
Computational and Structural Aspects
of Openly Specified Type Hierarchies

Stephen J. Hegner

Ume̊a University
Department of Computing Science

S-901 87 Ume̊a, Sweden
hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Abstract. One may identify two main approaches to the description of
type hierarchies. In total specification, a unique hierarchy is described.
In open specification, a set of constraints identifies properties of the hi-
erarchy, without providing a complete description. Open specification
provides increased expressive power, but at the expense of considerable
computational complexity, with essential tasks being NP-complete or
NP-hard. In this work, a formal study of the structural and computa-
tional aspects of open specification is conducted, so that a better un-
derstanding of how techniques may be developed to address these com-
plexities. In addition, a technique is presented, based upon Horn clauses,
which allows one to obtain answers to certain types of queries on open
specifications very efficiently.

1. Introduction

In recent years, grammatical formalisms based upon constraint-based parsing
within the context of typed feature structures have become central within com-
putational linguistics, the most prominent undoubtedly being HPSG [22]. As a
result, numerous computational frameworks specifically designed for constraint-
based reasoning on typed feature logics have emerged, among them ALE [5],
TFS [24], and CUF [7]. Likewise, systems for representing and managing lexi-
cal information in a hierarchical fashion have appeared in recent years [3]. To
function efficiently, all of these frameworks must first and foremost be capable
of managing the associated type hierarchy effectively.1

All type hierarchies share some basic properties, such as the ability to ex-
press inheritance. However, beyond that, there is relatively little agreement as
1 By “type hierarchy,” we mean the static hierarchy of (parameterless) types which

underlies the typing mechanism of the feature structures. We do not include the
recursively specified types which also form an integral part of grammars which are
specified using such systems. In CUF [7], the static types are called types, and the
(often parameterized) recursive types are called sorts, but there is no universal agree-
ment, and other terminology, or even the opposite terminology, is often used. Pollard
and Sag [22], for example, use the term sort to characterize that which we call type.

to which properties are appropriate. It seems clear that these difference arise not
because some systems embody the “correct” formalism while others do not, but
rather because each system places distinct expectations upon the hierarchy. As
with all forms of knowledge representation [19], there is a fundamental tradeoff
between expressiveness and tractability in formalization of type hierarchies. In
this paper, we examine aspects of the tradeoff which occurs when one moves
from total specification, in which the entire hierarchy is specified explicitly, to
constraint-based open specification2 in which the actual hierarchy is not com-
pletely specified, but rather may be of the models of a set of constraints.

It is fair to say that total specification is used far more frequently than is
open specification. Indeed, the only system which we know of which supports
open specification is CUF.3 It appears to be the case, at least in part, that
open specification has been avoided because the computational overhead is per-
ceived to be too high. This perception is reinforced by the fact that that the
question of model existence in such a context is NP-complete [14]. Nonetheless,
we feel that open specification can be a useful tool in some contexts, and it is
therefore important to understand more about its representational aspects and
computational complexity. In this paper, we take some steps towards this end.

The paper is organized as follows. In Sec. 2, a brief summary of the represen-
tational aspects of completely specified hierarchies is presented. Such a summary
is important because even within that context, there is a critical distinction be-
tween distributive and nondistributive hierarchies which must be understood to
appreciate fully the various aspects of open specification, since the latter is car-
ried out in a distributive context. In Sec. 3, the basic ideas and structural aspects
of open specification are presented. In Sec. 4, representations which are essential
for the process of computing solutions to an open specification are developed.
Finally, in Sec. 5, some efficient techniques for identifying properties of models
in open specifications, based upon Horn clauses, are developed,

This paper may be viewed as a complement to [14]. In that work, the focus
was largely upon developing the machinery necessary to show the satisfaction
problem to be NP-complete. In this paper, we focus more on structural and
algorithmic issues.

2. The Rôle of Distributivity

This paper is largely about the open specification of distributive hierarchies.
However, to put that work in perspective, it is first necessary to identify the rea-

2 In [21, Sec. 3.1], the term open specification is used in a different way, in a discussion
contrasting ALE to Troll [12]. We see this terminological overloading as a non-issue,
provided authors are careful to indicate which definitions are in force in their writings.

3 In his work Aït-Kaci [1], [2] has used a crown construction to complete hierarchies
which may not have all glb’s. However, this technique always associates a unique
completion with a specification. Thus, we regard it as a means of extracting a total
specification from an incomplete specification, rather than one of open modelling.

2

sons why distributivity is important. In this section, we present a brief overview
of the rationale for requiring distributivity in ordinary, complete hierarchies.

2.1 Bounded and distributive lattices A lattice is bounded if it has a great-
est element > and a least element ⊥. It is always assumed that > and ⊥ are
distinct, so under this definition, a lattice must have at least two different ele-
ments. As a notational convention, a boldface symbol (e.g., L) will denote the
entire algebraic structure, while the roman symbol L will denote just the under-
lying set of elements. Thus, we write L = (L,∨,∧,>,⊥). A lattice is distributive
[13, p. 30] if it satisfies (a∨b)∧c = (a∧c)∨(b∧c) for all elements a, b, and c.

2.2 General semantics for total type hierarchies The syntactic compo-
nent of a type hierarchy is just a finite bounded lattice (not necessarily dis-
tributive). However, a type hierarchy has a semantics as well, which identifies
a collection of objects, together with a specification of which objects belong to
which types. More formally, let L = (L,∨,∧,>,⊥) be a finite bounded lattice.
A type semantics for L is a pair S = (U, I), in which U is a nonempty set, called
the universe of objects, and I : L → 2U is a function which associates a subset
of U to each type in L, subject to the conditions that I(>) = U, I(⊥) = ∅, and
for τ1, τ2 ∈ L, τ1 ≤ τ2 implies I(τ1) ⊆ I(τ2). The last condition expresses the
critical concept of inheritance: if τ1 ≤ τ2, then every instance of τ1 is also an
instance of τ2, and so every property which applies to an object of type τ2 also
applies to (i.e., is inherited by) every object of type τ1.

The semantics (U, I) separates {τ1, τ2} ∈ L if I(τ1) 6= I(τ2), and is totally
separating if it separates every pair {τ1, τ2} ∈ L. Note that {>,⊥} must be
separated by any semantics (U, I), since U is required to be nonempty.

Formally, a type hierarchy is a pair H = (L, (U, I)) in which L is a finite
bounded lattice and (U, I) is a semantics for L.

2.3 Natural meet semantics The fundamental operation in constraint-based
parsing strategies is unification; the unification of two objects x and y results in
a an object xt y which has all of the attributes of both x and y. In the context
of typed unification, this means in particular that x t y is of both the type of x
and the type of y. Thus, if x is known to be of type τx, and y of type τy, then
x t y must be of type τx ∧ τy. It follows that a type hierarchy which is used
for constraint-based parsing must have the following property: A type hierarchy
H = (L, (U, I)) satisfies the natural meet semantics if the following condition is
satisfied for every τ1, τ2 ∈ L:

I(τ1 ∧ τ2) = I(τ1) ∩ I(τ2) (nat-∧)

A lattice L is said to admit natural meet semantics if there is a semantics (U, I)
for L which satisfies condition (nat-∧) above.

2.4 Existence of natural meet semantics Every bounded lattice L =
(L,∨,∧,>,⊥) admits a totally separating separating natural meet semantics.

Proof For each τ ∈ L \ ⊥, associate a distinct element xτ , and then put U =
{xτ | τ ∈ L}. Define I : L → U by τ 7→ {xσ | σ ≤ τ}. It is easy to see that

3

this semantics satisfies the condition (sem-∧), and it is totally separating by
construction. 2

2.5 The role of distributivity In the systems ALE [5], TFS [24], and the
ACQUILEX LKB [6], among others, the type hierarchies are not required to be
distributive. In [4, pp. 15-17], Carpenter argues that type hierarchies should not
be distributive. On the other hand, the CUF system [7] requires a distributive
hierarchy. We shall now attempt to sort out how these apparently disparate
points of view can exist.

Unification itself makes no use of the join operation; as outlined above, only
the meet operation is used. Even though a bounded finite meet semilattice will
necessarily have joins of any elements [13, Ch. 1, Sec. 3, Lem. 14], these joins
are not used in the unification process, and so it is unnecessary to assign any
computationally significant semantics to them. In short, only the natural meet
semantics is relevant. Since the concept of distributivity can make sense only in
a context in which there is a meaningful join as well as meet, distributivity plays
no formal rôle in these contexts. As shown in 2.4, it is always possible to assign
a complete meet semantics to a finite bounded lattice, regardless of any further
properties such as distributivity or modularity.

CUF, on the other hand, was designed to support disjunctive unification [8],
in which alternative parses are support via a meaningful semantics on the join
operation. This indeed requires a distributive lattice.

2.6 Natural join semantics and natural semantics A type hierarchy H =
(L, (U, I)) satisfies the natural join semantics if the following condition is satisfied
for every τ1, τ2 ∈ L:

I(τ1 ∨ τ2) = I(τ1) ∪ I(τ2) (nat-∨)

The type hierarchy H is said to satisfy the natural semantics if it satisfies both
condition (sem-∧) and (sem-∨). Similarly, a lattice L is said to admit natural
semantics if there is a semantics for L which satisfies both (sem-∧) and (sem-∨).

The definitions of separating and totally separating natural semantics are
analogous to those which apply to meet semantics.

2.7 Birkhoff-Stone representation of distributive lattices A lattice L is
called a ring of sets if there is a set S (called the basis) with the property
that every x ∈ L is a subset of S, and, furthermore, that for every x, y ∈ L,
x ∨ y = x ∪ y and x ∧ y = x ∩ y. In other words, join is union and meet is
intersection. In the case of a bounded lattice, it suffices to take > = S. Such a
lattice has a “built-in” semantics; let S be the universe of objects, with the set
of objects associated with an element x ∈ L just x itself.

The representation theorem of Birkhoff and Stone [13, Ch. 2, Sec. 1, Thm.
19] states that a lattice is distributive iff it is isomorphic to a ring of sets. It
is furthermore possible to require that the ring be nonredundant, in the precise
sense that if s1, s2 ∈ S, then there is some x ∈ L which contains one of {s1, s2},
but not both. (Otherwise, one of {s1, s2} could be removed, with the resulting
lattice isomorphic to the original one.)

4

2.8 Existence and algorithmic aspects Let L = (L,∨,∧,>,⊥) be an arbi-
trary finite bounded lattice, and let n = Card(L) denote the cardinality of L.
(a) L admits a totally separating natural semantics iff it is distributive. This

question is decidable in time Θ(n3).
(b) It is decidable in time Θ(n3) whether or not L admits a natural semantics.
(c) If L admits a natural semantics, it may be constructed in time Θ(n3).

Proof The characterization is a consequence of the Birkhoff-Stone representation
theorem. The Θ(n3) algorithm arises from the fact that the distributive law
involves triples of elements; it is only necessary to check each such triple in
turn. The question of establishing a natural semantics involves construction of
an appropriate quotient lattice via the congruence defined by nondistributive
components. The details are not presented in this paper. The important point,
however, is that the construction may be carried out in deterministic polynomial
time. 2

3. Open Specification of Type Hierarchies

In open specification, a constraint-based specification replaces a complete de-
scription of the hierarchy. At least one existing system, CUF [7], has taken this
approach. In this section, some basic issues surrounding such specifications are
examined, including condition for existence of a model, size of models of mod-
els, and characterization of canonical models. Because the principal interest in
such a framework lies within the domain of distributive hierarchies, attention
has been restricted to that case.

3.1 Augmentation and interpretations A set of clean types is one which
contains neither > nor ⊥. For such a set, define Aug⊥(P) = P ∪{⊥}, Aug>(P) =
P ∪{>}, and Aug(P) = P ∪{⊥,>}. An interpretation of P is a pair I = (L, f) in
which L = (L,∨,∧,>,⊥) is a bounded distributive lattice and f : Aug(P) → L
is a function which is subject to the conditions that f(⊥) = ⊥ and f(>) = >.
The collection of all interpretations of P is denoted Interp(P).

3.2 Open specifications Let P be any finite set of clean types. The system
of constraints over P is defined to be the smallest set Constraints(P) satisfying
the following conditions.
(c-≤): If τ1 ∈ Aug>(P), τ2 ∈ Aug⊥(P), then (τ1 ≤ τ2) ∈ Constraints(P).
(c-∧): If τ ∈ Aug(P) and S ⊆ P is nonempty, then (

∧
S = τ) ∈ Constraints(P).

(c-∨): If τ ∈ Aug(P) and S ⊆ P is nonempty, then (
∨

S = τ) ∈ Constraints(P).
(c- 6=): If τ1 ∈ P , τ2 ∈ Aug(P), then (τ1 6= τ2) ∈ Constraints(P).
(c-Atom): If τ ∈ P , then Atom(τ) ∈ Constraints(P).

An interpretation I = (L, f) satisfies the constraint ϕ ∈ Constraints(P),
written I |= ϕ, if the appropriate rule given below is satisfied.
(sat-≤): I |= (τ1 ≤ τ2) iff f(τ1) ≤ f(τ2).
(sat-∧): I |= (

∧
S = τ) iff

∧{f(σ) | σ ∈ S} = f(τ).

5

(sat-∨): I |= (
∨

S = τ) iff
∨{f(σ) | σ ∈ S} = f(τ).

(sat-6=): I |= (τ1 6= τ2) iff f(τ1) 6= f(τ2).
(sat-Atom): I |= Atom(τ) iff f(τ) is an atom in L (i.e., σ ≤ f(τ) implies σ = f(τ)

or σ = ⊥).
An open specification is a pair (P, Φ), in which P is a finite set of clean

types and Φ ⊆ Constraints(P). A model of (P,Φ) is an interpretation I = (L, f :
Aug(P) → L) for which I |= ϕ holds for each ϕ ∈ Φ. A model (L, f) of (P, Φ) is
finite if L is a finite set. The set of all models of (P, Φ) is denoted Mod(P, Φ).

It is convenient to partition the constraints into two classes. Elements of
the first three categories listed above ({≤,∧,∨}) are called positive constraints,
while elements of the last two ({6=, Atom}) are called negative constraints. If
Φ ⊆ Constraints(P), then Φ+ denotes the positive constraints over P , and Φ− the
negative constraints. Similarly, Constraints+(P) (resp. Constraints−(P)) denotes
the set of positive (resp. negative) constraints contained in Constraints(P).

It is important to note that other forms of constraints may be realized easily,
even though they are not explicitly in this set. For example, a constraint of the
form (τ1 = τ2) is equivalent to the pair of constraints {(τ1 ≤ τ2), (τ2 ≤ τ1)}.
Likewise, the constraint (τ1 < τ2) may be viewed as an abbreviation for the set
{(τ1 ≤ τ2), (τ1 6= τ2)}.
3.3 Canonical models In general, an open specification has a multitude of
models. This situation arises for two reasons. First, it is always possible to aug-
ment a model with all sorts of extraneous types, without violating any con-
straints. For example, if P1 ⊆ P2, and Φ is any set of constraints dealing only
with symbols in P1, then any model of (P2, Φ) defines a model of (P1, Φ). Second,
a model may impose a constraint which is not mandated by the specification.
For example, for the specification ({a, b}, ∅), a model in which (a = b) holds is
quite permissible, even though it is not required to hold in all models.

The question thus arises as to whether, for a given open specification (P, Φ),
there is a canonical model which (a) does not introduce any extraneous types,
and (b) does not force any constraints not shared by all models. The answer is
“yes,” provided that Φ does not contain any constraints of the form Atom(τ).
Such a canonical model is the initial model, described as follows.

Let (P,Φ) be an open specification, and let (L1, f1 : Aug(P) → L1) and
(L2, f2 : Aug(P) → L2) be models of (P,Φ). A morphism h : M1 → M2 is just a
bounded lattice homomorphism h : L1 → L2 with the property that f2 = h ◦ f1.
A model N = (K, i) for (P, Φ) is initial if, for every model M = (L, f) of
(P, Φ), there is a unique morphism h : N → M . It is a standard result from
category theory that such initial constructions, when they exist, are unique up to
isomorphism [16, Chap. 4, Sec. 7]. Thus, we may speak of the initial or canonical
model. In this paper, the term canonical model will be taken to be synonymous
with initial model. We prefer the term canonical model because it conveys a
sense of its representational power, while initial model conveys a purely algebraic
property.

3.4 The bounded distributive lattice of crowns over P The definition of
canonical model is abstract; however, it is useful to have a basic understanding of

6

its structural and combinatorial aspects. To this end, we provide a concrete con-
struction, beginning with the situation (P, ∅), in which there are no constraints.
In that case, the canonical model is represented by the distributive lattice whose
elements are >, together with all expressions built up from elements of P using
∧ and ∨, subject to equivalence via the distributive laws. The idea of how such
expressions are represented parallels closely the idea of disjunctive normal form
(DNF) from propositional logic [10, pp. 48-49]. Just as any formula in propo-
sitional logic may be converted to one in DNF (using the distributivity of the
corresponding operations), so too may any expression in a distributive lattice
be converted to an equivalent one in such a form. Specifically, we work with
expressions of the following form,

(a11 ∧ a12 ∧ .. ∧ a1n1) ∨ (a21 ∧ a22 ∧ .. ∧ a2n2) ∨ .. ∨ (am1 ∧ am2 ∧ .. ∧ amnm
)

in which the aij ’s are elements of P .
Such representations of individual elements in a lattice can easily be confused

with expressions involving the lattice operations ∧ and ∨. Therefore, an alternate
notation is adopted. If Ci = {aij | 1 ≤ j ≤ ni}, then the set representation of
the above expression is {C1, C2, .., Cm}. Thus, in the set representation, each
element other than > is represented by a set of subsets of elements of P .

There is one further problem; namely an element may have more than one
representation. For example (a ∧ b ∧ c) ∨ (a ∧ b) and (a ∧ b) are equivalent.
To remedy this, we must disallow expressions in which the types in one of the
disjuncts is a subset of those in another. This leads to a representation using
co-chains, or crowns.

Let T = {C1, C2, .., Cn} be a set of subsets of P . Call T a crown if for no two
distinct indices i and j is it the case that Ci ⊆ Cj . Let Crown(P) denote the set
of all crowns of P , and let Crown>(P) denote Crown(P) ∪ {>}.

It is easy to see that the elements of Crown>(P) form a bounded distributive
lattice, under natural operations. Specifically, the empty set ∅ is the bottom
element ⊥ of the lattice, and further operations are defined as follows.
(cr-∨): {C1, C2, .., Cn} ∨ {D1, D2, .., Dm} =

Crownify({C1, C2, .., Cn, D1, D2, .., Dm}).
(cr-∧): {C1, C2, .., Cn} ∧ {D1, D2, .., Dm} =

Crownify({C1 ∩Dj | 1 ≤ i ≤ n and 1 ≤ j ≤ m}).
(The operation Crownify converts its argument into a crown by removing all
subsumed subsets.) The lattice so constructed shall be denoted CrownLat(P).

3.5 Theorem For any set P , (CrownLat(P), ι : P → Crown>(P)), with ι : τ 7→
{{τ}}, is a canonical model over (P, ∅).
Proof The proof is a standard free algebra construction [13, Ch. 1, Sec. 5]. 2

3.6 Example Let P = {a, b}. Then Crown(P) = {{∅}, {{a}}, {{b}},
{{a, b}}, {{a}, {b}}}. The corresponding free lattice is leftmost in Fig. 1. (The
other two lattices will be considered in 3.10 below.) This example also illustrates
why there is a distinct element assigned to be >, rather than just taking > to

7

be the largest crown consisting of all maximal subsets of P . The condition that
> is the join of all elements in P is a constraint, and not a condition which must
be satisfied in all models.

>

{{a}, {b}}

{{a}} {{b}}

{{a, b}}

{∅} ≡ ⊥

{{a}, {b}} ≡ >

{{a}} {{b}}

{{a, b}} ≡ {∅} ≡ ⊥

{{b}} ≡ {{a}, {b}} ≡ >

{{a}} ≡ {{a, b}} ≡ {∅} ≡ ⊥

¡¡ @@

@@ ¡¡

¡¡ @@

@@ ¡¡

Fig. 1. Three canonical lattices over P = {a, b}.

3.7 Combinatorics of the crown construction The size of the set of crowns
grows very rapidly. For P = {a, b, c}, Crown>(P) has eighteen elements. Specif-
ically, Crown({a, b, c}) = {{∅}, {{a}}, {{b}}, {{c}}, {{a, b}}, {{a, c}}, {{b, c}},
{{a, b, c}}, {{a}, {b}}, {{a}, {c}}, {{b}, {c}}, {{a, b}, {c}}, {{a, c}, {b}},
{{b, c}, {a}}, {{a, b}, {a, c}}, {{a, b}, {b, c}}, {{a, c}, {b, c}}, {{a}, {b}, {c}}}.

In general, the number of elements in Crown(P) is much greater than 2n,
although less than 22n

. Thus, explicit construction of the canonical lattice for
(P, Φ) is generally highly impractical. This is true even when Φ 6= ∅, as shown
below. Generally, although the canonical lattice will be smaller, it will still be
very large.

3.8 Coalescing constraints and quotient lattices We now turn to the prob-
lem of characterizing the canonical lattice over an open specification (P,Φ) in
which Φ is not empty. A congruence on L = (L,∨,∧,>,⊥) is an equivalence
relation ≡ on L with the property that whenever x1 ≡ x2 and y1 ≡ y2 hold,
then x1 ∨ y1 = x2 ∨ y2 and x1 ∧ y1 = x2 ∧ y2. It is well known that if (and only
if) ≡ is a congruence relation, the equivalence classes L/≡ of L form a lattice
L/≡ under the induced operations [13, p. 21].

It is straightforward to show that any set of positive constraints on P de-
fines a congruence in a natural way. For τ ∈ P , define ECrown(τ) = {{τ}},
with ECrown(⊥) = {∅} and ECrown(>) = >. Then, for Φ ⊆ Constraints+(P),
define ≡Φ to be the finest congruence relation on Crown>(P) which includes the
following identifications.

(≡Φ-≤): If (τ1 ≤ τ2) ∈ Φ with τ1, τ2 ∈ P , then {{τ1}, {τ2}} ≡Φ {{τ2}}.
If (> ≤ τ) ∈ Φ, then {{τ}} ≡Φ >.
If (τ ≤ ⊥) ∈ Φ, then {{τ}} ≡Φ {∅}.

(≡Φ-∧): If (
∧

S = τ) ∈ Φ, then {S} ≡Φ ECrown(τ).
(≡Φ-∨): If (

∨
S = τ) ∈ Φ, then {{σ} | σ ∈ S} ≡Φ ECrown(τ).

Define f≡Φ : Aug(P) → Crown>(P)/≡Φ by τ 7→ [{{τ}}]≡Φ , ⊥ 7→ [{∅}]≡Φ , and
> 7→ [>]≡Φ .

8

We are now in a position to crystallize when and how an open specification
has a model. For technical reasons, we first address the case in which there are
no constraints of the form Atom(τ).

3.9 Theorem — characterization of satisfiability Let (P,Φ) be any
open specification with the property that Φ contains no constraints of the form
Atom(τ). Then the following conditions are equivalent.

(a) Mod(P, Φ) is nonempty.
(b) (P,Φ) has a finite canonical model, which is given by

(Crown>(P)/≡Φ, f≡Φ).
(c) ≡Φ contains more than one equivalence class and, for each (τ1 6= τ2) ∈

Φ−, {{τ1}} and {{τ2}} lie in distinct equivalence classes of ≡Φ+ .

Proof First of all, assume that Φ contains only positive constraints. If ≡Φ con-
tains only one equivalence class, then⊥ and>must collapse to the same element,
which violates the definition of a bounded lattice. Thus, no model can exist. If
there is more than one equivalence class, then the free algebra exists, as specified,
using standard techniques for the construction of free lattices [13, Ch. 1, Sec. 5].

For the general case, note that an inequality constraint of the form
(τ1 6= τ2) does not alter the canonical model, but it may prevent its existence.
More specifically, one first computes the canonical model for the positive con-
straints, and then tests to see whether the inequality constraints are satisfied
in that canonical model. The condition identified in (c) exactly recaptures this
situation. 2

3.10 Examples As in 3.6, let P = {a, b}, but now let Φ = {(∨{a, b} =
>), (

∧{a, b} = ⊥)}. The corresponding canonical lattice is in the middle of
Fig. 1. If we add the constraint (a 6= b) to Φ, this does not change the canoni-
cal model at all, since this constraint is already satisfied. Adding the constraint
(a ≤ ⊥) results in the rightmost lattice.

3.11 Dealing with atomic constraints The results of 3.9 do not address
atomic constraints (i.e., Atom(τ)), because the situation surrounding such con-
straints is much more difficult. For example, let P = {a, b}, and let Φ =
{Atom(a), Atom(b)}. At first glance, it might appear that the leftmost lattice
in Fig. 2 is an initial model for (P, Φ). However, this is not the case. The right-
most lattice in Fig. 2 also satisfies these constraints, yet it is not a homomorphic
image of the one on the left, since on the left [{{a}}] ∧ [{{b}}] = ⊥, yet on the
right [{{a}}] and [{{b}}] are the same element, and so this value is also the meet.
This type of behavior is typical of constraints such as Atom(τ); initial models
often do not exist.

From 3.9, we can deduce that in the absence of atomic constraints, when
there is a model, there is a finite model. This is an extremely important result,
since infinite hierarchies pose all sorts of conceptual and computational difficul-
ties. Fortunately, this finite result remains valid even in the presence of atomic
constraints, as shown below. It result must not be viewed as trivial or frivolous.

9

>

{{a}, {b}}

{{a}} {{b}}

{{a, b}} ≡ {∅} ≡ ⊥

>

{{a}, {b}} ≡ {{a}} ≡
{{b}} ≡ {{a, b}}

⊥ ≡ {∅}

¡¡ @@

@@ ¡¡

Fig. 2. Two candidates for initial lattices with constraints Φ = {Atom(a), Atom(b)}.

There exist many classes of lattices (e.g., modular lattices) for which initial mod-
els may be infinite. See [13, Ch. 1, Sec. 5, Exer. 12]. From a computational point
of view, it is indeed fortunate that the distributive model of a type hierarchy
does not share this shortcoming, even in the presence of atomic constraints.

3.12 Theorem — finiteness of models Let (P, Φ) be a finite open specifica-
tion.

(a) If (P, Φ) has a model, then it has a finite model.
(b) If (P, Φ) has a canonical model, then this initial model is finite.

Proof In both cases, the proof depends upon the observation that in any (not
necessarily finite) distributive lattice, the sublattice generated by a finite set is
itself finite. This is easily seen from the crown construction (3.4); under distribu-
tivity, there is only a finite number of distinct expressions which may be built
up from a finite number of elements. Thus, if (P, Φ) has an infinite model, just
extract the sublattice generated by P ∪{>,⊥}; it is guaranteed to be finite. This
also shows that any initial model must be finite, since the part not generated by
P ∪ {>,⊥} must be extraneous. 2

3.13 Complementation In many frameworks, including that of CUF [7], com-
plementation is an implicit operation. Thus, every type τ has a complementary
type τ which satisfies the conditions τ∨τ = > and τ∧τ = ⊥. For reasons of space
limitation, we have not developed explicit results for this extended framework.
However, with minor modifications, all of the theoretical results of this section
carry through in the presence of complementation. Particularly, in the crown
construction of 3.4, the sets of conjuncts (i.e., the Ci’s) involve symbols of the
form aij and of the form aij , subject to the condition that no set may contain
both a and a. Needless to say, the size of the canonical model is even larger in
the presence of implicit complements. In a general context, further information
on the effect of including implicit complementation may be found in [14].

4. Basic Computational Techniques

The results on the size of the canonical model identified in 3.7 suggest that
explicit construction of this lattice from an open specification is unrealistic,

10

except in the most limited of circumstances. Fortunately, it is not generally
necessary to provide an explicit construction of the whole hierarchy. Often, it is
sufficient to know whether a given open specification admits a model; that is,
that it is not inconsistent. However, even for that question, we have the following
rather negative result, which is proven in [14].

4.1 NP-completeness The question of whether a finite open specification
(P, Φ) has a model is NP-complete, even when attention is restricted to posi-
tive sets of constraints. 2

Despite this negative result, it is important to identify basic solution techniques.
In practice, NP-complete problems are dealt with effectively all the time using
a a variety of strategies. Later, we shall look at some of these approaches, but
first some basic results must be established.

4.2 Two-element interpretations The two-element lattice, denoted 2, con-
tains {⊥,>} as its only elements. It is trivially distributive.

Let (P,Φ) be an open specification. A two-element interpretation for (P, Φ)
is an interpretation of the form (2, f); thus f : P → {>,⊥}. The set of all
two-elements interpretations for (P, Φ) is denoted Interp2(P,Φ). The set of two-
element models is denoted Mod2(P, Φ).

4.3 Adequacy of two-element models A positive open specification (P, Φ)
has a model iff it has a two-element model.

Proof Let (L, g : P → L) be a model of (P,Φ). In view of the Birkhoff-Stone
representation theorem (2.7), we may take L to be a ring of sets. Let s be any
element from this ring which appears in some members of L, but not in all.
Then, it is easily verified that (2, gs : P → {>,⊥}) with gs : τ 7→ > if s ∈ g(τ)
and gs : τ 7→ ⊥ otherwise, is a two-element model. The converse is trivial. 2

4.4 Limitations of two-element models Two-element models are sufficient
if one is interested only in positive constraints. However, they are inadequate
for negative constraints. For example, let P = {τ1, τ2, τ3}, and let Φ = {(τ1 6=
τ2), (τ1 6= τ3), (τ2 6= τ3)}. Then (P, Φ) cannot have a two-element model, because
τ1, τ2, and τ3 must be distinct elements in the underlying lattice. Fortunately, it
is possible to combine two-element models to obtain larger models which satisfy
both positive and negative constraints, as we now show.

4.5 Product interpretations and representations A key notion in the con-
struction of models for a general set of constraints is that of the product model.
Let (P, Φ) be an open specification, and let I = {(Lj , gj : Aug(P) → Lj) | j ∈ J}
be a finite set of interpretations of (P, Φ). Define the product interpretation

∏ I
to be (

∏
j∈J Lj , g : Aug(P) → ∏

j∈J Lj).
∏

j∈J Lj is the product lattice, which
is easily verified to be distributive.

Conversely, given an interpretation I = (L, g : Aug(P) → L), it is possible to
construct a product interpretation which satisfies the same constraints. In view
of 2.3.3, L may be taken to be a nonredundant ring of sets. Let S be the basis

11

for such a ring. For each s ∈ S, define a two-element semantics Is = (2, gs :
Aug(P) → {⊥,>}) with gs : τ 7→ > if s ∈ g(τ) and τ 7→ ⊥ otherwise, for τ ∈ P .
Then

∏
s∈S Is satisfies the same constraints as I.

We are now able to provide the main characterization theorem for existence
and structure of models of open specifications.

4.6 Characterization of models of arbitrary open specifications An
open specification (P,Φ) is satisfiable iff there is a finite nonempty family I ⊆
Interp2(P, Φ) satisfying the following conditions.

(a) Each ϕ ∈ Φ+ is satisfied by every I ∈ I.
(b) Each ϕ ∈ Φ− of the form (τ1 6= τ2) is satisfied by least one I ∈ I.
(b) Each ϕ ∈ Φ− of the form Atom(τ) is satisfied by exactly one I ∈ I.

2

4.7 Model characterization via satisfiability in propositional logic We
now turn to the question of computing two-element models for (P, Φ). The sim-
plest and most direct approach is to reduce the problem to one of satisfiability in
a propositional logic. Associate with P a propositional logic whose propositional
letters are {rτ | τ ∈ Aug(P)}. To each ϕ ∈ Constraints(P) is associated a propo-
sitional formula F(ϕ), according to the table below. For a set Φ of constraints,
define F(Φ) = {F(ϕ) | ϕ ∈ Φ}.

Constraint ϕ Associated Logical Formula F(ϕ)

τ1 ≤ τ2 rτ1 ⇒ rτ2∨n
i=1 τi = τ rτ1∨rτ2∨ . . . ∨rτn ⇔ rτ

∧n
i=1 τi = τ rτ1∧rτ2∧ . . . ∧rτn ⇔ rτ
τ1 6= τ2 ¬(rτ1 ⇔ rτ2)

Atom(τ) rτ

Each stable interpretation I of the propositional logic (i.e., a truth assignment
to each proposition, with r> true and r⊥ false) naturally defines a two-element
interpretation A−1(I) = (2, gI : Aug(P) → {⊥,>}) of P via gI : τ 7→ > if rτ is
true in I, and τ 7→ ⊥ otherwise. Thus, the two-element models of (P, Φ) are in
natural bijective correspondence with the stable models of F(Φ).

4.8 Queries Given an open specification (P, Φ), we may wish to know whether
certain other constraints are implied by this specification. For example, if Φ is
the partial specification of a hierarchy, we may wish to know whether Φ forces
τ1 = τ2 to hold. A query is a question of the form “Does Φ |= ϕ hold?” with
Φ ⊆ Constraints(P) and ϕ ∈ Constraints(P). This question could can be posed
formally as the two queries Φ |= (τ1 ≤ τ2) and Φ |= (τ2 ≤ τ1). Unfortunately, the
complexity of answering queries is co-NP-complete [11, Sec. 7.1].

4.9 Theorem – complexity of query processing Let P be any finite set.
The question of whether Φ |= ϕ for Φ ⊆ Constraints(P) and ϕ ∈ Constraints(P)
is co-NP-complete, in the size of P .

12

Proof First of all, note that Φ |= ϕ holds iff Φ ∪ {¬ϕ} is unsatisfiable, where
¬ϕ is the negation of the constraint ϕ, with the obvious semantics. The set
Constraints(P), together with logical negations of its elements, will be called the
set of extended constraints over P .

Now deciding whether a set of extended constraints is satisfiable is at least
as difficult as deciding whether or not a set of ordinary constraints (i.e., a subset
of Constraints(P)) is satisfiable. Thus, in view of 4.1, it is NP-hard. On the other
hand, it is also in NP, since we may guess at a solution and then test it in
linear time. Thus, the problem of deciding the satisfiability of Φ ∪ {ϕ} is NP-
complete. Consequently, the problem of deciding the unsatisfiability of such a
set is co-NP-complete. 2

5. Efficient Consistency Checking using Horn Clauses

The results presented in the previous section paint a fairly negative picture of the
tractability issues surrounding maintenance of type hierarchies which are openly
specified. In particular, it may not be feasible to conduct a complete check of the
admissibility of a specification. Under such circumstances, there are two tacts
which may be taken. First, one may look for an efficient strategy which solves
a limited number of problem instances completely. Second, one may look for an
efficient strategy which works on any problem instance, but yields only partial
information. In this section, we take the latter approach.

Horn clauses form an important class of sentences for a variety of reasons [20].
Particularly, in propositional logic, they admit very efficient inference mech-
anisms. While the best known inference algorithms for general propositional
logic run in exponential time in the worst case, Horn-clause inference may be
performed in linear time [9], [15]. In that which follows, we show how to use
a Horn-clause formulation to detect forced equivalences in open specifications
(that is, constraint sets Φ for which Φ |= (τ1 = τ2)). The result is not a mere
query mechanism, but a procedure which generates a list of such equivalences.
This technique improves substantially upon an earlier one presented in [14, Sec.
2.1], in simplicity, in improved computational complexity, and in extensibility.

5.1 Horn clauses In a propositional logic, a Horn clause is one in which
at most one of the literals is positive. Usually, we will write the Horn clause
¬p1∨¬p2∨..∨¬pn∨q in rule form, as p1∧p2∧..∧pn ⇒ q. If there is no positive lit-
eral, we will write p1∧p2∧..∧pn ⇒ F, with F representing the proposition which
is always false. Simple clauses consisting of one positive literal (e.g., p) are re-
ferred to as facts; the atom name itself will represent such clauses. The empty
clause will be represented by F.

For any set Ψ of Horn clauses, define Facts(Ψ) to be the set of all facts which
are semantic consequences of Ψ . Facts(Ψ) may be computed in time which is
linear in the size of the clause set [9], [15].

We will also work with conjunctions of Horn clauses, as though they were
clauses themselves. Thus, a formula such as (p∧q ⇒ r∧s) is to be regarded as an
abbreviation for the conjunction (p∧q ⇒ r)∧(p∧q ⇒ s).

13

5.2 Exclusive-or constraints As noted above, inference on sets of Horn
clauses is very fast; the best algorithms are linear in the size of the input set. Since
the problem of determining satisfiability of an open specification is NP-complete
(see 4.1 above), we certainly cannot expect Horn clauses to be a vehicle for the
complete description of open specifications. Rather, some additional forms of
representation must be employed to recapture completely such specifications.

A propositional formula of the form p⊕ q is called an exclusive-or constraint,
or xor-constraint, for short. The formula p ⊕ q is equivalent to (p∨q)∧(¬p∨¬q).
Such a constraint expresses the restriction that exactly one of two alternatives
must be true. In the work reported in this section, the constraints identified in
the table of 4.7 will be re-expressed using a combination of Horn clauses and
xor-constraints. Such a representation carries the advantage that the “tractable”
part of the representation (the Horn clauses) is completely separated from the
“intractable” part (the xor-constraints). Effective computational techniques may
then focus on the Horn part, looking for inconsistencies in the specification.
While such a technique will not find all inconsistencies, it can find many, as we
shall see.

5.3 The Horn clauses associated with an open specification Let P be
any finite set of clean types. Define two Aug(P)-indexed sets of propositions,
as follows: Prop⇑(P) = {pτ | τ ∈ Aug(P)}; Prop⇓(P) = {qτ | τ ∈ Aug(P)}.
Propm(P) denotes Prop⇑(P) ∪ Prop⇓(P). Relative to a two-element interpreta-
tion I = (2, f), think of pτ as representing the statement f(τ) = >, and qτ
representing f(τ) = ⊥.

Now let Φ be a set of constraints over P . For each ϕ ∈ Φ, associate two sets
of Horn clauses, over Prop⇑(P) and Prop⇓(P), according to the table below.

ϕ Rules⇑({ϕ}) Rules⇓({ϕ})
(τ1 ≤ τ2) (pτ1

⇒ pτ2
) qτ2

⇒ qτ1

(
∨n

i=1 τi = τ) (pτ1
⇒ pτ), .., (pτn

⇒ pτ) (qτ ⇒ qτ1
), .., (qτ ⇒ qτn

),
(qτ1

∧qτ2
∧..∧qτn

⇒ qτ)

(
∧n

i=1 τi = τ) (pτ ⇒ pτ1
), .., (pτ ⇒ pτn

), (qτ1
⇒ qτ), .., (qτn

⇒ qτ)
(pτ1

∧pτ2
∧..∧pτn

⇒ pτ)

(τ1 6= τ2) (pτ1
∧pτ2

⇒ F) (qτ1
∧qτ2

⇒ F)

Atom(τ) (pτ) (qτ ⇒ F)

For a set Φ ⊆ Constraints(P), define

Rules⇑(Φ) = {(p>), (p⊥ ⇒ F)} ∪ (
⋃

ϕ∈Φ

Rules⇑({ϕ}))

Rules⇓(Φ) = {(q⊥), (q> ⇒ F)} ∪ (
⋃

ϕ∈Φ

Rules⇓({ϕ})).

These sets of clauses are called the ⇑-rules (resp. ⇓-rules) for Φ. The notation is
suggestive of the semantics of these rules. The ⇑-rules express closure conditions

14

on the elements of P which must be true in a two-element model I = (2, f), while
the ⇓-rules express similar conditions on elements which must be false. Consider
the generic constraint (

∨n
i=1 τi = τ). If it holds, several things are implied. First

of all, for each i, τi ≤ τ . Thus, for any i, if f(τi) = >, then it must be that
f(τ) = > also. This condition is recaptured by the rule (pτi

⇒ pτ). Similarly, if
f(τ) = ⊥, then f(τi) = ⊥ must hold as well, and this is recaptured by the rule
(qτ ⇒ qτi

). Furthermore, if f(τi) = ⊥ for each i, then the join condition mandates
that f(τ) = ⊥ also; this is recaptured by the rule (qτ1

∧qτ2
∧..∧qτn

⇒ qτ). Note
that there is no corresponding ⇑-rule in this case. The situation for a constraint
of the form (

∧n
i=1 τi = τ) is completely analogous.

The rules in {(p>), (p⊥ ⇒ F)} and in {(q⊥), (q> ⇒ F)} are called bound
rules, because they assert that f(>) = > and f(⊥) = ⊥, respectively, for any
two-element model (2, f) of (P,Φ).

In addition to the ⇑-rules and ⇓-rules, there are xor-constraints which assert
that for any τ ∈ P , exactly one of f(τ) = ⊥ and f(τ) = ⊥ must hold for
any given two-element model (2, f). The XOR constraints, rule set, and total
representation are defined as follows.

XOR(P) = {pτ ⊕ qτ | τ ∈ P}
Rules(Φ) = Rules⇑(Φ) ∪ Rules⇓(Φ)

TotalRep(P, Φ) = Rules(Φ) ∪ XOR(P)

Finally, given a two-element interpretation I = (2, f) of (P, Φ), define the fact
set of I as FactSet(f) = {px | x ∈ f−1(>)} ∪ {qx | x ∈ f−1(⊥)}. Then, using the
semantics which have been outlined above, it is easy to establish the following
alternative to 4.7.

5.4 Characterization of two-element models Let (P,Φ) be an open spec-
ification, and let I = (2, f) ∈ Interp2(P,Φ). Then I ∈ Mod2(P, Φ) iff the set
FactSet(f) ∪ TotalRep(P, Φ) of propositional formulas is satisfiable. 2

5.5 Example Let P = {κi | 1 ≤ i ≤ 6}, and let Φ =
{(∨{κ1, κ2} = κ5), (

∨{κ2, κ3} = κ5), (
∨{κ1, κ3} = κ4), (

∧{κ2, κ3} = κ6),
(
∧{κ1, κ6} = ⊥), ((κ5 ≤ κ4)}. The table below shows the associated rules.

Rules⇑(Φ) Rules⇓(Φ)
pκ1

⇒ pκ4
∧pκ5

qκ2
⇒ qκ6

pκ2
⇒ pκ5

qκ3
⇒ qκ6

pκ3
⇒ pκ4

∧pκ5
qκ4

⇒ qκ1
∧qκ3

∧qκ5

pκ5
⇒ pκ4

qκ5
⇒ qκ1

∧qκ2
∧qκ3

pκ6
⇒ pκ2

∧pκ3
qκ1

∧qκ2
⇒ qκ5

pκ2
∧pκ3

⇒ pκ6
qκ2

∧qκ3
⇒ qκ5

pκ1
∧pκ6

⇒ p⊥ qκ1
∧qκ3

⇒ qκ4

p> q> ⇒ F
p⊥ ⇒ F q⊥

Note that the rules (p⊥ ⇒ pκ1
), (p⊥ ⇒ pκ6

), (qκ1
⇒ q>), and (qκ6

⇒ q>)
are not included in the table, even though they are formally members of the

15

appropriate rule set. Since p⊥ is always false, and q> is always true, they are
trivial tautologies, and so may be omitted.

Next, define the two-element interpretations Ij = (2, fj) for 1 ≤ j ≤ 7
according to the following table.

j f−1
j (>) f−1

j (⊥)
1 {κ3, κ4, κ5} {κ1, κ2, κ6}
2 {κ2, κ4, κ5} {κ1, κ3, κ6}
3 ∅ {κ1, κ2, κ3, κ4, κ5, κ6}
4 {κ1, κ2, κ3, κ4, κ5, κ6} ∅
5 {κ1, κ4} {κ2, κ3, κ5, κ6}
6 {κ1, κ2, κ3, κ4, κ5} {κ6}
7 {κ1, κ2, κ3, κ4, κ5, κ6} ∅

I1, I2, and I3, are easily verified to be models of (P, Φ). Indeed, it is not difficult
to see that they are the only two-element models. On the other hand, I4 fails
to be a model, since (pκ1

∧pκ6
⇒ p⊥) would then mandate that ⊥ ∈ f−1

4 (>),
an impossibility. I5 fails to be a model of (P, Φ), since the rule (pκ1

⇒ pκ4
∧pκ5

)
mandates that κ5 ∈ f−1

5 (>), contradicting κ5 ∈ f−1
5 (⊥). Similarly, I6 is not

a model of (P, Φ), since the rule (pκ2
∧pκ3

⇒ pκ6
) mandates that κ6 ∈ f−1

6 (>),
contradicting κ6 ∈ f−1

6 (⊥). Finally, I7 is not a model, since the rule (pκ1
∧pκ6

⇒
q⊥) requires that at least one of {κ1, κ6} lie in f−1

7 (⊥).
Now let Φ′ = Φ ∪ {(κ4 6= κ5)}. Then TotalRep(P, Φ′) = TotalRep(P,Φ) ∪

{(pκ4
∧pκ5

⇒ F), (qκ4
∧qκ5

⇒ F)}. It is easy to see that (P, Φ) has no model.
Indeed, {(qκ5

⇒ qκ1
∧qκ2

∧qκ3
), (qκ1

∧qκ3
⇒ qκ4

)} |= (qκ5
⇒ qκ4

), and since (qκ4
⇒

qκ5
) also holds, this means that for any two-element model (2, f), κ4 ∈ f−1(⊥)

iff κ5 ∈ f−1(⊥). Thus, f(κ4) = f(κ5). This is impossible, hence there can be no
model of (P, Φ).

5.6 Static consistency checking Let (P, Φ) be an open specification. For any
set X ⊆ Propm(P), Facts(X ∪ Rules(Φ)) may be computed very efficiently — in
time proportional to the size of Φ. The idea behind static consistency checking
is to compute Facts(X ∪ Rules(Φ)) for each member X of a judiciously chosen
set of subsets of Propm(P). From this computation, many properties of solutions
may be detected. One such example is provided by (P, Φ) of 5.5. The condition
(κ4 = κ5) holds in every model, as the failure of (P,Φ′) to have a model confirms.
In 5.5, this failure was shown via a direct proof, which essentially posed (κ4 = κ5)
as a query. To check each such condition separately would require a great deal of
computational resources. With a static consistency check, on the other hand, we
can identify a large number of such conditions at one time. We now develop the
machinery to perform such checks systematically. First, observe the following
result, which follows immediately from the definition of the fact set.

5.7 Utility of fact closure Let (P, Φ) be an open specification, and let X ⊆
Propm(P). Then Rules(Φ) |= (

∧
X) ⇒ (

∧
Facts(X ∪ Rules(Φ))). In other words,

the process of computing Facts(X∪Rules(Φ)) may essentially be viewed as one of

16

applying the rules in Rules(Φ) to X. (Note:
∧

denotes logical conjunction here,
not lattice join.) 2

5.8 Aggregate complexity for fact closure Let (P, Φ) be an open specifica-
tion, and let S be a set of subsets of Propm(P). Then the set of sets {Facts(S ∪
Rules(Φ)) | S ∈ S} may be computed in time Θ(n + r ·s + r ·log(r)), with n the
cardinality of P , s is the number of set in S, and r is the sum of the lengths of
the rules in Rules(Φ)).

Proof The proof rests largely upon results found in [9] and [15]. The process is
broken into two steps. There is a total of 2(n + 2) propositions in Prop⇑(P) ∪
Prop⇓(P). Assign each proposition a natural-number tag in {0, .., 2n + 3}. This
takes time Θ(n). Next, sort the propositions in each antecedent set of each clause.
This takes time Θ(r·log(r)).

After this preconditioning, the computation of each Facts(S∪Rules(Φ)) takes
just Θ(r) time, using the techniques in the above-cited references. The total time
for all elements of S is thus Θ(s·r). Combining these, the running time for the
entire algorithm is Θ(n + r ·log(r) + s·r). 2

5.9 Singleton Associations Let (P,Φ) be an open specification, and let p ∈
Propm(P). The singleton associates of p, denoted SingAsc(p), is just Facts({p} ∪
Rules(Φ)). In words, SingAsc(p) is the set of all propositions in Propm(P) which
can be deduced from p alone, using the rules in Rules(Φ).

5.10 Example Let (P,Φ) be as in 5.5. Here are the singleton associates.

x SingAsc(px) SingAsc(qx)
κ1 {pκ1

, pκ4
, pκ5

} {qκ1
}

κ2 {pκ2
, pκ4

, pκ5
} {qκ2

, qκ6
}

κ3 {pκ3
, pκ4

, pκ5
} {qκ3

, qκ6
}

κ4 {pκ4
} {qκ1

, qκ3
, qκ4

, qκ5
}

κ5 {pκ4
, pκ5

} {qκ1
, qκ2

, qκ3
, qκ4

, qκ5
}

κ6 {pκ2
, pκ3

, pκ6
} {qκ6

}
⊥ {p⊥} {q⊥}
> {p>} {q>}

The information that (κ4 = κ5) is easily recovered from these data. In-
deed, note that qκ5

∈ SingAsc(pκ4
) and that qκ4

∈ SingAsc(pκ5
). In light of 5.7,

this means that both (qκ4
⇒ qκ5

) and (qκ5
⇒ qκ4

) are logical consequences of
Rules(Φ). Thus, for any (2, f) ∈ Mod2(Φ), f(κ4) = ⊥ iff f(κ4) = ⊥. Thus, it
must be the case that f(κ4) = f(κ5). We now develop a means of discovering
such associations systematically.

5.11 The static equivalence Define the relation ¹1
Φ on Propm(Φ) by p ¹1

Φ q iff
q ∈ SingAsc(p). The transitive closure of ¹1

Φ is denoted by ¹1
Φ. The equivalence

relation ≡1
Φ places into a single equivalence class all elements which lie in the

same cycle in ¹1
Φ. Formally, p ≡1

Φ q iff p¹1
Φq and q¹1

Φp.
In the above example, only qκ4

≡1
Φ qκ5

.

17

5.12 The complexity of determining static equivalence Let (P, Φ) be an
open specification. Then, with n, r, and s defined as in 5.8, there is an algorithm
which computes ≡1

Φ from (P, Φ) in worst-case time Θ(n3 + n·r + r·log(r)).

Proof There are 2n + 4 (= O(n)) distinct sets of the form SingAsc(p), two for
each element of Aug(P). Transitive closure has the same computational com-
plexity as matrix multiplication [18, 10.3.6]; thus, the equivalence relation ≡1

Φ

may be computed in time Θ(n3) from {Facts({p} ∪ Rules(Φ)) | p ∈ Propm(P)}.
Thus, in view of 5.8, the total complexity is Θ(n3) + Θ(n + r ·s + r · log(r)) =
Θ(n3 + n·r + r·log(r)). 2

The above bound is a substantial improvement over Θ(n4 ·r · log(r)) which
was reported for the algorithm in [14, Sec. 2.1]. The general idea also lends itself
to extension, as outlined below.

5.13 Higher-level static consistency checking Although the technique just
described detects many element equivalences, it cannot find them all. As a con-
crete example, consider the open specification (P,Φ) with P = {τi | 1 ≤ i ≤ 5},
and Φ = {(τi ∨ τj = τ4) | 1 ≤ i < j ≤ 3} ∪ {(τi ∧ τj = τ5) | 1 ≤ i < j ≤ 3}. It
is not difficult to see that all five elements of P must be collapsed to the same
value in any model. However, this fact is not detected by the static equivalence
algorithm of 5.11. It can, however, be detected with a higher-level static consis-
tency check, which works with sets of the form Facts(X, Φ), with X a subset of
Propm(P) of size at most two. Thus, the technique of static consistency checking
may be extended. Indeed, if we work with all sets of the form Facts(X, Φ) for
X any subset of Propm(P), then consistency checking may be made complete.
Unfortunately, the computational complexity which results when all subsets of
P are considered yields no advantage over direct satisfaction testing. What may
prove promising, though, is to work with all subsets of a small size bound, say
two or three. The complexity is still quite manageable, yet many inconsistencies
may be detected. This approach is not elaborated further here.

6. Conclusions and Further Directions

Open specification clearly imposes a substantial computational burden. There-
fore, a decision to employ it must be measured carefully. As implied by the work
in Sec. 2, the first question to ask is whether or not natural semantics are needed
for both meet and join. If only natural meet semantics is needed, then open spec-
ification, as described in this paper, is not an issue.4 However, if one is interested
manipulating general classes of representations which involve disjunction, then
it may be a necessity, although alternatives to managing limited disjunction
have been proposed and implemented [12]. We cannot and do not address the

4 It is unclear whether the idea of open specification of meet-only hierarchies is in-
teresting, or nontrivial. We know of no existing work on the topic, and no systems
which embody the idea.

18

adequacy of such approaches rather we proceed under the assumption that join
semantics, and hence distributive hierarchies, are desired.

As illustrated by the construction of 3.7, complete representation of a dis-
tributive hierarchy will generally be infeasible. (See also [14, Sec. 0] for some ex-
amples.) Therefore, it would seem that open specification is the only alternative.
Although we have presented an efficient method for determining certain implied
constraints in Sec. 5, such techniques, by themselves, cannot counterbalance the
NP-hardness of the underlying problems. Rather, techniques for tackling these
underlying problems directly must be developed. Fortunately, NP-hard problems
are very common, and there is a substantial body of research on computational
methods [17]. However, most of these techniques deal with optimization prob-
lems, in which the notion of an approximate answer makes sense. On the other
hand, as made clear in 4.7, the questions involved in open specification are re-
lated closely to satisfiability questions for logical formulas; such problems do not
admit useful notions of approximation. Fortunately, there is an active body of
research on such problems, as well as a library of tools known SATLIB – The
Satisfiability Library, which is available on the world-wide web. Our next steps
in addressing the problems of open specification must clearly be experimental
ones, and will proceeds as follows.
1. Direct solution of the associated logic problems, as characterized in 4.7, will

be addressed using SATLIB tools such as GSAT [23], a tool which is effective
in the solution of large satisfiability problems.

2. A study of techniques related to re-use. One of the features of the satisfiability
problems surrounding open specification is that not one, but a whole family
of satisfiability problems (one for each two-element model) must be obtained.
It is clear from the results of Sec. 4, and 4.7 in particular, that the members
of the families of formulas to be solved are closely related; they may differ
in only slightly. Therefore, techniques which solve whole families of related
formulas in a fashion more efficient than solving each individually must be
developed. As far as we know, such techniques are not part of current work
on the subject.

3. The alternate characterization of two element models presented in 5.4 suggests
that techniques which address re-use in the specific context of Horn and XOR-
constraints, may prove useful. As far as we know, SATLIB-style results for such
specially conditioned formulas do not exist at this time.

References

[1] H. Aı̈t-Kaci. An algebraic semantics approach to the effective resolution of type
equations. Theoret. Comput. Sci., 45:293–351, 1986.

[2] H. Aı̈t-Kaci, R. Boyer, P. Lincoln, and R. Nasr. Efficient implementation of lattice
operations. ACM Trans. Programming Languages and Systems, 11:115–146, 1989.

[3] T. Briscoe, V. de Paiva, and A. Copestake, editors. Inheritance, Defaults, and the
Lexicon. Cambridge University Press, 1993.

[4] B. Carpenter. The Logic of Typed Feature Structures. Cambridge University Press,
1992.

19

[5] B. Carpenter and G. Penn. ALE: The Attribute Logic Engine user’s guide, Version
3.1 Beta. Technical report, Bell Laboratories and Universität Tübingen, 1998.

[6] V. de Paiva. Types and constraints in the LKB. In T. Briscoe, V. de Paiva,
and A. Copestake, editors, Inheritance, Defaults, and the Lexicon, pages 164–189.
Cambridge University Press, 1993.

[7] J. Döerre and M. Dorna. CUF – a formalism for linguistic knowledge representa-
tion. In J. Dörre, editor, Computational Aspects of Constraint-Based Linguistic
Description, DYANA-2 Deliverable R.1.2.A, pages 3–22. ESPRIT, 1993.

[8] J. Dörre and A. Eisele. Feature logic with disjunctive unification. In Proceedings
of the COLING 90, Volume 2, pages 100–105, 1990.

[9] W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfia-
bility of propositional Horn clauses. J. Logic Programming, 3:267–284, 1984.

[10] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.
[11] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman,

1979.
[12] D. Gerdemann and P. J. King. The correct and efficient implementation of appro-

priateness conditions for typed feature structures. In Proceedings of COLING-94,
pages 956–960, 1994.

[13] G. Grätzer. General Lattice Theory. Academic Press, 1978.
[14] S. J. Hegner. Distributivity in incompletely specified type hierarchies: Theory

and computational complexity. In J. Dörre, editor, Computational Aspects of
Constraint-Based Linguistic Description II, DYANA-2, ESPRIT Basic Research
Project 6852, Deliverable R1.2.B, pages 29–120. DYANA, 1994.

[15] S. J. Hegner. Properties of Horn clauses in feature-structure logic. In C. J.
Rupp, M. A. Rosner, and R. L. Johnson, editors, Constraints, Languages and
Computation, pages 111–147. Academic Press, 1994.

[16] H. Herrlich and G. E. Strecker. Category Theory. Allyn and Bacon, 1973.
[17] D. S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS

Publishing, 1997.
[18] E. Horowitz, S. Sahni, and S. Rajasekaran. Computer Algorithms. Computer

Science Press, 1998.
[19] H. J. Levesque and R. J. Brachman. Expressiveness and tractability in knowledge

representation. Computational Intelligence, 3:78–93, 1987.
[20] J. A. Makowsky. Why Horn formulas matter in computer science: Initial structures

and generic examples. J. Comput. System Sci., 34:266–292, 1987.
[21] W. D. Meurers. On implementing an HPSG theory–aspects of the logical architec-

ture, the formalization, and the implementation of head-driven phrase structure
grammars. In E. W. Hinrichs, W. D. Meurers, and T. Nakazawa, editors, Partial-
VP and Split-NP Topicalization in German – An HPSG Analysis and its Im-
plementation, volume 58 of Arbeitspapiere des SFB 340. University of Tübingen,
1994.

[22] C. Pollard and I. A. Sag. Head-Driven Phrase Structure Grammar. University of
Chicago Press, 1994.

[23] B. Selman and H. Kautz. Domain-independent extensions to gsat: Solving large
structured satisfiability problems. In Proc. Thirteenth IJCAI, pages 290–295,
1993.

[24] R. Zajac. Notes on the Typed Feature System, Version 4, January 1991. Technical
report, Universität Stuttgart, Institut für Informatik, Project Polygloss, 1991.

20

