
Independent Update Reflections

on Interdependent Database Views

Stephen J. Hegner

Ume̊a University, Department of Computing Science
SE-901 87 Ume̊a, Sweden

hegner@cs.umu.se http://www.cs.umu.se/~hegner

Abstract. The problem of identifying suitable view-update strategies
is typically addressed in the context of a single view. However, it is often
the case that several views must co-exist; the challenge is then to find
strategies which allow one view to be updated without affecting the other.
The classical constant-complement strategy can provide a solution to this
problem; however, both the context and the admissible updates are quite
limited. In this work, the updates which are possible within this classical
approach are extended substantially via a technique which considers only
the states which are reachable from a given initial configuration. The
results furthermore do not depend upon complementation, and thus are
readily extensible to settings involving more than two views.

1 Introduction

Both views and updates are fundamental to a comprehensive database system.
Consequently, the problem of how to support updates to views has been studied
extensively. Most work addresses this problem in the context of a single view, in-
cluding the classical approach via the relational algebra [10, 18, 19, 7, 8], the more
recent approach based upon database repairs [1, 3, 2], and work which bridges
these two approaches [12]. However, in some situations a number of distinct yet
interdependent views of the same main schema must co-exist. Often, the access
rights to these views differ, so that a user or access rôle [4, 21] which has access
to one view may not even be allowed to read, much less update, another. In
such a setting, it is important to identify those updates which are possible to
a given view Γ without requiring any access to the other views, for reading or
for writing. This may be recaptured succinctly in terms of two independence
conditions. First of all, whether or not an update to Γ is to be allowed at all
should be independent of the states of the other views. This is called context

independence. Second, the reflection to the main schema of the update to the
selected view must not require a change of the state of any of the other views.
This is called propagation independence or locality of effect. In the presence of
these two forms of independence, an update may be made to the given view
Γ without knowledge about the states of the other views beyond that which is
already known in Γ , and the result of the update to Γ will not be visible in
any of the other views. Applications in which such independence is central, and

Initial submission: 20110315 page 1

which have motivated this work, include component-based architectures [24, 23,
13, 16], update by cooperation [17], and models of data objects for transactions
[15].

For the case of two views, the classical constant-complement approach [6, 11]
already provides a very elegant solution in the situations to which it applies.
Unfortunately, it imposes conditions which are often too strong to be of use, as
illustrated by the following examples.

Let E0 be the relational schema consisting of the single relation symbol
R[ABC], constrained by the functional dependency (FD) B → C. Define ΠE0

AB =

(EAB
0 , πE0

AB) to be the view whose schema EAB
0 contains the single relation sym-

bol is RAB[AB] and whose morphism πE0

AB is the projection of R[ABC] onto

RAB[AB]. Define ΠE0

BC = (EBC
0 , πE0

BC) analogously. Let LDB(E0) denote the set
of all legal databases of E0; that is, the set of all relations on R[ABC] which
satisfy the FD B → C. Define LDB(EAB

0) and LDB(EBC
0) similarly, as the le-

gal databases of the corresponding view schemata. Define the the decomposition

mapping πE0

AB × πE0

BC : LDB(E0) → LDB(ABE
0) × LDB(BCE

0) on elements by

M 7→ (πE0

AB(M), πE0

BC(M)).

Let u1 = (N1, N
′
1) be any update on ΠE0

AB, with N1 representing the view
state before the update operation and N2 the state afterwards. A reflection

of u1 to E0 is any (M1,M2) ∈ LDB(D) × LDB(D) with πE0

AB(M1) = N1 and

πE0

AB(M2) = N ′
1. This update is propagation independent with respect to ΠE0

BC ,

or keeps ΠE0

BC constant, if πE0

BC(M1) = πE0

BC(M2).

In this example, the set of all updates on ΠE0

AB which keep state of ΠE0

BC

constant has a very simple characterization; namely, it is precisely the set of all
updates on RAB which keep the projection onto B fixed. Similarly, the set of
all updates on ΠE0

BC with ΠE0

AB constant is precisely the set of all updates on

RBC which keep the projection onto B fixed. The view ΠE0

B of E0 which is the

projection onto B, is called the meet of ΠE0

AB and ΠE0

BC . For both ΠE0

AB and ΠE0

BC ,
the updates which are propagation independent are precisely those which keep
the meet view ΠE0

B constant. Thus, whether or not an update to either view is
possible without modifying the state of the other is a property of the state of
that view alone, and does not require knowledge further knowledge of the state
of E0; i.e., it exhibits context independence. For a more thorough presentation
of these ideas in the context of update via constant complement, see [11, 1.2].

Pairs of views are not always so well behaved. Let E1 be identical to E0,
save that it is governed by the additional FD A → C, and let ΠE1

AB and ΠE1

BC

be defined analogously to ΠE0

AB and ΠE0

BC . The set of updates on ΠE1

AB which are

propagation independent with respect to ΠE1

BC is not independent of the partic-

ular state of ΠE1

BC . For example, consider the two states M10 = {R(a1, b1, c1),
R(a2, b2, c1)} and M10′ = {R(a1, b1, c1), R(a2, b2, c2)} in LDB(E1). Then
πE1

AB(M10) = πE1

AB(M10′) = {RAB(a1, b1), RAB(a2, b2)}. The view update which

replaces {RAB(a1, b1), RAB(a2, b2)} with {RAB(a1, b1), RAB(a1, b2)} on ΠE1

AB

has a reflection which keeps the state of ΠE1

BC constant from M10 but not from
M10′ . Thus, this view update does not exhibit context independence.

Initial submission: 20110315 page 2

The key difference between E0 and E1 is that in the former the governing
FDs embed into the views, while in the latter they do not. That this properly is
necessary and sufficient to guarantee that the view updates which are possible
while keeping a second view constant are independent of the state of the other
view was first presented in [22, Thm. 2], and in a much more general context in
[11, Prop. 2.17].

The conventional wisdom is that context-independent updates to views such
as ΠE1

AB are not possible, because checking the FD A → C requires access to
both views. While this is true if one insists upon characterizing the allowable
view updates as those which keep a meet view constant, it is nevertheless pos-
sible to support weaker, but still very useful, forms of context and propagation
independence in such settings. It is the main goal of this paper to develop such
notions of independence.

Given N1 ∈ LDB(EAB
1), let πB(N1) denote {b | (∃t ∈ N1)(t[B] = b}, that

is, the set of all values for attribute B which occur in some tuple of N1, and let
≡N1

〈B,A〉 denote the equivalence relation on πB(N1) which identifies two B-values

iff they share a common value for attribute A. Thus, b1 ≡N1

〈B,A〉 b2 iff there are

tuples t1, t2 ∈ N1 with t1[B] = b1, t2[B] = b2, and t1[A] = t2[A]. It is not diffi-
cult to see that any view update (N1, N

′
1) to ΠE1

AB for which πB(N1) = πB(N
′
1)

and for which ≡
N ′

1

〈B,A〉⊆≡N1

〈B,A〉 cannot lead to a violation of the FD A → C as

long as the state of ΠE1

BC is held constant in the reflection. For example, if the

current state of ΠE1

AB is N11 = {RAB(a1, b1), RAB(a2, b2), RAB(a2, b3)}, then
the update to the new state N11′ = {RAB(a1, b1), RAB(a2, b2), RAB(a3, b3)}, as
well as to the new state N11′′ = {RAB(a1, b1), RAB(a3, b2), RAB(a3, b3)}, can-
not possibly result in a violation of A → C, as long as the state of ΠE1

BC is
held constant, regardless of what that state is. In other words, limiting the view
updates to those which satisfy these properties results in a strategy which is
both context and propagation independent. A similar argument holds for up-
dates on ΠE1

BC . For any N2 ∈ LDB(EBC
1), let ≡N2

〈B,C〉 denote the equivalence

relation on πB(N2) which identifies two B-values if they share a common value
for attribute C. Now, any view update (N2, N

′
2) with πB(N2) = πB(N

′
2) and for

which ≡N2

〈B,C〉⊆≡
N ′

2

〈B,C〉 has a reflection with constant ΠE1

AB which is both context

and propagation independent. Furthermore, these updates may be made to ΠE1

AB

andΠE1

BC independently of each other without violating any integrity constraints.
The compromise, relative to that of the views of E0, is that the allowable updates
are with respect to a given initial context (N1, N2) ∈ LDB(EAB

1) × LDB(EBC
1).

In the case of E0, the identification of independent updates to ΠE0

AB requires no

knowledge of the state of ΠE0

BC . In the case of E1, knowledge that the state of
each view is the result of context-independent updates from a consistent initial
state is necessary. Furthermore, each view must know its image of that initial
state. Thus, ΠE1

AB must know N1 and ΠE1

BC must know N2 (but ΠE1

AB need not

know N2 and ΠE1

BC need not know N1).

Initial submission: 20110315 page 3

There is a further improvement which may be made. Note that the set of
allowable updates in this example is not symmetric. For example, updating the
state of ΠE1

AB from N11 to N11′ is always admissible, but the reverse, from N11′

to N11 is not, since the latter may lead to a violation of A → C for certain
compatible states of ΠE1

BC . Nevertheless, for any N12 ∈ LDB(EBC
1) which is

compatible with N11 in the sense that they arise from a common M ∈ LDB(E1),
this update is reversible. In fact, it remains reversible if the only updates to ΠE1

BC

are those described above, with ≡N2

〈B,C〉⊆≡
N ′

2

〈B,C〉. and πB(N2) = πB(N
′
2).

A similar solution is applicable when normalization replaces two-way inclu-
sion dependencies with simple foreign-key dependencies. That example is devel-
oped in detail in Examples 3.4.

The main goal of this paper is to place the ideas illustrated by these examples
on firm theoretical footing. In contrast to the constant-complement theory, which
looks primarily at how a single view may be updated while keeping a second view
constant, the focus here is upon how two views may be updated independently.
Furthermore, while the work is primarily within the setting of just two views,
the long-term goal is nevertheless to address the situation in which there is a
larger set of views, as often occurs in the application settings identified above.
To this end, the main results are developed without requiring that the views be
complementary. Interestingly, complementation does not appear to be a central
issue and their is little if any compromise involved.

2 Schemata and Views in a General Framework

Although most of the examples are based upon the relational model, the results
of this paper depend only upon the set-theoretic properties of database schemata
and views. As such, the underlying framework is basically that employed in the
classical papers [6] and [5]. The purpose of this section is to present the essential
ideas of that framework in a succinct fashion. The terminology and notation is
closest to that employed in [11], to which the reader is referred for details.

Definition 2.1 (Database schemata and morphisms). A database schema
D is modelled completely by its set LDB(D) of legal databases or states. A
morphism f : D1 → D2 of database schemata is represented completely by its
underlying function f : LDB(D1) → LDB(D2). Since no confusion can result, the
morphism and its underlying function will be represented by the same symbol.
Of course, schemata may have further structure (such as relational structure),
and morphisms may be defined by the relational algebra or calculus, but for this
work, it is only the underlying sets and functions which are of formal importance.

Definition 2.2 (Views). A view Γ = (V, γ) of the schema D is given by a
database schema V together with a morphism γ : D → V whose underlying
function γ : LDB(D) → LDB(V) is surjective. In a view Γ , the state of its
schema V is always determined completely by the state of the main schema D.

The congruence Congr(Γ) of the view Γ is the equivalence relation on LDB(D)
given by {(M1,M2) ∈ LDB(D)× LDB(D) | γ(M1) = γ(M2)}. Let Γ1 = (V1, γ1)

Initial submission: 20110315 page 4

and Γ2 = (V2, γ2) be views of the schema D. Write Γ1 �D Γ2 just in case
Congr(Γ2) ⊆ Congr(Γ1), that is, just in case Γ2 preserves at least as much infor-
mation about the state of D as does Γ1. The two views Γ1 and Γ2 are said to
be isomorphic if Congr(Γ1) = Congr(Γ2); i.e., if Γ2 �D Γ1 �D Γ2. It is easy to
see that �D is a preorder on the collection of all views of D and a partial order
on the congruences (i.e., on the views up to isomorphism).

A congruence on LDB(D) may be represented by the partition which it in-
duces [20, Sec. 1]. The partition of LDB(D) induced by Congr(Γ) is denoted
Partition(Congr(Γ)).

Definition 2.3 (Relativized views). Let Γ1 = (V1, γ1) and Γ2 = (V2, γ2) be
views of the schema D. If Γ1 �D Γ2, then Γ2 may be relativized to a view of V1.
More specifically, the function λ〈Γ1, Γ2〉 : LDB(V1) → LDB(V2) is defined via
the view congruences by sending a block β of Partition(Congr(Γ1)) to the block
of Partition(Congr(Γ2)) which contains β. For example, using views of the E0

introduced in Sec. 1, λ〈ΠE0

AB , Π
E0

B 〉 sends a state in LDB(ΠE0

AB), i.e., a relation for
RAB[AB], to its projection on B. In terms of blocks of the equivalence relations,
it sends a block β of Partition(Congr(Γ)) consisting of all states with the same
projection onto AB, to the block of Partition(Congr(ΠE0

B)) with the projection
onto attribute B of the elements of β.

Definition 2.4 (The lattice structure and meets of views). It is a classi-
cal result [20, Thm. 5] that the set of all congruences on a set (and hence the set
of all views on a database schema) forms a bounded complete lattice (see [9, 2.2
and 2.4] for definitions) under the order induced by �D . More precisely, let Γ1

and Γ2 be any views of the schema D. The join Γ1 ∨ Γ2 is characterized by the
congruence Congr(Γ1)∩Congr(Γ2). The join will not be used in this work and so
not considered further. More important is the meet Γ1∧Γ2 = (V1∧V2, γ1∧γ2),
which is represented by the intersection of all equivalence relations E on LDB(D)
which satisfy E �D Congr(Γi) for both i = 1 and i = 2. There is always one
such equivalence relation, namely the identity, so the intersection is never over
the empty set. An explicit characterization of Congr(Γ1 ∧ Γ2) may be found in
[20, p. 579]. Namely, (M,M ′) ∈ Congr(Γ1 ∧ Γ2) iff there is a chain

(M,M1), (M1,M2), . . . , (Mi−1,Mi), (Mi,Mi+1), . . . , (Mk−1,Mk), (Mk,M
′)
(cc)

of elements in LDB(D) × LDB(D) in which the right element of a pair matches
the left element of its neighbor to the right, and in which each pair is either in
Congr(Γ1) or else in Congr(Γ2).

While the join of two relational schemata always has a natural representation
as a relational schema [14, Def. 3.4], the same cannot be said of the meet. Of
course, it always has an abstract representation as a congruence on the states of
the main schema, and in many examples, it does have a simple representation.
For example, in the context of the schema E0 of Sec. 1,Π

E0

AB∧ΠE0

BC is represented

by the view ΠE0

B . This is even true for the meet ΠE1

AB ∧ΠE1

BC of the views of E1;

this meet is represented by the view ΠE1

B , the projection onto B.

Initial submission: 20110315 page 5

The greatest view is the identity view, which has the obvious definition and
which will not be considered further in this work. The least view is the zero view,
denoted ZViewD , and has Congr(ZViewD) = LDB(D) × LDB(D). It is a trivial
view in that it retains no information about the state of D; its morphism ZMorD
sends every state of LDB(D) to the same, single state of the view schema.

Definition 2.5 (Commuting congruences). There is a condition which sim-
plifies the description of the meet given in (cc) of Definition 2.4 above. The pair
{Γ1 = (V1, γ1), Γ2 = (V2, γ2)} of views is said to have commuting congru-

ences if their if the composition of their congruences is commutative; that is, if
Congr(Γ1)◦Congr(Γ2) = Congr(Γ2)◦Congr(Γ1). In this case, the characterization
(cc) simplifies considerably. Namely, (M,M ′) ∈ Congr(Γ1 ∧ Γ2) iff there is an
M ′′ ∈ LDB(D) such that (M,M ′′) ∈ Congr(Γ1) and (M ′′,M ′) ∈ Congr(Γ2) (or,
equivalently, iff there is an M ′′ ∈ LDB(D) such that (M,M ′′) ∈ Congr(Γ2) and
(M ′′,M ′) ∈ Congr(Γ1)) [20, Sec. 8].

Definition 2.6 (Complementary views). The pair {Γ1 = (V1, γ1), Γ2 =
(V2, γ2)} of views of D is called complementary if the decomposition mor-

phism γ1 × γ2 : LDB(D) → LDB(V1) × LDB(V2) given on elements by M 7→
(γ1(M), γ2(M)) is injective. In earlier work, particularly [11], fundamental re-
sults were obtained for pairs of views which are both complementary and which
have commuting congruences. Such pairs are called meet complementary. In this
work, the property of being complementary will not be of central importance,
but it will still be mentioned in some discussion of the results.

Definition 2.7 (Updates and Reflections). An update on the schema D is
just a pair (M1,M2) ∈ LDB(D)× LDB(D). Think of M1 as the state before the
update operation and M2 as the state afterwards. The set of all updates on D
is denoted Updates(D).

Given a view Γ = (V, γ) of D and an update u = (N1, N2) ∈ Updates(V), a
reflection (or translation) of u along Γ is a u′ = (M1,M2) ∈ Updates(D) with
the property that γ(Mi) = Ni for i ∈ {1, 2}. In this case, u′ is also called a
reflection (or translation) of u for M1 along Γ . The set of all reflections of u
along Γ is denoted ReflectionsΓ 〈u〉.

3 Basic Theory of Independent Update Strategies

In this section, the central ideas surrounding independent update strategies are
developed. Some of these, particularly those involving commuting congruences,
have already been developed in part in the context of complementary pairs [11].
However, the focus here is not at all upon complements. Indeed, the assump-
tion that the views under consideration are complementary is never made. Fur-
thermore, while the emphasis in [11] is upon the constant-complement update
strategy in the presence of meet complements, the main focus here is upon sit-
uations in which the meet property (i.e., commuting congruences) fails to hold.
This presentation is independent of [11], and does not require knowledge of the
specific results of that paper.

Initial submission: 20110315 page 6

Notation 3.1 (Running schema and views). Throughout this section, un-
less stated specifically to the contrary, take D to be a database schema and
Γ1 = (V1, γ1) and Γ2 = (V2, γ2) to be views of D. Γ1 and Γ2 need not be
complements of each other.

Definition 3.2 (Updates relative to a second view). The goal is to identify
properties on subsets of Updates(V1) which characterize useful yet independent
update strategies. To this end, there are three distinct notions of independence
which are of importance. In that which follows, let u = (N,N ′) ∈ Updates(V1),
and define ReflectionsΓ1|Γ2

〈u〉 to be the subset of ReflectionsΓ1
〈u〉 which keeps

the state of Γ2 constant. More precisely, ReflectionsΓ1|Γ2
〈u〉 = {(M1,M2) ∈

ReflectionsΓ1
〈u〉 | (M1,M2) ∈ Congr(Γ2)}.

(a) Call u somewhere Γ2-independent if for some M1 ∈ LDB(D) with γ1(M1) =
N , there is an M2 ∈ LDB(D) with the property that (M1,M2) ∈
ReflectionsΓ1|Γ2

〈u〉. The set of all somewhere Γ2-independent updates on
Γ1 is denoted IndUpd∃〈Γ1|Γ2〉.

Thus, u is somewhere Γ2-independent if the update may be made for some states
of the view Γ2, but not necessarily all. The update ({RAB(a1, b1), RAB(a2, b2)},
{RAB(a1, b1), RAB(a1, b2)}) on ΠE1

AB of Sec. 1 is an example which is somewhere

ΠE1

BC -independent. It is not, however, everywhere independent, since there states

of the view ΠE1

BC , such as {RBC(b1, c1), RBC(b2, c2)}, for which it cannot be
realized without changing that state.

(b) Call u everywhere Γ2-independent if for everyM1 ∈ LDB(D) with γ1(M1) =
N , there is an M2 ∈ LDB(D) with the property that (M1,M2) ∈
ReflectionsΓ1|Γ2

〈u〉. The set of all everywhere Γ2-indepdendent updates on
Γ1 is denoted IndUpd∀〈Γ1|Γ2〉).

The update ({RAB(a1, b1), RAB(a2, b2)}, {RAB(a1, b1), RAB(a3, b2)}) on ΠE1

AB

is an example which is everywhere ΠE1

BC -independent.
The third notion of independence characterizes independence in the situation

when the congruences of Γ1 and Γ2 commute, and so is closely tied to the theory
of constant-complement updates as presented in [11].

(c) Call u meetwise Γ2-independent if λ〈Γ1, Γ1 ∧ Γ2〉(N) = λ〈Γ1, Γ1 ∧ Γ2〉(N
′).

The set of all meetwise Γ2-indepdendent updates on Γ1 is denoted
IndUpd∧〈Γ1|Γ2〉.

Given that ΠE1

AB ∧ ΠE1

BC = ΠE1

B , the update ({RAB(a1, b1), RAB(a2, b2)},

{RAB(a1, b1), RAB(a3, b2)}) on ΠE1

AB is meetwise ΠE1

BC -independent since the

projection onto ΠE1

B is {RB(b1), RB(b2)} in each case.
For each of these three notions, there is a corresponding definition of reflected

updates. Specifically, define
ReflIndUpd∃〈Γ1|Γ2〉 = {ReflectionsΓ1|Γ2

〈u〉 | u ∈ IndUpd∃〈Γ1|Γ2〉},
ReflIndUpd∀〈Γ1|Γ2〉 = {ReflectionsΓ1|Γ2

〈u〉 | u ∈ IndUpd∀〈Γ1|Γ2〉},
and ReflIndUpd∧〈Γ1|Γ2〉 = {ReflectionsΓ1|Γ2

〈u〉 | u ∈ IndUpd∧〈Γ1|Γ2〉}.
In these definitions, there is no assumption that Γ1 and Γ2 be comple-

ments. However, if they are complements, then each of ReflIndUpd∃〈Γ1|Γ2〉,
ReflIndUpd∀〈Γ1|Γ2〉, and ReflIndUpd∧〈Γ1|Γ2〉 must be a function, in the sense

Initial submission: 20110315 page 7

that if (M1,M2), (M1,M
′
2) ∈ Updates(D) are both in any of these sets, then

M2 = M ′
2. If Γ1 and Γ2 are complements, this means that the decomposition

morphism γ1 × γ2 (Definition 2.6) must be injective, and so M2 must be the

unique element (γ1 × γ2)
−1

(N2, γ2(M2)), if it exists.
All three notions of Γ2-independence recapture locality of effect, as defined in

Sec. 1. While only everywhere Γ2 independence recaptures context independence,
the other two provide crucial insights into what can go wrong and how things can
be extended. As a first step, the question of whether or not these are equivalence
relations is examined.

Observation 3.3 (Reflexivity and transitivity).

(a) Each of IndUpd∧〈Γ1|Γ2〉, IndUpd∃〈Γ1|Γ2〉, ReflIndUpd∧〈Γ1|Γ2〉, and

ReflIndUpd∃〈Γ1|Γ2〉 is an equivalence relations.

(b) IndUpd∀〈Γ1|Γ2〉 and ReflIndUpd∀〈Γ1|Γ2〉 are reflexive and transitive, but

not necessarily symmetric. Thus, they need not be equivalence relations.

Proof. All of the “positive” conditions are routine verifications, which are left to
the reader. That IndUpd∀〈Γ1|Γ2〉 and ReflIndUpd∀〈Γ1|Γ2〉 need not be symmetric
is illustrated in Examples 3.4, immediately below. 2

Examples 3.4 (Non-reversible independent updates). To illustrate the
idea of non-reversible updates, consider the schema E2 with two relation symbols
RAB[AB] and RBC [BC]. The latter relation is governed by the FD B → C,
and, in addition, the two relations are connected via the foreign-key dependency
RAB[B] ⊆ RBC [B]. Define ΠE2

AB = (EAB
2 , πE2

AB) and ΠE2

BC = (EAB
2 , πE2

AB) as
the views which preserve RAB[AB] and RBC [BC], respectively, and for N ∈
LDB(EAB

2) or N ∈ LDB(EBC
2), let πB(N) denote {b | (∃t ∈ N)(t[B] = b}.

It is easy to see that IndUpd∀〈Π
E3

AB|Π
E2

BC〉 is the set of all updates (N,N ′) ∈
Updates(V1) for which πB(N

′) ⊆ πB(N). A tuple of the form RAB(a, b) may
always be deleted, even if there is no other tuple of the form RAB(x, b), but a
tuple of the form RAB(a, b) may not be added if there is not already another of
the form RAB(x, b). Thus, if RAB(a, b) is deleted, it may not be reinserted. For
IndUpd∀〈Π

E3

AB|Π
E2

BC〉, the situation is reversed; (N,N ′) ∈ IndUpd∀〈Π
E2

BC |Π
E2

AB〉
iff πB(N) ⊆ πB(N

′). A tuple of the form RBC(b, c) may always be inserted, but
not deleted unless there is another tuple of the form RBC(b, x). Hence, neither
IndUpd∀〈Π

E3

AB|Π
E2

BC〉 nor IndUpd∀〈Π
E3

BC |Π
E2

AB〉 is symmetric.
A similar situation governs the example surrounding E1 of Sec. 1. A view up-

date (N,N ′) ∈ IndUpd∀〈Π
E1

AB|Π
E1

BC〉 is allowed if πB(N) = πB(N
′) and

≡N ′

〈B,A〉⊆≡N
〈B,A〉, but not if ≡N ′

〈B,A〉(≡N
〈B,A〉. Thus, a view update of the form

({RAB(a1, b1), RAB(a2, b2)}, {RAB(a1, b1), RAB(a1, b2)}) is not allowed. An
analogous condition holds for IndUpd∀〈Π

E1

BC |Π
E1

AB〉.
These examples suggest the way to extend the notion of independent update.

Return to E2 and its views. Suppose that the state of the schema E2 is M21 =
{RAB(a1, b1), RAB(a2, b2), RBC(b1, c1), RBC(b2, c2)}. Then the update u21 =
({RAB(a1, b1), RAB(a2, b2)}, {RAB(a1, b1)}) on ΠE2

AB is in IndUpd∀〈Π
E2

AB |Π
E2

BC〉
but the reverse update u′

21 = ({RAB(a1, b1)}, {RAB(a1, b1), RAB(a2, b2)}) is

Initial submission: 20110315 page 8

not. However, if it is known that the state of ΠE2

BC did not change after the
execution of u21, then a subsequent execution of u′

21 is indeed possible while
keeping ΠE2

BC constant. Even stronger, if updates in IndUpd∀〈Π
E2

BC |Π
E2

AB〉 are
applied, this condition nevertheless continues to hold. It is only if an update to
ΠE2

BC is applied which removes elements from πB({RAB(a1, b1), RAB(a2, b2)}) =
{b1, b2} that the update u21 may become irreversible. The strategy is that non-
reversible updates in IndUpd∀〈Γ1|Γ2〉 may in fact be reversed provided that the
only updates to Γ2 which are allowed are those in IndUpd∀〈Γ2|Γ1〉 and their
reversals, all within the context of a given initial state. A systematic development
of these ideas constitutes the remainder of this paper.

Proposition 3.5 (Comparison of the three notions of independent up-
dates). IndUpd∀〈Γ1|Γ2〉 ⊆ IndUpd∃〈Γ1|Γ2〉 ⊆ IndUpd∧〈Γ1|Γ2〉. Furthermore,

their exist examples for which these inclusions are proper.

Proof. That IndUpd∀〈Γ1|Γ2〉 ⊆ IndUpd∃〈Γ1|Γ2〉 is immediate, and an example
for which the inclusion is proper is given by E1 and its views in Sec. 1.

It is also easy to see that IndUpd∃〈Γ1|Γ2〉 ⊆ IndUpd∧〈Γ1|Γ2〉, since if (N,N ′) ∈
IndUpd∃〈Γ1|Γ2〉, then by definition there is a pair (M,M ′) ∈
ReflectionsΓ1|Γ2

〈(N,N ′)〉, and (M,M ′) ∈ Congr(Γ2), since the update holds Γ2

constant. Then, since Congr(Γ2) ⊆ Congr(Γ1 ∧ Γ2), the results follows. For an
example in which this inclusion is proper, let E3 have five states: LDB(E3) =
{a, b, c, d, e}. Let Ω31 = (V31, ω31) be the view with Partition(Congr(Ω31)) =
{{a, b}, {c, d}, {e}} and let Ω32 = (V32, ω32) have Partition(Congr(Ω32)) =
{{a}, {b, c}, {d, e}}. It is easy to show that Partition(Congr(ω31 ∧ ω32)) =
{a, b, c, d, e}, i.e., it is defined by ZViewE3

. This means that IndUpd∧〈Ω31|Ω32〉 =
LDB(E3)×LDB(E3); i.e., any update is allowed. However, the update ({a, b}, {e})
is not in IndUpd∃〈Ω31|Ω32〉, and so IndUpd∧〈Ω31|Ω32〉 is a proper subset of it. 2

Definition 3.6 (Compatible pairs and independent update pairs). A
compatible pair for {Γ1, Γ2} is an (N1, N2) ∈ LDB(V1)× LDB(V2) which arises
from some M ∈ LDB(D). If {Γ1, Γ2} forms a complementary pair, then there
is at most one compatible pair associated with each M ∈ LDB(D); namely

(γ1 ∧ γ2)
−1(N1, N2) when it exists. However, in the more general context, there

may be many, since γ1×γ2 need not be injective. Formally, define Compat〈Γ1;Γ2〉
= {(N1, N2) ∈ LDB(V1) × LDB(V2) | (∃M ∈ LDB(D))(∀i ∈ {1, 2})(γi(M) =
Ni)}.

An independent update pair is a pair of updates (u1, u2) ∈ Updates(V1) ×
Updates(V2) which may be executed independently of one another. Formally, de-
fine IndUpd∀〈Γ1‖Γ2〉 = {(N1, N2), (N

′
1, N

′
2) | (N1, N2) ∈ Compat〈Γ1;Γ2〉

and (N1, N
′
1) ∈ IndUpd∀〈Γ1|Γ2〉 and (N2, N

′
2) ∈ IndUpd∀〈Γ2|Γ1〉}.

Updates in IndUpd∀〈Γ1‖Γ2〉 may be performed individually as updates in
IndUpd∀〈Γ1|Γ2〉 and IndUpd∀〈Γ2|Γ1〉, as well as concurrently, and these opera-
tions all preserve compatibility. Formally, this is expressed as follows.

Proposition 3.7 (Independent updates). Let (N1, N2) ∈ Compat〈Γ1;Γ2〉
and let ((N1, N

′
1), (N2, N

′
2)) ∈ IndUpd∀〈Γ1‖Γ2〉. Then each of the pairs

Initial submission: 20110315 page 9

((N1, N
′
1), (N2, N2)), ((N1, N

′
1), (N

′
2, N

′
2)), ((N1, N1), (N2, N

′
2)), and

((N ′
1, N

′
1), (N2, N

′
2)) is in IndUpd∀〈Γ1‖Γ2〉 as well. In particular, each of (N ′

1, N
′
2),

(N ′
1, N2), and (N ′

1, N
′
2) is in Compat〈Γ1;Γ2〉.

Proof. It suffices to equate certain elements in the description of
Definition 3.6. For example, letting N ′

2 be N2, which is always possible since
identity updates such as (N2, N2) are in IndUpd∀〈Γ2|Γ1〉 regardless of the choices
of Γ1 and Γ2, it follows that ((N1, N

′
1), (N2, N2)) ∈ IndUpd∀〈Γ1‖Γ2〉. The other

three cases are shown similarly. 2

The next theorem provides a comprehensive characterization of the condi-
tions for independent updates, without any requirement of complementation.
The equivalence of (a), (b), and (c) has already been shown in [11, 2.14] for the
special case of complementary pairs, using a different approach [11, Thm. 2.14].

Theorem 3.8 (Independence and commuting congruences). The fol-

lowing conditions are equivalent.

(a) The pair {Γ1, Γ2} has commuting congruences; i.e., Congr(Γ1)◦Congr(Γ2) =
Congr(Γ2) ◦ Congr(Γ1).

(b) For any N1 ∈ LDB(V1) and N2 ∈ LDB(V2), (N1, N2) ∈ Compat〈Γ1;Γ2〉
iff λ〈Γ1, Γ1 ∧ Γ2〉(N1) = λ〈Γ2, Γ1 ∧ Γ2〉(N2).

(c) For any N1, N
′
1 ∈ LDB(V1) and N2, N

′
2 ∈ LDB(V2), if any three elements

of the set {(N1, N2), (N1, N
′
2), (N

′
1, N2), (N

′
1, N

′
2)} are in Compat〈Γ1;Γ2〉,

then so too is the fourth.

(d) IndUpd∀〈Γ1|Γ2〉 = IndUpd∧〈Γ1|Γ2〉.

(e) IndUpd∀〈Γ1|Γ2〉 = IndUpd∃〈Γ1|Γ2〉.

(f) ReflIndUpd∀〈Γ1|Γ2〉 = Congr(Γ2).

(g) ReflIndUpd∀〈Γ1|Γ2〉 is an equivalence relation.

(h) IndUpd∀〈Γ1|Γ2〉 is an equivalence relation.

Proof. ((a) ⇒ (b)): First, assume that λ〈Γ1, Γ1 ∧Γ2〉(N1) = λ〈Γ2, Γ1 ∧Γ2〉(N2),
and let M1,M2 ∈ LDB(D) with γ1(M1) = N1 and γ2(M2) = N2. Then
(γ1 ∧ γ2)(M1) = (γ1 ∧ γ2)(M2), i.e., (M1,M2) ∈ Congr(Γ1 ∧Γ2). Using the char-
acterization of Congr(Γ1 ∧ Γ2) for commuting congruences given in Definition
2.4, there must be an M ∈ LDB(D) with (M1,M) ∈ Congr(Γ1) and (M,M2) ∈
Congr(Γ2). Furthermore, γ1(M) = γ1(M1) = N1, and γ2(M) = γ1(M2) = N2,
whence (N1, N2) ∈ Compat〈Γ1;Γ2〉. Conversely, if (N1, N2) ∈ Compat〈Γ1;Γ2〉,
then there exists an M ∈ LDB(D) with γ1(M) = N1 and γ2(M) = N2. Since
this M maps to a single block of Partition(Congr(Γ1 ∧ Γ2)), N1 and N2 must be
associated with the same block as well.

((b) ⇒ (c)): Immediate.
((c) ⇒ (e)): Let (N1, N

′
1) ∈ IndUpd∃〈Γ1|Γ2〉, and choose (M1,M2) ∈

ReflectionsΓ1|Γ2
〈(N1, N2)〉. Then (N1, γ2(M1)), (N

′
1, γ2(M1)) ∈ Compat〈Γ1;Γ2〉.

Choose M ′
1 ∈ LDB(D) with γ1(M

′
1) = N1. Then (N1, γ2(M

′
1)) ∈ Compat〈Γ1;Γ2〉

as well. Hence, by (c), (N ′
1, γ2(M

′
1)) ∈ Compat〈Γ1;Γ2〉, whence (N1, N

′
1) ∈

IndUpd∀〈Γ1|Γ2〉, as required.

Initial submission: 20110315 page 10

((e) ⇒ (f)): It is immediate that ReflIndUpd∀〈Γ1|Γ2〉 ⊆ Congr(Γ2). Con-
versely, let (M1,M2) ∈ Congr(Γ2). Then (γ1(M1), γ1(M2)) ∈ IndUpd∃〈Γ1|Γ2〉,
just by construction. Hence, invoking (e), (γ1(M1), γ1(M2)) ∈ IndUpd∀〈Γ1|Γ2〉
as well, whence (M1,M2) ∈ ReflIndUpd∀〈Γ1|Γ2〉 and so ReflIndUpd∃〈Γ1|Γ2〉 =
ReflIndUpd∀〈Γ1|Γ2〉.

((f) ⇒ (g)): Immediate.

((g) ⇒ (h)): The proof is a routine verification.

((h) ⇒ (a)): Let (M1,M2) ∈ Congr(Γ1) ◦ Congr(Γ2). Then there is an M ′ ∈
LDB(D) with (M1,M

′) ∈ Congr(Γ1) and (M ′,M2) ∈ Congr(Γ2). Since γ2(M
′) =

γ2(M2) and (M1,M
′) ∈ IndUpd∃〈Γ1|Γ2〉, it follows that

(γ1(M1), γ1(M2)) ∈ IndUpd∃〈Γ1|Γ2〉. Now, choose any M ′
1 ∈ LDB(D) with

γ1(M
′
1) = γ1(M1). Then (M ′

1,M2) = (M ′
1,M1) ◦ (M1,M2) ∈ Congr(Γ1) ◦

Congr(Γ1) ◦ Congr(Γ2) = Congr(Γ1) ◦ Congr(Γ2), and so (γ1(M1), γ1(M2)) ∈
IndUpd∃〈Γ1|Γ2〉 as well. Since M ′

1 was arbitrary with γ(M1)
= γ(M ′

1), it follows that (γ1(M1), γ1(M2)) ∈ IndUpd∀〈Γ1|Γ2〉. Conversely, if
(M1,M2) ∈ Updates(D) with (γ1(M1), γ1(M2)) ∈ IndUpd∀〈Γ1|Γ2〉, then there
must be an M ′ ∈ LDB(D) with (M1,M

′) ∈ Congr(Γ1) and (M ′,M2) ∈
Congr(Γ2); i.e., (M ′M2) ∈ ReflIndUpd∀〈Γ1|Γ2〉. In other words, (M1,M2) ∈
Congr(Γ1) ◦ Congr(Γ2). Thus, (M1,M2) ∈ Congr(Γ1) ◦ Congr(Γ2) iff
(γ1(M1), γ2(M2)) ∈ IndUpd∀〈Γ1|Γ2〉. Since IndUpd∀〈Γ1|Γ2〉 is assumed to be an
equivalence relation, it follows easily that Congr(Γ1) ◦ Congr(Γ2) must be an
equivalence relation as well. Then Congr(Γ1)◦Congr(Γ2) = Congr(Γ2)◦Congr(Γ1)
follows immediately, since one is the reverse of the other; i.e., (M1,M2) ∈
Congr(Γ1) ◦ Congr(Γ2) iff (M2,M1) ∈ Congr(Γ2) ◦ Congr(Γ1).

((a) ⇒ (d)): Let (N1, N
′
1) ∈ IndUpd∧〈Γ1|Γ2〉. Then, as described in Definition

2.4, for any (M,M ′) ∈ ReflectionsΓ1|Γ2
〈(N,N ′)〉, there is a sequence

M1,M2, . . . ,Mk of elements of LDB(D) with the property that M1 = M , Mk =
M ′, for each odd i, 1 ≤ i ≤ k, (Mi,Mi+1) ∈ Congr(Γ2) and for each even i, 1 ≤
i ≤ k, (Mi,Mi+1) ∈ Congr(Γ1). However, in view of condition (a), which guar-
antees commuting congruences, it follows also from the discussion of Definition
2.4 that k may be chosen to be 3. That is, there are (M1,M2) ∈ Congr(Γ2) and
(M2,M3) ∈ Congr(Γ1) with γ1(M1) = N1, γ1(M3) = N ′

1, and γ2(M2) = γ2(M3).
Since M may be chosen arbitrarily with the property that γ1(M1) = N , this
means in particular that (N1, N

′
1) = (γ1(M1), γ1(M2)) ∈ IndUpd∀〈Γ1|Γ2〉, as

required. (That M may be chosen arbitrarily follows from the fact that the
equivalence relation Congr(Γ1 ∧ Γ2) is coarser than Congr(Γ2), and so any two
elements of LDB(D) which are equivalent under Congr(Γ2) are equivalent under
Congr(Γ1) ∧ Congr(Γ2) as well.)

((d) ⇒ (e)): This follows immediately from Proposition 3.5. 2

The thrust of this result is that as soon as IndUpd∀〈Γ1|Γ2〉 becomes an equiv-
alence relation, then the classical characterization in terms of commuting con-
gruences and meet dependencies (a)-(c) takes hold, and each of the concepts of
independent update IndUpd∀〈Γ1|Γ2〉, IndUpd∃〈Γ1|Γ2〉, and IndUpd∧〈Γ1|Γ2〉 be-
comes equivalent to all of the others. There is furthermore a symmetry in results
(d)-(f); if Γ1 and Γ2 are swapped in any or all of these, the result remains valid.

Initial submission: 20110315 page 11

In particular, IndUpd∀〈Γ1|Γ2〉 is an equivalence relation iff IndUpd∀〈Γ2|Γ1〉 is. In
other words, if independent updates are well behaved on Γ1, then they are well
behaved on Γ2 as well.

The question becomes, then, how to recapture the extended updates iden-
tified in the examples of Sec. 1 and Examples 3.4. The answer is that rather
than trying to avoid allowing IndUpd∀〈Γ1|Γ2〉 to become an equivalence rela-
tion (which in view of the above result would imply many other limitations),
the set of allowable legal databases is trimmed so that IndUpd∀〈Γ1|Γ2〉 (and so
IndUpd∀〈Γ2|Γ1〉 as well) becomes an equivalence relation on that which remains.
The key idea is to start with a pair (N1, N2) ∈ LDB(V1)×LDB(V2), and then re-
strict attention to those states which can be reached from those via well-behaved
updates. The formalization is as follows.

Definition 3.9 (Reachability subschemata and subviews). For (N1, N2)
∈ Compat〈Γ1;Γ2〉, define Reachable∀〈Γ1 :N1 ‖ Γ2 :N2〉 =

{M ∈ LDB(D) | ((N1, N2), (γ1(M), γ2(M)) ∈ IndUpd∀〈Γ1‖Γ2〉)}.
Thus, Reachable∀〈Γ1 :N1 ‖ Γ2 :N2〉 is the set of all states of D which can be
reached via independent updates on Γ1 and Γ2 from a state M0 ∈ LDB(D) with
γ1(M0) = N1 and γ2(M0) = N2. If {Γ1, Γ2} forms a complementary pair, then
this initial M0 is determined completely by (N1, N2), but it is not necessary to
enforce complementation in that which follows.

A limited view based upon Γ1, which only involves the reachable states, is
defined as follows.
(a) Define RestrD〈Γ1 :N1 ‖ Γ2 :N2〉 to be the subschema of D with

LDB(RestrD〈Γ1 :N1 ‖ Γ2 :N2〉) = Reachable∀〈Γ1 :N1 ‖ Γ2 :N2〉.
Thus, RestrD〈Γ1 :N1 ‖ Γ2 :N2〉 is the schema consisting of just those states reach-
able from (N1, N2). The corresponding sets of view states are defined as follows.
(b) For i ∈ {1, 2}, define RestrVi

〈Γ1 :N1 ‖ Γ2 :N2〉 = {γi(M) | M ∈
Reachable∀〈Γ1 :N1 ‖ Γ2 :N2〉}.

The corresponding view morphism is then the appropriate restriction of γi.
(c) For i ∈ {1, 2}, define the function

Restrγi
〈γ1 :N1 ‖ γ2 :N2〉 : LDB(RestrD〈Γ1 :N1 ‖ Γ2 :N2〉) →

LDB(RestrV1
〈Γ1 :N1 ‖ Γ2 :N2〉)

to be the restriction of γi to LDB(RestrD〈Γ1 :N1 ‖ Γ2 :N2〉).
Finally, the restricted view is obtained by assembling these pieces.
(d) For i ∈ {1, 2}, define

RestrΓi
〈Γ1 :N1 ‖ Γ2 :N2〉 =

(RestrVi
〈Γ1 :N1 ‖ Γ2 :N2〉,Restrγi

〈Γ1 :N1 ‖ Γ2 :N2〉)
to be the view of RestrD〈Γ1 :N1 ‖ Γ2 :N2〉 constructed from these.

That this view provides exactly that which is needed to support the extended
and reversible set of independent updates for a pair of views is recaptured in the
following.

Theorem 3.10 (The restricted view defined by a compatible pair). The

view {RestrΓ1
〈Γ1 :N1 ‖ Γ2 :N2〉,RestrΓ2

〈Γ1 :N1 ‖ Γ2 :N2〉} has commuting con-

gruences with

RestrΓ1
〈Γ1 :N1 ‖ Γ2 :N2〉∧RestrΓ2

〈Γ1 :N1 ‖ Γ2 :N2〉 = ZViewRestrD〈Γ1:N1 ‖ Γ2:N2〉.

Initial submission: 20110315 page 12

Proof. There is really nothing difficult to prove; the given properties are crafted
right into the definition. In particular, the meet is the zero view because the
interdependence conditions which place limitations on the allowable updates are
enforced by including only those states which are already compatible. 2

Examples 3.11 (Independent view updates in the reachability con-
text). Consider first the views ΠE2

AB and ΠE2

BC associated with the schema E2,

as introduced in Examples 3.4. Let (N1, N2) ∈ Compat〈ΠE2

AB;Π
E2

BC〉. The key
information which is used to characterized the admissible updates is found in
the sets πB(N1) and πB(N2). Specifically, LDB(RestrE2

〈ΠE2

AB :N1 ‖ ΠE2

BC :N2〉)

= Reachable∀〈Π
E2

AB :N1 ‖ ΠE2

BC :N2〉 = {(N ′
1, N

′
2) ∈ LDB(EAB

2) × LDB(EBC
2) |

πB(N
′
1) ⊆ πB(N1) and πB(N2) ⊆ πB(N

′
2)}. Thus, updates to the schemata of

these two views are constrained only in that the initial projection of the relation
of RAB[AB] onto B may not increase, and the initial projection of the rela-
tion of RBC [BC] may not decrease. This is far more flexible than the constant-
complement solution suggested in [15, Discussion 3.1]. In that solution, in order
to maintain a meet situation, a copy of the projection of ΠE2

BC onto B must be

included in the view ΠE2

AB. That limits the allowable updates to those which
keeps both πB(N1) and πB(N2) constant, a much smaller set.

Next, consider the views associated with E1. Here the classical constant-
complement update strategy would allow no updates at all to either view. How-
ever, with the restricted views, the allowable updates are those which satisfy the
conditions identified in Sec. 1. For a given (N1, N2) ∈ Compat〈ΠE1

AB;Π
E1

BC〉, us-

ing the definitions of ≡N
〈X,Y 〉 given in Sec. 1, LDB(RestrE2

〈ΠE2

AB :N1 ‖ ΠE2

BC :N2〉)

= Reachable∀〈Π
E1

AB :N1 ‖ ΠE2

BC :N2〉 = {(N ′
1, N

′
2) ∈ LDB(EAB

1) × LDB(EBC
2) |

πB(N1) = πB(N2) and ≡
N ′

1

〈B,A〉⊆≡N1

〈B,A〉 and ≡N2

〈B,C〉⊆≡
N ′

2

〈B,C〉}. Parallel updates

by the two views may reach any of these states.
The price paid for using this type of update strategy is that the constraints on

which updates are allowed must be reset every time the pair of views is updated
outside of this framework. That would happen, for example, when an update
not supported in the restricted strategy were necessary, and so the two views
would be combined, the update performed, and then a new initial compatible
pair obtained. However, for many applications, this seems like a small price to
pay in return for a substantially enlarged set of admissible independent updates.

4 Conclusions and Further Directions

A way to handle updates on two views, without any conflict, has been pre-
sented. The approach extends the classical constant-complement strategy in two
ways. First and foremost, it is not restricted to meet complements (translatable
strategies in the language of [6]). Rather, it takes advantage of the fact that
simultaneous updates are limited in scope, and assumes that the updates to the
companion view follow the associated protocol. Second, it does not depend upon
complementation in any way, and so is readily extensible to any finite number
of views.

Initial submission: 20110315 page 13

Directions for additional investigation include the following:

Extension to finite sets of views: As noted in Sec. 1, a primary motivation for
this work is the modelling in the context of many views. It is therefore of
primary importance to develop the details of how this approach extends to
more than two views.

Integration with applications: The ideas developed here should be of great use
in extending the notion of database schema components, as described in [13]
and [16], as well as their applications in update via cooperation [17] and objects
for transaction [15]. The next task is to examine the details of such applications.

Effective methods for identifying the restricted state set: In the approach devel-
oped in this paper, the allowable updates are defined by a starting context (the
reachability subschema). It is important to identify ways to characterize and
compute effectively this context for classes of views which arise in practice.

References

1. M. Arenas, L. E. Bertossi, and J. Chomicki. Answer sets for consistent query
answering in inconsistent databases. Theory and Practice of Logic Programming,
3(4-5):393–424, 2003.

2. O. Arieli, M. Denecker, and M. Bruynooghe. Distance semantics for database
repair. Ann. Math. Artif. Intell., 50(3-4):389–415, 2007.

3. O. Arieli, M. Denecker, B. V. Nuffelen, and M. Bruynooghe. Computational meth-
ods for database repair by signed formulae. Ann. Math. Artif. Intell., 46(1-2):4–37,
2006.

4. R. W. Baldwin. Naming and grouping privileges to simplify security management
in large databases. In Proc. 1990 IEEE Symposium on Research in Security and

Privacy, pages 116–132. IEEE Computer Society Press, 1990.

5. F. Bancilhon and N. Spyratos. Independent components of databases. In Pro-

ceedings of the Seventh International Conference on Very Large Data Bases, pages
398–408, 1981.

6. F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Trans.

Database Systems, 6:557–575, 1981.

7. F. Bentayeb and D. Laurent. Inversion de l’algèbre relationnelle et mises à jour.
Technical Report 97-9, Université d’Orléans, LIFO, 1997.

8. F. Bentayeb and D. Laurent. View updates translations in relational databases.
In Proc. DEXA ’98, Vienna, Sept. 24-28, 1998, pages 322–331, 1998.

9. B. A. Davey and H. A. Priestly. Introduction to Lattices and Order. Cambridge
University Press, second edition, 2002.

10. U. Dayal and P. A. Bernstein. On the correct translation of update operations on
relational views. ACM Trans. Database Systems, 8(3):381–416, 1982.

11. S. J. Hegner. An order-based theory of updates for closed database views. Ann.

Math. Art. Intell., 40:63–125, 2004.

12. S. J. Hegner. Information-based distance measures and the canonical reflection of
view updates. Technical Report 0805, Institut für Informatik, Christian-Albrechts-
Universität zu Kiel, October 2008. An updated and corrected version, which will
appear in Ann. Math. Art. Intell., is available on the Web site of the author.

Initial submission: 20110315 page 14

13. S. J. Hegner. A model of database components and their interconnection based
upon communicating views. In H. Jakkola, Y. Kiyoki, and T. Tokuda, editors,
Information Modelling and Knowledge Systems XIX, Frontiers in Artificial Intelli-
gence and Applications, pages 79–100. IOS Press, 2008.

14. S. J. Hegner. Semantic bijectivity and the uniqueness of constant-complement
updates in the relatiional context. In K.-D. Schewe and B. Thalheim, editors,
International Workshop on Semantics in Data and Knowledge Bases, SDKB 2008,

Nantes, France, March 29, 2008, Proceedings, volume 4925 of Lecture Notes in

Computer Science, pages 172–191. Springer-Verlag, 2008.
15. S. J. Hegner. A model of independence and overlap for transactions on database

schemata. In B. Catania, M. Ivanović, and B. Thalheim, editors, Advances in

Databases and Information Systems, 14th East European Conference, ADBIS 2010,

Novi Sad, Serbia, September 20-24, 2010, Proceedings, volume 6295 of Lecture

Notes in Computer Science, pages 209–223. Springer-Verlag, 2010.
16. S. J. Hegner. A simple model of negotiation for cooperative updates on database

schema components. In Y. Kiyoki, T. Tokuda, A. Heimbürger, H. Jaakkola, and
N. Yoshida., editors, Frontiers in Artificial Intelligence and Applications XX11,
2011. in press.

17. S. J. Hegner and P. Schmidt. Update support for database views via cooperation.
In Y. Ioannis, B. Novikov, and B. Rachev, editors, Advances in Databases and

Information Systems, 11th East European Conference, ADBIS 2007, Varna, Bul-

garia, September 29 - October 3, 2007, Proceedings, volume 4690 of Lecture Notes

in Computer Science, pages 98–113. Springer-Verlag, 2007.
18. A. M. Keller. Updating Relational Databases through Views. PhD thesis, Stanford

University, 1985.
19. R. Langerak. View updates in relational databases with an independent scheme.

ACM Trans. Database Systems, 15(1):40–66, 1990.
20. O. Ore. Theory of equivalence relations. Duke Math. J., 9:573–627, 1942.
21. S. L. Osborn and Y. Guo. Modeling users in role-based access control. In ACM

Workshop on Role-Based Access Control, pages 31–37, 2000.
22. J. Rissanen. Independent components of relations. ACM Trans. Database Systems,

2(4):317–325, 1977.
23. K.-D. Schewe and B. Thalheim. Component-driven engineering of database appli-

cations. In APCCM ’06: Proceedings of the 3rd Asia-Pacific conference on Concep-

tual modelling, pages 105–114, Darlinghurst, Australia, 2006. Australian Computer
Society, Inc.

24. B. Thalheim. Component development and construction for database design. Data

Knowl. Eng., 54(1):77–95, 2005.

Initial submission: 20110315 page 15

