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Abstract. A desirable goal of constraint-based parsing is that the whole
process should be one of pure algorithmic constraint satisfaction; the im-
plementor should not need to specify any control information, or be aware
of how the underlying system implements control. Unfortunately, most
existing tools are Turing complete, and hence require additional control
information by virtue of their computational power. In this work, a first
step towards automatic cosntraint-based parsing of HPSG is provided,
in the form of a family of decidable (for satisfiability) logics in which
set and list constructions may be expressed in a uniform fashion, and
constraints such as the Nonlocal Feature Principle may be recaptured
succinctly.

1 Introduction

1.1 Motivation and Overview

In [22, p. 10], it is argued that parsing of (at least a sizeable fragment of) Head-
Driven Phrase-Structure Grammar (hereafter HPSG) should be decidable. Under
the assumption of decidability, parsing may be performed via purely algorithmic
constraint satisfaction. The user provides only declarative constraints, and need
not supply any control information. In practice, the situation is not so ideal.
Existing tools for working with feature logics in general, and HPSG in particular,
such as ALE [1], CUF [5], and TFS [24], are Turing complete, meaning that
they are general enough to allow representation of any computational process,
including undecidable ones. While some simple problems may be solved within
these frameworks without the specification of control information, this is not the
case for many of the essential constraints of HPSG. Thus, it is up to the user,
at least in part, to supply parts of the parsing algorithm (or at least to respect
how the underlying system implements control).

† Portions of this work were prepared while the author was a visiting research fellow
at the Department of Informatics, University of Bergen, supported by a grant from
the Norwegian Research Council,.



In the work reported here, as a step towards fully automatic parsing of HPSG,
a family of decidable feature logics which support some of the key constructs of
HPSG is presented. These logics are focused particularly upon the constructs
which require sets and/or lists, and have two notable features which distinguish
them from other efforts known to the author.

Sets and lists are treated uniformly, using the same construction,
and duplicate values are supported. In HPSG, both sets and lists occur in
fundamental ways. For example, in filler-gap constructions, the SLASH binding
feature consists of an unordered multiset of structures, i.e., a set in which du-
plicates are allowed. While there is no order structure on the elements of the
multiset, the possibility that several of the elements will be identical can oc-
cur, and must be supported in any formalism. On the other hand, the value of
COMP-DTRS is always a (totally ordered) multilist of signs, i.e., a list in which
the same element may occur more than once. Since multisets and multilists are
are variations of the same idea (a collection of objects with order structure), it
seems natural that they should be represented using similar constructs. Among
other benefits, this would imply that multisets and multilists will be represented
by feature structures of similar size and depth, and corresponding operations on
multisets and multilists will be of the same complexity. Furthermore, partially
ordered sets, should they be needed, may easily be introduced.

The model structure of the associated logic is one of a traditional feature
structure, augmented to support multicollections. The sentences necessary to
represent (set-oriented) binding dependencies such as the nonlocal feature prin-
ciple, as well as list-oriented dependencies such as the subcategorization princi-
ple, are expressible. In particular, operations such as union and disjoint union, as
well as list concatenation, are expressible. To the best of the author’s knowledge,
this is the only work to treat multisets and lists uniformly within a decidable
feature-structure framework. Manandhar [17], Carpenter [3], and Moshier and
Pollard [19] have all developed elegant decidable feature logics which supports
set constructions. However, neither supports lists as a fundamental type. In [14],
Kepser gives a proof that the feature logic of King [15] is decidable, but this
logic does not provide any special constructs for sets or lists; rather, lists must
constructed as trees of features, with sets taken to be equivalence classes of lists.

Decidability is proven by mapping the logic into a sorted first-
order logic, and then using variants of well-known decidability results
in that context. By using this approach, the great wealth of knowledge re-
garding decidability of first-order theories [6] may be brought to bear on the
problem. The approach used in this work employs a typed generalization of
the Schönfinkel-Bernays quantificational class (no ∃ quantifier occurs within the
scope of a ∀ quantifier) to many-sorted logics. The types of the logic are con-
structed by forming a cartesian product of the underlying types of HPSG (called
sorts in [22]) and a group of three special types used to distinguish ordinary val-
ues from multicollections. Roughly speaking, in this generalization, whenever
a quantifier ordering of the form (∀x)(∃y) occurs, the types of x and y must
be such that infinite recursive construction of terms is impossible, and so the
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Herbrand universe remains finite. It is shown that the desired class of HPSG
constraints may be expressed within this class.

1.2 Prerequisites and Scope

It is assumed that the reader has a reasonable knowledge of order structures
[4] first-order logic in general and the expansion theorem in particular [16, Ch,
9], and many-sorted logics [8], as well as some acquaintance with notation for
regular languages [16, Ch. 2], and the logical representation of feature structures
[7]. For an understanding of the examples, as well as for the motivation for this
work, some acquaintance with HPSG [21], [22] would prove very helpful.

Because of space constraints, it has been necessary to limit background mate-
rial, condense the number and scope of examples, and to limit proofs to sketches
of the techniques.

2 Basic Concepts

2.1 Multicollections and Multicollection-Extended Feature
Structures

2.1.1 Partially ordered sets. Partially ordered sets (posets) will usually be
represented by boldface roman letters, with the underlying set denoted by the
corresponding non-bold roman letter. Unless otherwise stipulated, the associated
order is denoted by ≤. For a set L, Poset(L) denotes the set of all posets whose
underlying set is a subset of L. Consult [4] for more comprehensive information.

2.1.2 Multicollections. The notion of a multiset, i.e., a set in which an element
may occur several times, is well known [23]. A multilist is defined similarly. The
construct which we employ to recapture multisets and multilists is termed a
multicollection, which is a set S which is indexed by a poset of tags. Formally,
multicollection is a triple C = (S,P, f) in which S is a set, called the base set, P
is a poset, called the tag set, and f : P → S is a surjective function, called the
tagging function. C is a multiset (resp. multilist) if P is a trivial partial order
(resp. total order).

As a simple example, let S = {a, b, c}, let P = {x1, x2, x3, x4}, and let
f : P → S be defined by x1 7→ a, x2 7→ b, x3 7→ c, and x4 7→ b. Then,
with ≤ the trivial partial order in which xi ≤ xj ⇒ i = j, C is the multiset
{a, b, c, b} in which b occurs twice, and with ≤ the partial order generated by
x1 ≤ x2 ≤ x3 ≤ x4, then C is the multilist [a b c b], in which b occurs in both the
second and in the fourth position. With ≤ the ordering generated by x1 ≤ x2 and
x1 ≤ x3, a multicollection which is neither a multiset nor a multilist is obtained.

2.1.3 Multicollection contexts and systems. In this work, multicollections
will live at certain nodes of a feature structure, and the multicollections at dis-
tinct nodes must be related to each other in a particular way. Specifically, the
set of tags must be global, although the ordering relationship among the tags
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may be local. To recapture this idea, the following notion is employed. A multi-
collection context is a triple K = (L, S, I) of sets in which L is the global tag set,
S is the object set, and I is the context set. A multicollection system over K is
a set of multicollections whose tagging functions agree whenever they overlap.
In other words, in a multicollection system, the tag alone determines the asso-
ciated member of the base set; it does not matter which of the multicollections
in the system is considered. Formally, a multicollection system over K is a pair
D = (γ, η) with γ : L → S a total function, called the global tagging function,
and η : I → Poset(L) a total function, called the context function. The global
tagging function gives the global association (i.e., over all multicollections in the
system) of tags to elements, while the context function gives the local ordering
within each multicollection. Thus, while tagging is global to the entire system,
ordering is local to the particular multicollection.

As an abuse of notation, we sometimes use the notation η(I) to denote the
underlying set of the poset. Context will always make it clear which is meant,
the entire poset or just the underlying set. The multicollection system D defines
the family Sys(D) = {Ci = (Si,Pi, fi) | i ∈ I} of multicollections in which
Pi = η(i), Si = γ(Pi), and fi = γ|Pi

. (The notation γ|Pi
identifies a function

with the same action as γ, but with its domain restricted to Pi.)
These rather involved constructs are best understood within the context of

of a multicollection-extended feature structure (2.1.5 below), and so an example
which illustrates these ideas is deferred until that point.

2.1.4 Feature contexts. A feature context is just a set of parameters which
underlie the feature structures of a given context. Formally, an untyped feature
context is a pair C = (F, A) in which F is a finite set, called the set of features, and
A is a finite set, called the set of atoms. As a notational convention, throughout
the rest of this section, an untyped feature context C = (F, A) is fixed.

2.1.5 Multicollection-extended feature structures. Within the current
literature, there are several different formalisms for recapturing feature struc-
tures. A popular one is the so-called Kasper-Rounds [13] representation, in which
the feature structure is modelled as a finite-state automaton. An extension of the
Kasper-Rounds formalism which integrates multicollections into the structures
is employed in this work. Formally, a multicollection-extended feature structure
(MEFS for short) is an eight-tuple M = (Q, δ, α, qo, L, C, γ, η) in which:
(mefs-i) Q is a finite set, called the set of object states.
(mefs-ii) C is a finite set, called the set of multicollection states.
(mefs-iii) L is a finite set, called the set of object indices.
(mefs-iv) δ : Q × F → Q ∪ C is a partial function, called the state-transition

function.
(mefs-v) α : Q → A is an injective partial function, called the constant-

assignment function.
(mefs-vi) (γ, η) is a multicollection system over (L,Q, C).
(mefs-vii) qo ∈ Q is called the initial state.
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(mefs-viii) The sets Q, C, L, and F are pairwise disjoint.
(mefs-ix) Given q ∈ Q, if α(q) ↓, then δ(q, e) ↑ for all e ∈ F . (Notation: f(x) ↓

(resp. f(x)↑) means that f(x) is defined (resp. undefined)).

Figure 1 depicts an example, which should help to clarify these ideas, as
well as those of 2.1.3. There are two flavors of states, object states (the qi’s
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Fig. 1. An Example MEFS

in the example) and multicollection states (the ci’s in the example, circled for
emphasis), and two types of edges, feature edges (labelled with members of the
underlying set F of features, fi’s in the example) and tag edges (shown in bold
lines, and labelled with object indices, ki’s in the example). Each object state is
similar to a state in an ordinary feature structure, while each multicollection state
is the root of a multicollection. The feature edges are defined by the transition
function δ, the definition of tag edges involves the multicollection system, and
will be addressed shortly. The root node is q0 in the example and is labelled by
the short ingoing arrowhead.

At a given multicollection node c, the base set of the multicollection is just
the set of all q ∈ Q such that there is an edge from c to q. The tag set is the set
of all k ∈ L such that there is an edge from c with label k. The tagging function
identifies the association of tag edge labels to the states at the end of the edge.
In the example, at c1, the base set is {q3, q4}, the tag set is {k2, k3, k4}, and the
tagging function assigns k2 7→ q3, k3 7→ q2, and k3 7→ q4. The ordering on the
elements of the tag set is specified separately, to the right of the graph; in this
case k4 ≤ k2 ≤ k3.

A critical property of MEFS’s is that sinks of tag edges are global values;
that is, all tag edges labelled with the same tag name terminate at the same
node. Thus, the k3 edge emanating from c1 and that emanating from c2 must
point to the same node. This is recaptured succinctly within the definition of a
multicollection system (2.1.3); the global tagging function is γ, with each local
tagging function a restriction of it. On the other hand, note that tag ordering is
local; for example, k2 ≤ k3 at c1, while k2 and k3 are incomparable at c2. Indeed,
the multicollections at c1 and c3 are multilists, while that at c2 is a multiset.

The sink of a tag edge must be an object node, so that multicollections cannot
be nested directly. However, an element of a multicollection may have a feature
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which identifies another multicollection (e.g., f1 from q4 to c3). This simplifies
the mathematical aspects, and does not seem to impose any major roadblocks
in knowledge representation.

MEFS(C) denotes the set of all MEFS’s over C.
2.1.6 The extended transition function. In the classical Kasper-Rounds
formalism, the extended transition function is just the function of that name
which is derived from the associated automaton. In the case of an MEFS, the def-
inition is somewhat more complex, because the function γ of the multicollection
system embedded within the MEFS is used to define transitions out of tag nodes.
Formally, let M = (Q, δ, α, qo, L, C, γ, η) be a MEFS. Define the extended transi-
tion function for M to be the partial function (δ+γ)∗ : (Q∪C)×(F∪L)∗ → Q∪C
given by the following conditions.
(i) For each q ∈ Q ∪ C, (δ + γ)∗(q, ε) = q. (ε denotes the empty string.)
(ii) For each q ∈ Q, f ∈ F , (δ + γ)∗(q, f) ↓ iff δ(q, f) ↓; (δ + γ)∗(q, f) = δ(q, f)

in this case.
(iii) For each c ∈ C, k ∈ L, (δ + γ)∗(c, k)↓ iff k ∈ η(c); (δ + γ)∗(c, k) = γ(k) in

this case.
(iv) For each q ∈ Q and k ∈ L, (δ + γ)∗(q, k)↑.
(v) For each c ∈ C, f ∈ F , (δ + γ)∗(c, f)↑.
(vi) For any q ∈ Q∪C, ω ∈ (F∪L)∗, b ∈ F∪L, (δ+γ)∗(q, ω·b)↓ iff (δ+γ)∗(q, ω)↓

and δ((δ + γ)∗(q, ω), b)↓, and then (δ + γ)∗(q, ω · b) = δ((δ + γ)∗(q, ω), b).
Notice that the definition of (δ + γ)∗ does not depend upon the ordering of
elements in the multicollection. In terms of the example of Fig. 1, (δ + γ)∗ may
be determined from the graph alone, without any reference to the ordering table
to its right. The string ρ ∈ (F ∪ L)∗ is an actual path for M if (δ + γ)∗(qo, ρ)↓.
The set of all actual paths for M is denoted ActPath(M).

2.2 Typed Multicollection-Extended Feature Structures

HPSG is founded upon typed feature structures. Thus, to recapture constraints
within that framework, it is imperative that the notion of an MEFS be extended
to a typed domain. While it is often the case that one starts with partial type
systems, an adequate theory generally requires that it be extensible to a total
one. For details on conditions under which such extensions are possible, consult
[9]. In this report, we shall confine attention to the situation in which the order
structure is total.

2.2.1 Bounded semilattices and type hierarchies. A common framework
for modelling type hierarchies, and the one appropriate for HPSG, is that of
a bounded meet semilattice, which is a quadruple T = (T,⊥,>,u) in which T
is a set, called the underlying set; u : T × T → T is a total function, called
the meet operator, which is associative, commutative, and idempotent; ⊥ ∈ T
(resp. > ∈ T ) is called the least element, (resp. greatest element); ⊥ u x = ⊥
and > u x = x for all x ∈ T . The symbol v is used to denote the order relation
induced by the semilattice. For more information on semilattices, consult [4].
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For the purposes of this paper, a type hierarchy is a bounded, finite meet
semilattice. Throughout the rest of this paper, we let T be a type hierarchy.

2.2.2 Typed feature contexts and typed MEFS’s. A typed feature con-
text plays the same role in the definition of typed MEFS’s that an ordinary
feature context plays in the definition of ordinary MEFS’s. Formally, a typed
feature context is a quadruple C = (F, A,T, µ), in which F is a finite set, called
the set of features; A is a finite set, called the set of atoms; T is a type hierarchy;
and µ : A → T \ {⊥} is a total function, called the constant typing function.

The definition of a typed MEFS provided here is patterned after that of
Carpenter [2], which details the extension of the Kasper-Rounds representation
to the typed context. Formally, let C be a typed feature context over T. A typed
MEFS over C is a nine-tuple M = (Q, δ, α, qo, L, C, γ, η, θ) in which
(tmefs-i) (Q, δ, α, qo, L, C, γ, η) is an MEFS.
(tmefs-ii) θ : Q ∪ C ∪ L → T is a total function, called the typing function.
Thus, object states (Q), multicollection states (C), and object indices (L) all
have type. This typing function is subject to the following constraints.
(tmefs-iii) For all c ∈ C and k ∈ L, k ∈ η(C) implies that θ(k) v θ(c).
(tmefs-iv) For all k ∈ L and q ∈ Q, γ(k) = q implies that θ(q) v θ(k).
(tmefs-v) For all q ∈ Q, α(q)↓ implies that θ(q) v µ(α(q)).
The collection of all typed MEFS’s over C is denoted TMEFS(C). The extended
transition function (δ+γ)∗ for a typed MEFS is defined exactly as for an untyped
MEFS.

2.3 The Logic of Typed MEFS’s

2.3.1 The logical sort system of a type hierarchy. The base sort system
for MEFS’s is the triple BaseSort = {Obj,Coll,Tag}. The syntactic sort sys-
tem generated by T, denoted CESort(T) = (CESort(T),⊥,>,u), is the meet
semilattice defined by the Cartesian product ((T \ {⊥}) × BaseSort) ∪ {>,⊥}.
The meet operator u is defined by (t1, s1) u (t2, s2) = (t1 u t2, s1) if both
t1 u t2 6= ⊥ and s1 = s2; otherwise (t1, s1) u (t2, s2) = ⊥. The symbols ⊥,
>, and u have double duty, associated with both the underlying type hierarchy
T and the syntactic sort system CESort(T). Similarly, since (t, s) u > = (t, s)
for any (t, s) ∈ T \ {⊥} × BaseSort, (>, s) will often be abbreviated to s; e.g.,
Tag = (>,Tag). This should cause no confusion, since context will always make
clear which interpretation is correct. Also, v is used to denote the order relation
on CESort(T), as well as the order relation on T.

2.3.2 Variable contexts and typed MEFS feature contexts. An MEFS
variable context over T is a CESort(T) \ {>,⊥}-indexed set V = {Vr | r ∈
CESort(T) \ {>,⊥}} of variables such that, for r1 6= r2, Vr1 ∩Vr2 = ∅.

To aid in recognizing the type of a variable, the following convention is used.
For t ∈ T , variables in V(t,Obj) are usually written as lowercase letters from
the end of the alphabet, with t ∈ T written as a superscript. Subscripts may
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be used to distinguish variables, if necessary. Examples include xt, yt, zt
1, and

zt
2. A similar convention is used for variables in V(t,Coll), except that uppercase

letters are used. Examples include Xt, Y t, Zt
1, and Zt

2. Variables in V(t,Tag) are
represented by the special letter `, with subscript and superscript conventions
as in the other two cases. Examples include `t, `t

1, and `t
2. In each of these cases,

if t = >, then we may omit the superscript entirely, and write, e.g., x, X1, or `.
For s ∈ BaseSort, Vs denotes the set

⋃{V(t,s) | t ∈ T \ {⊥}}. The symbol
V denotes VObj ∪VColl ∪VTag. When we have a variable of an unspecified type,
that is, an element of

⋃V, the Greek letter ν, possibly with a subscript, will be
used to represent it.

A typed MEFS context with variables is a pair K = (C,V) in which C =
(F,A,T, µ) is a typed feature context and V is a MEFS variable context over T.
Throughout the rest of this paper, unless noted to the contrary, we let K = (C,V)
be a typed MEFS context with variables.

2.3.3 Description paths and feature terms. Description paths generalize
the feature terms of the Kasper-Rounds framework. The generalization must
account for both the edge labelling and the order structure of the embedded
multicollections. It is important to note that while feature names are part of the
underlying language (as embodied in the underlying typed MEFS context K),
tag names are not. The language of description paths uses tag variables (mem-
bers of VTag) within paths to represent tag edges; these variables must then be
bound by the logical expression in which the description path is used.

A simple description path (or just SD path) over K is any element of the
regular set (F · (VTag + ε))∗. A simple description path may be thought of as
a path through a feature structure, but with tags replaced by tag variables.
The restrictions that two tags may not occur in a row, and that the root of a
feature structure must be an object state, are built into the regular expression.
For example, f3`1f1`2 is a simple description path which “fits” the example of
Fig. 1, in the sense that upon substituting k4 for `1 and k7 for `2, an actual path
of the MEFS is obtained.

A description path over K is a simple description, followed by an optional
terminator. As in the Kasper-Rounds formalism, a terminator may be of the
form :x or :a, in which x ∈ VObj and a ∈ A. Thus, f3`1f1`2 : x and f3`1f1`2 :a
are description paths. For a simple description path which ends with an element
of F , a terminator of the form : X is also permitted, with X ∈ VColl. Thus,
f3`1f1 : X is a description path, but f3`1f1`2 : X is not. Finally, for a simple
description path ending in an element of F , a terminator may be of the form
[`1 ≤ `2] is also permitted, so that f3`1f1[`2 ≤ `3] is a description path. The set
of all description paths over K is denoted DPath(K).

Informally, the set of feature terms is the closure of the set of description
paths under the usual logical connectives. Formally, the set of typed collection
extended feature terms, denoted FT(K), is the smallest set such that {>,⊥} ∪
DPath(K) ⊆ FT(K), and whenever ϕ1, ϕ2 ∈ FT(K), then (ϕ1 ∧ ϕ2), (ϕ1∨ϕ2),
(¬ϕ1) ∈ FT(K) as well. As per usual mathematical conventions, parentheses
may be dropped in feature terms when no confusion can result, so one may
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write terms such as (ϕ1 ∧ ¬ϕ2 ∧ ϕ3), for example.

2.3.4 Assignments. Let M = (Q, δ, α, qo, L, C, γ, η, θ) ∈ TMEFS(C). A
(K,M)-assignment associates with each variable an object of the appropriate
sort. More formally, a (K,M)-assignment is a function β : V → Q ∪ C ∪ L
with the property that β(VObj) ⊆ Q; β(VColl) ⊆ C; β(VTag) ⊆ L; and for each
t ∈ T \ {⊥} and s ∈ BaseSort, θ(β(V(t,s))) v t. Asgn(K,M) denotes the set of
all (K,M)-assignments.

As noted above, description paths may not contain tags; they may only con-
tain variables with tag types. The application of an assignment generates a “true”
path through a typed MEFS by replacing tag variables with true tags. Given
ρ ∈ SDPath(K), β〈ρ〉 denotes the string which is obtained by replacing each
variable ν ∈ VTag occurring in ρ with β(ν). For example, if ρ = f3`1f1[`2 ≤ `3]
and β is any assignment which maps `1 7→ k4, `2 7→ k7, and `3 7→ k8, then
β〈ρ〉 = f3k4f1[k7 ≤ k8], a “ground term” (not a legal feature term) which may
be interpreted as true or false in a given structure (true in the case of Fig. 1).

2.3.5 Satisfiability. Let M = (Q, δ, α, qo, L, C, γ, η, θ) ∈ TMEFS(C). Infor-
mally, for a given feature term ρ, Sat(M, ρ) is the set of all truth assignments β
for which β〈ρ〉 is a “ground term” which is interpreted as true in M. For exam-
ple, with M as given in Fig. 1 and ρ and β as defined at the end of 2.3.4 above,
β ∈ Sat(M,ρ), while any β′ which does not satisfy either `1 7→ k4 or `1 7→ k3

is not in Sat(M, ρ). Formally, for any feature term ϕ, Sat(M, ϕ) is a subset of
Asgn(K,M), defined in cases as follows.
(i) Sat(M,ρ) ⇔ β〈ρ〉 ∈ ActPath(M).
(ii) Sat(M, ρ :ν) ⇔ (β〈ρ〉 ∈ ActPath(M) and (δ + γ)∗(qo, β〈ρ〉) = β(ν)).
(iii) Sat(M, ρ :a) ⇔ (β〈ρ〉 ∈ ActPath(M) and α((δ + γ)∗(qo, β〈ρ〉)) = a).
(iv) Sat(M, ρ[`1 ≤ `2]) ⇔ (β〈ρ〉 ∈ ActPath(M) and (δ + γ)∗(qo, ρ) ∈ C and

β(`1) ≤η((δ+γ)∗(qo,ρ)) β(`2)).
(v) For ϕ1, ϕ2 ∈ FT(K), Sat(M, (ϕ1 ∧ ϕ2)) = Sat(M, ϕ1) ∩ Sat(M, ϕ2).
(vi) For ϕ1, ϕ2 ∈ FT(K), Sat(M, (ϕ1∨ϕ2)) = Sat(M, ϕ1) ∪ Sat(M,ϕ2).
(vii) For ϕ ∈ FT(K), Sat(M, (¬ϕ)) = Asgn(K,M) \ Sat(M,ϕ).
For a set Φ ⊆ FT(K), define Sat(M, Φ) =

⋂{Sat(M,ϕ) | ϕ ∈ Φ}.

2.3.6 Variable substitution. To formalize the action of quantifiers, it is nec-
essary to formalize the idea of altering a (K, M)-assignment on exactly one vari-
able. Formally, let M = (Q, δ, α, qo, L, C, γ, η, θ) ∈ TMEFS(C), let β ∈
Asgn(K,M), let s ∈ BaseSort, and let r ∈ Q ∪ C ∪ L, subject to the constraint
that if s = Obj, then r ∈ Q; if s = Coll, then r ∈ C; if s = Tag, then r ∈ L.
Then, for t ∈ T \ {⊥} and ν1 ∈ V(t,s), define β[ν1 ← r] ∈ Asgn(K,M) by

β[ν1 ← r](ν2) =
{

r if ν1 = ν2;
β(ν2) otherwise.

provided that θ(r) v t. If θ(r) 6v t, then β[ν1 ← r] is undefined.
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2.3.7 Quantified feature terms. The quantification of feature terms
proceeds in a manner virtually identical to that for many-sorted first-order
logic. A typed MEFS quantifier is a symbol of the form ∀τ or ∃τ , with τ ∈
CESort(T)\{>,⊥}. The sort of the quantifier is r. As a notational abbreviation,
for s ∈ BaseSort, we will sometimes write ∀s (resp. ∃s) for ∀(>,s) (resp. ∃(>,s)).

A typed MEFS quantifier term is a string of the form (Qν) in which Q is
a typed MEFS quantifier and ν ∈ V, with Q and ν of the same sort. (In that
which follows, the quantifier subscript may be dropped when the sort may be
determined from the variable; thus, (∀(t,Obj)x

t) may be abbreviated to (∀xt), and
(∃(>,Tag)ν) may be abbreviated to (∃ν). These conventions will be used in the
sorted first-order logic of Sec. 3.1 as well.)

A typed MEFS quantifier string is a (possibly empty) sequence of typed
MEFS quantifier terms. A typed MEFS quantifier string is clean if no variable
in V occurs in more than one of its quantifier terms.

A quantified typed feature term is a string ϕ of the form ξψ, in which ξ is a
clean quantifier string and ψ is a typed MEFS feature term. In this case, we call
ξ the prefix of ϕ and denote it by Prefix(ϕ). Likewise, we call ψ the matrix of
ϕ and denote it by Matrix(ψ). The set of all quantified feature terms (over the
context K) is denoted QFT(K). We identify FT(K) with the subset of QFT(K)
consisting of all quantified feature terms whose prefix is empty.

A variable ν ∈ V is free in ϕ ∈ QFT(K) if it occurs in Matrix(ϕ), but not
in Prefix(ϕ). A quantified typed feature term is a sentence if it contains no free
variables. QFS(K) denotes the set of elements of QFT(K) which are sentences.

2.3.8 Satisfiability for typed quantified feature terms. In the following,
let M = (Q, δ, α, qo, L, C, γ, η, θ) ∈ TMEFS(C), let t ∈ T and let ϕ ∈ QFT(K).
Sat(M, (∃(t,Obj)x

t)ϕ) = {β ∈ Asgn(K,M) | (∃q ∈ Q)(β[xt ← q] ∈ Sat(M, ϕ))}.
Sat(M, (∃(t,Tag)X

t)ϕ) = {β ∈ Asgn(K,M) | (∃c ∈ C)(β[Xt ← c] ∈ Sat(M, ϕ))}.
Sat(M, (∃(t,Coll)`

t)ϕ) = {β ∈ Asgn(K,M) | (∃k ∈ L)(β[`t ← k] ∈ Sat(M, ϕ))}.
Sat(M, (∀(t,Obj)x

t)ϕ) = {β ∈ Asgn(K,M) | (∀q ∈ Q)(β[xt ← q] ∈ Sat(M, ϕ))}.
Sat(M, (∀(t,Tag)X

t)ϕ) = {β ∈ Asgn(K,M) | (∀c ∈ C)(β[Xt ← c] ∈ Sat(M, ϕ))}.
Sat(M, (∀(t,Coll)`

t)ϕ) = {β ∈ Asgn(K,M) | (∀k ∈ L)(β[`t ← k] ∈ Sat(M, ϕ))}.

2.3.9 Proposition — characterization of sentences. Let M ∈ TMEFS(C)
and ϕ ∈ QFS(K). Then either Sat(M,ϕ) = Asgn(K,M) or else Sat(M,ϕ) = ∅.
Proof. The proof is similar to that for first-order logic, as may be found in [18,
11.6]. 2

2.3.10 Example: The Nonlocal Feature Principle of HPSG. The
Nonlocal Feature Principle of HPSG [22, p. 164] is representative of the class
of constraints that this theory targets for representation. Figure 2 depicts the
abstract setting in which this constraint may be described. In general, the edges
labelled by subscripted λ’s may represent sequences of feature edges, rather
than single edges. The bolder edges, labelled with subscripted k’s, are tag edges.
For any S, let CS denote the multicollection rooted at node cS . It is assumed
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Fig. 2. Abstract Setting for the Nonlocal Feature Principle of HPSG

that Ccd is a multilist, while all other multicollections are multisets. The overall
constraint may be expressed succinctly, if somewhat informally, as

Cm = (Chd ∪ (
n⋃

i=1

Ccdi)) \Chd

In other words, the multiset node cm is the (multiset) union of the multisets
at node chd and at nodes ccdi , 1 ≤ i ≤ n, less the elements in the multiset
at node chd. The fact that Ccd is a multilist (as opposed to a multiset) is of
no consequence to this abstraction, although it is certainly important in the
linguistic model of HPSG.

For those familiar with HPSG, here is a concretization of the paths of Fig.
2, at least for common situations. These definitions assume that q0 is of type
headed structure.1

λd = DTRS
λhd = HEAD-DTR
λcd = COMP-DTRS

λm = λhdih
= λcdx = SYNSEM | NONLOCAL | INHERITED | SLASH

λhdtb
= SYNSEM | NONLOCAL | TO-BIND | SLASH

A quantified feature term which represents this constraint is the following.

(∀`τ1)(∃`τ2)
(λm`τ1 ⇔ ((λdλhdλhdih

`τ1 ∨ λdλcd`τ2λcdx`τ1) ∧ ¬λdλhdλhdtb
`τ1)) (1)

1 This example covers the case in which the only daughters of a headed structure,
other than the head daughter, are the complement daughters. However, a headed
structure may have other forms of daughters, including a marker daughter, an ad-
junct daughter, and a filler daughter. For simplicity, such daughters are not modelled
here, although the extension of the example described here to include these cases is
completely straightforward.
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In the context of HPSG, τ1 is the type local, and τ2 is the type sign.
Strictly speaking, the symbol ⇔ is not allowed in quantified feature terms,

but may easily be eliminated in the usual way. It remains to express the order
constraints. The following two sentences recapture that Cm is a multiset and that
Ccd is a multilist, respectively. The other multisets are characterized similarly.

(∀`1)(∀`2)(λm[`1 ≤ `2] ⇒ λm[`2 ≤ `1]) (2)
(∀`1)(∀`2)((λdλcd`1 ∨ λdλcd`2) ⇒ (λdλcd[`1 ≤ `2] ∨ λdλc[`2 ≤ `1])) (3)

3 Decidability

3.1 Embedding into a First-Order Logic

The approach to establishing satisfiability which is taken in this paper is that
of embedding the typed MEFS feature logic into a typed first-order logic. This
approach has the distinct advantage that much is known about techniques for
establishing decidability for satisfiability of first-order logics, and that wealth of
knowledge may be drawn upon in establishing the desired result.

3.1.1 Some essential notation. The rank of a relation symbol is a sequence
defining the sorts of its arguments. The set of all domain elements of sort τ which
occur in the model M is denoted Dom(M, τ). The value that symbol X assumes
under interpretation M is denoted XM . For a set Φ of sentences, Mod(Φ) denotes
the set of all models of Φ, while Modf (Φ) denotes the set of all finite models of
Φ. Because we work with two distinct logics, there are two distinct notions of
satisfiability. As already defined in 2.3.6 and 2.3.9, Sat(M, ϕ) denotes the set of
(K,M)-assignments which satisfy the typed feature term ϕ with respect to the
typed MEFS M . On the other hand, FOSat(M,ϕ) denotes the set of first-order
truth assignments which satisfy the (many-sorted) first-order formula ϕ with
respect to the first-order model M , in the logic Logic(K) defined in 3.1.2 below.

3.1.2 The first-order logic of a typed MEFS context. The many-sorted
first-order logic corresponding to K, denoted Logic(K), is the first-order logic,
with equality, which is defined as follows.
(i) The set of sorts of Logic(K) is precisely CESort(T).
(ii) The language contains precisely the following relation symbols.

• For each f ∈ F , there is a relation symbol Attrf , with rank (Obj, Obj).
• For each f ∈ F , there is a relation symbol AttrCf , with rank (Obj, Coll).
• For each a ∈ A, there is a relation symbol Consta, with rank (Obj).
• There is a relation symbol TagOrder, with rank (Coll, Tag, Tag).
• There is a relation symbol TagVal, with rank (Tag, Obj).
• There is a relation symbol TagUsed, with rank (Tag).

(iii) There is one constant symbol, InitState, of type Obj.
(iv) There are no non-nullary function symbols.
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3.1.3 First-order representation of an MEFS. Let
M = (Q, δ, α, qo, L, C, γ, η, θ) be a typed MEFS. The first-order representation
of M , denoted FO(M), is the interpretation in Logic(K) which describes M .
Informally, Attr

FO(M)
f (q1, q2) (resp. AttrC

FO(M)
f (q, c)) means that there is a feature

edge in M from q1 to q2 (resp. from q1 to c) labelled f . TagOrderFO(M)(c, k1, k2)
records that k1 ≤ k2 at node c. TagValFO(M)(k, q) records that tag k is assigned
the value at q, and that the types of a and q are compatible. TagUsedFO(M)(k)
just records that the tag k is used in M . The formal specification is as follows.
(i) Dom(FO(M), (t,Obj)) = {q ∈ Q | θ(q) v t}.
(ii) Dom(FO(M), (t, Coll)) = {c ∈ C | θ(c) v t}.
(iii) Dom(FO(M), (t,Tag)) = {k ∈ L | θ(k) v t}.
(iv) Attr

FO(M)
f (q1, q2) iff q1, q2 ∈ Q and δ(q1, f) = q2.

(v) AttrC
FO(M)
f (q, c) iff q ∈ Q, c ∈ C, and δ(q, f) = c.

(vi) ConstFO(M)
a (q) iff q ∈ Dom(FO(M), (µ(a),Obj)) and α(q) = a.

(vii) TagOrderFO(M)(c, k1, k2) iff c ∈ C, k1, k2 ∈ η(c), and k1 ≤η(c) k2.

(viii) TagValFO(M)(k, q) iff k ∈ L, q ∈ Q, and γ(k) = q.
(ix) TagUsedFO(M)(k) iff k ∈ L and there is a c ∈ C such that δ(c, k)↓.
(x) InitStateFO(M) = qo.

3.1.4 The axiom system. To ensure that a structure over the logic Logic(K)
represents a typed MEFS, it is necessary to enforce certain axioms. The first-
order axiom system FAxioms(K) for the typed MEFS context K is defined to be
the following set.
(i) For each a ∈ A:

(i-a) (∀x)(∀y)((Consta(x) ∧ Consta(y)) ⇒ (x = y)).
(ii) For each f ∈ F :

(ii-a) (∀x)(∀y)(∀z)((Attrf (x, y) ∧ AttrCf (x, z)) ⇒ ⊥).
(ii-b) (∀x)(∀y)(∀z)((Attrf (x, y) ∧ Attrf (x, z)) ⇒ y = z).
(ii-c) (∀x)(∀y)(∀z)((AttrCf (x, y) ∧ AttrCf (x, z)) ⇒ y = z).

(iii) (∀X)(∀`1)(∀`2)
(TagOrder(X, `1, `2) ⇒ (TagOrder(X, `1, `1) ∧ TagOrder(X, `2, `2))).

(iv) (∀X)(∀`1)(∀`2)(∀`3)
((TagOrder(X, `1, `2) ∧ TagOrder(X, `2, `3)) ⇒ TagOrder(X, `1, `3)).

(v) (∀X)(∀`1)(∀`2)((TagOrder(X, `1, `2) ∧ TagOrder(X, `2, `1) ⇒ `1 = `2)).
(vi) (∀X)(∀`)(TagOrder(X, `, `) ⇒ TagUsed(`)).
(vii) (∀`)(∃y)(TagUsed(`) ⇒ TagVal(`, y)).
(viii) (∀`)(∀x)(∀y)((TagVal(`, x) ∧ TagVal(`, y)) ⇒ x = y).
Condition (i) states that constant a can be associated with at most one object
state; (ii) states that there is at most one edge leaving a given object node with
a given feature label; conditions (iii)-(v) state that TagOrder is a partial order;
condition (vi) states that any tag at node X is used; condition (vii) states that
the value associated with a given tag is global.
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3.1.5 Proposition. If M ∈ TMEFS(C), then FO(M) ∈ FAxioms(K). 2

The proof of 3.1.5 is a straightforward verification. Thus, the first order
representation of any typed MEFS satisfies the axioms of 3.1.4.

3.1.6 Representation of a feature term as a first-order formula. To es-
tablish an equivalence between the logic of typed MEFS’s and these axioms, it
must also be shown that any (finite) model of these axioms represents an MEFS.
This task is somewhat intricate, and requires a substantial dose of complex no-
tation. To simplify the presentation in this abbreviated paper, the idea of this
representation will be illustrated, with the formal details left to the reader. The
idea is a natural extension of that introduced for ordinary feature structures in
[10], [11]. Consider the feature term ϕ = f1f2`1f1[`2 ≤ `3], which might be used
in the representation of the example of Fig. 1. One first-order representation is

(∃x0)(∃x1)(∃x2)(∃x3)(∃x4)(∃X1)(∃X2) (InitState = x0 ∧ Attrf1(x0, x1) ∧ (4)
AttrCf2(x1, X1) ∧ Attrf1(x2, X2) ∧ TagVal(`1, x2) ∧ TagVal(`2, x3) ∧
TagVal(`3, x4) ∧ TagOrder(X1, `1, `1) ∧ TagOrder(X2, `2, `3))

Similarly, a first-order formula representing ϕ′ = f1f2`1f1 :a is

(∃x0)(∃x1)(∃x2)(∃x3)(∃X1)(∃X2) (5)
(InitState = x0 ∧ Attrf1(x0, x1) ∧ AttrCf2(x1, X1) ∧ Attrf1(x2, X2) ∧ x3 = a ∧

TagVal(`1, x2) ∧ TagVal(`2, x3) ∧ TagOrder(X1, `1, `1) ∧ TagOrder(X2, `2, `2))

These two examples illustrate most of the key ideas of the representation. A vari-
able, of the appropriate sort, is introduced for each node which the path requires.
The predicates have the meanings identified in 3.1.3. Note that some predicates
are implied by the axioms of 3.1,4, and need not be included explicitly. For ex-
ample, TagOrder(X2, `2, `2), TagOrder(X2, `3, `3), TagUsed(`1), TagUsed(`2), and
TagUsed(`3) may be added as conjuncts to the representation of ϕ without al-
tering the semantics. Nonetheless, since all such representations are equivalent
in the presence of the schema of 3.1.4, the terminology “the” first order repre-
sentation of ϕ, notationally FO(ϕ), will be used in that which follows.

All quantifiers introduced in this representation are existential. In trans-
lating a feature term, any quantifiers on that term are placed outside of the
the scope of these translation quantifiers. Thus, for quantified feature term,
ψ = (∀`1)(∃`2)(∃`3)(f1f2`1f1[`2 ≤ `3]), the full quantifier prefix, to be applied to
the conjunct of atoms identified in (4) above, would be
(∀`1)(∃`2)(∃`3)(∃x0)(∃x1)(∃x2)(∃x3)(∃x4)(∃X1)(∃X2). The string
(∀`1)(∃`2)(∃`3) is Prefix(ψ), and the string (f1f2`1f1[`2 ≤ `3]) is Matrix(ψ), in
the notation of 2.3.7. FO(ϕ) is then defined to be Prefix(ϕ) ·FO(Matrix(ψ)). Note
that FO(Matrix(ψ)) = ϕ is the formula of (4). The full formal result relating sat-
isfiability of quantified feature terms to the satisfiability of first-order formulas
is the following.
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3.1.7 Proposition. Let ϕ ∈ QFT(K), and let M ∈ TMEFS(C). Then Sat(M, ϕ)
= FOSat(FO(M), FO(ϕ)). 2

The proof of 3.1.7 is a tedious but straightforward inductive argument. We
are now in a position to provide the complement of 3.1.3; namely the definition
of a canonical typed MEFS associated with a first-order model.

3.1.8 The canonical MEFS of a first-order model. Let I ∈
Modf (FAxioms(K)). Define the canonical typed MEFS corresponding to I, de-
noted TMEFS(I) = (QI , δI , αI , qIo , LI , CI , γI , ηI , θI), as follows. Start by
defining the relation AttrLI of rank (Coll, Obj) by AttrLI(X,x) iff
(∃`)(TagOrder(X, `, `) ∧ TagVal(`, x)). Then let AttrI to be the binary relation
defined by (

⋃
e∈F AttrIe )∪(

⋃
e∈F AttrCIe )∪AttrLI . Next, let Attr

I
be the transitive

closure of Attr. We are now set to make the definitions.
(a) QI = {q ∈ Dom(I,Obj) | Attr

I
(InitState, q)}.

(b) CI = {x ∈ Dom(I,Coll) | Attr
I
(InitState, X)}.

(c) LI = {` ∈ Dom(I, Tag) | (∃X ∈ CI)(TagOrder(X, `, `))}.
(d) δI is defined by δI(q, e)↓ iff q ∈ QI and either (∃r ∈ QI)(AttrIe (q, r)) or else

(∃c ∈ CI)(AttrCIe (q, c)). In this case, δI(q, e) is defined to be the unique r or
c found by this construction. The uniqueness follows from rule (ii) of 3.1.4.

(e) For q ∈ QI , αI(q)↓ iff (∃a ∈ A)(Consta(q)), and then αI(q) = a.
(f) For k ∈ LI , γI(k) is defined iff (∃q ∈ QI)(TagVal(k, q)) holds. In this case,

the value of γI(k) is this q.
(g) For c ∈ CI , ηI(c) is defined to be the poset whose underlying set is

{k | TagOrderI(c, k, k)}, with k1 ≤c k2 iff TagOrderI(c, k1, k2).
(h) The typing function θI is defined as follows.

• For q ∈ QI , θI(q) = u{t ∈ T | q ∈ Dom(I, (t,Obj))}.
• For c ∈ CI , θI(c) = u{t ∈ T | c ∈ Dom(I, (t,Coll))}.
• For k ∈ LI , θI(k) = u{t ∈ T | k ∈ Dom(I, (t,Tag))}.

3.1.9 Proposition. Let I ∈ Modf (FAxioms(K)). Then TMEFS(I) ∈
TMEFS(C), and for any ϕ ∈ QFT(K), Sat(TMEFS(I), ϕ) = FOSat(I, FO(ϕ)).
2

The proof is once again a tedious but straightforward induction. The finite-
ness of I is essential, since a set of sentences in Logic(K) may certainly have
infinite models, which will by definition not be typed MEFS’s. In 3.2.5, an ap-
plicable condition on a set of sentences which ensures that the existence of a
model implies the existence of finite model will be established.

3.2 Decidability of the First-Order Theory

3.2.1 The Schönfinkel-Bernays class. In single-sorted first-order logic, the
Schönfinkel-Bernays class (or SB class, for short) of sentences, without function
symbols, has the property that no existential quantifier occurs within the scope
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of a universal quantifier. Thus, in prenex normal form, such a sentence has the
general form (∃x1) · · · (∃xm)(∀y1) · · · (∀yn)ϕ. It is well known that any sentence
in this class (and hence any finite set of such sentences) is decidable for satis-
fiability [6, p. 212]. The proof rests upon the fact that the Herbrand universe
[16, 9.4] of the functional form of the sentence (i.e., the sentence obtained by
Skolemizing all existential variables) involves no non-nullary function symbols,
and hence is finite with a predetermined size bound.

The SB class has been used to establish the decidability of a logic for feature
structures [10], [11]. However, in the context of this paper, both the axiom system
(3.1.4) and typical constraints to be modelled (2.3.11) involve formulas outside
outside of the SB class. Fortunately, it is possible to extend the idea of the SB
class to many-sorted logics in such a way that existential quantifiers may lie with
in the scope of universal ones, yet decidability is preserved.

3.2.2 Quantifier classes in many-sorted logics. In a single-sorted logic, a
quantifier language is just a set of strings over the alphabet {∀,∃}. The quantifier
language associated with the SB class is thus the regular set ∃∗∀∗. The extension
of the notion of quantifier language to the many-sorted case is identical, save that
the quantifiers are tagged.

A quantifier language over a set S of sorts (e.g., S = CESort(T)) is a set
of strings Q over the alphabet {∀τ | τ ∈ S} ∪ {∃τ | τ ∈ S}. The closure of Q
is Q = {Q1

τ1
Q2

τ2
..Qk

τk
| (∀i : 1 ≤ i ≤ k)(Qi ∈ {∀, ∃} and ∃τ ′i ∈ S with τi v

τ ′i and Q1
τ ′1

Q2
τ ′2

..Qk
τ ′

k
∈ Q)}. The closure of Q thus contains all strings obtained

by replacing type subscripts on quantifiers by more specific types. Q is closed
if Q = Q. Given a formula ϕ in prefix-matrix form, the quantifier string of
ϕ is the string QuantStr(ϕ) obtained from Prefix(ϕ) by deleting all parenthe-
ses and variables (but preserving or restoring type markers on quantifiers). For
example, in Logic(K), both (∀(s1,Obj)x

s1)(∃(s2,Coll)Y
s2)(∃(>,Tag)`

>) and its abbre-
viation (∀xs1)(∃Y s2)(∃`) (see 2.3.8(b)) become ∀(s1,Obj)∃(s2,Coll)∃(>,Tag). Given an
S-sorted first-order logic L, the quantifier class for the quantifier language Q,
denoted QuantClass(Q,L), is the set of all sentences ϕ in the language of L in
prefix-matrix form such that QuantStr(ϕ) ∈ Q.

3.2.3 Functional forms, the Herbrand universe and expansion. The
ideas of this paragraph, for the single-sorted case, are discussed in [16, Sec.
9.4]. Only the items necessary to extend these concepts to the many-sorted
context are presented here. Given a sentence, the functional form is obtained by
Skolemizing all existential variables. A key difference is that, in the many-sorted
case, functions have rank. For example, the Skolemization of axiom 3.1.4(vii)
yields (∀`)(TagUsed(`) ⇒ TagVal(`, fy(`))). The Skolem function fy has rank
Obj → Tag; that is, the single argument must be of sort Obj, and the result will
be of sort Tag.

The Herbrand universe consists of all formal terms obtained by composition
of all functions, Skolem and otherwise. If there is no term of a given maximal sort
s, a special constant term as is introduced and added to the Herbrand universe.
For Logic(K) and the axioms of 3.1.4, there is one constant symbol from the
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language InitState (of sort Obj), and just one Skolem function, the fy defined
above. The composite term fy(InitState) is of type Tag. It is necessary to add
one additional constant symbol aColl, corresponding to the maximal sort Coll, to
ensure that the Herbrand universe contains at least one element of each sort.
Notice, though, that because of the rank constraints, the function fy cannot
compose recursively, and so the Herbrand universe for 3.1.4 is finite, consisting
of just the three terms {InitState, fy(InitState), aColl}.

The Herbrand expansion consists of all ground terms of the underlying for-
mulas formed by using the Herbrand universe as the underlying domain space.
If the Herbrand universe is finite and of determinable size, so too will be the
Herbrand expansion of a finite set of formulas (such as those of 3.1.4). Since a
set of sentences has a model iff its Herbrand expansion does, and a model of
the Herbrand expansion is a model of the original set of sentences, finiteness
of the Herbrand expansion provides not only a framework for establishing the
existence of a model, but for its finiteness as well. We now turn to the issue of
determining conditions under which the Herbrand universe remains finite and of
determinable size.

3.2.4 Generalized SB quantifier languages. Let S be a set of sorts and
Q be a quantifier language over S. Define RQ ⊆ S × S by (τ1, τ2) ∈ RQ iff
there is a string σ ∈ Q with ∀τ1 preceding ∃τ2 . Define Rv

Q = {(τ1, τ2) | (∃τ3)
(∃τ4)((τ3, τ4) ∈ RQ and τ1 v τ3 and τ2 v τ4)}, with R

v+
Q its transitive closure.

Call Q a generalized SB-quantifier class if (τ1, τ2) ∈ R
v+
Q implies τ1 u τ2 = ⊥.

3.2.5 Theorem. Let S be a set of sorts, L an S-sorted first-order logic with
no non-nullary function symbols and only finitely many constant symbols, and
Q a generalized SB-quantifier class. Then QuantClass(Q,L) is decidable for sat-
isfiability, and any finite Φ ⊆ QuantClass(Q,L) which has a model has a finite
model.

Proof sketch. The proof hinges upon establishing that the Herbrand universe is
finite, and of determinable size. Once that is established, we may make use of the
fact that a formula is satisfiable iff its Herbrand expansion is [16, Thm. 9.4.1].

To establish that the Herbrand universe is finite. it suffices to show that for no
function symbol f is it possible to have a term of the form f(. . . , t, . . .) for which
f occurs in t. Let Q denote the quantifier class for the given set of sentences,
and assume that t is a term involving a chain of function symbols (f0, f1, . . . fk),
in which f0 = f and for each i, 0 ≤ i ≤ k − 1, a term of the form fi(−) occurs
as the α(i)th argument to fi−1. Let τi denote the range sort of fi, and let τα(i)

denote the domain type in fi of the argument position in which the fi+1 term
occurs. Then (τα(i), τi) ∈ R

v+
Q for 0 ≤ i ≤ k−1, and since τi+1 v τα(i), it follows

that (τi+1, τi) ∈ Rv
Q for 0 ≤ i ≤ k−1. Thus (τk, τ0) ∈ R

v+
Q . Thus fk 6= f0, and so

no terms can involve recursive applications of any function symbol. The number
of distinct terms is finite and strictly bounded, whence the Herbrand expansion
has the same property. Decidability, as well as finiteness of the model, follows as
outlined above.
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A final point to consider is the decidability of a finite set of sentences, as
opposed to a single sentence. However, it is straightforward to establish that
QuantClass(Q,L) must be closed under conjunctions, since the relation R

v+
Q is

constructed from all strings in Q, and not just a single string. In other words,
the elements of R

v+
Q generated by a “best” prefix of ϕ1 ∧ ϕ2 are also generated

by Prefix(ϕ1) and Prefix(ϕ2). 2

3.2.6 A family of decidable classes of typed MEFS feature logics. Let
Q1 be a generalized SB quantifier class which is a subset of ({∀(s,Tag) | s ∈
T \ {⊥}} ∪ {∃(s,Tag) | s ∈ T \ {⊥}})∗, and let Q2 = ({∃(s,Obj) | s ∈ T \ {⊥}} ∪
{∃(s,Coll) | s ∈ T \ {⊥}})∗. Then any finite family of quantified typed feature
sentences over the quantifier class Q1 · Q2 = {σ1 · σ2 | σ1 ∈ Q1 and σ2 ∈ Q2} is
decidable for satisfiability.

Proof sketch. At first glance, this may appear to be a simple application of 3.2.5.
However, 3.2.5 is a theorem about first-order logic, while this result concerns
typed feature logic. Let ϕ ∈ QFS(K) be such that QuantStr(ϕ) ∈ Q1 · Q2. The
process of translation of ϕ to FO(ϕ), as described in 3.1.6, introduces additional
quantifiers. In the translation, feature terms are replaced with the equivalent
formulas identified in 3.1.6. There are two key points to note. First of all, the
quantifiers which are added will lie within the scope (and thus to the right
of) the quantifiers of ϕ. Second. all quantifiers in the replacement terms are
existential and of a subsort of either Obj or else of Coll. Some of the original
feature terms may be negated, which complements the affected quantifiers to
universal. However, these feature terms do not lie in one another’s scope, so,
for each term in the translation, the quantifiers will be either all existential or
else all universal. The universal quantifiers of this added sequence may thus be
moved inside of the existential ones, resulting in a quantifier sequence of the form
∃τ1∃τ2 ..∃τk1

∀υ1∀υ2 ..∀υk2
, with each τi and each υi of one of the forms (s,Obj) or

(s, Coll), for some s ∈ T \ {⊥}. In other words, if we define Q3 = ({∀(s,Obj) | s ∈
T \ {⊥}}∪ {∀(s,Coll) | s ∈ T \ {⊥}})∗, then this added quantifier sequence will be
in Q2 · Q3. The translated first order formula will thus have a total quantifier
sequence in Q1 · Q2 · Q2 · Q3, which reduces to just Q1 · Q2 · Q3. It is clear
that (Q1 · Q2 · Q3)v+ = (Q1 · Q2)v+ , since there are no existential quantifiers
to the right of any of the universal quantifiers in Q3. We are thus left with the
problem of analyzing the original quantifier class Q1 ·Q2. It is a straightforward
verification that this is an SB quantifier class, thus completing the proof. 2

3.2.7 Example: decidability of the Nonlocal Feature Principle. The
constraints of the Nonlocal Feature Principle of HPSG are expressed by equations
(1)–(3), in 2.3.11. To establish decidability, these constraints must be combined
with the axiom system FAxioms(K) of 3.1.4, and the resulting set of typed feature
sentences tested for satisfiability. It is easy to see that the conditions of 3.2.6
applies to this set, rendering it satisfiable.
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4 Limitations and Further Directions

The work abstracted here is only a beginning of an effort towards fully automated
parsing of HPSG, for several reasons. First of all, certain critical, but not all, set
and list operations are expressible in a decidable quantifier class of our language.
Further work is necessary to establish a universal framework for expressing a
wider variety of set and list constructions.

Second, the only specialized constructions which are considered are those
based upon sets and lists. Other equally important forms, such as linear prece-
dence constraints, are not addressed.

Third, while the logic presented is decidable for the representation of con-
straints at a single level, it is not decidable for what Kepser [14] calls grammati-
cality; that is, it is not decidable for recursively embedded constraints. For exam-
ple, the Nonlocal Feature Principle must hold at every node which is type both
phrase and headed-structure, and not just at one particular node. (It should be
pointed out the neither the logic of King [15] nor the logic of Manandhar [17] are
shown to be decidable for grammaticality, and in all likelihood they do not have
this property.) It is the belief of this author that the decidability of grammati-
cality cannot be established without some reference to input size; decidability of
grammaticality must be tied to size-bounding information computed from the
input string, in a spirit similar to off-line parsing of LFG [20] (but without refer-
ence to a context-free skeleton, of course). Johnson [12] does provide a system,
based upon first-order logic, in which grammaticality is established via off-line
parsability, but the formalism is closer to LFG than to HPSG, in that is is built
around a context-free skeleton. Furthermore, it does not support types or lists
as an explicit construct.

Fourth, the expression of even simple constraints is quite tedious. Thus, at a
very minimum, some enclosing package of syntactic sugar which makes is rela-
tively simple to represent key constraints in a simple fashion must be developed.

Finally, it must be acknowledged that decidability does not necessarily imply
tractability. Once a decidable logic is identified, the issue of finding means of
incorporating it into computationally tractable algorithms remains. Nonetheless,
it is possible to envision embedding a decidable logic, such as the one described
here, into a larger, more general system such as CUF, TFS, or ALE. This would
enable a larger class of constraints to be solved without explicit specification of
control information.
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