
Information-Optimal Re�etionsof View Updateson Relational Database ShemataStephen J. HegnerUmeå UniversityDepartment of Computing SieneSE-901 87 Umeå, Swedenhegner�s.umu.sehttp://www.s.umu.se/~hegnerAbstratFor the problem of re�eting an update on a database view to the main shema,the onstant-omplement strategies are preisely those whih avoid all update anomalies,and so de�ne the gold standard for well-behaved solutions to the problem. However,the families of view updates whih are supported under suh strategies are limited, soit is sometimes neessary to go beyond them, albeit in a systemati fashion. In thiswork, an investigation of suh extended strategies is initiated for relational shemata.The approah is to haraterize the information ontent of a database instane, and thenrequire that the optimal re�etion of a view update to the main shema embody the leastpossible hange of information. To illustrate the utility of the idea, su�ient onditionsfor the existene of optimal insertions in the ontext of families of extended embeddedimpliational dependenies (XEIDs) are established. It is furthermore established that allsuh optimal insertions are equivalent up to a renaming of the new onstant symbols whihwere introdued in support of the insertion.1. IntrodutionThe problem of re�eting view updates to the main shema of a database system is a di�ultone whose solution invariably involves ompromise. The onstant-omplement approah [BS81℄is exatly the one whih avoids all so-alled update anomalies [Heg04℄, and so is the goldstandard for well-behaved strategies. On the other hand, it is also quite onservative regardingthe updates whih it admits.Substantial researh has been onduted on allowing more general view updates in a sys-temati fashion. In the lassial relational ontext, muh of this work, suh as [DB82℄, [Kel85℄,[Lan90℄, [BL97℄, and [BL98℄, fouses upon translations via the relational algebra. In this work,a quite di�erent, logi-based approah is undertaken. The fundamental point of departure isthat an optimal re�etion of a view update is one whih minimizes the information hange in



the main shema, with the information ontent of a database measured by the set of sentenesin a ertain family whih it satis�es. An example will help larify the main ideas.1.1 Motivating example Let E0 be the relational shema with relations R[ABC] and
S[CD], onstrained by the inlusion dependeny R[C] ⊆ S[C]. Regard a database as a set ofground atoms over the assoiated logi. For example,M00 = {R(a0, b0, c0), R(a1, b1, c1), S(c0, d0),
S(c1, d1)} is suh a database. Now, let K be a set of onstants in the underlying logial lan-guage, regarded as domain elements for this shema. The information ontent of a database
M relative to K is the set of all positive (i.e., no negation, expliit or impliit), existential, andonjuntive sentenes whih are implied by M . Using the notation to be introdued in 3.3, thisinformation ontent is denoted Info〈M,WFF(E0 , K, ∃∧+)〉. A basis for this information on-tent is a subset Φ ⊆ Info〈M,WFF(E0, K, ∃∧+)〉 suh that Φ and Info〈M,WFF(E0 , K, ∃∧+)〉are logially equivalent. For K00 = {a0, a1, b0, b1, c0, c1, d0, d1}, the set of all onstant sym-bols of M00, the set M00 itself is learly a basis for Info〈M00,WFF(E0 , K00, ∃∧+)〉. On theother hand, with K ′

00 = {a0, a1, b0, b1, c0, d0}, a basis for Info〈M00,WFF(E0, K
′
00, ∃∧+)〉 is

{R(a0, b0, c0), S(c0, d0), (∃x)(∃y)(R(a1, b1, x)∧S(x, y))}. Note that the onstants in K00 \ K ′
00have been replaed by existentially quanti�ed variables.To see how this idea is useful in the ontext of view updates, let ΠR[AB] = (R[AB], πR[AB])be the view of E0 whih projets R[ABC] onto R[AB] and whih drops the relation S en-tirely. Consider M00 to be the initial state of shema E0; its image state in the view isthen N00 = {R(a0, b0), R(a1, b1)}. Now, suppose that the view update Insert〈R(a2, b2)〉 is re-quested, so that N01 = N00 ∪ {R(a2, b2)} is the desired new view state, and onsider M01 =

M00 ∪ {R(a2, b2, c2), S(c2, d2)} as a proposed re�etion to the main shema E0. Relative toits entire set K01 = {a0, a1, a2, b0, b1, b2, c0, c1, c2, d0, d1, d2} of onstant symbols, a basis for
Info〈M01,WFF(E0 , K01, ∃∧+)〉 is just M01 itself. Similarly, for M02 = M00 ∪ {R(a2, b2, c3),
S(c3, d3)} with K02 = {a0, a1, a2, b0, b1, b2, c0, c1, c3, d0, d1, d3} a basis for
Info〈M02,WFF(E0 , K02, ∃∧+)〉 is just M02 itself. Observe that the proposed updates M01 and
M02 are idential up to a renaming of the new onstants. The utility of information measureis that it provides a means to reapture this idea formally; the information ontent of eah,relative to the set K00 of onstant symbols of the original stateM00, is the same. More preisely,
Info〈M01,WFF(E0 , K00, ∃∧+)〉 = Info〈M02,WFF(E0 , K00, ∃∧+)〉. A basis for eah of these is
I1 = M00 ∪ {(∃x)(∃y)(R(a2, b2, x)∧S(x, y))}. In e�et, this measure is indi�erent to whether c2and d2 or c3 and d3 are used.Now, onsider the alternative solution M03 = M00 ∪ {R(a2, b2, c3), S(c3, d1)} to this view-update problem. A basis for Info〈M03,WFF(E0 , K00, ∃∧+)〉 is I3 = M00 ∪
{(∃x)(R(a2, b2, x)∧S(x, d1))}, whih is stritly stronger than I1, sine (∃x)(R(a2, b2, x)∧S(x, d1))
|= (∃x)(∃y)(R(a2, b2, x)∧S(x, y))), but not onversely. Thus, relative to the information mea-sure de�ned by K00, M03 adds more information to M00 than does M01 or M02. Similarly,
M04 = M00 ∪ {R(a2, b2, c0))} adds more information than does M01 or M02, sine a basis for itsinformation ontent is just M04 itself, whih is stronger than I1, sine R(a2, b2, c0)∧S(c0, d0) |=

(∃x)(∃y)(R(a2, b2, x)∧S(x, y))), but not onversely.The �rst and primary measure of quality of a re�eted update is the hange of informationontent whih is indues. Under this measure, M01 and M02 are equivalent, and both aresuperior to either of M03 or M04. However, this is by itself not quite adequate. Rather, thereis an additional measure of quality whih must be taken into aount. To illustrate, onsiderReport: 20071118 FoIKS2008 page 2



the proposed solution M05 = M01 ∪M02 = M00 ∪ {R(a2, b2, c2), R(a2, b2, c3), S(c2, d2), S(c3, d3)}to this update problem. It has the same information ontent, I1, relative to K00, as do M01and M02. The information measure annot distinguish the insertion of two new tuples withompletely new onstants from the insertion of just one. However, it is lear that M05 shouldbe onsidered inferior to both M01 and M02 as a solution to the given update problem, sine itis a proper superset of eah. Therefore, a seond riterion of quality is invoked; namely thatno solution whose set of hanges is a proper superset of those of another an be onsideredto be superior. It is important to emphasize that it is a inlusion relationship whih applieshere, and not simply a ounting argument. For example, onsider again the proposed solution
M04. From a strit ounting point of view, M04 involves fewer hanges than do M01 or M02.However, neither M01 nor M02 is a superset of M04. Thus, the superiority of M01 and M02 isnot ontradited. In other words, only solutions whih are tuple minimal, in the sense that noproper subset of the hanges is also an admissible solution, are permitted.The main modelling premise of this paper is that the quality of a view update an bemeasured by the amount of hange in information ontent whih it indues, and so an optimalre�etion of a view update request is one whih is both tuple minimal and whih indues the leastamount of hange of information ontent. Under this premise, bothM01 andM02 are superior toeither of M03 or M04. Furthermore, sine M01 and M02 indue the same hange in informationontent, they are equivalent. In Setion 3, it is established that, under suitable onditions, allsuh optimal solutions are equivalent, up to a renaming of the onstant symbols. In Setion4, it is established, again under suitable onditions, that for insertions, a minimal solution (interms of hange of information ontent) must be optimal. These onditions inlude in partiularshemata onstrained by XEIDs � the extended embedded impliational dependenies of Fagin[Fag82℄, whih inlude virtually all other lasses of lassial database dependenies.In summary, there are two onditions whih must be met for optimality of a proposed updatere�etion u. First, it must be tuple minimal, in that there an be no other solution whose setof hanges is a proper subset of those of u. Seond, it must be information least in terms ofa spei� set of sentenes. This approah applies also to deletions and updates whih involveboth insertion and deletion, and this generality is inorporated into the formalism whih ispresented. However, for deletions the two measures will oinide, sine no new onstants areinvolved in a deletion.2. The Relational Model2.1 Two representations of the traditional relational model In the traditional ap-proah to the relational model [PDGV89℄ [AHV95℄, the starting point is a set A of attributes,a �nite nonempty set Rels of of relation symbols, and a funtion Ar : Rels → A whih as-signs to eah R ∈ Rels a set Ar(R) ⊆ A, the attributes of R. Furthermore, to eah A ∈ Ais assoiated a (usually ountably in�nite) domain dom(A). An R-tuple is then a funtion
t : Ar(R) → dom(A), and a relational database over (A, dom) is a olletion of R-tuples foreah R ∈ A.From a logial point of view, there are two ommon interpretations of the domain ele-ments. In logi programming, they are usually taken to be onstant symbols of the underlyinglogi. Tuples then beome ground atoms, with (extensional) databases �nite sets of suh atoms[CGT89℄. Furthermore, in that ontext, the set of all onstant symbols is usually taken to beReport: 20071118 FoIKS2008 page 3



�nite, in order to allow �rst-order axiomatization of domain losure. On the other hand, formodel-theoreti onstrutions, suh as those of [Fag82℄, it is neessary to interpret the relationaldomain elements as members of the underlying set of a struture [Mon76, Def. 11.1℄, and toallow these sets to be ountably in�nite is essential. Both representations of tuples are ruialto this paper, so it is neessary to establish a bijetive orrespondene between them. To a-omplish this, it is �rst neessary to establish a bijetive orrespondene between the elementsof the struture and the onstant symbols. This requires some are, sine this ondition annotbe stated using �nite sentenes in �rst-order logi. The solution employed in this paper is touse the same ountable underlying set for all strutures, and then to �x a bijetion betweenthe onstant symbols and the struture elements. This bijetion is invariant aross all the mainshemata and the view to be updated. One suh a bijetion of elements and onstants is es-tablished, a orresponding bijetion of tuples and ground atoms, and onsequently of databasesrepresented in these two distint formats, follows diretly.2.2 Relational ontexts and onstant interpretations A relational ontext ontainsthe logial information whih is shared amongst the distint shemata and the orrespondingdatabase mappings: the attribute names, the variables, and onstant symbols. Formally, arelational ontext D onsists of attribute names AD, variables Vars(D), and for eah A ∈ AD,a set ConstD(A) of onstant symbols. The variables Vars(D) are further partitioned into twodisjoint sets; a ountable set GenVars(D) = {x0, x1, x2, . . .} of general variables, and speial
AD-indexed set AttrVars(D) = {xA | A ∈ AD} of attribute variables. The latter are used in thede�nition of interpretation mappings; see 2.5 for details.A onstant interpretation provides a model-theoreti interpretation for the onstant sym-bols, in the sense of [Mon76, Def. 11.1℄. It is also �xed over all databases of all shemata.Formally, a onstant interpretation for the relational ontext D is a pair I = (DomI , IntFnI) inwhih DomI is a ountably in�nite set, alled the domain of I, and IntFnI : Const(D) → DomIis a bijetive funtion, alled the interpretation funtion of I. Note that the latter e�etivelystipulates the following two well-known onditions [GN87, p. 120℄:Domain losure: (∀x)(

∨
a∈Const(D) x = a) (DCA(D))Unique naming: (¬(a = b)) for distint a, b ∈ Const(D) (UNA(D))Sine there are ountably many onstant symbols, the domain losure axiom is not a �nitedisjuntion. This is not a problem however, sine it is never used in an otherwise �rst-orderset of onstraints. Exept for the extended tuple databases of 4.4, in whih this onstraint isrelaxed, the assignment of domain values to onstants is �xed, and so it is not neessary toverify that it holds.For A ∈ AD , de�ne DomI(A) = {z ∈ DomI | IntFnI(z) ∈ ConstD(A)}. Thus, DomI(A) isthe set of all domain values whih are assoiated with attribute A.As a notational onvention, from this point on, unless stated otherwise, �x relational ontext

D and a onstant interpretation I = (DomI , IntFnI) for it.2.3 Tuples and databases An unonstrained relational shema over (D, I) is a pair D =
(Rels(D),ArD) in whih Rels(D) is �nite set of relational symbols and ArD : Rels(D) → 2

AD afuntion whih assigns an arity, a set of distint attributes from AD, to eah R ∈ Rels(D).Report: 20071118 FoIKS2008 page 4



It is now possible to address the problem of modelling databases in the two distint waysidenti�ed in 2.1 above. For R ∈ Rels(D), an R-tuple is a funtion t on ArD(R) with theproperty that t[A] ∈ DomI(A) for every A ∈ ArD . Similarly, an R-atom is suh a funtionwith the property that t[A] ∈ ConstD(A) ∪ GenVars(D) ∪ {xA}. A ground R-atom ontains novariables, so t[A] ∈ ConstD(A). The set of all R-tuples (resp. R-atoms, resp. ground R-atoms)is denoted Tuples(D), (resp. Atoms(D), resp. GrAtoms(D)). In view of 2.2 above, it is easyto see that there is a bijetive orrespondene between GrAtoms(D) and Tuples(D) given by
t(a1, a2, . . . , an) 7→ t(IntFnI(a1), IntFnI(a2), . . . IntFnI(an)).It will be neessary to work with sets of R-tuples and sets of R-atoms, with R ranging overdistint relation symbols. A D-tuple is an R-tuple for some R ∈ Rels(D), with the set of all
D-tuples denoted Tuples(D). A tuple database for D is a �nite subset of Tuples(D), with the setof all tuple databases for D denoted TDB(D). The D-atoms and ground D-atoms are de�nedanalogously, with the orresponding sets denoted Atoms(D) and GrAtoms(D), respetively. Anatom database for D is a �nite subset of GrAtoms(D); the set of all atom databases for D isdenoted DB(D).In the above de�nitions, it is neessary to be able to reover the assoiated relation froma tuple, and so tagging is employed, in whih tuples are marked with the assoiated relation.Formally, this is aomplished by introduing a new attribute RName 6∈ AD , and then regardingan R-tuple not as a funtion t just on ArD(R) but rather as one on on {RName}∪ArD(R) withthe property that t[RName] = R. Tagging of R-atoms is de�ned analogously; both will be usedfrom this point on throughout the paper. Nevertheless, in writing tuples, the more onventionalnotation R(τ1, τ2, . . . , τn) will be used in lieu of the tehnially more orret (R, τ1, τ2, . . . , τn),although tags will be used in formal onstrutions.For the produt onstrution of 4.5, it is neessary to restrit attention to nonemptydatabases. To this end, allM ∈ TDB(D) (resp.M ∈ DB(D)) relationwise nonempty if for eah
R ∈ Rels(D), there is at least one R-tuple (resp. R-atom) in M , and de�ne RNeTDB(D) (resp.
RNeDB(D)) to be the set of all relationwise nonempty members of TDB(D) (resp. DB(D)).The �rst-order language assoiated with the relational shema D is de�ned in the naturalway; however, it is useful to introdue some notation whih identi�es partiular sets of formulas.De�ne WFF(D) to be the set of all well-formed �rst-order formulas with equality, in the languagewhose set of relational symbols is Rels(D), whose set of onstant symbols is Const(D), and whihontains no non-nullary funtion symbols. The variables are those of D. Additional argumentsmay be given to restrit this set. If S ⊆ Const(D), then WFF(D, S) denotes the formulas in
WFF(D) whih involve only onstant symbols from S. In partiular, WFF(D, ∅) denotes the setof formulas whih do not ontain onstant symbols. Arguments are also used to limit the logialonnetives. WFF(D, ∃+) identi�es those formulas whih are built up from the onnetives ∧and ∨, using at most existential quanti�ers. WFF(D, ∃∧+) enfores the further restrition thatdisjuntion is not allowed. It will be furthermore assumed, in WFF(D, ∃∧+), that equalityatoms (i.e., atoms of the form xi = xj and xi = a) are not allowed. This is not an essentiallimitation; suh equality an always be represented by setting the terms to be equal in theatoms in whih they are used. These notations may be ombined, with the obvious semantis.For example, WFF(D, ∅, ∃∧+) denotes the members of WFF(D, ∃∧+) whih do not involveonstant symbols.

WFS(D) denotes the subset of WFF(D) onsisting of sentenes; that is, formulas with nofree variables. The onventions regarding additional arguments applies to sets of sentenes asReport: 20071118 FoIKS2008 page 5



well. For example, WFS(D, ∅, ∃∧+) is the subset of WFF(D, ∅, ∃∧+) onsisting of sentenes.
M ∈ TDB(D) is an I-model of ϕ ∈ WFS(D) if it is a model of ϕ in the ordinary sense whihfurthermore interprets the onstant symbols aording to I. The set of all I-models of ϕ isdenoted ModI(ϕ). In view of the bijetion GrAtoms(D) → Tuples(D) identi�ed in 2.3 above, it ispossible to identify I-models with �nite sets of ground atoms. More preisely, de�ne the atomi

I-models of ϕ to be AtModI(ϕ) = {M ∈ DB(D) | M ∪ {ϕ} ∪ UNA(D) is onsistent}. Clearly,
IntFnI(M) ∈ ModI(ϕ) i� M ∈ AtModI(ϕ). The relationally nonempty versions RNeModI(ϕ)and RNeAtModI(ϕ) are de�ned analogously. Furthermore, all of these de�nitions of modelextend to sets Φ of sentenes in the obvious way; notation suh as ModI(Φ), RNeModI(Φ),
AtModI(Φ), and RNeAtModI(Φ) will be used throughout.2.4 Shemata with onstraints and onstrained databases A relational shema over
(D, I) is a triple D = (Rels(D),ArD,Constr(D)) in whih (Rels(D),ArD) is an unonstrainedrelational shema over (D, I) and Constr(D) ⊆ WFS(D, ∅) is the set of dependenies or on-straints of D. Note that onstant symbols are not allowed in the onstraints.In representing a database as a set of D-atoms, the losed-world assumption is impliit. Onthe other hand, to express what it means for suh a representation to satisfy a set of onstraints,it is neessary to state expliitly whih atoms are not true as well. Formally, for M ∈ DB(D),de�ne the diagram of M to be DiagramD(M) = M ∪ {¬t | t ∈ GrAtoms(D) \ M}. De�nethe legal (or onstrained) databases of D to be LDB(D) = {M ∈ DB(D) | Diagram

D
(M) ∪

Constr(D) has an I-model} and the nonempty legal databases to be RNeLDB(D) = LDB(D)∩
RNeDB(D).2.5 Database morphisms and views Database morphisms are de�ned using expressionsin the relational alulus; more formally, they are interpretations of the theory of the view intothe theory of the main shema [JAK82℄. Let D1 and D2 be relational shemata over (D, I).Given R ∈ Rels(D2), an interpretation for R into D1 is a ϕ ∈ WFF(D) in whih preisely thevariables {xA | A ∈ ArD(R)} are free, with xA is used to mark the position in the formula whihis bound to attribute A. The set of all interpretations of R into D1 is denoted Interp(R,D1). Asyntati morphism f : D1 → D2 is a family f = {fR | R ∈ Rels(D2) and fR ∈ Interp(R,D1)}.Let t ∈ GrAtoms(R,D2). The substitution of t into f , denoted Subst〈f, t〉, is the sentene in
WFS(D1) obtained by substituting t[A] for xA, for eah A ∈ ArD(R). For M ∈ DB(D1), de�ne
f(M) = {t ∈ Atoms(D2) | Subst〈f, t〉 ∪DiagramD1

(M) has an I-model}. f is alled a semantimorphism if it maps legal databases to legal databases; formally, f(M) ∈ LDB(D2) for eah
M ∈ LDB(D1).Say that f is of lass ∃+ (resp. ∃∧+) if eah fR ∈ WFF(D1, ∃+) (resp. fR ∈ WFF(D1, ∃∧+)).It is easy to see that if f is of lass ∃+ (resp. ∃∧+), then for eah t ∈ Atoms(D2), Subst〈f, t〉 ∈
WFS(D1, ∃+) (resp. Subst〈f, t〉 ∈ WFS(D1, ∃∧+)).Let D be a relational shema over (D, I). A (relational) view of D is a pair Γ = (V, γ)in whih V is a relational shema over (D, I) and γ : D → V is a semanti morphism whihis furthermore semantially surjetive in the sense that for every N ∈ LDB(V), there is an
M ∈ LDB(D) with f(M) = N . Γ is of lass ∃+ (resp. lass ∃∧+) preisely in the ase that γis of that same lass.Report: 20071118 FoIKS2008 page 6



3. The General Theory of UpdatesIn this setion, the general ideas onerning the information ontent of a database state, andthe ideas of optimizing an update relative to suh ontent, are developed. It is furthermoreestablished that for a wide lass of shemata and views, all optimal updates are isomorphi ina natural way.3.1 Notational onvention Throughout the rest of this paper, unless stated spei�allyto the ontrary, take D to be a relational shema over (D, I) and Γ = (V, γ) to be a (relational)view of D.For X an entity (for example, an atom, a formula, a database, et.), ConstSym(X) denotesthe set of all a ∈ Const(D) whih our in X. Similarly, Vars(X) denotes the set of all variableswhih our in X. This will not be formalized further, but the meaning should always beunambiguous.3.2 Updates and re�etions An update on D is a pair (M1,M2) ∈ LDB(D) × LDB(D).
M1 is the urrent state, and M2 the new state. It is an insertion if M1 ⊆ M2, and a deletion if
M2 ⊆M1.To desribe the situation surrounding an update request on Γ, it is su�ient to speify theurrent state M1 of the main shema and the desired new state N2 of the view shema V. Theurrent state of the view an be omputed as γ(M1); it is only the new state M2 of the mainshema (subjet to N2 = γ(M2)) whih must be obtained from an update strategy. Formally,an update request from Γ to D is a pair (M1, N2) in whih M1 ∈ LDB(D) (the old state ofthe main shema) and N2 ∈ LDB(V) (the new state of the view shema). If γ(M1) ⊆ N2, itis alled an insertion request, and if N2 ⊆ γ(M1), it is alled a deletion request. Colletively,insertion requests and deletion requests are termed unidiretional update requests. A realizationof (M1, N2) along Γ is an update (M1,M2) on D with the property that γ(M2) = N2. Theupdate (M1,M2) is alled a re�etion (or translation) of the view update (γ(M1), N2). Theset of all realizations of (M1, N2) along Γ is denoted UpdRealiz〈M1, N2,Γ〉. The subset of
UpdRealiz〈M1, N2,Γ〉 onsisting of insertions (resp. deletions) is denoted InsRealiz〈M1, N2,Γ〉(resp. DelRealiz〈M1, N2,Γ〉.3.3 Information ontent and Φ-equivalene Let Φ ⊆ WFS(D) and let M ∈ DB(D).The information ontent of M relative to Φ is the set of all sentenes in Φ whih are true for
M . More preisely, Info〈M,Φ〉 = {ϕ ∈ Φ | M ∈ AtModI(ϕ)}. For ϕ ∈ WFS(D), Info〈M,ϕ〉denotes Info〈M, {ϕ}〉. M1 and M2 are Φ-equivalent if they have the same information ontentrelative to Φ; i.e., Info〈M1,Φ〉 = Info〈M2,Φ〉.3.4 Update di�erene and optimal re�etions The update di�erene of an update
(M1,M2) on D with respet to a set Φ ⊆ WFS(D) is a measure of how muh M2 di�ers from
M1 in terms of satisfation of the sentenes of Φ. Formally, the positive (∆+), negative (∆−),
Report: 20071118 FoIKS2008 page 7



and total (∆) update di�erenes of (M1,M2) with respet to Φ are de�ned as follows:
∆+〈(M1,M2),Φ〉 = Info〈M2,Φ〉 \ Info〈M1,Φ〉

∆−〈(M1,M2),Φ〉 = Info〈M1,Φ〉 \ Info〈M2,Φ〉

∆〈(M1,M2),Φ〉 = ∆+〈(M1,M2),Φ〉 ∪ ∆−〈(M1,M2),Φ〉Note that, given ϕ ∈ ∆〈(M1,M2),Φ〉, it is always possible to determine whether ϕ ∈
∆+〈(M1,M2),Φ〉 or ϕ ∈ ∆−〈(M1,M2),Φ〉 by heking whether or not M1 ∈ AtModI(ϕ). Givenan update request (M1, N2), the quality of a realization (M1,M2) is measured by its updatedi�erene. Formally, let Φ ⊆ WFS(D), let (M1, N2) be an update request from Γ to D, let
T ⊆ UpdRealiz〈M1, N2,Γ〉, and let (M1,M2) ∈ T .(a) (M1,M2) is minimal in T with respet to Φ if for any (M1,M

′
2) ∈ T , if ∆〈(M1,M

′
2),Φ〉 ⊆

∆〈(M1,M2),Φ〉, then ∆〈(M1,M
′
2),Φ〉 = ∆〈(M1,M2),Φ〉.(b) (M1,M2) is least in T with respet to Φ if for all (M1,M

′
2) ∈ T , ∆〈(M1,M2),Φ〉 ⊆

∆〈(M1,M
′
2),Φ〉.3.5 Information-monotone sentenes and update lassi�ers For the above de�ni-tions of minimal and least to be useful, it is neessary to plae ertain restritions on the natureof Φ. As a onrete example of the problems, de�ne GrAtoms¬(D) = {¬t | t ∈ GrAtoms(D)},with GrAtoms±(D) = GrAtoms(D)∪GrAtoms¬(D). In the ontext of 3.4 above, it is easy to seethat every re�etion (M1,M2) is minimal with respet to GrAtoms±(D), while only identity up-dates (with M1 = M2) are least. Any Φ ⊆ WFS(D) with the property that GrAtoms±(D) ⊆ Φwill have this same property. The problem is that the sentenes in GrAtoms¬(D) are notinformation monotone; adding new tuples redues the information ontent. The sentene

ϕ ∈ WFS(D) is information monotone if for any M1,M2 ∈ DB(D) if M1 ⊆ M2, then
Info〈M1, ϕ〉 ⊆ Info〈M2, ϕ〉. The set Φ ⊆ WFS(D) is information monotone if eah ϕ ∈ Φhas this property. Any ϕ ∈ WFS(D) whih does not involve negation, either expliitly or im-pliitly (via impliation, for example), is information monotone. Thus, in partiular, for any
S ⊆ Const(D), WFS(D, S, ∃+), WFS(D, S, ∃∧+), and GrAtoms(D) all onsist of information-monotone sentenes. The total absene of negation is not neessary, however. Sentenes whihallow negation of equality terms (e.g., ¬(xi = xj)) but only existential quanti�ation are alsoinformation monotone.An update lassi�er for D is simply a set Σ of information-monotone sentenes. Theidea is simple: updates whih involve less hange of information are to be preferred to thosewhih involve more. However, as illustrated in the example of 1.1, there are two distintmeasures of optimality. On the one hand, an optimal realization (M1,M2) of an update re-quest (M1, N2) must be least with respet to the update lassi�er, whih in that example is
WFS(D,ConstSym(M00), ∃∧+). Unfortunately, this measure annot always eliminate solutionswhih ontain two �isomorphi� opies of the same update, suh as M05 of that example. Toremedy this, the update must also be minimal with respet to Atoms(D); or, equivalently, withrespet to the symmetri di�erene M1 △M2 = (M1 \M2)∪ (M2 \M1). Formally, let (M1, N2)be an update request from Γ to D, let T ⊆ UpdRealiz〈M1, N2,Γ〉, and let (M1,M2) ∈ T .(a) (M1,M2) is 〈Σ, T 〉-admissible if it is minimal in T with respet to both Σ and Atoms(D).(b) (M1,M2) is 〈Σ, T 〉-optimal if it is 〈Σ, T 〉-admissible and least in T with respet to Σ.Report: 20071118 FoIKS2008 page 8



Roughly, (M1,M2) is admissible if no other realization is better, and it is optimal if it is betterthan all others, up to the equivalene de�ned by Σ. Observe that if some update request is
〈Σ, T 〉-optimal, then all 〈Σ, T 〉-admissible update requests are 〈Σ, T 〉-optimal.As a notational shorthand, if T = InsRealiz〈M1, N2,Γ〉 (resp. T = DelRealiz〈M1, N2,Γ〉), thatis, if T is the set of all possible insertions (resp. deletions) whih realize (M1, N2), then 〈Σ, T 〉-admissible and 〈Σ, T 〉-optimal will be abbreviated to 〈Σ, ↑〉-admissible and 〈Σ, ↑〉-optimal (resp.
〈Σ, ↓〉-admissible and 〈Σ, ↓〉-optimal).3.6 Examples of update lassi�ers For M1 ∈ LDB(D), the standard M1-based updatelassi�er is StdUCP(D,M1) = WFS(D,ConstSym(M1), ∃∧+). As illustrated in 1.1, this las-si�er is appropriate for haraterizing optimal insertions. Beause it �hides� new onstants,optimal solutions whih are unique up to onstant renaming are easily reaptured.A muh simpler example is GrAtoms(D). It yields optimal solutions only in the ase thatsuh solutions are truly unique. For deletions, this equivalene is adequate. In fat, for deletions,
StdUCP(D,M1) and GrAtoms(D) always identify the same optimal solutions.There are other possibilities whih provide di�erent notions of optimality. Let E1 be theshema whih is idential toE0 of 1.1, save that it inludes an additional relation symbol S ′[CD],and the inlusion dependeny R[C] ⊆ S[C] is replaed with R[C] ⊆ S[C]∪S ′[C]. LetM ′

00 be thestate of E1 whih is the extension ofM00 in whih the relation of S ′ is empty. The view ΠR[AB] =
(R[AB], πR[AB]) is unhanged. Under the update lassi�er WFS(E1,ConstSym(M ′

00), ∃∧+), theupdate request (M ′
00, N01) (using N01 from 1.1) no longer has an optimal solution, sine aminimal solution involves adding a tuple either to S or to S ′ but not to both. However, opti-mality an be reovered formally via an alternative update lassi�er. Let Ξ1 denote the subset of

WFS(E1, ∃+) obtained fromWFS(E0, ∃∧+) by replaing eah ourrene of the form S(τ1, τ2) by
(S(τ1, τ2)∨S

′(τ1, τ2)). Here τ1 and τ2 are arbitrary terms (i.e., variables or onstants). In e�et,the sentenes of Ξ1 annot distinguish a given tuple in S from an idential one in S ′. It is easy tosee that Ξ1 is information monotone (sine it is a subset of WFF(E1, ∃+)). Furthermore, bothof the solutionsM ′
01 = M ′

00∪{R(a2, b2, c2), S(c2, d2)} andM ′′
01 = M ′

00∪{R(a2, b2, c2), S
′(c2, d2)}are optimal under this measure.By hoosing a suitable update lassi�er, rather broad notions of equivalene are heneahievable, so there is a tradeo� between the generality of the update lassi�er and how �equiv-alent� the various optimal solutions really are. In the example skethed above, the solutions arenot isomorphi in any reasonable sense. On the other hand, for StdUCP(E0,M00), all optimalsolutions are naturally isomorphi, a nontrivial result whih requires some work to establish;the rest of this setion is devoted to that task.3.7 Constant endomorphisms An endomorphism on D is a funtion h : Const(D) →

Const(D) whih preserves attribute types, in the preise sense that for eah A ∈ AD andeah a ∈ ConstD(A), h(a) ∈ ConstD(A). If h is additionally a bijetion, then it is alled anautomorphism of D. For S ⊆ Const(D), all h S-invariant if h(a) = a for all a ∈ S.Given a database shema D, an endomorphism on D indues a mapping from GrAtoms(D)to itself given by sending t ∈ GrAtoms(D) to the tuple t′ with t′[RName] = t[RName] and
t′[A] = t[h(A)] for all A ∈ Art[RName] . This mapping on atoms will also be represented by h, aswill the indued mapping from DB(D) to itself given by M 7→ {h(t) | t ∈ M}.Report: 20071118 FoIKS2008 page 9



3.8 Armstrong models in an information-monotone ontext Let Ψ ⊆ WFS(D) andlet Φ ⊆ Ψ. Informally, an Armstrong model for Φ relative to Ψ is a model of Φ whih satis�esonly those onstraints of Ψ whih are implied by Φ. More formally, an Armstrong model for
Φ relative to Ψ is an M ∈ ModI(Φ) with the property that for any ψ ∈ Ψ, if M ∈ ModI(ψ),then ModI(Φ) ⊆ ModI(ψ). Armstrong models have been studied extensively for databasedependenies; see, for example, [Fag82℄ and [FV83℄. In the urrent ontext, it will be shownthat if (M1,M2) is a StdUCP(D,M1)-optimal re�etion of the update request (M1, N2), thenM2is a minimal Armstrong model with respet to StdUCP(D,M1). It will furthermore be shownthat if (M1,M

′
2) is another suh optimal re�etion, there is an an automorphism h whih isonstant on ConstD(M) with M ′

2 = h(M2).3.9 Representation of ∃∧+-sentenes as sets of D-atoms There is an alternativesyntati representation for formulas in WFS(D, ∃∧+) whih will be used in that whih follows.Spei�ally, for ϕ ∈ WFS(D, ∃∧+) de�ne AtRep(ϕ) to be the set of all atoms whih our asonjunts in ϕ. For example, if ϕ = (∃x1)(∃x2)(∃x3)(R(x1, a)∧R(x1, b)∧S(x2, a)∧T (x2, x3)) then
AtRep(ϕ) = {R(x1, a), R(x1, b), S(x2, a), T (x2, x3)}.This representation is dual to that used in theorem-proving ontexts in lassial arti�ialintelligene [GN87, 4.1℄. Here the variables are existentially quanti�ed and the atoms areonjunts of one another; in the AI setting the atoms are disjunts of one another and thevariables are universally quanti�ed.3.10 Substitutions Let V = {v1, v2, . . . , vn} ⊆ GenVars(D). A (onstant) substitution for
V (in D) is a funtion s : V → Const(D). If s(xi) = ai for i ∈ {1, 2, . . . , n}, following (some-what) standard notation this substitution is often written {a1/x1, a2/x2, . . . , an/xn} (althoughsome authors [GN87, 4.2℄ write {x1/a1, x2/a2, . . . , xn/an} instead).Let ϕ ∈ WFS(D, ∃∧+) with Vars(ϕ) ⊆ V . Call s orretly typed for ϕ if for eah t ∈
AtRep(ϕ) and eah A ∈ ArD(t[RName]), if t[A] ∈ Vars(D) then s(t[A]) ∈ ConstD(A). De�ne
Subst(ϕ, s) to be the set of ground atoms obtained by substituting s(xi) for xi in AtRep(ϕ). Forexample, with s = {a1/x1, a2/x2, a3/x3} and AtRep(ϕ) = {R(x1, a), R(x1, b), S(x2, a), T (x2, x3)},
Subst(ϕ, s) = {R(a1, a), R(a1, b), S(a2, a), T (a2, a3)}.Now let Φ ⊆ WFS(D, ∃∧+) be a �nite set. A substitution set for Φ is a Φ-indexed set
S = {sϕ | ϕ ∈ Φ} of substitutions, with sϕ a substitution for Vars(ϕ). S is free for Φ ifeah sϕ is orretly typed for ϕ, injetive, and, furthermore, for any distint ϕ1, ϕ2 ∈ Φ,
sϕ1

(Vars(ϕ1)) ∩ sϕ2
(Vars(ϕ2)) = ∅.For a free substitution S, the anonial model de�ned by (Φ, S) is obtained by applying thesubstitution sϕ to ϕ for eah ϕ ∈ Φ. Formally, CanMod〈Φ, S〉 =

⋃
{Subst(ϕ, sϕ) | ϕ ∈ Φ}.For an illustrative example, let ϕ1 = (∃x1)(∃x2)(∃x3)(R(x1, x2)∧R(x2, x3)), ϕ2 =

(∃x1)(∃x2)(∃x3)(R(a1, x1)∧S(x1, a2)∧T (x2, x3)∧T (x2, a3)), ϕ3 = R(a1, a2), and ϕ4 = S(a2, a3),with the ai's all distint onstants, and let Φ = {ϕ1, ϕ2, ϕ3, ϕ4}. Put sϕ1
= {b11/x1, b12/x2,

b13/x3} sϕ2
= {b21/x1, b22/x2, b23/x3}, and sϕ3

= sϕ4
= ∅, with all of the bij 's distint on-stants. Then S = {sϕ1

, sϕ2
, sϕ3

, sϕ4
} is free for Φ, with Subst(ϕ1, sϕ1

) = {R(b11, b12), S(b12, b13)},
Subst(ϕ2, sϕ2

) = {R(a1, b21), S(b21, a2), T (b22, b23), T (b22, a3)}, Subst(ϕ3, sϕ3
) = {R(a1, a2)}, and

Subst(ϕ4, sϕ4
) = {S(a2, a3)}. Unfortunately, while CanMod〈Φ, S〉 = {Subst(ϕi, sϕi

) | 1 ≤ i ≤
4} is an Armstrong model for {ϕi | 1 ≤ i ≤ 4}with respet to WFF(D, ∃∧+), it is not notminimal. The problem is that there is redundany within Φ, whih results in redundany inReport: 20071118 FoIKS2008 page 10



the anonial model. For example, it is easy to see that ϕ1 is a logial onsequene of ϕ2, and so
Subst(ϕ1, sϕ1

) an be removed from CanMod〈Φ, S〉 entirely, with the result still an Armstrongmodel. While this problem ould be resolved by hoosing the substitutions more leverly, it ismore straightforward to normalize the the set of sentenes before applying the onstrution ofthe anonial model, as developed next.3.11 Redution steps To onstrut a minimal Armstrong model from a set Φ ⊆
WFS(D, ∃∧+), it is �rst neessary to normalize Φ by applying three simple redution rules,de�ned as follows.Deomposition: For ϕ ∈ Φ, if {X1, X2} partitions AtRep(ϕ) into disjoint sets, and

ModI(AtRep−1(X1)) ∩ ModI(AtRep−1(X2)) = ModI(ϕ), then remove ϕ from Φ and addboth AtRep−1(X1) and AtRep−1(X2).Collapsing: For ϕ ∈ Φ, if {X1, X2} partitions AtRep(ϕ) into disjoint sets, and
ModI(AtRep−1(X1)) ⊆ ModI(AtRep−1(X2)), then remove ϕ from Φ and add AtRep−1(X1).Minimization: If ModI(Φ \ {ϕ}) = ModI(Φ), then remove ϕ from Φ.It is lear that eah of these steps preserves ModI(Φ), and that they may only be applieda �nite number of times before none is appliable. Call Φ redued if none of these steps isappliable.A simple example will help illustrate how these rules work. Let Φ be as in 3.10 above. Usingthe deomposition rule, AtRep(ϕ2) = {R(a1, x1), R(x1, a2), T (x2, x3), T (x2, a3)}may be replaedwith {R(a1, x1), S(x1, a2)} and {T (x2, x3), T (x2, a3)}, sine these two sets have no variables inommon. Next, {T (x2, x3), T (x2, a3)} may be replaed with {T (x2, a3)} using the ollapsingrule. Finally, ϕ1 may be removed using the minimization rule, sine it is a onsequene of ϕ3∧ϕ4.The �nal redued version of Φ is thus {(∃x1)(R(a1, x1)∧S(x1, a2)), (∃x2)(T (x2, a3)), R(a1, a2),

S(a2, a3)}. Note that (∃x1)(R(a1, x1)∧S(x1, a2)) is not a onsequene of R(a1, a2) and S(a2, a3),and so it annot be removed by this proedure. A minimal Armstrong model is obtained bysubstituting a distint new onstant for eah variable: {R(a1, b1), R(b1, a2), T (b2, a3), R(a1, a2),
S(a2, a3)}. Furthermore, this model is obtained from the one of 3.10 above via the endomor-phism whih maps b11 7→ a1, b12 7→ a2, b13 7→ a3, b21 7→ b1, b22 7→ b2, b23 7→ a3, and is theidentity on everything else. To establish this result in a ompletely formal fashion requires abit of work, and is presented below.3.12 Theorem � Charaterization of minimal Armstrong models Let Φ ⊆
WFS(D, ∃∧+) be a �nite set of onstraints, and assume furthermore that Φ is redued in thesense of 3.11 above. Let S be a substitution set whih is free for Φ. Then the following hold.(a) CanMod〈Φ, S〉 is a minimal Armstrong model for Φ relative to WFS(D,ConstSym(Φ), ∃∧+).(b) For any M ∈ ModI(Φ), there is a ConstSym(Φ)-invariant endomorphism h on D with

h(CanMod〈Φ, S〉) ⊆M .() IfM is any other minimal Armstrong model for Φ relative to WFS(D,ConstSym(Φ), ∃∧+),then there is a ConstSym(Φ)-invariant automorphism h on D with h(CanMod〈Φ, S〉) = M .Report: 20071118 FoIKS2008 page 11



Proof: It is immediate that CanMod〈Φ, S〉 is a model of Φ. It is furthermore easy to seethat it is minimal; if any tuple is deleted, the ϕ ∈ Φ assoiated with the tuple in CanMod〈Φ, S〉is no longer satis�ed, sine Φ is assumed to be minimized, as de�ned in 3.11 above. To showthat it is an Armstrong model, let ψ ∈ WFS(D, ∃∧+) for whih ModI(Φ) ⊆ ModI(ψ) doesnot hold, and let S ′ be a substitution set, free for Φ ∪ {ψ}, whih is built from S by adding asubstitution assoiated with ψ. Let the resulting set of onstraints by the redution steps of3.11 from Φ ∪ {ψ} be denoted by Φ′. For the redution steps of 3.11, it su�es to note that ψannot be removed by minimization. Hene CanMod〈Φ′, S ′〉 ⊆ CanMod〈Φ, S〉 annot hold, andso CanMod〈Φ, S〉 annot be a model of ψ, whene CanMod〈Φ, S〉 is an Armstrong model of Φ.To establish (b), let M ∈ ModI(Φ), and for eah ϕ ∈ Φ, let Mϕ be a minimal subset of Mwith Mϕ ∈ ModI(ϕ). Let Vϕ denote the set of variables of sϕ ∈ S. It is easy to see that theremust be a substitution s′′ with Vars(s′′) = Vϕ and Subst(ϕ, s′′) = Mϕ. Indeed, there is triviallya substitution with Subst(ϕ, s′′) ⊆ Mϕ, but if the subset inlusion were proper, Mϕ would notbe minimal.Now de�ne h : sϕ(Vϕ) → s′′(Vϕ) by a 7→ s′′(s−1
ϕ (a)). Sine sϕ is injetive, h is well de�ned.Sine sϕ1

(Vars(ϕ1)) ∩ sϕ2
(Vars(ϕ2)) = ∅ for distint ϕ1, ϕ2 ∈ Φ, there are no on�its in thisde�nition of h. Finally, extend h to be the identity on all a ∈ Const(D) whih are not overed bythe above de�nition. The result is a endomorphism on D whih satis�es h(CanMod〈Φ, S〉) ⊆M .To show (), let M be any other minimal Armstrong model for Φ relative to

WFS(D,ConstSym(Φ))∃∧+. In the above onstrution for the proof of (b), the resulting hmust be surjetive (else M would not be minimal), and it must be injetive (sine there mustalso be an endomorphism in the opposite diretion, and both CanMod〈Φ, S〉 and M are �nite,by assumption). Hene, h is an automorphism. 2The desired result, that any two optimal realizations are isomorphi up to a renaming viaan automorphism, follows diretly as a orollary.3.13 Corollary � Optimal updates are unique up to onstant automorphism Let
(M1, N2) be an update request from Γ to D, and let (M1,M2) and (M1,M

′
2) be

〈StdUCP(D,M1),UpdRealiz〈M1, N2,Γ〉〉-optimal realizations of (M1, N2). Then there is a
ConstSym+

D(M)-invariant automorphism h on D with M ′
2 = h(M2). 2In some ways, the onstrution given above is similar to the onstrution of the universalsolutions of [FKMP05, Def. 2.4℄, in that both are based upon similar notions of endomorphism(there termed homomorphism). However, those universal solutions are not required to beminimal. On the other hand, they are not limited to positive sentenes, but rather apply toXEIDs, as developed in the next setion.4. Optimal Insertion in the Context of XEIDsIn this setion, it is shown that in the ontext of database onstraints whih are extendedembedded impliational dependenies (XEIDs), and views whih are of lass ∃∧+, all admissiblerealizations of an insertion request are optimal. In other words, there annot be non-isomorphiminimal realizations of an update request whih is an insertion. To establish this isomorphism,it is neessary to rule out the kind of non-isomorphi alternatives whih are illustrated inReport: 20071118 FoIKS2008 page 12



3.6. The logial formulation whih formalizes this idea is splitting of disjuntions. Informally,disjuntion splitting [Fag82, Thm. 3.1()℄ stipulates that nondeterminism in logial impliationannot our. If a set Ψ1 of sentenes implies the disjuntion of all sentenes in Ψ2, then itmust in fat imply some sentene in Ψ2. Sine Ψ2 may be in�nite, the notion of disjuntionmust be formulated arefully.4.1 Notational onvention Throughout this setion, unless stated expliitly to the on-trary, take Σ to be an update lassi�er for D.4.2 Splitting of disjuntions over �nite databases The family Φ ⊆ WFS(D) splitsdisjuntions over �nite databases if whenever Ψ1,Ψ2 ⊆ Φ with Ψ2 nonempty have the propertythat RNeModI(Ψ1) ⊆
⋃
{RNeModI(ψ

′) | ψ′ ∈ Ψ2}, then there is a ψ ∈ Ψ2 with RNeModI(Ψ1) ⊆
RNeModI(ψ). The limitation to relationwise-nonempty databases is a tehnial one whih willultimately be neessary. The de�nition an, of ourse, be made without this restrition, andeven 4.3 below is true without it, but the ritial result 4.9 would fail. Sine requiring databasesto be relationwise nonempty is not muh of restrition, it is easiest to require it throughout.De�ne SDConstr〈D,Γ,Σ〉 = Constr(D)∪GrAtoms(D)∪{Subst〈γ, t〉 | t ∈ GrAtoms(V)}∪Σ.Basially, SDConstr〈D,Γ,Σ〉 is the set of all sentenes whih an arise in the onstrution ofupdates on D indued via updates on the view Γ. Constr(D) is (a basis for) the set of allonstraints on D, GrAtoms(D) is the set of all ground atoms whih an our in a database of
D, {Subst〈γ, t〉 | t ∈ GrAtoms(V)} is the set of all sentenes on D whih an arise by re�etingan atom of the view Γ to the main shema, and Σ is the set of all sentenes whih are used inmeasuring information ontent. If all of these together split disjuntions, the onstrutions willwork. Formally, say that the triple (D,Γ,Σ) supports disjuntion splitting over �nite databasesif SDConstr〈D,Γ,Σ〉 splits disjuntions over �nite databases.4.3 Theorem � Disjuntion splitting implies that admissible insertions are opti-mal Assume that (D,Γ,Σ) supports disjuntion splitting over �nite databases, and let (M1, N2)be an insertion request from Γ to D with the property that M1 is relationwise nonempty. Thenall 〈Σ, ↑〉-admissible realizations of (M1, N2) are 〈Σ, ↑〉-optimal.Proof: First of all, observe that Ψ1 = Constr(D) ∪ {Subst〈γ, t〉 | t ∈ N2} ∪ M1 is pre-isely the set of onstraints whih the updated database of D must satisfy; (M1,M2) ∈
InsRealiz〈M1, N2,Γ〉 i� M2 ∈ ModI(Ψ1). Furthermore, sine Ψ1 ⊆ SDConstr〈D,Γ,Σ〉, it splitsdisjuntions over �nite databases.Now, let S denote the set of all M2 ∈ LDB(D) for whih (M1,M2) is a 〈Σ, ↑〉-admissiblerealization of (M1, N2), and assume that S is nonempty. Let Ψ2 denote the set of all ψ ∈ Σ withthe property thatM2 ∈ ModI(ψ) for some, but not all,M2 ∈ S. If Ψ2 = ∅, then all members of
S are Σ-equivalent, and so all are least with respet to Σ and hene 〈Σ, ↑〉-optimal. If Ψ2 6= ∅,then for eah M2 ∈ S, there must be some ψ ∈ Ψ2 with the property that M2 ∈ ModI(ψ).Otherwise, Info〈M2,Σ〉 ( Info〈M ′

2,Σ〉 for all M ′
2 ∈ S ∩ ModI(ψ), whih would ontradit the

Σ-admissibility of any suh M ′
2. Thus RNeModI(Ψ1) ⊆

⋃
{RNeModI(ψ

′) | ψ′ ∈ Ψ2}. Sine
M1 is relationwise nonempty, so too is eah M2 ∈ S. Now, using the fat that Ψ1 splitsdisjuntions, there is some ψ ∈ Ψ2 with the property that RNeModI(Ψ1) ⊆ RNeModI(ψ);Report: 20071118 FoIKS2008 page 13



i.e., that M2 ∈ ModI(ψ) for all M2 ∈ S. This is a ontradition, and so Ψ2 = ∅. Thus all
〈Σ, ↑〉-admissible realizations of (M1, N2) are are 〈Σ, ↑〉-optimal. 24.4 Extended tuple databases The results whih follow use heavily the framework devel-oped by Fagin in [Fag82℄. It is neessary in partiular to be able to onstrut in�nite produtsof databases. This leads to two ompliations. First of all, the databases of this paper are�nite, while suh produts may be in�nite. Seond, the databases of this paper here have a�xed bijetive orrespondene between the domain of the interpretation and onstant symbolswhih annot be preserved ompletely under produts. Fortunately, suh produts are not re-ally used as databases; rather they are just artefats whih arise in the proof to show that aertain ontext supports the splitting of disjuntions. The solution is to embed the D-tuples ofthis paper into a larger set, alled the extended D-tuples, and to arry out the in�nite-produtonstrutions on databases of these extended tuples. Sine every tuple database in the sense ofthis paper is also an extended database, the results will follow.Formally, an extended tuple database M over D onsists of the following:(xtdb-i) A set Dom(M), alled the domain of M .(xtdb-ii) An injetive funtion ιM : DomI → Dom(M).(xtdb-iii) A (not neessarily �nite) set XTuples(M) of extended D-tuples over (Dom(M), ιM ).For R ∈ Rels(D), an extended R-tuple t over (Dom(M), ιM ) is a funtion t : {RName} ∪
ArD(R) → Dom(M) ∪ Rels(D) with the property that t[RName] = R and, for all A ∈ AD,if t[A] ∈ ιM(DomI), then ι−1

M (t[A]) ∈ DomI(A). An extended D-tuple over (Dom(M), ιM )is an extended R-tuple over that same pair for some R ∈ Rels(D). XTuples(M) denotes⋃
{XTuples(R,M) | R ∈ Rels(D)}. The olletion of all extended tuple databases over D isdenoted XTDB(D), with RNeXTDB(D) denoting the subolletion onsisting of all relationwise-nonempty members (obvious de�nition). As a slight abuse of notation, t ∈ M will be used asshorthand for t ∈ XTuples(M).Note that every M ∈ TDB(D) may be regarded as an extended tuple database by setting

Dom(M) = DomI and taking ιM to be the identity funtion. In an extended D-tuple, domainelements whih are not in ιM(DomI) are not assoiated with any onstant symbol.For ϕ ∈ WFS(D), de�ne XModI(ϕ) to be the set of M ∈ XTDB(D) whih interpret theonstant symbols aording to IntFnI , and whih are models (in the usual logial sense) of both
ϕ and UNA(D). For Φ ⊆ WFS(D), XModI(Φ) =

⋂
{XModI(ϕ) | ϕ ∈ Φ}. The relationwise-nonempty versions, RNeXModI(ϕ) and RNeXModI(Φ), are de�ned analogously. Note that

ModI(ϕ) ⊆ XModI(ϕ) and RNeModI(ϕ) ⊆ RNeXModI(ϕ) under these de�nitions; i.e., ordinarymodels are extended models.4.5 Produts of extended tuple databases Let P = {Mj | j ∈ J} be an indexed setof nonempty extended tuple databases over D. The D-produt of P , denoted �
D(P ), is theextended tuple database de�ned as follows:(i) Dom(�D(P )) =

∏
j∈J Dom(Mj).(ii) ι�D (P ) : x 7→ 〈ιMj

(x)〉j∈J (the J-tuple whose jth entry is ιMj
(x)).Report: 20071118 FoIKS2008 page 14



(iii) XTuples(R,�D(P )) = {�〈tj〉j∈J | tj ∈ XTuples(R,Mj)}.In the above, t′ = �〈tj〉j∈J is the extended R-tuple with t′[A] = 〈tj [A]〉j∈J for eah A ∈ ArD(R).Call �
D(P ) lossless if eah Mj an be reovered from it. Note that �

D(P ) is lossless if eah
Mj ∈ P is in RNeXTDB(D); however, given R ∈ Rels(D), if some Mj ontains no R-tuples,then the entire produt will ontain no R-tuples. Sine it is essential to be able to reover Pfrom �

DD, the ondition that eah Mj ∈ P be relationwise nonempty will be enfored.4.6 Splitting of disjuntions over extended databases 4.2 an be extended in theobvious fashion to extended databases. Spei�ally, the family Φ ⊆ WFS(D) splits disjun-tions over extended databases if whenever Ψ1 ⊆ Φ and Ψ2 ⊆ Φ with Ψ2 nonempty have theproperty that RNeXModI(Ψ1) ⊆
⋃
{RNeXModI(ψ

′) | ψ′ ∈ Ψ2}, then there is a ψ ∈ Ψ2 with
RNeXModI(Ψ1) ⊆ RNeXModI(ψ). Similarly, the triple SDConstr〈D,Γ,Σ〉 supports disjun-tion splitting over extended databases if SDConstr〈D,Γ,Σ〉 splits disjuntions over extendeddatabases.Beause ordinary tuples may be interpreted as extended tuples, splitting of disjuntionsover extended databases trivially implies splitting of disjuntion over ordinary �nite databases.Due to its importane, this fat is reorded formally.4.7 Observation If the family Φ ⊆ WFS(D) splits disjuntions over extended databases,then it splits disjuntions over �nite databases as well. In partiular, if the triple SDConstr〈D,Γ,Σ〉supports disjuntion splitting over extended databases, then it supports disjuntion splitting over�nite databases. 24.8 Faithful sentenes Informally, a sentene ϕ ∈ WFS(D) is faithful [Fag82℄ if it ispreserved under the formation of produts and under the projetion of fators from produts.Formally, ϕ ∈ WFS(D) is said to be faithful if whenever P = {Mj | j ∈ J} ⊆ RNeXTDB(D)is a nonempty (indexed) set, �

D(P ) ∈ XModI(ϕ) i� Mj ∈ XModI(ϕ) for eah Mj ∈ P . Thefamily Φ ⊆ WFS(D) is faithful preisely in the ase that eah ϕ ∈ Φ is.4.9 Theorem � Faithful ≡ disjuntion splitting Let Φ ⊆ WFS(D). Then Φ is faithfuli� it splits disjuntions over extended databases.Proof: See [Fag82, Thm. 3.1℄. 24.10 XEIDs The extended embedded impliational dependenies (XEIDs) form a very gen-eral lass whih inludes most types of dependenies whih have been studied, inluding fun-tional dependenies, multivalued dependenies, (embedded) join dependenies, and inlusiondependenies. Formally, an XEID [Fag82, Se. 7℄ is a sentene in WFS(D) of the form
(∀x1)(∀x2) . . . (∀xn)((A1∧A2∧ . . . ∧An) ⇒ (∃y1)(∃y2) . . . (∃yr)(B1∧B2∧ . . . ∧Bs))suh that eah Ai is a relational atom for the same relation, i.e., the left-hand side is unirela-tional, eah Bi is a relational atom or an equality, eah xi ours in some Aj, the left-hand side istyped in the sense that no variable is used for more than one attribute. In the original de�nitionof Fagin, it is also required that n ≥ 1. However, this is an inessential onstraint whih mayReport: 20071118 FoIKS2008 page 15



easily be dropped, as long as at least one of the B′
is is a relational atom (and not an equality). In-deed, let ϕ = (∃y1)(∃y2) . . . (∃yr)(B1∧B2∧ . . . ∧Bs)) ∈ WFS(D, ∃∧+), with Bi, say, a relationalatom for relation symbol R. Let A = R(x1, x2, .., xn) be a relational atom for R with variablesas arguments. Then ϕ′ = (∀x1)(∀x2) . . . (∀xn)(A ⇒ (∃y1)(∃y2) . . . (∃yr)(A∧B1∧B2∧ . . . ∧Bs)) ∈

WFS(D) is equivalent to ϕ, but with n ≥ 1. Thus, without loss of generality, in this papersentenes in WFS(D, ∃∧+) will also be regarded as XEIDs.The set of all XEIDs on D is denoted XEID(D), while those XEIDs involving only theonstant symbols in S ⊆ Const(D) is denoted XEID(D, S).The reason that XEIDS are of interest here is the following.4.11 Proposition Every Φ ⊆ XEID(D) is faithful.Proof: This is essentially [Fag82, Thm. 7.2℄. The only ompliation is the onstant symbols,whih are not part of the framework of [Fag82℄, so the integrity of UNA(D) (not a set ofXEIDs) must be veri�ed. To this end, simply note that a domain value in an extended model isassoiated with onstant a i� eah of its projetions is the domain value IntFnI(a), so UNA(D)is enfored by onstrution. 24.12 Lemma � XEIDs support disjuntion splitting Let Constr(D) ⊆ XEID(D), Γa view of lass ∃∧+, and Σ an update lassi�ation pair for D with Σ ⊆ XEID(D). Then
SDConstr〈D,Γ,Σ〉 supports disjuntion splitting over extended databases.Proof: By onstrution SDConstr〈D,Γ,Σ〉 ⊆ XEID(D), and so the result follows from 4.9and 4.11. 2Finally, the main result on the existene of optimal re�etions may be established.4.13 Theorem � XEIDs imply optimal insertions Let Constr(D) ⊆ XEID(D), Γ aview of lass ∃∧+, (M1, N2) an insertion request from Γ to D with M ∈ RNeLDB(D), and Σan update lassi�ation pair for D with Σ ⊆ XEID(D). Then every 〈Σ, ↑〉-minimal realizationof (M1, N2) is 〈Σ, ↑〉-optimal.Proof: Combine 4.3, 4.12, and 4.7. 24.14 Dependenies whih guarantee minimal realizations The above result statesthat whenever an admissible realization exists, it must be optimal. However, it says nothingabout existene, and, indeed it is possible to onstrut views for whih no Σ-admissible updateexists. For example, let the shema E2 have three relational symbols R[A], S[AB], and T [AB]with the inlusion dependenies R[A] ⊆ S[A], S[A] ⊆ T [A], and T [B] ⊆ S[B]. Let M1 =
{R(a0), S(a0, b0), T (a0, b0)}. Consider the view ΠR[A] = (R[A], πR[A]), whih preserves R butdisards S and T . Let the urrent state of this view be N1 = {R(a0)}; onsider updating it to
N2 = N1 ∪{R(a1)}. For Σ = StdUCP(E2,M1), there is no Σ-admissible realization of (M1, N2).Indeed, a tuple of the form S(a1, b1) must be inserted, and this then implies that one of theform T (a2, b1) must be inserted as well, whih in turn implies that one of the form S(a2, b3)must be inserted, and so forth. It is easy to see that if this sequene is terminated by foringan equality (say, by replaing b3 with b2), then the resulting insertion is not Σ-admissible. Inother words, relative to WFS(D,ConstSym+

D(M1), ∃∧+), there are no admissible solutions. InReport: 20071118 FoIKS2008 page 16



the vernaular of traditional dependeny theory, this is a situation in whih the hase infereneproess does not terminate with a �nite solution [FKMP05, Def. 3.2℄. To ensure termination,attention may be restrited to the sublass of XEIDs onsisting of the weakly ayli tuplegenerating dependenies (TGDs) together with the equality generating dependenies (EGDs).See [FKMP05, Thm. 3.9℄ for details.5. Conlusions and Further DiretionsA strategy for the optimal re�etion of view updates has been developed, based upon theonept of least information hange. It has been shown in partiular that optimal insertionsare supported in a reasonable fashion � they are unique up to a renaming of the newly-insertedonstants. Nonetheless, a number of issues remain for future investigation. Among the mostimportant are the following.Optimization of tuple modi�ation Although the general formulation applies to all types ofupdates, the results fous almost entirely upon insertions. Due to spae limitation, deletionshave not been onsidered in this paper; however, sine deletions introdue no new onstantsor tuples, their analysis is relatively unremarkable within this ontext. Modi�ation of singletuples (�updates� in SQL), on the other hand, are of fundamental importane. With thestandard update lassi�ation pair of 3.6, only very speial ases admit optimal solutions. Thedi�ulty arises from the fat that the framework, whih is based entirely upon informationontent, annot distinguish between the proess of modifying a tuple and that of deleting itand then inserting a new one. Consequently, both appear as admissible updates, but neitheris optimal relative to the other. Further work must therefore look for a way to reapture thedistintion between tuple modi�ation and a delete-insert pair.Appliation to database omponents This investigation began as an e�ort to understand betterhow updates are propagated between database omponents, as forwarded in [Heg07, Se. 4℄,but then took on a life of its own as it was disovered that the omponent-based problemswere in turn dependent upon more fundamental issues. Nevertheless, it is important to returnto the roots of this investigation � database omponents. This inludes not only the purelyautonomous ase, as skethed in [Heg07, Se. 4℄, but also the situation in whih users ooperateto ahieve a suitable re�etion, as introdued in [HS07℄Relationship to work in logi programming The problem of view update has also been studiedextensively in the ontext of dedutive databases. Often, only tuple minimality is onsidered asan admissibility riterion, and the fous then beomes one of identifying e�ient algorithms foridentifying all suh admissible updates [BM04℄. However, some reent work has introdued theidea of using ative onstraints to establish a preferene order on admissible updates [GSTZ03℄.Thus, rather than employing a preferene based upon information ontent, one based uponexpliit rules is employed. The relationship between suh approahes and that of this paperwarrants further investigation. Also, there has been a substantial body of work on updates todisjuntive dedutive databases [FGM96℄, in whih the extensional database itself onsists ofReport: 20071118 FoIKS2008 page 17



a olletion of alternatives. The approah of minimizing information hange in the disjuntiveontext deserves further attention as well.Aknowledgment Muh of this researh was arried out while the author was a visitor at theInformation Systems Engineering Group at the University of Kiel. He is indebted to BernhardThalheim and the members of the group for the invitation and for the many disussions whihled to this work. Also, the anonymous reviewers made numerous suggestions whih (hopefully)have led to a more readable presentation.Referenes[AHV95℄ Serge Abiteboul, Rihard Hull, and Vitor Vianu, Foundations of Databases,Addison-Wesley, 1995.[BS81℄ François Banilhon and Niolas Spyratos, �Update semantis of relational views,�ACM Trans. Database Systems, 6(1981), pp. 557�575.[BM04℄ Andreas Behrend and Rainer Manthey, �Update propagation in dedutivedatabases using soft strati�ation,� in: Georg Gottlob, András A. Benzúr, andJános Demetrovis, eds., Advanes in Databases and Information Systems, 8thEast European Conferene, ADBIS 2004, Budapest, Hungary, September 22-25,2004, Proeesing, pp. 22�36, Volume 3255 of Leture Notes in Computer Siene,Springer-Verlag, 2004.[BL97℄ Fadila Bentayeb and Dominique Laurent, �Inversion de l'algèbre relationnelle etmises à jour,� Tehnial Report 97-9, Université d'Orléans, LIFO, 1997.[BL98℄ Fadila Bentayeb and Dominique Laurent, �View updates translations in relationaldatabases,� in: Pro. DEXA '98, Vienna, Sept. 24-28, 1998, pp. 322�331, 1998.[CGT89℄ Stefano Ceri, Georg Gottlog, and Letizia Tana, Logi Programming andDatabases, Springer-Verlag, 1989.[DB82℄ Umeshwar Dayal and Philip A. Bernstein, �On the orret translation of updateopeartions on relational views,� ACM Trans. Database Systems, 8(1982), pp. 381�416.[Fag82℄ Ronald Fagin, �Horn lauses and database dependenies,� J. Asso. Comp. Mah.,29(1982), pp. 952�985.[FKMP05℄ Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Luian Popa, �Dataexhange: Semantis and query answering,� Theoret. Comput. Si., 336(2005),pp. 89�124.[FV83℄ Ronald Fagin and Moshe Y. Vardi, �Armstrong databases for funtional andinlusion dependenies,� Info. Proess. Lett., 16(1983), pp. 13�19.Report: 20071118 FoIKS2008 page 18



[FGM96℄ José Alberto Fernández, John Grant, and Jak Minker, �Model theoreti approahto view updates in dedutive databases.,� J. Automated Reasoning, 17(1996),pp. 171�197.[GN87℄ Mihael R. Genesereth and Nils J. Nilsson, Logial Foundations of Arti�ial In-telligene, Morgan-Kaufmann, 1987.[GSTZ03℄ Sergio Greo, Cristina Sirangelo, Irina Trubitsyna, and Ester Zumpano, �Preferredrepairs for inonsistent databases,� in: 7th International Database Engineeringand Appliations Symposium (IDEAS 2003), 16-18 July 2003, Hong Kong, China,pp. 202�211, IEEE Computer Soiety, 2003.[Heg04℄ Stephen J. Hegner, �An order-based theory of updates for database views,� Ann.Math. Art. Intell., 40(2004), pp. 63�125.[Heg07℄ Stephen J. Hegner, �A model of database omponents and their interonnetionbased upon ommuniating views,� in: Hannu Jakkola, Yashui Kiyoki, and Take-hiro Tokuda, eds., Information Modelling and Knowledge Systems XXIV, Frontiersin Arti�ial Intelligene and Appliations, IOS Press, 2007, In press.[HS07℄ Stephen J. Hegner and Peggy Shmidt, �Update support for database views viaooperation,� in: Yannis Ioannis, Boris Novikov, and Boris Rahev, eds., Advanesin Databases and Information Systems, 11th East European Conferene, ADBIS2007, Varna, Bulgaria, September 29 - Otober 3, 2007, Proeedings, pp. 98�113,Volume 4690 of Leture Notes in Computer Siene, Springer-Verlag, 2007.[JAK82℄ Barry E. Jaobs, Alan R. Aronson, and Anthony C. Klug, �On interpretationsof relational languages and solutions to the implied onstraint problem,� ACMTrans. Database Systems, 7(1982), pp. 291�315.[Kel85℄ Arthur M. Keller, �Updating relational databases through views,� PhD thesis,Stanford University, 1985.[Lan90℄ Rom Langerak, �View updates in relational databases with an independentsheme,� ACM Trans. Database Systems, 15(1990), pp. 40�66.[Mon76℄ J. Donald Monk, Mathematial Logi, Springer-Verlag, 1976.[PDGV89℄ Jan Paredaens, Paul De Bra, Mar Gyssens, and Dirk Van Guht, The Strutureof the Relational Database Model, Springer-Verlag, 1989.

Report: 20071118 FoIKS2008 page 19


	Introduction
	Motivating example

	The Relational Model
	Two representations of the traditional relational  model
	Relational contexts and constant interpretations
	Tuples and databases
	Schemata with constraints and constrained  databases
	Database morphisms and views


	The General Theory of Updates
	Notational convention
	Updates and reflections
	Information content and -equivalence
	Update difference and optimal reflections
	Information-monotone sentences and update  classifiers
	Examples of update classifiers
	Constant endomorphisms
	Armstrong models in an information-monotone context
	Representation of +-sentences as sets of D-atoms
	Substitutions
	Reduction steps
	Theorem --- Characterization of minimal Armstrong models
	Corollary --- Optimal updates are unique up to constant automorphism


	Optimal Insertion in the Context of XEIDs
	Notational convention
	Splitting of disjunctions over finite databases
	Theorem --- Disjunction splitting implies that admissible insertions are optimal
	Extended tuple databases
	Products of extended tuple databases
	Splitting of disjunctions over extended databases
	Observation
	Faithful sentences
	Theorem --- Faithful  disjunction splitting
	XEIDs
	Proposition
	Lemma --- XEIDs support disjunction splitting
	Theorem --- XEIDs imply optimal insertions
	Dependencies which guarantee minimal  realizations


	Conclusions and Further Directions
	Acknowledgment


