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tFor the problem of re�e
ting an update on a database view to the main s
hema,the 
onstant-
omplement strategies are pre
isely those whi
h avoid all update anomalies,and so de�ne the gold standard for well-behaved solutions to the problem. However,the families of view updates whi
h are supported under su
h strategies are limited, soit is sometimes ne
essary to go beyond them, albeit in a systemati
 fashion. In thiswork, an investigation of su
h extended strategies is initiated for relational s
hemata.The approa
h is to 
hara
terize the information 
ontent of a database instan
e, and thenrequire that the optimal re�e
tion of a view update to the main s
hema embody the leastpossible 
hange of information. To illustrate the utility of the idea, su�
ient 
onditionsfor the existen
e of optimal insertions in the 
ontext of families of extended embeddedimpli
ational dependen
ies (XEIDs) are established. It is furthermore established that allsu
h optimal insertions are equivalent up to a renaming of the new 
onstant symbols whi
hwere introdu
ed in support of the insertion.1. Introdu
tionThe problem of re�e
ting view updates to the main s
hema of a database system is a di�
ultone whose solution invariably involves 
ompromise. The 
onstant-
omplement approa
h [BS81℄is exa
tly the one whi
h avoids all so-
alled update anomalies [Heg04℄, and so is the goldstandard for well-behaved strategies. On the other hand, it is also quite 
onservative regardingthe updates whi
h it admits.Substantial resear
h has been 
ondu
ted on allowing more general view updates in a sys-temati
 fashion. In the 
lassi
al relational 
ontext, mu
h of this work, su
h as [DB82℄, [Kel85℄,[Lan90℄, [BL97℄, and [BL98℄, fo
uses upon translations via the relational algebra. In this work,a quite di�erent, logi
-based approa
h is undertaken. The fundamental point of departure isthat an optimal re�e
tion of a view update is one whi
h minimizes the information 
hange in



the main s
hema, with the information 
ontent of a database measured by the set of senten
esin a 
ertain family whi
h it satis�es. An example will help 
larify the main ideas.1.1 Motivating example Let E0 be the relational s
hema with relations R[ABC] and
S[CD], 
onstrained by the in
lusion dependen
y R[C] ⊆ S[C]. Regard a database as a set ofground atoms over the asso
iated logi
. For example,M00 = {R(a0, b0, c0), R(a1, b1, c1), S(c0, d0),
S(c1, d1)} is su
h a database. Now, let K be a set of 
onstants in the underlying logi
al lan-guage, regarded as domain elements for this s
hema. The information 
ontent of a database
M relative to K is the set of all positive (i.e., no negation, expli
it or impli
it), existential, and
onjun
tive senten
es whi
h are implied by M . Using the notation to be introdu
ed in 3.3, thisinformation 
ontent is denoted Info〈M,WFF(E0 , K, ∃∧+)〉. A basis for this information 
on-tent is a subset Φ ⊆ Info〈M,WFF(E0, K, ∃∧+)〉 su
h that Φ and Info〈M,WFF(E0 , K, ∃∧+)〉are logi
ally equivalent. For K00 = {a0, a1, b0, b1, c0, c1, d0, d1}, the set of all 
onstant sym-bols of M00, the set M00 itself is 
learly a basis for Info〈M00,WFF(E0 , K00, ∃∧+)〉. On theother hand, with K ′

00 = {a0, a1, b0, b1, c0, d0}, a basis for Info〈M00,WFF(E0, K
′
00, ∃∧+)〉 is

{R(a0, b0, c0), S(c0, d0), (∃x)(∃y)(R(a1, b1, x)∧S(x, y))}. Note that the 
onstants in K00 \ K ′
00have been repla
ed by existentially quanti�ed variables.To see how this idea is useful in the 
ontext of view updates, let ΠR[AB] = (R[AB], πR[AB])be the view of E0 whi
h proje
ts R[ABC] onto R[AB] and whi
h drops the relation S en-tirely. Consider M00 to be the initial state of s
hema E0; its image state in the view isthen N00 = {R(a0, b0), R(a1, b1)}. Now, suppose that the view update Insert〈R(a2, b2)〉 is re-quested, so that N01 = N00 ∪ {R(a2, b2)} is the desired new view state, and 
onsider M01 =

M00 ∪ {R(a2, b2, c2), S(c2, d2)} as a proposed re�e
tion to the main s
hema E0. Relative toits entire set K01 = {a0, a1, a2, b0, b1, b2, c0, c1, c2, d0, d1, d2} of 
onstant symbols, a basis for
Info〈M01,WFF(E0 , K01, ∃∧+)〉 is just M01 itself. Similarly, for M02 = M00 ∪ {R(a2, b2, c3),
S(c3, d3)} with K02 = {a0, a1, a2, b0, b1, b2, c0, c1, c3, d0, d1, d3} a basis for
Info〈M02,WFF(E0 , K02, ∃∧+)〉 is just M02 itself. Observe that the proposed updates M01 and
M02 are identi
al up to a renaming of the new 
onstants. The utility of information measureis that it provides a means to re
apture this idea formally; the information 
ontent of ea
h,relative to the set K00 of 
onstant symbols of the original stateM00, is the same. More pre
isely,
Info〈M01,WFF(E0 , K00, ∃∧+)〉 = Info〈M02,WFF(E0 , K00, ∃∧+)〉. A basis for ea
h of these is
I1 = M00 ∪ {(∃x)(∃y)(R(a2, b2, x)∧S(x, y))}. In e�e
t, this measure is indi�erent to whether c2and d2 or c3 and d3 are used.Now, 
onsider the alternative solution M03 = M00 ∪ {R(a2, b2, c3), S(c3, d1)} to this view-update problem. A basis for Info〈M03,WFF(E0 , K00, ∃∧+)〉 is I3 = M00 ∪
{(∃x)(R(a2, b2, x)∧S(x, d1))}, whi
h is stri
tly stronger than I1, sin
e (∃x)(R(a2, b2, x)∧S(x, d1))
|= (∃x)(∃y)(R(a2, b2, x)∧S(x, y))), but not 
onversely. Thus, relative to the information mea-sure de�ned by K00, M03 adds more information to M00 than does M01 or M02. Similarly,
M04 = M00 ∪ {R(a2, b2, c0))} adds more information than does M01 or M02, sin
e a basis for itsinformation 
ontent is just M04 itself, whi
h is stronger than I1, sin
e R(a2, b2, c0)∧S(c0, d0) |=

(∃x)(∃y)(R(a2, b2, x)∧S(x, y))), but not 
onversely.The �rst and primary measure of quality of a re�e
ted update is the 
hange of information
ontent whi
h is indu
es. Under this measure, M01 and M02 are equivalent, and both aresuperior to either of M03 or M04. However, this is by itself not quite adequate. Rather, thereis an additional measure of quality whi
h must be taken into a

ount. To illustrate, 
onsiderReport: 20071118 FoIKS2008 page 2



the proposed solution M05 = M01 ∪M02 = M00 ∪ {R(a2, b2, c2), R(a2, b2, c3), S(c2, d2), S(c3, d3)}to this update problem. It has the same information 
ontent, I1, relative to K00, as do M01and M02. The information measure 
annot distinguish the insertion of two new tuples with
ompletely new 
onstants from the insertion of just one. However, it is 
lear that M05 shouldbe 
onsidered inferior to both M01 and M02 as a solution to the given update problem, sin
e itis a proper superset of ea
h. Therefore, a se
ond 
riterion of quality is invoked; namely thatno solution whose set of 
hanges is a proper superset of those of another 
an be 
onsideredto be superior. It is important to emphasize that it is a in
lusion relationship whi
h applieshere, and not simply a 
ounting argument. For example, 
onsider again the proposed solution
M04. From a stri
t 
ounting point of view, M04 involves fewer 
hanges than do M01 or M02.However, neither M01 nor M02 is a superset of M04. Thus, the superiority of M01 and M02 isnot 
ontradi
ted. In other words, only solutions whi
h are tuple minimal, in the sense that noproper subset of the 
hanges is also an admissible solution, are permitted.The main modelling premise of this paper is that the quality of a view update 
an bemeasured by the amount of 
hange in information 
ontent whi
h it indu
es, and so an optimalre�e
tion of a view update request is one whi
h is both tuple minimal and whi
h indu
es the leastamount of 
hange of information 
ontent. Under this premise, bothM01 andM02 are superior toeither of M03 or M04. Furthermore, sin
e M01 and M02 indu
e the same 
hange in information
ontent, they are equivalent. In Se
tion 3, it is established that, under suitable 
onditions, allsu
h optimal solutions are equivalent, up to a renaming of the 
onstant symbols. In Se
tion4, it is established, again under suitable 
onditions, that for insertions, a minimal solution (interms of 
hange of information 
ontent) must be optimal. These 
onditions in
lude in parti
ulars
hemata 
onstrained by XEIDs � the extended embedded impli
ational dependen
ies of Fagin[Fag82℄, whi
h in
lude virtually all other 
lasses of 
lassi
al database dependen
ies.In summary, there are two 
onditions whi
h must be met for optimality of a proposed updatere�e
tion u. First, it must be tuple minimal, in that there 
an be no other solution whose setof 
hanges is a proper subset of those of u. Se
ond, it must be information least in terms ofa spe
i�
 set of senten
es. This approa
h applies also to deletions and updates whi
h involveboth insertion and deletion, and this generality is in
orporated into the formalism whi
h ispresented. However, for deletions the two measures will 
oin
ide, sin
e no new 
onstants areinvolved in a deletion.2. The Relational Model2.1 Two representations of the traditional relational model In the traditional ap-proa
h to the relational model [PDGV89℄ [AHV95℄, the starting point is a set A of attributes,a �nite nonempty set Rels of of relation symbols, and a fun
tion Ar : Rels → A whi
h as-signs to ea
h R ∈ Rels a set Ar(R) ⊆ A, the attributes of R. Furthermore, to ea
h A ∈ Ais asso
iated a (usually 
ountably in�nite) domain dom(A). An R-tuple is then a fun
tion
t : Ar(R) → dom(A), and a relational database over (A, dom) is a 
olle
tion of R-tuples forea
h R ∈ A.From a logi
al point of view, there are two 
ommon interpretations of the domain ele-ments. In logi
 programming, they are usually taken to be 
onstant symbols of the underlyinglogi
. Tuples then be
ome ground atoms, with (extensional) databases �nite sets of su
h atoms[CGT89℄. Furthermore, in that 
ontext, the set of all 
onstant symbols is usually taken to beReport: 20071118 FoIKS2008 page 3



�nite, in order to allow �rst-order axiomatization of domain 
losure. On the other hand, formodel-theoreti
 
onstru
tions, su
h as those of [Fag82℄, it is ne
essary to interpret the relationaldomain elements as members of the underlying set of a stru
ture [Mon76, Def. 11.1℄, and toallow these sets to be 
ountably in�nite is essential. Both representations of tuples are 
ru
ialto this paper, so it is ne
essary to establish a bije
tive 
orresponden
e between them. To a
-
omplish this, it is �rst ne
essary to establish a bije
tive 
orresponden
e between the elementsof the stru
ture and the 
onstant symbols. This requires some 
are, sin
e this 
ondition 
annotbe stated using �nite senten
es in �rst-order logi
. The solution employed in this paper is touse the same 
ountable underlying set for all stru
tures, and then to �x a bije
tion betweenthe 
onstant symbols and the stru
ture elements. This bije
tion is invariant a
ross all the mains
hemata and the view to be updated. On
e su
h a bije
tion of elements and 
onstants is es-tablished, a 
orresponding bije
tion of tuples and ground atoms, and 
onsequently of databasesrepresented in these two distin
t formats, follows dire
tly.2.2 Relational 
ontexts and 
onstant interpretations A relational 
ontext 
ontainsthe logi
al information whi
h is shared amongst the distin
t s
hemata and the 
orrespondingdatabase mappings: the attribute names, the variables, and 
onstant symbols. Formally, arelational 
ontext D 
onsists of attribute names AD, variables Vars(D), and for ea
h A ∈ AD,a set ConstD(A) of 
onstant symbols. The variables Vars(D) are further partitioned into twodisjoint sets; a 
ountable set GenVars(D) = {x0, x1, x2, . . .} of general variables, and spe
ial
AD-indexed set AttrVars(D) = {xA | A ∈ AD} of attribute variables. The latter are used in thede�nition of interpretation mappings; see 2.5 for details.A 
onstant interpretation provides a model-theoreti
 interpretation for the 
onstant sym-bols, in the sense of [Mon76, Def. 11.1℄. It is also �xed over all databases of all s
hemata.Formally, a 
onstant interpretation for the relational 
ontext D is a pair I = (DomI , IntFnI) inwhi
h DomI is a 
ountably in�nite set, 
alled the domain of I, and IntFnI : Const(D) → DomIis a bije
tive fun
tion, 
alled the interpretation fun
tion of I. Note that the latter e�e
tivelystipulates the following two well-known 
onditions [GN87, p. 120℄:Domain 
losure: (∀x)(

∨
a∈Const(D) x = a) (DCA(D))Unique naming: (¬(a = b)) for distin
t a, b ∈ Const(D) (UNA(D))Sin
e there are 
ountably many 
onstant symbols, the domain 
losure axiom is not a �nitedisjun
tion. This is not a problem however, sin
e it is never used in an otherwise �rst-orderset of 
onstraints. Ex
ept for the extended tuple databases of 4.4, in whi
h this 
onstraint isrelaxed, the assignment of domain values to 
onstants is �xed, and so it is not ne
essary toverify that it holds.For A ∈ AD , de�ne DomI(A) = {z ∈ DomI | IntFnI(z) ∈ ConstD(A)}. Thus, DomI(A) isthe set of all domain values whi
h are asso
iated with attribute A.As a notational 
onvention, from this point on, unless stated otherwise, �x relational 
ontext

D and a 
onstant interpretation I = (DomI , IntFnI) for it.2.3 Tuples and databases An un
onstrained relational s
hema over (D, I) is a pair D =
(Rels(D),ArD) in whi
h Rels(D) is �nite set of relational symbols and ArD : Rels(D) → 2

AD afun
tion whi
h assigns an arity, a set of distin
t attributes from AD, to ea
h R ∈ Rels(D).Report: 20071118 FoIKS2008 page 4



It is now possible to address the problem of modelling databases in the two distin
t waysidenti�ed in 2.1 above. For R ∈ Rels(D), an R-tuple is a fun
tion t on ArD(R) with theproperty that t[A] ∈ DomI(A) for every A ∈ ArD . Similarly, an R-atom is su
h a fun
tionwith the property that t[A] ∈ ConstD(A) ∪ GenVars(D) ∪ {xA}. A ground R-atom 
ontains novariables, so t[A] ∈ ConstD(A). The set of all R-tuples (resp. R-atoms, resp. ground R-atoms)is denoted Tuples(D), (resp. Atoms(D), resp. GrAtoms(D)). In view of 2.2 above, it is easyto see that there is a bije
tive 
orresponden
e between GrAtoms(D) and Tuples(D) given by
t(a1, a2, . . . , an) 7→ t(IntFnI(a1), IntFnI(a2), . . . IntFnI(an)).It will be ne
essary to work with sets of R-tuples and sets of R-atoms, with R ranging overdistin
t relation symbols. A D-tuple is an R-tuple for some R ∈ Rels(D), with the set of all
D-tuples denoted Tuples(D). A tuple database for D is a �nite subset of Tuples(D), with the setof all tuple databases for D denoted TDB(D). The D-atoms and ground D-atoms are de�nedanalogously, with the 
orresponding sets denoted Atoms(D) and GrAtoms(D), respe
tively. Anatom database for D is a �nite subset of GrAtoms(D); the set of all atom databases for D isdenoted DB(D).In the above de�nitions, it is ne
essary to be able to re
over the asso
iated relation froma tuple, and so tagging is employed, in whi
h tuples are marked with the asso
iated relation.Formally, this is a

omplished by introdu
ing a new attribute RName 6∈ AD , and then regardingan R-tuple not as a fun
tion t just on ArD(R) but rather as one on on {RName}∪ArD(R) withthe property that t[RName] = R. Tagging of R-atoms is de�ned analogously; both will be usedfrom this point on throughout the paper. Nevertheless, in writing tuples, the more 
onventionalnotation R(τ1, τ2, . . . , τn) will be used in lieu of the te
hni
ally more 
orre
t (R, τ1, τ2, . . . , τn),although tags will be used in formal 
onstru
tions.For the produ
t 
onstru
tion of 4.5, it is ne
essary to restri
t attention to nonemptydatabases. To this end, 
allM ∈ TDB(D) (resp.M ∈ DB(D)) relationwise nonempty if for ea
h
R ∈ Rels(D), there is at least one R-tuple (resp. R-atom) in M , and de�ne RNeTDB(D) (resp.
RNeDB(D)) to be the set of all relationwise nonempty members of TDB(D) (resp. DB(D)).The �rst-order language asso
iated with the relational s
hema D is de�ned in the naturalway; however, it is useful to introdu
e some notation whi
h identi�es parti
ular sets of formulas.De�ne WFF(D) to be the set of all well-formed �rst-order formulas with equality, in the languagewhose set of relational symbols is Rels(D), whose set of 
onstant symbols is Const(D), and whi
h
ontains no non-nullary fun
tion symbols. The variables are those of D. Additional argumentsmay be given to restri
t this set. If S ⊆ Const(D), then WFF(D, S) denotes the formulas in
WFF(D) whi
h involve only 
onstant symbols from S. In parti
ular, WFF(D, ∅) denotes the setof formulas whi
h do not 
ontain 
onstant symbols. Arguments are also used to limit the logi
al
onne
tives. WFF(D, ∃+) identi�es those formulas whi
h are built up from the 
onne
tives ∧and ∨, using at most existential quanti�ers. WFF(D, ∃∧+) enfor
es the further restri
tion thatdisjun
tion is not allowed. It will be furthermore assumed, in WFF(D, ∃∧+), that equalityatoms (i.e., atoms of the form xi = xj and xi = a) are not allowed. This is not an essentiallimitation; su
h equality 
an always be represented by setting the terms to be equal in theatoms in whi
h they are used. These notations may be 
ombined, with the obvious semanti
s.For example, WFF(D, ∅, ∃∧+) denotes the members of WFF(D, ∃∧+) whi
h do not involve
onstant symbols.

WFS(D) denotes the subset of WFF(D) 
onsisting of senten
es; that is, formulas with nofree variables. The 
onventions regarding additional arguments applies to sets of senten
es asReport: 20071118 FoIKS2008 page 5



well. For example, WFS(D, ∅, ∃∧+) is the subset of WFF(D, ∅, ∃∧+) 
onsisting of senten
es.
M ∈ TDB(D) is an I-model of ϕ ∈ WFS(D) if it is a model of ϕ in the ordinary sense whi
hfurthermore interprets the 
onstant symbols a

ording to I. The set of all I-models of ϕ isdenoted ModI(ϕ). In view of the bije
tion GrAtoms(D) → Tuples(D) identi�ed in 2.3 above, it ispossible to identify I-models with �nite sets of ground atoms. More pre
isely, de�ne the atomi


I-models of ϕ to be AtModI(ϕ) = {M ∈ DB(D) | M ∪ {ϕ} ∪ UNA(D) is 
onsistent}. Clearly,
IntFnI(M) ∈ ModI(ϕ) i� M ∈ AtModI(ϕ). The relationally nonempty versions RNeModI(ϕ)and RNeAtModI(ϕ) are de�ned analogously. Furthermore, all of these de�nitions of modelextend to sets Φ of senten
es in the obvious way; notation su
h as ModI(Φ), RNeModI(Φ),
AtModI(Φ), and RNeAtModI(Φ) will be used throughout.2.4 S
hemata with 
onstraints and 
onstrained databases A relational s
hema over
(D, I) is a triple D = (Rels(D),ArD,Constr(D)) in whi
h (Rels(D),ArD) is an un
onstrainedrelational s
hema over (D, I) and Constr(D) ⊆ WFS(D, ∅) is the set of dependen
ies or 
on-straints of D. Note that 
onstant symbols are not allowed in the 
onstraints.In representing a database as a set of D-atoms, the 
losed-world assumption is impli
it. Onthe other hand, to express what it means for su
h a representation to satisfy a set of 
onstraints,it is ne
essary to state expli
itly whi
h atoms are not true as well. Formally, for M ∈ DB(D),de�ne the diagram of M to be DiagramD(M) = M ∪ {¬t | t ∈ GrAtoms(D) \ M}. De�nethe legal (or 
onstrained) databases of D to be LDB(D) = {M ∈ DB(D) | Diagram

D
(M) ∪

Constr(D) has an I-model} and the nonempty legal databases to be RNeLDB(D) = LDB(D)∩
RNeDB(D).2.5 Database morphisms and views Database morphisms are de�ned using expressionsin the relational 
al
ulus; more formally, they are interpretations of the theory of the view intothe theory of the main s
hema [JAK82℄. Let D1 and D2 be relational s
hemata over (D, I).Given R ∈ Rels(D2), an interpretation for R into D1 is a ϕ ∈ WFF(D) in whi
h pre
isely thevariables {xA | A ∈ ArD(R)} are free, with xA is used to mark the position in the formula whi
his bound to attribute A. The set of all interpretations of R into D1 is denoted Interp(R,D1). Asynta
ti
 morphism f : D1 → D2 is a family f = {fR | R ∈ Rels(D2) and fR ∈ Interp(R,D1)}.Let t ∈ GrAtoms(R,D2). The substitution of t into f , denoted Subst〈f, t〉, is the senten
e in
WFS(D1) obtained by substituting t[A] for xA, for ea
h A ∈ ArD(R). For M ∈ DB(D1), de�ne
f(M) = {t ∈ Atoms(D2) | Subst〈f, t〉 ∪DiagramD1

(M) has an I-model}. f is 
alled a semanti
morphism if it maps legal databases to legal databases; formally, f(M) ∈ LDB(D2) for ea
h
M ∈ LDB(D1).Say that f is of 
lass ∃+ (resp. ∃∧+) if ea
h fR ∈ WFF(D1, ∃+) (resp. fR ∈ WFF(D1, ∃∧+)).It is easy to see that if f is of 
lass ∃+ (resp. ∃∧+), then for ea
h t ∈ Atoms(D2), Subst〈f, t〉 ∈
WFS(D1, ∃+) (resp. Subst〈f, t〉 ∈ WFS(D1, ∃∧+)).Let D be a relational s
hema over (D, I). A (relational) view of D is a pair Γ = (V, γ)in whi
h V is a relational s
hema over (D, I) and γ : D → V is a semanti
 morphism whi
his furthermore semanti
ally surje
tive in the sense that for every N ∈ LDB(V), there is an
M ∈ LDB(D) with f(M) = N . Γ is of 
lass ∃+ (resp. 
lass ∃∧+) pre
isely in the 
ase that γis of that same 
lass.Report: 20071118 FoIKS2008 page 6



3. The General Theory of UpdatesIn this se
tion, the general ideas 
on
erning the information 
ontent of a database state, andthe ideas of optimizing an update relative to su
h 
ontent, are developed. It is furthermoreestablished that for a wide 
lass of s
hemata and views, all optimal updates are isomorphi
 ina natural way.3.1 Notational 
onvention Throughout the rest of this paper, unless stated spe
i�
allyto the 
ontrary, take D to be a relational s
hema over (D, I) and Γ = (V, γ) to be a (relational)view of D.For X an entity (for example, an atom, a formula, a database, et
.), ConstSym(X) denotesthe set of all a ∈ Const(D) whi
h o

ur in X. Similarly, Vars(X) denotes the set of all variableswhi
h o

ur in X. This will not be formalized further, but the meaning should always beunambiguous.3.2 Updates and re�e
tions An update on D is a pair (M1,M2) ∈ LDB(D) × LDB(D).
M1 is the 
urrent state, and M2 the new state. It is an insertion if M1 ⊆ M2, and a deletion if
M2 ⊆M1.To des
ribe the situation surrounding an update request on Γ, it is su�
ient to spe
ify the
urrent state M1 of the main s
hema and the desired new state N2 of the view s
hema V. The
urrent state of the view 
an be 
omputed as γ(M1); it is only the new state M2 of the mains
hema (subje
t to N2 = γ(M2)) whi
h must be obtained from an update strategy. Formally,an update request from Γ to D is a pair (M1, N2) in whi
h M1 ∈ LDB(D) (the old state ofthe main s
hema) and N2 ∈ LDB(V) (the new state of the view s
hema). If γ(M1) ⊆ N2, itis 
alled an insertion request, and if N2 ⊆ γ(M1), it is 
alled a deletion request. Colle
tively,insertion requests and deletion requests are termed unidire
tional update requests. A realizationof (M1, N2) along Γ is an update (M1,M2) on D with the property that γ(M2) = N2. Theupdate (M1,M2) is 
alled a re�e
tion (or translation) of the view update (γ(M1), N2). Theset of all realizations of (M1, N2) along Γ is denoted UpdRealiz〈M1, N2,Γ〉. The subset of
UpdRealiz〈M1, N2,Γ〉 
onsisting of insertions (resp. deletions) is denoted InsRealiz〈M1, N2,Γ〉(resp. DelRealiz〈M1, N2,Γ〉.3.3 Information 
ontent and Φ-equivalen
e Let Φ ⊆ WFS(D) and let M ∈ DB(D).The information 
ontent of M relative to Φ is the set of all senten
es in Φ whi
h are true for
M . More pre
isely, Info〈M,Φ〉 = {ϕ ∈ Φ | M ∈ AtModI(ϕ)}. For ϕ ∈ WFS(D), Info〈M,ϕ〉denotes Info〈M, {ϕ}〉. M1 and M2 are Φ-equivalent if they have the same information 
ontentrelative to Φ; i.e., Info〈M1,Φ〉 = Info〈M2,Φ〉.3.4 Update di�eren
e and optimal re�e
tions The update di�eren
e of an update
(M1,M2) on D with respe
t to a set Φ ⊆ WFS(D) is a measure of how mu
h M2 di�ers from
M1 in terms of satisfa
tion of the senten
es of Φ. Formally, the positive (∆+), negative (∆−),
Report: 20071118 FoIKS2008 page 7



and total (∆) update di�eren
es of (M1,M2) with respe
t to Φ are de�ned as follows:
∆+〈(M1,M2),Φ〉 = Info〈M2,Φ〉 \ Info〈M1,Φ〉

∆−〈(M1,M2),Φ〉 = Info〈M1,Φ〉 \ Info〈M2,Φ〉

∆〈(M1,M2),Φ〉 = ∆+〈(M1,M2),Φ〉 ∪ ∆−〈(M1,M2),Φ〉Note that, given ϕ ∈ ∆〈(M1,M2),Φ〉, it is always possible to determine whether ϕ ∈
∆+〈(M1,M2),Φ〉 or ϕ ∈ ∆−〈(M1,M2),Φ〉 by 
he
king whether or not M1 ∈ AtModI(ϕ). Givenan update request (M1, N2), the quality of a realization (M1,M2) is measured by its updatedi�eren
e. Formally, let Φ ⊆ WFS(D), let (M1, N2) be an update request from Γ to D, let
T ⊆ UpdRealiz〈M1, N2,Γ〉, and let (M1,M2) ∈ T .(a) (M1,M2) is minimal in T with respe
t to Φ if for any (M1,M

′
2) ∈ T , if ∆〈(M1,M

′
2),Φ〉 ⊆

∆〈(M1,M2),Φ〉, then ∆〈(M1,M
′
2),Φ〉 = ∆〈(M1,M2),Φ〉.(b) (M1,M2) is least in T with respe
t to Φ if for all (M1,M

′
2) ∈ T , ∆〈(M1,M2),Φ〉 ⊆

∆〈(M1,M
′
2),Φ〉.3.5 Information-monotone senten
es and update 
lassi�ers For the above de�ni-tions of minimal and least to be useful, it is ne
essary to pla
e 
ertain restri
tions on the natureof Φ. As a 
on
rete example of the problems, de�ne GrAtoms¬(D) = {¬t | t ∈ GrAtoms(D)},with GrAtoms±(D) = GrAtoms(D)∪GrAtoms¬(D). In the 
ontext of 3.4 above, it is easy to seethat every re�e
tion (M1,M2) is minimal with respe
t to GrAtoms±(D), while only identity up-dates (with M1 = M2) are least. Any Φ ⊆ WFS(D) with the property that GrAtoms±(D) ⊆ Φwill have this same property. The problem is that the senten
es in GrAtoms¬(D) are notinformation monotone; adding new tuples redu
es the information 
ontent. The senten
e

ϕ ∈ WFS(D) is information monotone if for any M1,M2 ∈ DB(D) if M1 ⊆ M2, then
Info〈M1, ϕ〉 ⊆ Info〈M2, ϕ〉. The set Φ ⊆ WFS(D) is information monotone if ea
h ϕ ∈ Φhas this property. Any ϕ ∈ WFS(D) whi
h does not involve negation, either expli
itly or im-pli
itly (via impli
ation, for example), is information monotone. Thus, in parti
ular, for any
S ⊆ Const(D), WFS(D, S, ∃+), WFS(D, S, ∃∧+), and GrAtoms(D) all 
onsist of information-monotone senten
es. The total absen
e of negation is not ne
essary, however. Senten
es whi
hallow negation of equality terms (e.g., ¬(xi = xj)) but only existential quanti�
ation are alsoinformation monotone.An update 
lassi�er for D is simply a set Σ of information-monotone senten
es. Theidea is simple: updates whi
h involve less 
hange of information are to be preferred to thosewhi
h involve more. However, as illustrated in the example of 1.1, there are two distin
tmeasures of optimality. On the one hand, an optimal realization (M1,M2) of an update re-quest (M1, N2) must be least with respe
t to the update 
lassi�er, whi
h in that example is
WFS(D,ConstSym(M00), ∃∧+). Unfortunately, this measure 
annot always eliminate solutionswhi
h 
ontain two �isomorphi
� 
opies of the same update, su
h as M05 of that example. Toremedy this, the update must also be minimal with respe
t to Atoms(D); or, equivalently, withrespe
t to the symmetri
 di�eren
e M1 △M2 = (M1 \M2)∪ (M2 \M1). Formally, let (M1, N2)be an update request from Γ to D, let T ⊆ UpdRealiz〈M1, N2,Γ〉, and let (M1,M2) ∈ T .(a) (M1,M2) is 〈Σ, T 〉-admissible if it is minimal in T with respe
t to both Σ and Atoms(D).(b) (M1,M2) is 〈Σ, T 〉-optimal if it is 〈Σ, T 〉-admissible and least in T with respe
t to Σ.Report: 20071118 FoIKS2008 page 8



Roughly, (M1,M2) is admissible if no other realization is better, and it is optimal if it is betterthan all others, up to the equivalen
e de�ned by Σ. Observe that if some update request is
〈Σ, T 〉-optimal, then all 〈Σ, T 〉-admissible update requests are 〈Σ, T 〉-optimal.As a notational shorthand, if T = InsRealiz〈M1, N2,Γ〉 (resp. T = DelRealiz〈M1, N2,Γ〉), thatis, if T is the set of all possible insertions (resp. deletions) whi
h realize (M1, N2), then 〈Σ, T 〉-admissible and 〈Σ, T 〉-optimal will be abbreviated to 〈Σ, ↑〉-admissible and 〈Σ, ↑〉-optimal (resp.
〈Σ, ↓〉-admissible and 〈Σ, ↓〉-optimal).3.6 Examples of update 
lassi�ers For M1 ∈ LDB(D), the standard M1-based update
lassi�er is StdUCP(D,M1) = WFS(D,ConstSym(M1), ∃∧+). As illustrated in 1.1, this 
las-si�er is appropriate for 
hara
terizing optimal insertions. Be
ause it �hides� new 
onstants,optimal solutions whi
h are unique up to 
onstant renaming are easily re
aptured.A mu
h simpler example is GrAtoms(D). It yields optimal solutions only in the 
ase thatsu
h solutions are truly unique. For deletions, this equivalen
e is adequate. In fa
t, for deletions,
StdUCP(D,M1) and GrAtoms(D) always identify the same optimal solutions.There are other possibilities whi
h provide di�erent notions of optimality. Let E1 be thes
hema whi
h is identi
al toE0 of 1.1, save that it in
ludes an additional relation symbol S ′[CD],and the in
lusion dependen
y R[C] ⊆ S[C] is repla
ed with R[C] ⊆ S[C]∪S ′[C]. LetM ′

00 be thestate of E1 whi
h is the extension ofM00 in whi
h the relation of S ′ is empty. The view ΠR[AB] =
(R[AB], πR[AB]) is un
hanged. Under the update 
lassi�er WFS(E1,ConstSym(M ′

00), ∃∧+), theupdate request (M ′
00, N01) (using N01 from 1.1) no longer has an optimal solution, sin
e aminimal solution involves adding a tuple either to S or to S ′ but not to both. However, opti-mality 
an be re
overed formally via an alternative update 
lassi�er. Let Ξ1 denote the subset of

WFS(E1, ∃+) obtained fromWFS(E0, ∃∧+) by repla
ing ea
h o

urren
e of the form S(τ1, τ2) by
(S(τ1, τ2)∨S

′(τ1, τ2)). Here τ1 and τ2 are arbitrary terms (i.e., variables or 
onstants). In e�e
t,the senten
es of Ξ1 
annot distinguish a given tuple in S from an identi
al one in S ′. It is easy tosee that Ξ1 is information monotone (sin
e it is a subset of WFF(E1, ∃+)). Furthermore, bothof the solutionsM ′
01 = M ′

00∪{R(a2, b2, c2), S(c2, d2)} andM ′′
01 = M ′

00∪{R(a2, b2, c2), S
′(c2, d2)}are optimal under this measure.By 
hoosing a suitable update 
lassi�er, rather broad notions of equivalen
e are hen
ea
hievable, so there is a tradeo� between the generality of the update 
lassi�er and how �equiv-alent� the various optimal solutions really are. In the example sket
hed above, the solutions arenot isomorphi
 in any reasonable sense. On the other hand, for StdUCP(E0,M00), all optimalsolutions are naturally isomorphi
, a nontrivial result whi
h requires some work to establish;the rest of this se
tion is devoted to that task.3.7 Constant endomorphisms An endomorphism on D is a fun
tion h : Const(D) →

Const(D) whi
h preserves attribute types, in the pre
ise sense that for ea
h A ∈ AD andea
h a ∈ ConstD(A), h(a) ∈ ConstD(A). If h is additionally a bije
tion, then it is 
alled anautomorphism of D. For S ⊆ Const(D), 
all h S-invariant if h(a) = a for all a ∈ S.Given a database s
hema D, an endomorphism on D indu
es a mapping from GrAtoms(D)to itself given by sending t ∈ GrAtoms(D) to the tuple t′ with t′[RName] = t[RName] and
t′[A] = t[h(A)] for all A ∈ Art[RName] . This mapping on atoms will also be represented by h, aswill the indu
ed mapping from DB(D) to itself given by M 7→ {h(t) | t ∈ M}.Report: 20071118 FoIKS2008 page 9



3.8 Armstrong models in an information-monotone 
ontext Let Ψ ⊆ WFS(D) andlet Φ ⊆ Ψ. Informally, an Armstrong model for Φ relative to Ψ is a model of Φ whi
h satis�esonly those 
onstraints of Ψ whi
h are implied by Φ. More formally, an Armstrong model for
Φ relative to Ψ is an M ∈ ModI(Φ) with the property that for any ψ ∈ Ψ, if M ∈ ModI(ψ),then ModI(Φ) ⊆ ModI(ψ). Armstrong models have been studied extensively for databasedependen
ies; see, for example, [Fag82℄ and [FV83℄. In the 
urrent 
ontext, it will be shownthat if (M1,M2) is a StdUCP(D,M1)-optimal re�e
tion of the update request (M1, N2), thenM2is a minimal Armstrong model with respe
t to StdUCP(D,M1). It will furthermore be shownthat if (M1,M

′
2) is another su
h optimal re�e
tion, there is an an automorphism h whi
h is
onstant on ConstD(M) with M ′

2 = h(M2).3.9 Representation of ∃∧+-senten
es as sets of D-atoms There is an alternativesynta
ti
 representation for formulas in WFS(D, ∃∧+) whi
h will be used in that whi
h follows.Spe
i�
ally, for ϕ ∈ WFS(D, ∃∧+) de�ne AtRep(ϕ) to be the set of all atoms whi
h o

ur as
onjun
ts in ϕ. For example, if ϕ = (∃x1)(∃x2)(∃x3)(R(x1, a)∧R(x1, b)∧S(x2, a)∧T (x2, x3)) then
AtRep(ϕ) = {R(x1, a), R(x1, b), S(x2, a), T (x2, x3)}.This representation is dual to that used in theorem-proving 
ontexts in 
lassi
al arti�
ialintelligen
e [GN87, 4.1℄. Here the variables are existentially quanti�ed and the atoms are
onjun
ts of one another; in the AI setting the atoms are disjun
ts of one another and thevariables are universally quanti�ed.3.10 Substitutions Let V = {v1, v2, . . . , vn} ⊆ GenVars(D). A (
onstant) substitution for
V (in D) is a fun
tion s : V → Const(D). If s(xi) = ai for i ∈ {1, 2, . . . , n}, following (some-what) standard notation this substitution is often written {a1/x1, a2/x2, . . . , an/xn} (althoughsome authors [GN87, 4.2℄ write {x1/a1, x2/a2, . . . , xn/an} instead).Let ϕ ∈ WFS(D, ∃∧+) with Vars(ϕ) ⊆ V . Call s 
orre
tly typed for ϕ if for ea
h t ∈
AtRep(ϕ) and ea
h A ∈ ArD(t[RName]), if t[A] ∈ Vars(D) then s(t[A]) ∈ ConstD(A). De�ne
Subst(ϕ, s) to be the set of ground atoms obtained by substituting s(xi) for xi in AtRep(ϕ). Forexample, with s = {a1/x1, a2/x2, a3/x3} and AtRep(ϕ) = {R(x1, a), R(x1, b), S(x2, a), T (x2, x3)},
Subst(ϕ, s) = {R(a1, a), R(a1, b), S(a2, a), T (a2, a3)}.Now let Φ ⊆ WFS(D, ∃∧+) be a �nite set. A substitution set for Φ is a Φ-indexed set
S = {sϕ | ϕ ∈ Φ} of substitutions, with sϕ a substitution for Vars(ϕ). S is free for Φ ifea
h sϕ is 
orre
tly typed for ϕ, inje
tive, and, furthermore, for any distin
t ϕ1, ϕ2 ∈ Φ,
sϕ1

(Vars(ϕ1)) ∩ sϕ2
(Vars(ϕ2)) = ∅.For a free substitution S, the 
anoni
al model de�ned by (Φ, S) is obtained by applying thesubstitution sϕ to ϕ for ea
h ϕ ∈ Φ. Formally, CanMod〈Φ, S〉 =

⋃
{Subst(ϕ, sϕ) | ϕ ∈ Φ}.For an illustrative example, let ϕ1 = (∃x1)(∃x2)(∃x3)(R(x1, x2)∧R(x2, x3)), ϕ2 =

(∃x1)(∃x2)(∃x3)(R(a1, x1)∧S(x1, a2)∧T (x2, x3)∧T (x2, a3)), ϕ3 = R(a1, a2), and ϕ4 = S(a2, a3),with the ai's all distin
t 
onstants, and let Φ = {ϕ1, ϕ2, ϕ3, ϕ4}. Put sϕ1
= {b11/x1, b12/x2,

b13/x3} sϕ2
= {b21/x1, b22/x2, b23/x3}, and sϕ3

= sϕ4
= ∅, with all of the bij 's distin
t 
on-stants. Then S = {sϕ1

, sϕ2
, sϕ3

, sϕ4
} is free for Φ, with Subst(ϕ1, sϕ1

) = {R(b11, b12), S(b12, b13)},
Subst(ϕ2, sϕ2

) = {R(a1, b21), S(b21, a2), T (b22, b23), T (b22, a3)}, Subst(ϕ3, sϕ3
) = {R(a1, a2)}, and

Subst(ϕ4, sϕ4
) = {S(a2, a3)}. Unfortunately, while CanMod〈Φ, S〉 = {Subst(ϕi, sϕi

) | 1 ≤ i ≤
4} is an Armstrong model for {ϕi | 1 ≤ i ≤ 4}with respe
t to WFF(D, ∃∧+), it is not notminimal. The problem is that there is redundan
y within Φ, whi
h results in redundan
y inReport: 20071118 FoIKS2008 page 10



the 
anoni
al model. For example, it is easy to see that ϕ1 is a logi
al 
onsequen
e of ϕ2, and so
Subst(ϕ1, sϕ1

) 
an be removed from CanMod〈Φ, S〉 entirely, with the result still an Armstrongmodel. While this problem 
ould be resolved by 
hoosing the substitutions more 
leverly, it ismore straightforward to normalize the the set of senten
es before applying the 
onstru
tion ofthe 
anoni
al model, as developed next.3.11 Redu
tion steps To 
onstru
t a minimal Armstrong model from a set Φ ⊆
WFS(D, ∃∧+), it is �rst ne
essary to normalize Φ by applying three simple redu
tion rules,de�ned as follows.De
omposition: For ϕ ∈ Φ, if {X1, X2} partitions AtRep(ϕ) into disjoint sets, and

ModI(AtRep−1(X1)) ∩ ModI(AtRep−1(X2)) = ModI(ϕ), then remove ϕ from Φ and addboth AtRep−1(X1) and AtRep−1(X2).Collapsing: For ϕ ∈ Φ, if {X1, X2} partitions AtRep(ϕ) into disjoint sets, and
ModI(AtRep−1(X1)) ⊆ ModI(AtRep−1(X2)), then remove ϕ from Φ and add AtRep−1(X1).Minimization: If ModI(Φ \ {ϕ}) = ModI(Φ), then remove ϕ from Φ.It is 
lear that ea
h of these steps preserves ModI(Φ), and that they may only be applieda �nite number of times before none is appli
able. Call Φ redu
ed if none of these steps isappli
able.A simple example will help illustrate how these rules work. Let Φ be as in 3.10 above. Usingthe de
omposition rule, AtRep(ϕ2) = {R(a1, x1), R(x1, a2), T (x2, x3), T (x2, a3)}may be repla
edwith {R(a1, x1), S(x1, a2)} and {T (x2, x3), T (x2, a3)}, sin
e these two sets have no variables in
ommon. Next, {T (x2, x3), T (x2, a3)} may be repla
ed with {T (x2, a3)} using the 
ollapsingrule. Finally, ϕ1 may be removed using the minimization rule, sin
e it is a 
onsequen
e of ϕ3∧ϕ4.The �nal redu
ed version of Φ is thus {(∃x1)(R(a1, x1)∧S(x1, a2)), (∃x2)(T (x2, a3)), R(a1, a2),

S(a2, a3)}. Note that (∃x1)(R(a1, x1)∧S(x1, a2)) is not a 
onsequen
e of R(a1, a2) and S(a2, a3),and so it 
annot be removed by this pro
edure. A minimal Armstrong model is obtained bysubstituting a distin
t new 
onstant for ea
h variable: {R(a1, b1), R(b1, a2), T (b2, a3), R(a1, a2),
S(a2, a3)}. Furthermore, this model is obtained from the one of 3.10 above via the endomor-phism whi
h maps b11 7→ a1, b12 7→ a2, b13 7→ a3, b21 7→ b1, b22 7→ b2, b23 7→ a3, and is theidentity on everything else. To establish this result in a 
ompletely formal fashion requires abit of work, and is presented below.3.12 Theorem � Chara
terization of minimal Armstrong models Let Φ ⊆
WFS(D, ∃∧+) be a �nite set of 
onstraints, and assume furthermore that Φ is redu
ed in thesense of 3.11 above. Let S be a substitution set whi
h is free for Φ. Then the following hold.(a) CanMod〈Φ, S〉 is a minimal Armstrong model for Φ relative to WFS(D,ConstSym(Φ), ∃∧+).(b) For any M ∈ ModI(Φ), there is a ConstSym(Φ)-invariant endomorphism h on D with

h(CanMod〈Φ, S〉) ⊆M .(
) IfM is any other minimal Armstrong model for Φ relative to WFS(D,ConstSym(Φ), ∃∧+),then there is a ConstSym(Φ)-invariant automorphism h on D with h(CanMod〈Φ, S〉) = M .Report: 20071118 FoIKS2008 page 11



Proof: It is immediate that CanMod〈Φ, S〉 is a model of Φ. It is furthermore easy to seethat it is minimal; if any tuple is deleted, the ϕ ∈ Φ asso
iated with the tuple in CanMod〈Φ, S〉is no longer satis�ed, sin
e Φ is assumed to be minimized, as de�ned in 3.11 above. To showthat it is an Armstrong model, let ψ ∈ WFS(D, ∃∧+) for whi
h ModI(Φ) ⊆ ModI(ψ) doesnot hold, and let S ′ be a substitution set, free for Φ ∪ {ψ}, whi
h is built from S by adding asubstitution asso
iated with ψ. Let the resulting set of 
onstraints by the redu
tion steps of3.11 from Φ ∪ {ψ} be denoted by Φ′. For the redu
tion steps of 3.11, it su�
es to note that ψ
annot be removed by minimization. Hen
e CanMod〈Φ′, S ′〉 ⊆ CanMod〈Φ, S〉 
annot hold, andso CanMod〈Φ, S〉 
annot be a model of ψ, when
e CanMod〈Φ, S〉 is an Armstrong model of Φ.To establish (b), let M ∈ ModI(Φ), and for ea
h ϕ ∈ Φ, let Mϕ be a minimal subset of Mwith Mϕ ∈ ModI(ϕ). Let Vϕ denote the set of variables of sϕ ∈ S. It is easy to see that theremust be a substitution s′′ with Vars(s′′) = Vϕ and Subst(ϕ, s′′) = Mϕ. Indeed, there is triviallya substitution with Subst(ϕ, s′′) ⊆ Mϕ, but if the subset in
lusion were proper, Mϕ would notbe minimal.Now de�ne h : sϕ(Vϕ) → s′′(Vϕ) by a 7→ s′′(s−1
ϕ (a)). Sin
e sϕ is inje
tive, h is well de�ned.Sin
e sϕ1

(Vars(ϕ1)) ∩ sϕ2
(Vars(ϕ2)) = ∅ for distin
t ϕ1, ϕ2 ∈ Φ, there are no 
on�i
ts in thisde�nition of h. Finally, extend h to be the identity on all a ∈ Const(D) whi
h are not 
overed bythe above de�nition. The result is a endomorphism on D whi
h satis�es h(CanMod〈Φ, S〉) ⊆M .To show (
), let M be any other minimal Armstrong model for Φ relative to

WFS(D,ConstSym(Φ))∃∧+. In the above 
onstru
tion for the proof of (b), the resulting hmust be surje
tive (else M would not be minimal), and it must be inje
tive (sin
e there mustalso be an endomorphism in the opposite dire
tion, and both CanMod〈Φ, S〉 and M are �nite,by assumption). Hen
e, h is an automorphism. 2The desired result, that any two optimal realizations are isomorphi
 up to a renaming viaan automorphism, follows dire
tly as a 
orollary.3.13 Corollary � Optimal updates are unique up to 
onstant automorphism Let
(M1, N2) be an update request from Γ to D, and let (M1,M2) and (M1,M

′
2) be

〈StdUCP(D,M1),UpdRealiz〈M1, N2,Γ〉〉-optimal realizations of (M1, N2). Then there is a
ConstSym+

D(M)-invariant automorphism h on D with M ′
2 = h(M2). 2In some ways, the 
onstru
tion given above is similar to the 
onstru
tion of the universalsolutions of [FKMP05, Def. 2.4℄, in that both are based upon similar notions of endomorphism(there termed homomorphism). However, those universal solutions are not required to beminimal. On the other hand, they are not limited to positive senten
es, but rather apply toXEIDs, as developed in the next se
tion.4. Optimal Insertion in the Context of XEIDsIn this se
tion, it is shown that in the 
ontext of database 
onstraints whi
h are extendedembedded impli
ational dependen
ies (XEIDs), and views whi
h are of 
lass ∃∧+, all admissiblerealizations of an insertion request are optimal. In other words, there 
annot be non-isomorphi
minimal realizations of an update request whi
h is an insertion. To establish this isomorphism,it is ne
essary to rule out the kind of non-isomorphi
 alternatives whi
h are illustrated inReport: 20071118 FoIKS2008 page 12



3.6. The logi
al formulation whi
h formalizes this idea is splitting of disjun
tions. Informally,disjun
tion splitting [Fag82, Thm. 3.1(
)℄ stipulates that nondeterminism in logi
al impli
ation
annot o

ur. If a set Ψ1 of senten
es implies the disjun
tion of all senten
es in Ψ2, then itmust in fa
t imply some senten
e in Ψ2. Sin
e Ψ2 may be in�nite, the notion of disjun
tionmust be formulated 
arefully.4.1 Notational 
onvention Throughout this se
tion, unless stated expli
itly to the 
on-trary, take Σ to be an update 
lassi�er for D.4.2 Splitting of disjun
tions over �nite databases The family Φ ⊆ WFS(D) splitsdisjun
tions over �nite databases if whenever Ψ1,Ψ2 ⊆ Φ with Ψ2 nonempty have the propertythat RNeModI(Ψ1) ⊆
⋃
{RNeModI(ψ

′) | ψ′ ∈ Ψ2}, then there is a ψ ∈ Ψ2 with RNeModI(Ψ1) ⊆
RNeModI(ψ). The limitation to relationwise-nonempty databases is a te
hni
al one whi
h willultimately be ne
essary. The de�nition 
an, of 
ourse, be made without this restri
tion, andeven 4.3 below is true without it, but the 
riti
al result 4.9 would fail. Sin
e requiring databasesto be relationwise nonempty is not mu
h of restri
tion, it is easiest to require it throughout.De�ne SDConstr〈D,Γ,Σ〉 = Constr(D)∪GrAtoms(D)∪{Subst〈γ, t〉 | t ∈ GrAtoms(V)}∪Σ.Basi
ally, SDConstr〈D,Γ,Σ〉 is the set of all senten
es whi
h 
an arise in the 
onstru
tion ofupdates on D indu
ed via updates on the view Γ. Constr(D) is (a basis for) the set of all
onstraints on D, GrAtoms(D) is the set of all ground atoms whi
h 
an o

ur in a database of
D, {Subst〈γ, t〉 | t ∈ GrAtoms(V)} is the set of all senten
es on D whi
h 
an arise by re�e
tingan atom of the view Γ to the main s
hema, and Σ is the set of all senten
es whi
h are used inmeasuring information 
ontent. If all of these together split disjun
tions, the 
onstru
tions willwork. Formally, say that the triple (D,Γ,Σ) supports disjun
tion splitting over �nite databasesif SDConstr〈D,Γ,Σ〉 splits disjun
tions over �nite databases.4.3 Theorem � Disjun
tion splitting implies that admissible insertions are opti-mal Assume that (D,Γ,Σ) supports disjun
tion splitting over �nite databases, and let (M1, N2)be an insertion request from Γ to D with the property that M1 is relationwise nonempty. Thenall 〈Σ, ↑〉-admissible realizations of (M1, N2) are 〈Σ, ↑〉-optimal.Proof: First of all, observe that Ψ1 = Constr(D) ∪ {Subst〈γ, t〉 | t ∈ N2} ∪ M1 is pre-
isely the set of 
onstraints whi
h the updated database of D must satisfy; (M1,M2) ∈
InsRealiz〈M1, N2,Γ〉 i� M2 ∈ ModI(Ψ1). Furthermore, sin
e Ψ1 ⊆ SDConstr〈D,Γ,Σ〉, it splitsdisjun
tions over �nite databases.Now, let S denote the set of all M2 ∈ LDB(D) for whi
h (M1,M2) is a 〈Σ, ↑〉-admissiblerealization of (M1, N2), and assume that S is nonempty. Let Ψ2 denote the set of all ψ ∈ Σ withthe property thatM2 ∈ ModI(ψ) for some, but not all,M2 ∈ S. If Ψ2 = ∅, then all members of
S are Σ-equivalent, and so all are least with respe
t to Σ and hen
e 〈Σ, ↑〉-optimal. If Ψ2 6= ∅,then for ea
h M2 ∈ S, there must be some ψ ∈ Ψ2 with the property that M2 ∈ ModI(ψ).Otherwise, Info〈M2,Σ〉 ( Info〈M ′

2,Σ〉 for all M ′
2 ∈ S ∩ ModI(ψ), whi
h would 
ontradi
t the

Σ-admissibility of any su
h M ′
2. Thus RNeModI(Ψ1) ⊆

⋃
{RNeModI(ψ

′) | ψ′ ∈ Ψ2}. Sin
e
M1 is relationwise nonempty, so too is ea
h M2 ∈ S. Now, using the fa
t that Ψ1 splitsdisjun
tions, there is some ψ ∈ Ψ2 with the property that RNeModI(Ψ1) ⊆ RNeModI(ψ);Report: 20071118 FoIKS2008 page 13



i.e., that M2 ∈ ModI(ψ) for all M2 ∈ S. This is a 
ontradi
tion, and so Ψ2 = ∅. Thus all
〈Σ, ↑〉-admissible realizations of (M1, N2) are are 〈Σ, ↑〉-optimal. 24.4 Extended tuple databases The results whi
h follow use heavily the framework devel-oped by Fagin in [Fag82℄. It is ne
essary in parti
ular to be able to 
onstru
t in�nite produ
tsof databases. This leads to two 
ompli
ations. First of all, the databases of this paper are�nite, while su
h produ
ts may be in�nite. Se
ond, the databases of this paper here have a�xed bije
tive 
orresponden
e between the domain of the interpretation and 
onstant symbolswhi
h 
annot be preserved 
ompletely under produ
ts. Fortunately, su
h produ
ts are not re-ally used as databases; rather they are just artefa
ts whi
h arise in the proof to show that a
ertain 
ontext supports the splitting of disjun
tions. The solution is to embed the D-tuples ofthis paper into a larger set, 
alled the extended D-tuples, and to 
arry out the in�nite-produ
t
onstru
tions on databases of these extended tuples. Sin
e every tuple database in the sense ofthis paper is also an extended database, the results will follow.Formally, an extended tuple database M over D 
onsists of the following:(xtdb-i) A set Dom(M), 
alled the domain of M .(xtdb-ii) An inje
tive fun
tion ιM : DomI → Dom(M).(xtdb-iii) A (not ne
essarily �nite) set XTuples(M) of extended D-tuples over (Dom(M), ιM ).For R ∈ Rels(D), an extended R-tuple t over (Dom(M), ιM ) is a fun
tion t : {RName} ∪
ArD(R) → Dom(M) ∪ Rels(D) with the property that t[RName] = R and, for all A ∈ AD,if t[A] ∈ ιM(DomI), then ι−1

M (t[A]) ∈ DomI(A). An extended D-tuple over (Dom(M), ιM )is an extended R-tuple over that same pair for some R ∈ Rels(D). XTuples(M) denotes⋃
{XTuples(R,M) | R ∈ Rels(D)}. The 
olle
tion of all extended tuple databases over D isdenoted XTDB(D), with RNeXTDB(D) denoting the sub
olle
tion 
onsisting of all relationwise-nonempty members (obvious de�nition). As a slight abuse of notation, t ∈ M will be used asshorthand for t ∈ XTuples(M).Note that every M ∈ TDB(D) may be regarded as an extended tuple database by setting

Dom(M) = DomI and taking ιM to be the identity fun
tion. In an extended D-tuple, domainelements whi
h are not in ιM(DomI) are not asso
iated with any 
onstant symbol.For ϕ ∈ WFS(D), de�ne XModI(ϕ) to be the set of M ∈ XTDB(D) whi
h interpret the
onstant symbols a

ording to IntFnI , and whi
h are models (in the usual logi
al sense) of both
ϕ and UNA(D). For Φ ⊆ WFS(D), XModI(Φ) =

⋂
{XModI(ϕ) | ϕ ∈ Φ}. The relationwise-nonempty versions, RNeXModI(ϕ) and RNeXModI(Φ), are de�ned analogously. Note that

ModI(ϕ) ⊆ XModI(ϕ) and RNeModI(ϕ) ⊆ RNeXModI(ϕ) under these de�nitions; i.e., ordinarymodels are extended models.4.5 Produ
ts of extended tuple databases Let P = {Mj | j ∈ J} be an indexed setof nonempty extended tuple databases over D. The D-produ
t of P , denoted �
D(P ), is theextended tuple database de�ned as follows:(i) Dom(�D(P )) =

∏
j∈J Dom(Mj).(ii) ι�D (P ) : x 7→ 〈ιMj

(x)〉j∈J (the J-tuple whose jth entry is ιMj
(x)).Report: 20071118 FoIKS2008 page 14



(iii) XTuples(R,�D(P )) = {�〈tj〉j∈J | tj ∈ XTuples(R,Mj)}.In the above, t′ = �〈tj〉j∈J is the extended R-tuple with t′[A] = 〈tj [A]〉j∈J for ea
h A ∈ ArD(R).Call �
D(P ) lossless if ea
h Mj 
an be re
overed from it. Note that �

D(P ) is lossless if ea
h
Mj ∈ P is in RNeXTDB(D); however, given R ∈ Rels(D), if some Mj 
ontains no R-tuples,then the entire produ
t will 
ontain no R-tuples. Sin
e it is essential to be able to re
over Pfrom �

DD, the 
ondition that ea
h Mj ∈ P be relationwise nonempty will be enfor
ed.4.6 Splitting of disjun
tions over extended databases 4.2 
an be extended in theobvious fashion to extended databases. Spe
i�
ally, the family Φ ⊆ WFS(D) splits disjun
-tions over extended databases if whenever Ψ1 ⊆ Φ and Ψ2 ⊆ Φ with Ψ2 nonempty have theproperty that RNeXModI(Ψ1) ⊆
⋃
{RNeXModI(ψ

′) | ψ′ ∈ Ψ2}, then there is a ψ ∈ Ψ2 with
RNeXModI(Ψ1) ⊆ RNeXModI(ψ). Similarly, the triple SDConstr〈D,Γ,Σ〉 supports disjun
-tion splitting over extended databases if SDConstr〈D,Γ,Σ〉 splits disjun
tions over extendeddatabases.Be
ause ordinary tuples may be interpreted as extended tuples, splitting of disjun
tionsover extended databases trivially implies splitting of disjun
tion over ordinary �nite databases.Due to its importan
e, this fa
t is re
orded formally.4.7 Observation If the family Φ ⊆ WFS(D) splits disjun
tions over extended databases,then it splits disjun
tions over �nite databases as well. In parti
ular, if the triple SDConstr〈D,Γ,Σ〉supports disjun
tion splitting over extended databases, then it supports disjun
tion splitting over�nite databases. 24.8 Faithful senten
es Informally, a senten
e ϕ ∈ WFS(D) is faithful [Fag82℄ if it ispreserved under the formation of produ
ts and under the proje
tion of fa
tors from produ
ts.Formally, ϕ ∈ WFS(D) is said to be faithful if whenever P = {Mj | j ∈ J} ⊆ RNeXTDB(D)is a nonempty (indexed) set, �

D(P ) ∈ XModI(ϕ) i� Mj ∈ XModI(ϕ) for ea
h Mj ∈ P . Thefamily Φ ⊆ WFS(D) is faithful pre
isely in the 
ase that ea
h ϕ ∈ Φ is.4.9 Theorem � Faithful ≡ disjun
tion splitting Let Φ ⊆ WFS(D). Then Φ is faithfuli� it splits disjun
tions over extended databases.Proof: See [Fag82, Thm. 3.1℄. 24.10 XEIDs The extended embedded impli
ational dependen
ies (XEIDs) form a very gen-eral 
lass whi
h in
ludes most types of dependen
ies whi
h have been studied, in
luding fun
-tional dependen
ies, multivalued dependen
ies, (embedded) join dependen
ies, and in
lusiondependen
ies. Formally, an XEID [Fag82, Se
. 7℄ is a senten
e in WFS(D) of the form
(∀x1)(∀x2) . . . (∀xn)((A1∧A2∧ . . . ∧An) ⇒ (∃y1)(∃y2) . . . (∃yr)(B1∧B2∧ . . . ∧Bs))su
h that ea
h Ai is a relational atom for the same relation, i.e., the left-hand side is unirela-tional, ea
h Bi is a relational atom or an equality, ea
h xi o

urs in some Aj, the left-hand side istyped in the sense that no variable is used for more than one attribute. In the original de�nitionof Fagin, it is also required that n ≥ 1. However, this is an inessential 
onstraint whi
h mayReport: 20071118 FoIKS2008 page 15



easily be dropped, as long as at least one of the B′
is is a relational atom (and not an equality). In-deed, let ϕ = (∃y1)(∃y2) . . . (∃yr)(B1∧B2∧ . . . ∧Bs)) ∈ WFS(D, ∃∧+), with Bi, say, a relationalatom for relation symbol R. Let A = R(x1, x2, .., xn) be a relational atom for R with variablesas arguments. Then ϕ′ = (∀x1)(∀x2) . . . (∀xn)(A ⇒ (∃y1)(∃y2) . . . (∃yr)(A∧B1∧B2∧ . . . ∧Bs)) ∈

WFS(D) is equivalent to ϕ, but with n ≥ 1. Thus, without loss of generality, in this papersenten
es in WFS(D, ∃∧+) will also be regarded as XEIDs.The set of all XEIDs on D is denoted XEID(D), while those XEIDs involving only the
onstant symbols in S ⊆ Const(D) is denoted XEID(D, S).The reason that XEIDS are of interest here is the following.4.11 Proposition Every Φ ⊆ XEID(D) is faithful.Proof: This is essentially [Fag82, Thm. 7.2℄. The only 
ompli
ation is the 
onstant symbols,whi
h are not part of the framework of [Fag82℄, so the integrity of UNA(D) (not a set ofXEIDs) must be veri�ed. To this end, simply note that a domain value in an extended model isasso
iated with 
onstant a i� ea
h of its proje
tions is the domain value IntFnI(a), so UNA(D)is enfor
ed by 
onstru
tion. 24.12 Lemma � XEIDs support disjun
tion splitting Let Constr(D) ⊆ XEID(D), Γa view of 
lass ∃∧+, and Σ an update 
lassi�
ation pair for D with Σ ⊆ XEID(D). Then
SDConstr〈D,Γ,Σ〉 supports disjun
tion splitting over extended databases.Proof: By 
onstru
tion SDConstr〈D,Γ,Σ〉 ⊆ XEID(D), and so the result follows from 4.9and 4.11. 2Finally, the main result on the existen
e of optimal re�e
tions may be established.4.13 Theorem � XEIDs imply optimal insertions Let Constr(D) ⊆ XEID(D), Γ aview of 
lass ∃∧+, (M1, N2) an insertion request from Γ to D with M ∈ RNeLDB(D), and Σan update 
lassi�
ation pair for D with Σ ⊆ XEID(D). Then every 〈Σ, ↑〉-minimal realizationof (M1, N2) is 〈Σ, ↑〉-optimal.Proof: Combine 4.3, 4.12, and 4.7. 24.14 Dependen
ies whi
h guarantee minimal realizations The above result statesthat whenever an admissible realization exists, it must be optimal. However, it says nothingabout existen
e, and, indeed it is possible to 
onstru
t views for whi
h no Σ-admissible updateexists. For example, let the s
hema E2 have three relational symbols R[A], S[AB], and T [AB]with the in
lusion dependen
ies R[A] ⊆ S[A], S[A] ⊆ T [A], and T [B] ⊆ S[B]. Let M1 =
{R(a0), S(a0, b0), T (a0, b0)}. Consider the view ΠR[A] = (R[A], πR[A]), whi
h preserves R butdis
ards S and T . Let the 
urrent state of this view be N1 = {R(a0)}; 
onsider updating it to
N2 = N1 ∪{R(a1)}. For Σ = StdUCP(E2,M1), there is no Σ-admissible realization of (M1, N2).Indeed, a tuple of the form S(a1, b1) must be inserted, and this then implies that one of theform T (a2, b1) must be inserted as well, whi
h in turn implies that one of the form S(a2, b3)must be inserted, and so forth. It is easy to see that if this sequen
e is terminated by for
ingan equality (say, by repla
ing b3 with b2), then the resulting insertion is not Σ-admissible. Inother words, relative to WFS(D,ConstSym+

D(M1), ∃∧+), there are no admissible solutions. InReport: 20071118 FoIKS2008 page 16



the verna
ular of traditional dependen
y theory, this is a situation in whi
h the 
hase inferen
epro
ess does not terminate with a �nite solution [FKMP05, Def. 3.2℄. To ensure termination,attention may be restri
ted to the sub
lass of XEIDs 
onsisting of the weakly a
y
li
 tuplegenerating dependen
ies (TGDs) together with the equality generating dependen
ies (EGDs).See [FKMP05, Thm. 3.9℄ for details.5. Con
lusions and Further Dire
tionsA strategy for the optimal re�e
tion of view updates has been developed, based upon the
on
ept of least information 
hange. It has been shown in parti
ular that optimal insertionsare supported in a reasonable fashion � they are unique up to a renaming of the newly-inserted
onstants. Nonetheless, a number of issues remain for future investigation. Among the mostimportant are the following.Optimization of tuple modi�
ation Although the general formulation applies to all types ofupdates, the results fo
us almost entirely upon insertions. Due to spa
e limitation, deletionshave not been 
onsidered in this paper; however, sin
e deletions introdu
e no new 
onstantsor tuples, their analysis is relatively unremarkable within this 
ontext. Modi�
ation of singletuples (�updates� in SQL), on the other hand, are of fundamental importan
e. With thestandard update 
lassi�
ation pair of 3.6, only very spe
ial 
ases admit optimal solutions. Thedi�
ulty arises from the fa
t that the framework, whi
h is based entirely upon information
ontent, 
annot distinguish between the pro
ess of modifying a tuple and that of deleting itand then inserting a new one. Consequently, both appear as admissible updates, but neitheris optimal relative to the other. Further work must therefore look for a way to re
apture thedistin
tion between tuple modi�
ation and a delete-insert pair.Appli
ation to database 
omponents This investigation began as an e�ort to understand betterhow updates are propagated between database 
omponents, as forwarded in [Heg07, Se
. 4℄,but then took on a life of its own as it was dis
overed that the 
omponent-based problemswere in turn dependent upon more fundamental issues. Nevertheless, it is important to returnto the roots of this investigation � database 
omponents. This in
ludes not only the purelyautonomous 
ase, as sket
hed in [Heg07, Se
. 4℄, but also the situation in whi
h users 
ooperateto a
hieve a suitable re�e
tion, as introdu
ed in [HS07℄Relationship to work in logi
 programming The problem of view update has also been studiedextensively in the 
ontext of dedu
tive databases. Often, only tuple minimality is 
onsidered asan admissibility 
riterion, and the fo
us then be
omes one of identifying e�
ient algorithms foridentifying all su
h admissible updates [BM04℄. However, some re
ent work has introdu
ed theidea of using a
tive 
onstraints to establish a preferen
e order on admissible updates [GSTZ03℄.Thus, rather than employing a preferen
e based upon information 
ontent, one based uponexpli
it rules is employed. The relationship between su
h approa
hes and that of this paperwarrants further investigation. Also, there has been a substantial body of work on updates todisjun
tive dedu
tive databases [FGM96℄, in whi
h the extensional database itself 
onsists ofReport: 20071118 FoIKS2008 page 17



a 
olle
tion of alternatives. The approa
h of minimizing information 
hange in the disjun
tive
ontext deserves further attention as well.A
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