantics of relational views,” ACM
Trans. Database Systems, 6(1981), 557–575.

[BFMY83] Beeri, C., Fagin, R., Maier, D., and Yannakakis, M., “On the desirability of
acyclic database schemes,” J. Assoc. Comp. Mach., 30(1983), 479–513.

[CGT90] Ceri, S., Gottlob, G., and Tanca, L., Logic Programming and Databases,
Springer-Verlag, 1990.

[Fag82] Fagin, R., “Horn clauses and database dependencies,” J. Assoc. Comp. Mach.,
29(1982), 952–985.

[Fag83] Fagin, R., “Degrees of acyclicity for hypergraphs and relational database
schemes,” J. Assoc. Comp. Mach., 30(1983), 514–550.

[FMU82] Fagin, R., Mendelzon, A. O., and Ullman, J. D., “A simplified universal relation
assumption and its properties,” ACM Trans. Database Systems, 7(1982), 343–
360.

[FV86] Fagin, R. and Vardi, M. Y., “The theory of data dependencies – a survey,”
in: Anshel, M. and Gewirtz, W., eds., Mathematics of Information Processing,
pp. 19–71, American Mathematical Society, 1986.

[Fle55] Fleischer, I., “A note on subdirect products,” Acta Math. Acad. Sci. Hungar.,
6(1955), 463–465.

[GMN84] Gallaire, H., Minker, J., and Nicolas, J., “Logic and databases: a deductive
approach,” ACM Comput. Surveys, 16(1984), 153–185.

[Gra68] Grätzer, G., Universal Algebra, D. Van Nostrand, 1968.

[Gra78] Grätzer, G., General Lattice Theory, Academic Press, 1978.

[Heg88] Hegner, S. J., “Decomposition of relational schemata into components defined by
both projection and restriction,” in: Proceedings of the Seventh ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 174–183,
1988.

[Heg89] Hegner, S. J., Unique complements and decompositions of database schemata,
Technical Report PC 12/ 12.89, Centro di Ricerche in Fisica e Matematica (CER-
FIM), Locarno, Switzerland, 1989. Submitted for publication.

[Heg90] Hegner, S. J., “Foundations of canonical update support for closed database
views,” in: Abiteboul, S. and Kanellakis, P. C., eds., ICDT’90, Third Interna-
tional Conference on Database Theory, Paris, France, December 1990, pp. 422–
436, Springer-Verlag, 1990.

[HS73] Herrlich, H. and Strecker, G. E., Category Theory, Allyn and Bacon, 1973.

17

[Mai83] Maier, D., The Theory of Relational Databases, Computer Science Press, 1983.

[PDGV89] Paredaens, J., De Bra, P., Gyssens, M., and Van Gucht, D., The Structure of
the Relational Database Model, Springer-Verlag, 1989.

[Rei84] Reiter, R., “Towards a logical reconstruction of relational database theory,”
in: Brodie, M. L., Mylopoulos, J., and Schmidt, J. W., eds., On Conceptual
Modelling, pp. 191–233, Springer-Verlag, 1984.

[Var82] Vardi, M. Y., “On decompositions of relational databases,” in: Proceedings 23rd
Annual Symposium on Foundations of Computer Science, pp. 176–185, 1982.

[Wen67] Wenzel, G. H., “Note on a subdirect representation of universal algebras,” Acta
Math. Acad. Sci. Hungar., 18(1967), 329–333.

18

