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Abstract. The constant-complement strategy, in which the admissible
updates to a given view are those which hold a second complementary
view constant, remains one of the most attractive formalisms for identi-
fying suitable translation mechanisms for updates to views of database
schemata. However, in general, it suffers from the drawback that the re-
flections of view updates to the main schema can depend upon the choice
of complement in various ways. To overcome this drawback completely, a
special kind of complement, called a universal complement, is required. In
this paper, sufficient conditions for the existence of such a complement
are established for a classical but nevertheless very important setting
— views defined by simple projection of a universal relational schema
constrained by functional dependencies (FDs). Certain uniqueness prop-
erties of covers of these dependencies prove critical in the characteriza-
tion. The results are extended to quasi-universal complements, which are
unique up to exchange of equivalent attributes, thus recapturing certain
situations for which unique covers do not exist.

1 Introduction

Although introduced more than thirty years ago, the constant-complement ap-
proach to the support of view updates [4] remains an attractive solution for-
malism. A complement of the view Γ is a second view Γ ′ with the property
that the pair {Γ, Γ ′} defines a lossless decomposition of the main schema D. In
the constant-complement update strategy on Γ for complement Γ ′, an allowable
update u to Γ is precisely one which may be realized as an update on D in
such a way that the state of Γ ′ does not change. Since {Γ, Γ ′} forms a lossless
decomposition, there can be at most one such reflection of u to an update on D.

This strategy has substantial intuitive appeal because the update to D is
localized — it affects only the part of D defined by Γ . The “rest” of D, defined
by Γ ′, is unaffected by the update. For this reason, among others, it has seen
renewed interest in recent years as a fundamental technique [18] [19] [13], as well
as a related principle for other approaches requiring view updates, such as those
based upon lenses [9], [11].

In the ideal case, the complement Γ ′ should possess three distinct properties
relative to a class V of views (such as simple projections) to which it belongs:
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State invariance: The admissibility of an update u to Γ with constant com-
plement Γ ′ should be independent of the state of Γ ′. This mirrors the idea
of a closed view, as described in [13], in which the user of the view only
needs to know the state of the view itself to determine whether or not an
update to it is allowed.

Reflection invariance; If Γ ′′ ∈ V is another complement of Γ , and the
update u to Γ is also supported by constant complement Γ ′′, then the
reflection of the view update to the main schema should be the same in
each case.

Universality: If Γ ′′ ∈ V is another complement of Γ , and the update u to Γ

is supported by constant-complement Γ ′′, then u should also be supported
by constant complement Γ ′.

The first two of these topics have already been studied extensively. State
invariance is obtained precisely in the case that the congruences (i.e., the equiv-
alence relations defined by the view mappings) of the two views commute. Basic
ideas along these lines were discussed already in [3, Def. 14 and Thm. 14], al-
though a specific characterization in terms of the meet is first presented in [12]
and refined greatly in [13], where it is also shown that for the case of projec-
tions of relational schemata constrained by usual database dependencies, state
invariance is obtained precisely in the case that a cover of the dependencies of
the main schema embed into the two views [13, Prop. 2.17].

Reflection invariance is also investigated extensively in [13], where it is shown
that order structure is critical. In particular, for the case of relational schemata,
if the constraints are usual database dependencies and the views are defined as
combinations of select, project, join, and rename, then reflection invariance is
assured [13, Prop. 2.5 and Thm. 4.3].

Comparable studies of universality are not to be found in the literature. For-
mally, a universal complement is one which is least within a given class V of
views, since the smaller the complement, the greater the set of updates sup-
ported. For V the set of projections on a relational schema E, this means that
the projection ΠE

W′ onto attributes W′ is a universal complement of ΠE

W
if for

any other complement ΠE

W′′ , W′ ⊆ W′′. A study of universality thus amounts

to a study of least complements within a given class V . In [15], conditions which
guarantee universality for projections are developed in terms of so-called govern-
ing join dependencies, but they are difficult to translate into more fundamental
properties. The primary goal of this paper is to seek a more concrete character-
ization of universality, in terms of the basic properties of schemata and views.
In contrast to [15], the work here requires state invariance as a precondition for
all complements. Thus, V is restricted to complements which exhibit state in-
variance – the so-called meet complements. The reason is that without it, there
are simple counterexamples to universality, such as the following, taken from
[15]. Let E0 be the relational schema with the single relation symbol R[ABCD],
governed by the functional dependencies (FDs) in F0 = {B → D,C → D}.
Observe that this schema is completely symmetric with respect to attributes
B and C. Consider the view ΠE0

ABC , the projection onto attributes ABC. The
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projection ΠE0

CD onto CD is a minimal complement. Indeed. ABC ∩CD = C is

a key for the schema of ΠE0

CD, and so from the classical result of Rissanen [25,

Thm. 1] it follows that the decomposition is lossless. That ΠE0

CD is a minimal

complement amongst projections is immediate, since neither ΠE0

C nor ΠE0

D can
be complements. On the other hand, given the symmetry in B and C, it follows
that ΠE0

BD is also a minimal complement of ΠE0

ABC . Thus, there can be no uni-
versal complement amongst the projections of E0. This implies that there are
some updates to ΠE0

ABC which are translatable with constant complement ΠE0

BD

but not with constant complement ΠE0

CD, and conversely. Specifically, no update

which does not keep ΠE0

B constant can be realized with constant complement

ΠE0

BD, and no update which does not keep ΠE0

C constant can be realized with

constant complement ΠE0

CD, The only updates to ΠE0

ABC which keep both com-
plements constant are those in which neither the BD nor the CD projection is
allowed to vary. On the other hand, in view of the results of [13], this example
does however exhibit reflection invariance — updates to ΠE0

ABC which keep both
CD and BD constant; i.e., those which change only the values on attribute A,
are reflected in the same way with complement ΠE0

BD as with ΠE0

CD.

While it is possible to find examples of situations which exhibit both update-
state and reflection invariance, yet deny a universal complement, it is established
in this paper that there are reasonable and nontrivial conditions which do guar-
antee a universal complement. The context is the classical setting of universal
relational schemata constrained by FDs, with views defined by simple (i.e., sin-
gle) projections. The properties which guarantee universality are of covers of the
FDs governing the main schema.

The approach is divided into three main phases. In the first, a strong con-
dition is identified which ensures that every projection ΠE

W
of the universal-

relational schema E has a unique minimal cover precomplement ; that is, a sec-
ond projection ΠE

W′ with the property that a cover of the FDs of E embed into
these views. In the second phase, conditions are established for extension of a
such a minimal precomplement to a universal complement. In the third and final
phase, it is shown how to relax the conditions of the first two phases to allow for
equivalences, and thus include common constructions such as multiple candidate
keys. The first two phases are covered in Sec. 3, while the third is presented in
4. Sec. 2 provides background information and Sec. 5 provides conclusions and
further directions.

2 Schemata, Views, and Complements

The setting for of this work is the classical relational model, with which it is
assumed that the reader is familiar. For any necessary clarification, [21] provides
perhaps the best presentation. However, other classical textbooks, such as [24]
and [1] should prove more than adequate as well.

The purpose of this section is primarily to present necessary notation and
terminology, as well as constructs which build upon that classical model, par-
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ticularly on the subject of views. Thus, this section need only be skimmed on a
first reading, and then used as a reference as the need arises.

Summary 2.1 (Attributes and relation schemes). Attributes will nor-
mally be written using (possibly subscripted and/or primed) capital letters from
the beginning of the alphabet. Thus, A, B1, and C′ denote attributes. Sets of
attributes will normally be written using boldface letters from the end of the
alphabet; thus U, W′, and V1 denote sets of attributes. Following the long-
standard notation, sets of attributes are represented via concatenation. Thus,
ABC is shorthand for {A,B,C}. In particular, a single attribute name, such as
A, represents both attribute itself and the singleton set {A}. Context will always
make clear which is intended.

A relation scheme is defined by a name and a nonempty set of attributes.
Thus, R[ABC ] is a relation scheme. Constraints are not part of a relation scheme.

It is assumed that the reader is familiar with the notions of domain for
an attribute and tuple for a relation scheme. These notions will be used only
tangentially, and so there is no need to develop a notation carefully.

Summary 2.2 (Functional dependencies). Familiarity with the basic syn-
tax and semantics of functional dependencies (FDs) is assumed. The FD X → Y
is degenerate ifX = ∅. In this work, degenerate FDs will not be considered, so the
term FD should always be taken to mean nondegenerate FD. The FD X → Y
is trivial if Y ⊆ X. Since trivial FDs always hold, they are not particularly
interesting, although they may arise in certain constructions.

F |= ϕ denotes that the set F of FDs entails or implies the FD ϕ; i.e., ϕ
holds whenever F holds. For a second set F ′ of FDs, write F |= F ′ if F |= ϕ

for every ϕ ∈ F ′. Write F |=| F ′ to denote that both F |= F ′ and F ′ |= F hold,
and say that F and F ′ are equivalent in this case.

Given an FD ϕ = X → Y, define LHS(ϕ) = X, RHS(ϕ) = Y, and Attr(ϕ) =
LHS(ϕ) ∪ RHS(ϕ). This notation is extended to sets of FDs in a natural way:
LHS(F) = {LHS(ϕ) | ϕ ∈ F}; RHS(F) = {RHS(ϕ) | ϕ ∈ F}; Attr(F) =
{Attr(ϕ) | ϕ ∈ F}. Furthermore, define Attr⋃(F) =

⋃
Attr(F).

The FD ϕ is RHS-simple if RHS(ϕ) consists of exactly one attribute, and the
set F of FDs is RHS-simple if each of its members has that property. ϕ is simple
if both LHS(ϕ) and RHS(ϕ) consist of exactly one attribute.

Given a set F of FDs, the closure of F, denoted F+, is the set of all FDs
which are implied by those in F. The set F is nonredundant if for any F ′ ⊆ F,
if F ′+ = F+, then F ′ = F.

An FD X → Y ∈ F+ is LHS-reduced or full for F if for any X′ ⊆ X, if
(F \ {X → Y}) ∪ {X′ → Y}+ = F+, then X′ = X. The set F is LHS-reduced
if each of its members has that property with respect to F.

If F is nonredundant, LHS-reduced, and RHS-simple, it is called a canonical
set of FDs.

A cover of F is any set C of FDs with the property that C+ = F+; or,
equivalently C |=| F. The set F is minimum if each of its covers contains at least
as many FDs as F itself.
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A context is a pair 〈U,F〉 in which U is a nonempty set of attributes and
F is set of FDs with Attr⋃(F) ⊆ U. Notions such as entailment and closure
may be used within a context, provided a little care is taken. Formally, de-
fine FDAug(〈U,F〉) = F ∪ {A → A | A ∈ U \ Attr⋃(F)}, and 〈U,F〉+ =

FDAug(〈U,F〉)+. Thus, FDAug(〈U,F〉) is F augmented with trivial FDs which
involve the attributes of U not found in any FD of F.

A superkey for 〈U,F〉 is a K ⊆ U with the property K → A ∈
FDAug(〈U,F〉)+ for every A ∈ U. A minimal superkey (with respect to subset
inclusion) is called a key. Note that the property of being a superkey or key de-
pends upon both U and F, and not upon F alone, since there may be attributes
in U which do not occur in F. However, it is easy to see that K is a key (resp.
superkey) for 〈U,F〉 iff K∩Attr⋃(F) is a key (resp. superkey) for 〈Attr⋃(F),F〉.
In other words, a key (resp. superkey) for 〈U,F〉 may be obtained from one for
〈Attr⋃(F),F〉 by adding those attributes in U which do not occur in any FD of
F. Thus, a key (resp. superkey) for F may and will be defined unambiguously
to be a key for 〈Attr⋃(F),F〉.

If X → Y ∈ FDAug(〈U,F〉) with X ⊆ Y, it will also be said that X is a
superkey for Y.

X ↔ Y is an abbreviation for X → Y ∧ Y → X, and the statement
X ↔ Y ∈ F+ is used as a synonym for {X → Y,Y → X} ⊆ F+. In this case,
it is said that X and Y are equivalent in F. If both X and Y are singletons, so
that X ↔ Y is of the form A ↔ B, then it is called a simple equivalence.

Summary 2.3 (Relational Schemata and Π-Views). A universal rela-
tional schema is a pair E = (R[U],Constr(E)) in which in which R[U] is a
relation scheme and Constr(E) is a set of dependencies on R[U]. LDB(E) de-
notes the set of all legal databases of E; that is, all sets of tuples on R[U] which
satisfy the constraints in Constr(E). If Constr(E) is a set of FDs, then E is called
a universal FD-schema, with 〈U,F〉 the context of E..

It is worth noting that the universal FD-schema E = (R[U],F) and its
context 〈U,F〉 determine each other, up to the name of the relation R. However,
it nevertheless seems appropriate to maintain this distinction. With 〈U,F〉, the
focus is on the dependencies and nothing more, while with E, notions such as
LDB(E) (which involve the relation symbol R) are central.

A Π-view of the universal relational schema E is a pair ΠE

W
= (EW , πE

W
)

in which EW = (RW [W],Constr(EW)) is a relational schema and πE

W
is the

projection morphism which sends a relation on attribute set U to its projection
onto attribute set W. The set Constr(EW) consists of the implied constraints
[17] on the view schema. The notation LDB(ΠE

W
) is used as a synonym for

LDB(EW ).
Now assume further that E is a universal FD-schema. It is unfortunately not

the case that EW will always have that same property. Indeed Constr(EW) may
not have a finite cover and thus need not consist only of functional dependencies
[16, Lem. 4.1], [14, App. A]. Call ΠE

W
closed if Constr(EW) is equivalent to

a subset of F+; that is, if the implied constraints on the view have a basis
consisting of FDs.
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Fortunately, the views to be considered in this work will always be closed.
Specifically, if ΠE

W
has a meet complement (as defined in Summary 2.4 below),

then it is closed [13, Prop. 2.17]. Since the complements constructed in this
work will always be meet complements, it follows that all views of universal
FD-schemata which are considered in this work will be closed.

There is a natural order1 on Π-views of E given by ΠE

W1
� ΠE

W2
iff W1 ⊆

W2. Similarly, ΠE

W1
≺ ΠE

W2
iff W1 ( W2; i.e., W1 ⊆ W2 but W1 6= W2.

Summary 2.4 (Complementary and covered pairs of views). For a com-
prehensive presentation of complementary views based upon congruences, see
[13] and [14], and for a general characterization of view ordering, also based
upon congruences, see [15, Summary 2.1]. In this paragraph, only the ideas nec-
essary to the special setting of this paper are presented, and in some cases, the
definitions themselves are recast to capture this special setting only.

Let E = (R[U],F) be a universal FD-schema, and let ΠE

Wi
= (EWi , πE

Wi
)

be Π-views of E for i ∈ {1, 2}. The pair P = {ΠE

W1
, ΠE

W2
} is complementary if

it is possible to recover the state of E from the combined states of the two views.
In light of the classical result [25, Thm. 1], this condition may be recaptured by
defining P to be a complementary pair if W1 ∪W2 = U and at least one of the
FDs W1 ∩W2 → W1, W1 ∩W2 → W2 is in F+. In this paper, this classical
characterization will be used as the definition of a complementary pair.

The members of a complementary pair are called Π-complements of each
other. As only Π-views are considered in this work, the term complement should
always be interpreted as Π-complement, unless stated explicitly to the contrary.

The set F embeds into P if every ϕ ∈ F embeds into at least one of the views
in P (i.e., Attr(ϕ) ⊆ Wi for i = 1 or i = 2.) An embedded cover of F for P is
a set C of FDs which is a cover for F and each element of C embeds in P . Call
P a covered pair if W1 ∪W2 = U and there is an embedded cover of F for P .
A covered pair need not be complementary. For example, if F = ∅, then P is
trivially a covered pair, but it is not a complementary pair unless W1 = U or
W2 = U.

Call P a meet-complementary pair if it is a complementary and covered
pair. In this case, the Π-view ΠE

W1∩W2
defined by the attributes common to

both ΠE

W1
and ΠE

W2
is called the meet of P . Meet complementary pairs have

the following important independence property: If N1 ∈ LDB(ΠE

W1
) and N2 ∈

LDB(ΠE

W2
) have the property that they agree on the meet ΠE

W1∩W2
, then there

is a (necessarily unique) M ∈ LDB(E) with πE

Wi
(M) = Ni for i ∈ {1, 2} [13,

Thm. 2.14 and Prop. 2.17].
If P is a complementary pair (resp. covered pair, resp. meet-complementary

pair), then ΠE

W1
and ΠE

W2
are called complements (resp. cover precomplements,

resp. meet complements) of each other. Minimality and optimality are defined
with respect to the ordering � [10, 1.23]. Specifically, ΠE

W2
is a minimal Π-

1 The definition given here is specialized to projections only. For a general definition
based upon congruences, see [15, Summary 2.1].
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complement (resp. cover Π-precomplement, resp. meet Π-complement) of ΠE

W1

if it is a minimal element with respect to the ordering � when restricted to all
complements (resp. cover precomplements, resp. meet complements) of ΠE

W1
.

Similarly, ΠE

W2
is an optimal Π-complement (resp. cover Π-precomplement,

resp. meet Π-complement) of ΠE

W2
if it is a least element with respect to the

ordering � when restricted to all complements (resp. cover precomplements,
resp. meet complements) of ΠE

W1
. See [15, Summary 2.2] for an elaboration of

this idea.
A minimal (resp. optimal) meet Π-complement is also called a fully mini-

mal (resp. fully optimal) Π-complement. A fully optimal Π-complement satis-
fies all three conditions identified in the introduction: state-invariance, reflec-
tion invariance, and universality, while a fully minimal Π-complement need only
satisfy the first two. A fully optimal Π-complement is also called a universal
Π-complement. Since the smaller the complement, the more updates which are
supported via constant complement, a universalΠ-complement supports all view
updates which any other complement does. Thus, this formalization recaptures
the notion of universality identified in Sec. 1, when restricted to meet comple-
ments.

These relationships need not be symmetric. For example, let E1 have
a R[ABCD ] constrained by the FDs in F1 = {A → B,B → C,C → D}. The
universal Π-complement of ΠE1

ABC is ΠE1

BCD
, while the universal Π-complement

of ΠE1

BCD
is ΠE1

AB
.

3 Universal Π-Complements and Unique Covers

Notation 3.1 (Notational convention). Unless specifically stated to the
contrary, for the rest of this paper, take E = (R[U],F) to be a universal FD-
schema. In particular, U is a nonempty set of attributes and F is a set of FDs
over U.

Definition 3.2 (Cover precomplements with respect to fixed set of
FDs). Let W ⊆ U. Suppose that the goal is to identify a cover precomplement
ΠE

W′ of ΠE

W
. The first requirement is that W ∪ W′ = U, and this implies in

particular that every attribute of U which is not in W must lie in W′. The set
of all such attributes is called the base complement of W with respect to U, and
it occurs often enough to warrant its own notation.

(a) BaseCompl〈U,F〉〈W 〉 = U \W.

The second requirement for a precomplement is that a cover of F embed into
the pair {ΠE

W
, ΠE

W′}. As a first step, consider the simpler problem of identifying

the least W′ with the property that each element of F embed into the pair. In
other words, F is to be used as its own embedded cover. Although the end result
of a solution to that problem is not a goal in itself, the associated construction
will prove to be central in the more general case. In this case, all FDs in F which
do not embed into the view ΠE

W
must embed into ΠE

W′ . This implies that the
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attributes in the dependency-preserving extension for W with respect to 〈U,F〉,
defined as follows, must be a subset of W′.

(b) DPExt〈U,F〉〈W〉 =
⋃
{V ∈ Attr(F) | V 6⊆ W}.

Putting these two together, the formula for the attributes of W′ is the pre-
complement set of W with respect to 〈U,F〉, defined as follows.

(c) PreCompl〈U,F〉〈W〉 = BaseCompl〈U,F〉〈W〉 ∪DPExt〈U,F〉〈W〉.

Owing to the importance of this construction, it is recorded as a formal result.

Proposition 3.3. For any W ⊆ U, ΠE

X
with X = PreCompl〈U,F〉〈W 〉 is

the least Π-view of E for which F embeds into {ΠE

W
, ΠE

X
}. It is thus a Π-

precomplement of ΠE

W
. ✷

Example 3.4. Let E1 = (R[U1],F1) with U1 = ABCDEF and F1 = {A →
B ,B → C ,CD → E}). Let W = ABCE , so the view whose precomplement
is sought is ΠE1

W
= ΠE1

ABCE
. Then BaseCompl〈U1,F1〉〈ABCE 〉 = ABCDEF \

ABCE = DF and DPExt〈U1,F1〉〈ABCE 〉 = CDE, and so the least precomple-

ment of ΠE1

ABCE
which preserves F ′

1 is ΠE1

CDE∪DF
= ΠE1

CDEF
.

Discussion 3.5 (The inadequacy of canonical and minimal covers).
Proposition 3.3 only identifies a precomplement which is optimal with respect
to a fixed set F of FDs. In general, such a set of FDs will have many covers,
with each giving rise to a possibly distinct precomplement. An optimal cover
precomplement must be least when taken over all possible covers of F. A poten-
tial strategy is to work with a cover of F which is normalized in some way which
guarantees that the precomplement which it induces is no larger (in terms of �)
than any other.

There are a number of results which suggest that such an approach might
be fruitful. In one of the earliest papers on the theory of FDs [5], it is shown
that that any two nonredundant covers C1 and C2 of F have the remarkable
property that for any FD ϕ1 ∈ C1, there is an FD ϕ2 ∈ C2 with the property
that LHS(ϕ1) ↔ LHS(ϕ2). Thus, up to FD equivalence, the left-hand sides of
the FDs in any two nonredundant covers are the same. In [20], this result is
strengthened: for any two minimum sets C1 and C2 of FDs, there is a bijective
correspondence between the equivalent left-hand sides of each. In other words,
the number of occurrences of an equivalent left-hand side in each set is the same.

Armed with these results, it would appear to be possible to work with min-
imum covers and then show that any two minimal precomplements differ only
by an equivalence of attribute sets. Unfortunately, there are serious obstacles in
the path of this potential tactic. The following examples illustrate the problems.

Examples 3.6 (The need for unique covers). Let E2 be the schema whose
single relation symbol is R[U2] withU2 = ABCDE , governed by the FDs in F2 =
{A → BCDE ,CE → D ,CD → E}. Then each of F21 = {A → BCD ,CE →
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D ,CD → E} and F22 = {A → BCE ,CE → D ,CD → E} is a minimum cover
of F. Rewriting these in RHS-simple format makes this clearer:

F ′
21 = {A → B,A → C,A → D,CE → D ,CD → E}

F ′
22 = {A → B,A → C,A → E,CE → D ,CD → E}

Indeed, A → E may be derived from A → CD → E and A → D may be
derived from A → CE → D. Thus, either A → D or else A → E, but not
both, may be removed from F2 while retaining the same closure. From this
observation and Proposition 3.3 it follows that ΠE2

BCDE
has two distinct minimal

Π-precomplements, ΠE2

ABCD
and ΠE2

ABCE
.

Note that the left-hand sides of the F2i’s are exactly the same in each case.
Indeed, it is not difficult to see that LHS(C1) = LHS(C2) for any two nonredun-
dant minimum covers C1 and C2 of F2. It is the right-hand sides and only the
right-hand sides which differ, and which lead to alternative minimal precom-
plements. Furthermore, F2 6|= D ↔ E, so there can be no equivalence of the
right-hand sides. Indeed, the two cover precomplements ΠE2

ABCD and ΠE2

ABCE

are not equivalent in any simple sense.
This example does not rule out the possibility of identifying situations in

which the right-hand sides of the FDs remain constant while the left-hand sides
vary amongst equivalent sets. However, the following example suggests that this
approach might be problematic in a more general setting.

Let E3 be the schema whose single relation symbol is R[U3]. with U3 =
A1A2B1B2CD , governed by the FDs in F3 = {A1B1 ↔ A2B2 ,A1B1 →
C ,A2B2 → C ,B2 → D}. A minimum cover is obtained by removing one of
the FDs A1B1 → C or A2B2 → C , but not both. Thus, the following two
minimum covers are obtained.

F ′
31 = {A1B1 ↔ A2B2 ,A1B1 → C ,B2 → D}

F ′
32 = {A1B1 ↔ A2B2 ,A2B2 → C ,B2 → D}

Let W3 = A1B1A2B2 , and consider the problem of finding an optimal pre-
complement of ΠE

W3
. Using the construction of Definition 3.2 and Proposition

3.3, the two precomplements ΠE3

W31
and ΠE3

W32
, with respect to 〈U3,F ′

31〉 and
〈U3,F ′

32〉 respectively, have W31 = A1B1B2CD and W32 = A2B2CD . While
these two sets are equivalent for F3, the relationship is not simple. The problem
is that while F |= A1B1 ↔ A2B2 , A1B1 and A2B2 do not have the same
substructure. If A2B2 is used, then B2 may serve double duty as the left-hand
side of B2 → D. On the other hand, if A1B1 is used, then B2 must be included
to cover B2 → D. Thus there is a sense in which A1B1 and A2B2 are not
fully equivalent, and so it seems a bit of a stretch to regard ΠE3

W31
and ΠE3

W32

as similar enough to be the “same” precomplement under some form of isomor-
phism. For this reason, this sort of equivalence will not be allowed in the first
instance. Rather, the approach is to first rule out allowing distinct precomple-
ments which are equivalent via FD associations, and to reintroduce a limited
form of equivalence subsequently as a special construction.

Final submission: 20111211, FoIKS2012 page 9



Discussion 3.7 (Indecomposable FDs). Call the RHS-simple FD ϕ ∈ F+

indecomposable with respect to F if for every RHS-simple cover C of F, ϕ ∈ C.
Put another way, if ϕ = X → A, then for every cover C of F, there is an FD
X → Y ∈ C with A ∈ Y. Define Indecomp〈F〉 to be the set of all RHS-simple
members of F+ which are indecomposable with respect to that set.

The following is immediate, invoking Proposition 3.3 for (b).

Proposition 3.8 (Indecomposable FDs and unique covers).

(a) F admits a unique canonical cover iff Indecomp〈F〉 is such a cover.

(b) If F admits a unique canonical cover C, then for any W ⊆ U,
ΠE

W′ is an optimal cover Π-precomplement of ΠE

W
for W′ =

PreCompl〈U,C〉〈W〉. ✷

Example 3.9 (Additional attributes necessary for meet complements).
The example schema E1 of Definition 3.2 provides a setting with unique canon-
ical covers. Indeed, F1 is its own unique canonical cover. Thus, in particular,
ΠE1

CDEF is the optimal cover Π-precomplement of ΠE1

ABCE .

However, ΠE1

CDEF is not a complement of ΠE1

ABCE, since ABCE ∩ CDEF =
CE is not a key for either ABCE or CDEF (see Summary 2.4). To remedy this
situation, a set X of attributes must be added to CDEF to render the attributes
in ABCE ∩ (CDEF ∪X) a superkey for ABCE . The unique minimal solution is
X = A, so the optimal meet complement of ΠE1

ABCE
is ΠE1

ACDEF
.

Definition 3.10 (Extension to optimal meet complements). To formal-
ize this process, a few definitions are helpful. For these definitions, return to the
general setting of Notation 3.1.

(a) DPMut〈U,F〉〈W〉 = W ∩ DPExt〈U,F〉〈W〉.

(b) DPMutRHS〈U,F〉〈W〉 = {A ∈ W | DPMut〈U,F〉〈W〉 → A ∈ F+}.

(c) DPMutRHS〈U,F〉〈W〉 = W \ DPMutRHS〈U,F〉〈W〉.

Thus, DPMut〈U,F〉〈W〉 is the set of attribute which are mutual (i.e., com-

mon) to ΠE1

W
and its optimal cover precomplement for F. DPMutRHS〈U,F〉〈W〉

is the set of attributes in W which are already functionally determined by
DPMut〈U,F〉〈W〉, and DPMutRHS〈U,F〉〈W〉 is the set of attributes in W which
are not functionally determined by DPMut〈U,F〉〈W〉.

Example 3.11 (Continuation of Example 3.9). In Example 3.9, the defini-
tions of Definition 3.10 yield DPMut〈U1,F1〉〈ABCE 〉 = CE ,

DPMutRHS〈U1,F1〉〈ABCE 〉 = CE , and DPMutRHS〈U1,F1〉〈ABCE 〉 = ABCE \

CE = AB . Only a subset of DPMutRHS〈U1,F1〉〈ABCE 〉 which generates all of
its attributes via FD closure which must be added to the mutual elements in
order to obtain a meet complement. In this case, only only A need be added
to the mutual elements, since A → B. Hence the optimal meet complement of
ΠE1

ABCE is is ΠE1

A∪CDEF
= ΠE1

ACDEF
. Unfortunately, such a unique minimal set

of generating elements need not exist, even in the case that the canonical cover
is unique, as shown by the example of the next paragraph.
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Example 3.12 (Non-uniqueness of extension from optimal cover pre-
complement to meet complement). Let E4 = (R[U4],F4) with U4 =
ABCD and F4 = {AB → C , C → A,D → A}. Then F4 is its own unique
canonical cover, and so the construction of Proposition 3.3 delivers a unique
cover precomplement for each subset ofU. However, it is not necessarily the case
that such a precomplement has a unique extension to a meet complement. The
optimal cover precomplement of ΠE4

ABC
is ΠE4

AD, but DPMut〈U4,F4〉〈ABC 〉 = A

is not a key for either ABC or BD . Here DPMutRHS〈U4,F4〉〈ABC〉 = A and

DPMutRHS〈U4,F4〉〈ABC〉 = BC, but only one of B or C need be added to

DPMut〈U4,F4〉〈ABC 〉 to make it a key for ΠE1

ABC . Thus each of ΠE4

ABD
and

ΠE4

ACD
is a fully minimal Π-complement of ΠE4

ABC , so it has no optimal meet
Π-complement. Hence, requiring unique canonical covers is not sufficient to guar-
antee universal (i.e., fully optimal) Π-complements. The simplest remedy is to
require that the set of FDs admit a unique key, as developed below.

In [6, Cor. 3], it is shown that a general dependency-preserving decomposition
of a universal schema E (into possibly more than just two Π-views) is lossless if
and only if the attributes of at least one of those views forms a superkey for E.
For a decomposition into two components, this result can be strengthened and
related to the classical result [25, Thm. 2] as follows.

Lemma 3.13 (Meet complements and superkeys). Let {ΠE

W1
, ΠE

W2
} be a

covered pair of views of E. Then for i ∈ {1, 2}, W1 ∩ W2 → Wi ∈
FDAug(〈U,F〉)+ iff W3−i is a superkey; i.e., W3−i → U ∈ FDAug(〈U,F〉)+.

Proof. Let i ∈ {1, 2}. If W1 ∩W2 → Wi ∈ FDAug(〈U,F〉)+, then it is imme-
diate that W3−i is a superkey. Conversely, suppose that W3−i is a superkey.
Let M1,M2 ∈ LDB(E) have the property that they agree on the attributes of
W1 ∩ W2; i.e., πW1∩W2

(M1) = π
W1∩W2

(M2). Let M be any relation on U
with π

Wi
(M) = π

Wi
(Mi) and π

W3−i
(M) = π

W3−i
(M3−i). Such an M always

exists; indeed, the natural join πE

W1
(Mi) ⊲⊳ πE

W2
(M3−i) is one such relation.

Since such a relation satisfies all FDs in F by construction, M ∈ LDB(E). Since
W3−i is a superkey, M = M3−i, whence π

Wi
(M3−i) = π

Wi
(M), and since

π
Wi

(M) = π
Wi

(Mi) by construction, it follows that π
Wi

(M3−i) = π
Wi

(Mi);
i.e., π

Wi
(M1) = π

Wi
(M2). Since the only initial assumption about M1 and M2 is

that they agree onW1∩W2, it follows thatW1∩W2 → Wi ∈ FDAug(〈U,F〉)+,
as required. ✷

Definition 3.14 (The strong cover property). Say that 〈U,F〉 has the
strong cover property if F admits a unique canonical cover and 〈U,F〉 has just
one key. In view of the discussion in Summary 2.2, this latter condition may
be stated equivalently as requiring that F admit a unique key. In other words,
〈U,F〉 has the strong cover property if F admits both a unique canonical cover
and a unique key, so this property does not depend upon attributes in U which
do not occur in F. However, the key itself for 〈Attr⋃(F),F〉 will in fact differ
from that of 〈U,F〉 if U 6= Attr⋃(F). In the case that 〈U,F〉 admits a unique
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key, Key〈U,F〉 will be used to denote that key. For further studies of schemata
which admit unique keys, see [7] and [2, Thm. 3.4].

The main result on optimal meet Π-complements may now be presented.
Define MeetCompl〈U,F〉〈W〉 to be:

(mc-i) PreCompl〈U,F〉〈W〉 if DPMut〈U,F〉〈W〉 → PreCompl〈U,F〉〈W〉

∈ FDAug(〈U,F〉)+

(mc-ii) PreCompl〈U,F〉〈W〉 ∪ Key〈U,F〉 otherwise

Theorem 3.15 (Universal Π-complements). If 〈U,F〉 has the strong cover
property, then for any W ⊆ U, ΠE

W
admits a universal Π-complement ΠE

X
,

with X = MeetCompl〈U,F〉〈W〉. In words, the universal Π-complement of ΠE

W

is just the optimal cover Π-precomplement if DPMut〈U,F〉〈W〉 is a superkey for
PreCompl〈U,F〉〈W〉, and it is the projection defined by augmenting the attributes
of PreCompl〈U,F〉〈W〉 with the unique key Key〈U,F〉 otherwise.

Proof. If DPMut〈U,F〉〈W〉 → PreCompl〈U,F〉〈W〉 ∈ FDAug(〈U,F〉)+, the opti-
mal meet Π-precomplement is already a meet complement (see Summary 2.4).
Otherwise, for ΠE

X
to be a meet complement of ΠE

W
, it is necessary that W∩X

be a key for W. In view of Lemma 3.13, this holds iff X is a superkey for 〈U,F〉.
To make X such a superkey, the least set attributes which must be added to
PreCompl〈U,F〉〈W〉 is precisely those elements of Key〈U,F〉 which are not already
in PreCompl〈U,F〉〈W〉; exactly as (mc-ii) dictates.

Note that if Key〈U,F〉 ⊆ PreCompl〈U,F〉〈W〉 already, then adding Key〈U,F〉

has no effect, but specifying that it be added in all cases does no harm. ✷

4 Quasi-Universal Π-Complements

The conditions imposed in Theorem 3.15 in order to obtain optimal meet com-
plements for all Π-views of a given schema are quite strong. In particular, they
rule out most situations with multiple (candidate) keys. Since such multiple keys
are quite common in practice, it is important to seek extensions which relax, at
least to some degree, the strict uniqueness properties imposed by the strong
cover property. In this section, one such extension is pursued, in which individ-
ual attributes may be equivalent to one another. An example will help to identify
the main ideas.

Example 4.1. Let E5 = (R[U5],F5) with U5 = AB1B2B3C and F5 = {B1 ↔
B2, B2 ↔ B3, B1 → C,B2 → C,B3 → C}. Since F5 contains (simple) equiva-
lences, it admits neither a a unique canonical cover nor a unique key. Indeed,
each of

F ′
51 = {B1 → B2, B2 → B3, B3 → B1, B1 → C}

F ′
52 = {B1 → B2, B2 → B3, B3 → B1, B2 → C}

F ′
53 = {B1 → B2, B2 → B3, B3 → B1, B3 → C}
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is a minimum and canonical cover, and the view ΠE5

AB1B2B3
has three distinct

minimal meet Π-complements, ΠE5

B1C
, ΠE5

B2C
, and ΠE5

B3C
. Furthermore, each of

AB1 , AB2 , and AB3 is a key for 〈U5,F5〉. Nevertheless, these three are closely
related in the sense that each one is obtained from the other by replacing each
attribute by an equivalent one. This is also the case for the three distinct canon-
ical covers above, as well as the three distinct keys. Indeed, if the three at-
tributes in B1B2B3 are collapsed into one, say B1, with the resulting schema
Ẽ5 = (R[Ũ5], F̃5) with F̃5 = {B1 → C}, then 〈Ũ5, F̃5〉 has the strong cover

property and the universal Π-complement of ΠẼ5

AB1
is ΠẼ5

B1C
.

The fully minimalΠ-complements may be recovered easily from this solution.
For example, if the view to be complemented is ΠE5

AB1B2B3
, then first compute

the complement of ΠẼ5

AB1
, which is ΠẼ5

B1C
. Then, restore the individual values

associated with B1, placing as few as possible in the complement. In general,
there will be several ways to do this. In the example, one of B1B2B3 is placed
in the complement, with the other two in the main view. This leads exactly to
the three complements identified above.

A formalization of these ideas makes up the rest of this section.

Definition 4.2 (Simple equivalence of attributes and quasi-universal
Π-complements). Recall that two attributes A and B are simply equivalent in
F if F |= A ↔ B. For convenience, let SimpEquiv(F) denote the set of all simple
equivalences implied by F; thus SimpEquiv(F) = {A ↔ B | F |= A ↔ B}.
Define ≡1

〈U,F〉 to be the equivalence relation on U given by A ≡1
〈U,F〉 B iff

FDAug(〈U,F〉) |= A ↔ B.
Given W,W′ ⊆ U, ΠE

W′ is called a quasi-universal Π-complement of ΠE

W

with respect to ≡1
〈U,F〉 if for any other minimal meet Π-complement ΠE

W′′ ,

there is a bijection β : W′ → W′′ with the property that for each A ∈ W′,
A ≡1

〈U,F〉 β(A). In other words, a minimal meet complement is quasi-universal

with respect to ≡1
〈U,F〉 if all other meet complements differ only by simple equiv-

alences on the attributes. A universal complement is a special case in which the
only such bijection β is the identity onW′. Since all quasi-universal complements
in this paper will be with respect to the simple equivalence of the underlying
schema, that qualification will be dropped, and it will simply be said that one
view is a quasi-universal complement of another.

Definition 4.3 (Aliases and representation functions). Any B ∈ U with
A ≡1

〈U,F〉 B is called an alias for A in 〈U,F〉. Call A aliased in 〈U,F〉 if it has an

alias other than itself. Otherwise, call A unaliased in 〈U,F〉. The set of all aliases

of A in 〈U,F〉 is denoted Alias〈U,F〉(A). Ũ = {Alias〈U,F〉(A) | A ∈ U}; thus,

Ũ is just the set of all equivalence classes of ≡1
〈U,F〉. For W ⊆ U, define W̃ =

{Alias〈U,F〉(A) | A ∈ W}. It is useful to have a more compact representation for

elements of the form Alias〈U,F〉(A). To this end, define a representation for Ũ
to be a function r : U → U with the properties that for each A ∈ U, r(A) ∈
Alias〈U,F〉(A) and r(A) = r(B) iff B ∈ Alias〈U,F〉(A). Thus, a representation
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maps all elements of a given class Alias〈U,F〉(A) to the same element, which must
itself be a member of Alias〈U,F〉(A). In the above example, the representation
used is r5 defined by r5(A) = A, r5(C) = C, and r5(B1) = r5(B2) = r5(B3) = B1.

Fix a representation function r for F, and define F̃ to be the set of FDs
obtained from F by replacing each A ∈ Attr(F) with r(A), and then removing

all trivial FDs. In Example 4.1, F̃5 is obtained in this way from F5. Choosing
a different representation function will change the names of the symbols and
nothing else, so it is justified to write F without any reference to r.

Finally, define Ẽ = (R[Ũ], F̃), the simple-alias reduction of E.
It is perhaps worth noting that a representation as defined above is a spe-

cial case of a system of distinct representatives (SDR), also called a transversal
[22], [8, p. 192], [23, Def. 1]. In a general SDR, the sets to be represented may
overlap, and so the question of existence is nontrivial; the solution being given
by Hall’s Marriage Theorem (see the references identified above). In the special
case considered here, the sets do not overlap and so the existence of an SDR is
trivial.

Example 4.4 (An issue surrounding simple-alias reduction). The idea

is to represent the original 〈U,F〉 using F̃ together with a set E of simple FDs
which defines all of the simple equivalences of F. Then, the different minimal
complements may be obtained by using the “unique” canonical cover F̃ as the
representation function r varies. This almost works; however, there is one minor
complication, which is best illustrated by example. Let E6 = (R[A1A2BC],F6)
be the relational schema with F6 = {A1 ↔ A2,A2 ↔ BC}. Then, with r6(A1) =

r6(A2) = A2, F̃6 = {A2 ↔ BC } which is its own unique canonical cover.
The view ΠE6

A2BC has two minimal Π-complements, ΠE6

A1A2
and ΠE6

A1BC be-
cause, in addition to the alias A2, BC is also formally equivalent to A1. This
property depends upon the isolation of BC from other FDs. For example, let
E′

6 = (R[A1A2BCD],F ′
6) be the relational schema with F ′

6 = F6 ∪ {BC → D}.

With this simple addition, F̃ ′
6 = {A2 ↔ BC ,BC → D} no longer has the strong

cover property. Nevertheless, the case illustrated by E6 must be ruled out.

Definition 4.5 (The quasi-strong cover property). For X ⊆ U with
Card(X) > 1 (i.e., X contains at least two distinct elements) and A,B ∈ U,
call {A,B,X} a complex triple for F if both A ↔ B,B ↔ X ∈ F+, and for
no proper subset X′ ( X is it the case that X′ ↔ B ∈ F+. In other words,
A ↔ B ↔ X holds with X consisting of at least two attributes, and no el-
ement of X may be removed while retaining that property. For both F6 and
F ′

6, {A1, A2, BC} is a complex triple. Say that F is free of complex triples if
F+ contains no such triples. Define F to have the quasi-strong cover property
if it is free of complex triples and has the strong equivalence-cover property. It
is worth emphasizing that requiring that F be free of complex triples does not
impose substantial further limits beyond those already implied by the strong
cover property on F̃, since as illustrated by the schema E′

6, if the attributes of
a complex triple are connected to other attributes via additional FDs, then the
strong cover property is lost anyway.
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Lemma 4.6 (Derivation of simple equivalences). If F is free of com-
plex triples and C is a canonical cover for F, then for every simple equivalence
A ↔ B ∈ F+ with A 6= B, there are A1, . . . , Ak ∈ U with A1 = A, Ak = B, and
Ai → Ai+1 ∈ C for i ∈ 1, . . . , k − 1.

Proof outline. Without loss of generality, assume that F is canonical. The proof
is based upon the claim that there must be a sequence X1,X2, . . . ,Xk of subsets
of U with X1 = A, Xk = B, and for each i ∈ {1, . . . , k − 1}, Xi → C ∈ F for
each C ∈ Xi+1. Then, using the property that F be free of complex triples, it
follows that each Xi must consist of single attribute, whence the result.

To place this argument on rigorous grounds, a deductive formalism for FDs is
required. The most appropriate one in this case is the derivation directed acyclic
graphs or DDAGs [20], [21, Sec. 4.5]. In this case, there must be a DDAG with
single initial vertex labelled with A and a final vertex labelled B. Furthermore,
there must be such a graph with exactly one outgoing edge from each vertex other
than that labelled with B; otherwise, it is possible to deduce a complex cycle.
The full elaboration is straightforward but tedious; space limitation preclude
expanding it further. ✷

Proposition 4.7 (Representation of quasi-strong covers). If F has the
quasi-strong cover property, then every canonical cover of F is of the form CStr ∪
CEq, with the following properties.

(a) CStr is the unique canonical cover for 〈Ũ, F̃〉 for some representation func-
tion.

(b) CEq is a canonical cover for SimpEquiv(F).

Proof. In view of Lemma 4.6, every canonical cover of F must contain a subset
consisting of simple equivalences which form a cover for SimpEquiv(F). Let CEq
be any such set. Since F is assumed to have the quasi-strong cover property, the
remainder of the canonical cover must be FStr. ✷

Definition 4.8 (Constructions for quasi-universal Π-complements).
The precise construction of the quasi-universal Π-complements of ΠE

W
may now

be specified. Although the definitions are straightforward, it may prove useful
to follow them in parallel with Example 4.10, which illustrates their application
to a fixed schema.

LetW ⊆ U. The process of working with 〈Ũ, F̃〉 rather than 〈U,F〉 collapses
all simply equivalent elements into one. In order to recover the views correspond-
ing to 〈U,F〉, it is necessary to “uncollapse” these equivalent elements in the
appropriate fashion. To begin, the attributes in W which have an alias in the
base complement of W are identified.

(a) DPBoth〈U,F〉〈W〉 = {A ∈ W | BaseCompl〈U,F〉〈W〉 ∩ Alias〈U,F〉(A) 6= ∅}

In order to maintain an embedded cover of CEq as identified in Proposition

4.7 above, if an attribute A1 occurs in the view ΠE

W
to be complemented while

an equivalent attribute A2 occurs in a potential complement ΠE

X
but not in

ΠE

W
, then either one of these, or else a third attribute equivalent to both, must
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appear in W ∩ X. This alias must be an element of W, since the meet is a
subset of W. Additionally, any equivalence class which has a representative in

DPMut〈Ũ,F̃〉〈W̃〉 must also have at least one representative in the meet of ΠE

W

and any of its minimal complements. The possible elements for the meet are
defined as follows.

(b) DPMeetSets〈U,F〉〈W〉 = {W ∩ Alias〈U,F〉(A) |

(A ∈ DPBoth〈U,F〉〈W〉) or (r(A) ∈ DPMut〈Ũ,F̃〉〈W̃〉)}

(c) DPMeetAlts〈U,F〉〈W〉 is all subsets of W formed by selecting exactly one
attribute from each member of DPMeetSets〈U,F〉〈W〉.

Some set of attributes in DPMeetAlts〈U,F〉〈W〉must be contained in the meet
of any quasi-universal Π-complement. Observe in particular that if an attribute
has no alias other than itself, then it will be in the meet of ΠE

W
and its minimal

complement iff it occurs in the meet of ΠẼ

W̃
and its optimal complement.

Finally, the alternatives for the quasi-universalΠ-complements may be spec-
ified by adding to the base complement a set of suitable elements for the meet.

(d) MeetComplAlts〈U,F〉〈W〉 =
{X ∪ BaseCompl〈U,F〉〈W〉 | X ∈ DPMeetAlts〈U,F〉〈W〉}

This is summarized in the following theorem. The proof is a straightforward
argument based upon the above constructions, and is omitted due to space con-
siderations.

Theorem 4.9. Let W ⊆ U, and assume that 〈U,F〉 has the quasi-strong
cover property. Then ΠE

X
is a quasi-universal Π-complement of ΠE

W
iff X ∈

MeetComplAlts〈U,F〉〈W〉. ✷

Example 4.10. Define the schema

E7 = (R[A1A2A3BC1C2C3DE1E2E3F1F2F3GHIJ1J2J3K1K2K3],F7)

with F7 = CStr7 ∪ CEq7 and these latter two sets given by

CStr7 = {A1B → C1D , C1D → E1F1G , E1F1 → H, H → IJ1K1}

CEq7 = {A1 → A2 , A2 → A3 , A3 → A1,C1 → C2 , C2 → C3 , C3 → C1,

E1 → E2 , E2 → E3 , E3 → E1,F1 → F2 , F2 → F3 , F3 → F1,

J1 → J2 , J2 → J3 , J3 → J1,K1 → K2 , K2 → K3 , K3 → K1}

Upon RHS-simplification, CStr7 becomes a unique canonical cover for F̃7, while
CEq7 is a canonical cover for SimpEquiv(F), with αi ≡1

〈U7,F7〉
αj for α ∈ {A,C,E,

F, J,K} and i ∈ {1, 2, 3}. The representation used is r7 : αi 7→ α1 for α ∈
{A,C,E, F, J,K} and r7 : α 7→ α for α ∈ {B,D,G,H, I}.

Let W = E1E2E3F1F2GHIJ1K1K2K3 with ΠE7

W
the view to be comple-

mented. First of all, for Ẽ7 = (R[A1BC1DE1F1GHIJ1K1], CStr7), using the con-

structions for the strong cover property, W̃ = E1F1GHIJ1K1,
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BaseCompl〈Ũ,F̃〉〈W̃〉 = A1BC1, D, DPExt〈Ũ,F̃〉〈W̃〉 = A1BC1DE1F1G, and

DPMut〈Ũ,F̃〉〈W̃〉 = E1F1G. It is easy to see that A1B is a key for Ẽ7, so by

Theorem 3.15 the optimal complement of ΠẼ7

W̃
is ΠẼ7

X
with X =

PreCompl〈Ũ7,F̃7〉
〈W〉 = BaseCompl〈Ũ7,F̃7〉

〈W〉 ∪ DPExt〈U7,F7〉〈W〉 =

A1BC1DE1F1G. The task is to uncollapse this solution into one for E7 and
the view ΠE7

W
.

First of all, DPBoth〈U7,F7〉〈W〉 = F1F2J1, the elements of W which have an
alias in BaseCompl〈U7,F7〉〈W〉 = A1A2A3BC1C2C3DF3J2J3. Next,
DPMeetSets〈U7,F7〉〈W〉 = W ∩ (F1F2F3J1J2J3 ∪ E1E2E3F1F2F3G)
= E1E2E3F1F2GJ1 consists of all attributes in W with an alias in either
DPBoth〈U7,F7〉〈W〉 or DPMut〈Ũ,F̃〉〈W̃〉. These are the possible elements for in-

clusion in the meet. The actual meet selects one element from
DPMeetSets〈U7,F7〉〈W〉 for each equivalence class of ≡1

〈U7,F7〉
which is repre-

sented in that set. Thus the set of meet alternatives is given by
DPMeetAlts〈U7,F7〉〈W〉 = {EiFjGJ1 | i ∈ {1, 2, 3} and j ∈ {1, 2}}, and so
MeetComplAlts〈U7,F7〉〈W〉 = A1A2A3BC1C2C3DF3GJ1J2J3 ∪ {EiFj | i ∈
{1, 2, 3} and j ∈ {1, 2}}. Hence, there are six alternatives for a quasi-universal
Π-complement, all related by the replacement of simple attributes by equivalent
ones. Note, however, that not any equivalent attribute will do. F1 may only be
replaced with F2, not F3, and J1 may not be replaced by either J2 or J3.

5 Conclusions and Further Directions

A characterization of universal complements in the setting of projections of a
universal relational schema which is constrained by functional dependencies has
been presented. Although the conditions are rather strict — existence of a unique
canonical cover and a unique key — they reveal the nature of requirements which
must be imposed in order to realize such complements. Conditions which allow
a modest amount of flexibility — by replacing single attributes by equivalent
ones to yield quasi-universal complements, have also been developed. They give
useful solutions in certain important settings, such as when there are multiple
candidate keys.

There are several key areas for further work on this subject.

Extension of the conditions: The presentations of Sections 3 and 4 were
designed to illustrate the fundamental ideas without becoming bogged down
in small details. As such, they can clearly be strengthened. The strong cover
property identified in Sec. 3 guarantees fully optimal Π-complements for all
possible views of the main schema E. It is possible to provide a localized strong
cover property which only guarantees fully optimal complements for a fixed view
ΠE

W
, or for some set of views. The details are a straightforward extension to

the results presented, but nevertheless should be elaborated in a future paper.
Similarly, an extension of the results of Sec. 4 on quasi-universalΠ-complements
to equivalences amongst sets of attributes is also a worthwhile topic, although
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the details of exactly what such an extension would look like remain to be
developed.

Extension of the scope to
∨
Π-views: In [15], the

∨
Π-views of a relational

schema, which are defined by sets of projections rather than single projections,
are considered as the fundamental sets of views. Since the individual projections
which comprise such a view may not join losslessly, this is a genuine extension
which often yields smaller complements than the Π-framework. An extension
of the results of this paper to the

∨
Π-setting would provide useful new results.

General characterization of fully optimal complements: Although
this work is an important first step towards the understanding of universal-
ity and fully optimal complements, it is clearly limited in comparison to the
results on characterization of state invariance and reflection invariance, which
hold in very general settings not limited to any particular data model. The
next major step for this research program is to seek such a generalized exten-
sion, which would proceed in two steps. In the first, the results of this paper
would be integrated with the governing join dependencies of [15], thus lifting
the results from schemata constrained by just FDs to those with more general
constraints. In the second step, a more general characterization, independent
of any particular data model, would be developed. The exact nature of this
characterization remains to be identified.
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