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Abstract

For the problem of reflecting an update on a database view to the main schema,
the constant-complement strategies are precisely those which avoid all update anomalies,
and so define the gold standard for well-behaved solutions to the problem. However,
the families of view updates which are supported under such strategies are limited, so
it is sometimes necessary to go beyond them, albeit in a systematic fashion. In this
work, an investigation of such extended strategies is initiated for relational schemata.
The approach is to characterize the information content of a database instance, and then
require that the optimal reflection of a view update to the main schema embody the least
possible change of information. To illustrate the utility of the idea, sufficient conditions
for the existence of optimal insertions in the context of families of extended embedded
implicational dependencies (XEIDs) are established. It is furthermore established that all
such optimal insertions are equivalent up to a renaming of the new constant symbols which
were introduced in support of the insertion.

1. Introduction

The problem of reflecting view updates to the main schema of a database system is a difficult
one whose solution invariably involves compromise. The constant-complement, approach [BS&T]|
is exactly the one which avoids all so-called update anomalies |[Heg04], and so is the gold
standard for well-behaved strategies. On the other hand, it is also quite conservative regarding
the updates which it admits.

Substantial research has been conducted on allowing more general view updates in a sys-
tematic fashion. In the classical relational context, much of this work, such as [DB82], [KeI85],
[Lan90], [BLI7], and [BLI§|, focuses upon translations via the relational algebra. In this work,
a quite different, logic-based approach is undertaken. The fundamental point of departure is
that an optimal reflection of a view update is one which minimizes the information change in



the main schema, with the information content of a database measured by the set of sentences
in a certain family which it satisfies. An example will help clarify the main ideas.

1.1 Motivating example Let E; be the relational schema with relations R[ABC| and
S[C'D], constrained by the inclusion dependency R[C] C S[C]. Regard a database as a set of
ground atoms over the associated logic. For example, Moy = {R(ao, bo, ¢o), R(ay, b1, c1), S(co, do),
S(c1,dq)} is such a database. Now, let K be a set of constants in the underlying logical lan-
guage, regarded as domain elements for this schema. The information content of a database
M relative to K is the set of all positive (i.e., no negation, explicit or implicit), existential, and
conjunctive sentences which are implied by M. Using the notation to be introduced in B3l this
information content is denoted Info(M, WFF(Eq, K,3A+)). A basis for this information con-
tent is a subset ® C Info(M, WFF(Eg, K, 3A+)) such that ¢ and Info(M, WFF(E,, K, 3A+))
are logically equivalent. For Koy = {ao, a1, bo, by, co, c1,dy,dr}, the set of all constant sym-
bols of My, the set My, itself is clearly a basis for Info(Myy, WFF(Eq, Koo, IA+)). On the
other hand, with K, = {ao,a1,bo,b1,co,do}, a basis for Info(Myy, WFF(Eq, K}y, IN+)) is
{R(ag, b, co), S(co,do), (3x)(3y)(R(a1, by, z)AS(z,y))}. Note that the constants in Koy \ K,
have been replaced by existentially quantified variables.

To see how this idea is useful in the context of view updates, let Ipap = (R[AB], Trap])
be the view of Ey which projects R[ABC] onto R[AB] and which drops the relation S en-
tirely. Consider Myg to be the initial state of schema Eg; its image state in the view is
then Noy = {R(ag, by), R(ai,b1)}. Now, suppose that the view update Insert(R(az,bs)) is re-
quested, so that No; = Ngg U {R(ag, be)} is the desired new view state, and consider My =
Moo U {R(ag, by, c3), S(c2,d2)} as a proposed reflection to the main schema Ej. Relative to

its entire set Koy = {aog, a1, as, by, b1, ba, co, 1, 2, do, d1,ds} of constant symbols, a basis for
|nfO<M01,WFF(E0,K01, El/\—f—)) is jllSt M01 itself. Slmllarly, for M02 = MOO U {R(CLQ, bg,Cg),
S(Cg,dg)} with K02 = {ao,al,ag,bo,bl,bg,co,cl,03,d0,d1,d3} a basis for

Info(Mo2, WFF(Eg, Koz, IA+)) is just My, itself. Observe that the proposed updates My, and
My are identical up to a renaming of the new constants. The utility of information measure
is that it provides a means to recapture this idea formally; the information content of each,
relative to the set Ko of constant symbols of the original state My, is the same. More precisely,
Info( M1, WFF(Eq, Koo, IN+)) = Info( My, WFF(Eq, Koo, IA+)). A basis for each of these is
I = Moo U{(3x)(3y)(R(ag, ba, z)AS(z,y))}. In effect, this measure is indifferent to whether ¢,
and dy or c3 and d3 are used.

Now, consider the alternative solution My = My U {R(az, b, c3),S(c3,d1)} to this view-
update problem. A basis for Info(Mys, WFF(Eq, Koo, IN+)) is I3 = My U
{(3z)(R(ag, by, x)AS(x,dy))}, which is strictly stronger than Iy, since (3z)(R(az, be, x)AS(x,dy))
= (3x)(3y)(R(ag, by, )AS(z,y))), but not conversely. Thus, relative to the information mea-
sure defined by Ky, Mys adds more information to Myg than does My, or My,. Similarly,
Moy = Moo U {R(az, by, cp))} adds more information than does My or Mys, since a basis for its
information content is just My, itself, which is stronger than I, since R(ag, by, co)rS(co, do) =
(32)(Jy)(R(ag, b, 2)AS(x,y))), but not conversely.

The first and primary measure of quality of a reflected update is the change of information
content which is induces. Under this measure, My and My, are equivalent, and both are
superior to either of Mys or My,. However, this is by itself not quite adequate. Rather, there
is an additional measure of quality which must be taken into account. To illustrate, consider
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the pI'OpOSQd solution M05 = M01 U M02 = MOO U {R(ag, bg, Cg), R(CLQ, bg, Cg), S(CQ, dg), S(Cg, dg)}
to this update problem. It has the same information content, I, relative to Ky, as do My,
and Myy. The information measure cannot distinguish the insertion of two new tuples with
completely new constants from the insertion of just one. However, it is clear that M5 should
be considered inferior to both My; and My, as a solution to the given update problem, since it
is a proper superset of each. Therefore, a second criterion of quality is invoked; namely that
no solution whose set of changes is a proper superset of those of another can be considered
to be superior. It is important to emphasize that it is a inclusion relationship which applies
here, and not simply a counting argument. For example, consider again the proposed solution
Myy. From a strict counting point of view, My, involves fewer changes than do My, or Mys.
However, neither My, nor My, is a superset of Mys. Thus, the superiority of My, and My, is
not contradicted. In other words, only solutions which are tuple minimal, in the sense that no
proper subset of the changes is also an admissible solution, are permitted.

The main modelling premise of this paper is that the quality of a view update can be
measured by the amount of change in information content which it induces, and so an optimal
reflection of a view update request is one which is both tuple minimal and which induces the least
amount of change of information content. Under this premise, both My; and My, are superior to
either of Mys or My,. Furthermore, since My, and My, induce the same change in information
content, they are equivalent. In Section 3, it is established that, under suitable conditions, all
such optimal solutions are equivalent, up to a renaming of the constant symbols. In Section
4, it is established, again under suitable conditions, that for insertions, a minimal solution (in
terms of change of information content) must be optimal. These conditions include in particular
schemata constrained by XEIDs — the extended embedded implicational dependencies of Fagin
[Fag82|, which include virtually all other classes of classical database dependencies.

In summary, there are two conditions which must be met for optimality of a proposed update
reflection u. First, it must be tuple minimal, in that there can be no other solution whose set
of changes is a proper subset of those of u. Second, it must be information least in terms of
a specific set of sentences. This approach applies also to deletions and updates which involve
both insertion and deletion, and this generality is incorporated into the formalism which is
presented. However, for deletions the two measures will coincide, since no new constants are
involved in a deletion.

2. The Relational Model

2.1 Two representations of the traditional relational model In the traditional ap-
proach to the relational model [PDGVR&9] [AHV95, the starting point is a set A of attributes,
a finite nonempty set Rels of of relation symbols, and a function Ar : Rels — A which as-
signs to each R € Rels a set Ar(R) C A, the attributes of R. Furthermore, to each A € A
is associated a (usually countably infinite) domain dom(A). An R-tuple is then a function
t : Ar(R) — dom(A), and a relational database over (A,dom) is a collection of R-tuples for
each R € A.

From a logical point of view, there are two common interpretations of the domain ele-
ments. In logic programming, they are usually taken to be constant symbols of the underlying
logic. Tuples then become ground atoms, with (extensional) databases finite sets of such atoms
[CGTRY|. Furthermore, in that context, the set of all constant symbols is usually taken to be
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finite, in order to allow first-order axiomatization of domain closure. On the other hand, for
model-theoretic constructions, such as those of [Fag82|, it is necessary to interpret the relational
domain elements as members of the underlying set of a structure [Mon76, Def. 11.1], and to
allow these sets to be countably infinite is essential. Both representations of tuples are crucial
to this paper, so it is necessary to establish a bijective correspondence between them. To ac-
complish this, it is first necessary to establish a bijective correspondence between the elements
of the structure and the constant symbols. This requires some care, since this condition cannot
be stated using finite sentences in first-order logic. The solution employed in this paper is to
use the same countable underlying set for all structures, and then to fix a bijection between
the constant symbols and the structure elements. This bijection is invariant across all the main
schemata and the view to be updated. Once such a bijection of elements and constants is es-
tablished, a corresponding bijection of tuples and ground atoms, and consequently of databases
represented in these two distinct formats, follows directly.

2.2 Relational contexts and constant interpretations A relational context contains
the logical information which is shared amongst the distinct schemata and the corresponding
database mappings: the attribute names, the variables, and constant symbols. Formally, a
relational context D consists of attribute names Ap, variables Vars(D), and for each A € Ap,
a set Constp(A) of constant symbols. The variables Vars(D) are further partitioned into two
disjoint sets; a countable set GenVars(D) = {xg,x1, 2, ...} of general variables, and special
Ap-indexed set AttrVars(D) = {za | A € Ap} of attribute variables. The latter are used in the
definition of interpretation mappings; see for details.

A constant interpretation provides a model-theoretic interpretation for the constant sym-
bols, in the sense of [Mon76, Def. 11.1]. Tt is also fixed over all databases of all schemata.
Formally, a constant interpretation for the relational context D is a pair Z = (Domg, IntFnz) in
which Domz is a countably infinite set, called the domain of Z, and IntFnz : Const(D) — Domz
is a bijective function, called the interpretation function of Z. Note that the latter effectively
stipulates the following two well-known conditions [GN87, p. 120]:

Domain closure: (V2)(\ ,cconst(py & = @) (DCA(D))
Unique naming: (—(a = b)) for distinct a,b € Const(D) (UNA(D))

Since there are countably many constant symbols, the domain closure axiom is not a finite
disjunction. This is not a problem however, since it is never used in an otherwise first-order
set, of constraints. Except for the extended tuple databases of EE4] in which this constraint is
relaxed, the assignment of domain values to constants is fixed, and so it is not necessary to
verify that it holds.

For A € Ap, define Domz(A) = {z € Domz | IntFn;(z) € Constp(A)}. Thus, Domz(A) is
the set of all domain values which are associated with attribute A.

As a notational convention, from this point on, unless stated otherwise, fix relational context
D and a constant interpretation Z = (Domz, IntFnz) for it.

2.3 Tuples and databases An unconstrained relational schema over (D,7) is a pair D =
(Rels(D), Arp ) in which Rels(D) is finite set of relational symbols and Arp : Rels(D) — 247 a
function which assigns an arity, a set of distinct attributes from Ap, to each R € Rels(D).
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It is now possible to address the problem of modelling databases in the two distinct ways
identified in 2] above. For R € Rels(D), an R-tuple is a function ¢ on Arp(R) with the
property that t[A] € Dom;(A) for every A € Arp. Similarly, an R-atom is such a function
with the property that ¢[A] € Constp(A) U GenVars(D) U {za}. A ground R-atom contains no
variables, so t[A] € Constp(A). The set of all R-tuples (resp. R-atoms, resp. ground R-atoms)
is denoted Tuples(D), (resp. Atoms(D), resp. GrAtoms(D)). In view of 22 above, it is easy
to see that there is a bijective correspondence between GrAtoms(D) and Tuples(D) given by
t(ay,as,. .., a,) — t(IntFnz(ay), IntFn;(as), ... IntFn;(ay,)).

It will be necessary to work with sets of R-tuples and sets of R-atoms, with R ranging over
distinct relation symbols. A D-tuple is an R-tuple for some R € Rels(D), with the set of all
D-tuples denoted Tuples(D). A tuple database for D is a finite subset of Tuples(D), with the set
of all tuple databases for D denoted TDB(D). The D-atoms and ground D-atoms are defined
analogously, with the corresponding sets denoted Atoms(D) and GrAtoms(D), respectively. An
atom database for D is a finite subset of GrAtoms(D); the set of all atom databases for D is
denoted DB(D).

In the above definitions, it is necessary to be able to recover the associated relation from
a tuple, and so tagging is employed, in which tuples are marked with the associated relation.
Formally, this is accomplished by introducing a new attribute RName ¢ Ap, and then regarding
an R-tuple not as a function ¢ just on Arp(R) but rather as one on on {RName} UArp (R) with
the property that {{RName] = R. Tagging of R-atoms is defined analogously; both will be used
from this point on throughout the paper. Nevertheless, in writing tuples, the more conventional
notation R(my,Ts,...,7,) will be used in lieu of the technically more correct (R, 71,72, ..., Tn),
although tags will be used in formal constructions.

For the product construction of EEH, it is necessary to restrict attention to nonempty
databases. To this end, call M € TDB(D) (resp. M € DB(D)) relationwise nonempty if for each
R € Rels(D), there is at least one R-tuple (resp. R-atom) in M, and define RNeTDB(D) (resp.
RNeDB(D)) to be the set of all relationwise nonempty members of TDB(D) (resp. DB(D)).

The first-order language associated with the relational schema D is defined in the natural
way; however, it is useful to introduce some notation which identifies particular sets of formulas.
Define WFF(D) to be the set of all well-formed first-order formulas with equality, in the language
whose set of relational symbols is Rels(D), whose set of constant symbols is Const (D), and which
contains no non-nullary function symbols. The variables are those of D. Additional arguments
may be given to restrict this set. If S C Const(D), then WFF(D, S) denotes the formulas in
WFF(D) which involve only constant symbols from S. In particular, WFF(D, () denotes the set
of formulas which do not contain constant symbols. Arguments are also used to limit the logical
connectives. WFF(D, 3+) identifies those formulas which are built up from the connectives a
and v, using at most existential quantifiers. WFF(D,3A+) enforces the further restriction that
disjunction is not allowed. It will be furthermore assumed, in WFF(D,3A+), that equality
atoms (i.e., atoms of the form z; = z; and x; = a) are not allowed. This is not an essential
limitation; such equality can always be represented by setting the terms to be equal in the
atoms in which they are used. These notations may be combined, with the obvious semantics.
For example, WFF(D, (), 3A+) denotes the members of WFF(D,3A+) which do not involve
constant symbols.

WFS(D) denotes the subset of WFF(D) consisting of sentences; that is, formulas with no
free variables. The conventions regarding additional arguments applies to sets of sentences as
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well. For example, WFS(D, (), 3A+) is the subset of WFF(D, (), IA+) consisting of sentences.

M € TDB(D) is an Z-model of ¢ € WFS(D) if it is a model of ¢ in the ordinary sense which
furthermore interprets the constant symbols according to Z. The set of all Z-models of ¢ is
denoted Modz (). In view of the bijection GrAtoms(D) — Tuples(D) identified in 23 above, it is
possible to identify Z-models with finite sets of ground atoms. More precisely, define the atomic
Z-models of ¢ to be AtModz(p) = {M € DB(D) | M U {¢} UUNA(D) is consistent}. Clearly,
IntFnz(M) € Modz(yp) iff M € AtModz(y). The relationally nonempty versions RNeModz(¢p)
and RNeAtModz(p) are defined analogously. Furthermore, all of these definitions of model
extend to sets ® of sentences in the obvious way; notation such as Modz(®), RNeModz(®),
AtModz(®), and RNeAtModz(®) will be used throughout.

2.4 Schemata with constraints and constrained databases A relational schema over
(D,Z) is a triple D = (Rels(D), Arp, Constr(D)) in which (Rels(D), Arp) is an unconstrained
relational schema over (D,Z) and Constr(D) C WFS(D, () is the set of dependencies or con-
straints of D. Note that constant symbols are not allowed in the constraints.

In representing a database as a set of D-atoms, the closed-world assumption is implicit. On
the other hand, to express what it means for such a representation to satisfy a set of constraints,
it is necessary to state explicitly which atoms are not true as well. Formally, for M € DB(D),
define the diagram of M to be Diagramp (M) = M U {-t | t € GrAtoms(D) \ M}. Define
the legal (or constrained) databases of D to be LDB(D) = {M € DB(D) | Diagramp (M) U
Constr(D) has an Z-model} and the nonempty legal databases to be RNeLDB(D) = LDB(D) N
RNeDB(D).

2.5 Database morphisms and views Database morphisms are defined using expressions
in the relational calculus; more formally, they are interpretations of the theory of the view into
the theory of the main schema [TAKS2|. Let D; and D; be relational schemata over (D, 7).
Given R € Rels(Dy), an interpretation for R into Dy is a ¢ € WFF(D) in which precisely the
variables {z4 | A € Arp(R)} are free, with 24 is used to mark the position in the formula which
is bound to attribute A. The set of all interpretations of R into D is denoted Interp(R, D). A
syntactic morphism f : Dy — Dy is a family f = {ff | R € Rels(Dy) and f € Interp(R,D;)}.

Let t € GrAtoms(R, D3). The substitution of t into f, denoted Subst(f,t), is the sentence in
WFS(D;) obtained by substituting ¢[A] for x4, for each A € Arp(R). For M € DB(D;), define
f(M) = {t € Atoms(D,) | Subst(f,t) UDiagramp, (M) has an Z-model}. f is called a semantic
morphism if it maps legal databases to legal databases; formally, f(M) € LDB(Ds) for each
M € LDB(D;).

Say that f is of class 3+ (resp. IA+) if each f € WFF(Dy, 3+) (resp. f® € WFF(Dy, 3A+)).
It is easy to see that if f is of class 3+ (resp. IA+), then for each ¢t € Atoms(D,), Subst(f,t) €
WFS(Dy, 34) (resp. Subst(f,t) € WFS(Dy, 3A+)).

Let D be a relational schema over (D,Z). A (relational) view of D is a pair T' = (V,7)
in which V is a relational schema over (D,Z) and v : D — V is a semantic morphism which
is furthermore semantically surjective in the sense that for every N € LDB(V), there is an
M € LDB(D) with f(M) = N. T'is of class 3+ (resp. class IA+) precisely in the case that
is of that same class.
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3. The General Theory of Updates

In this section, the general ideas concerning the information content of a database state, and
the ideas of optimizing an update relative to such content, are developed. It is furthermore
established that for a wide class of schemata and views, all optimal updates are isomorphic in
a natural way.

3.1 Notational convention Throughout the rest of this paper, unless stated specifically
to the contrary, take D to be a relational schema over (D,Z) and T" = (V) to be a (relational)
view of D.

For X an entity (for example, an atom, a formula, a database, etc.), ConstSym(X) denotes
the set of all a € Const(D) which occur in X. Similarly, Vars(X') denotes the set of all variables
which occur in X. This will not be formalized further, but the meaning should always be
unambiguous.

3.2 Updates and reflections An update on D is a pair (M, M) € LDB(D) x LDB(D).
M is the current state, and Ms the new state. It is an insertion if M; C M, and a deletion if
M2 Q Ml.

To describe the situation surrounding an update request on I, it is sufficient to specify the
current state M; of the main schema and the desired new state N, of the view schema V. The
current state of the view can be computed as v(M); it is only the new state My of the main
schema (subject to Ny = v(M3)) which must be obtained from an update strategy. Formally,
an update request from T to D is a pair (M, N3) in which M; € LDB(D) (the old state of
the main schema) and Ny € LDB(V) (the new state of the view schema). If v(M;) C Ny, it
is called an insertion request, and if Ny C ~(M), it is called a deletion request. Collectively,
insertion requests and deletion requests are termed unidirectional update requests. A realization
of (M, Ny) along I' is an update (M;, Ms) on D with the property that (M) = Ny. The
update (M, Ms) is called a reflection (or translation) of the view update (vy(M;y), N3). The
set of all realizations of (Mj, Ny) along I' is denoted UpdRealiz{M;, Ny, I'). The subset of
UpdRealiz{M;, N5, I') consisting of insertions (resp. deletions) is denoted InsRealiz(M;, Ny, T')
(resp. DelRealiz(M;, Ny, T').

3.3 Information content and ®-equivalence Let ® C WFS(D) and let M € DB(D).
The information content of M relative to ® is the set of all sentences in ® which are true for
M. More precisely, Info(M,®) = {¢ € & | M € AtModz(¢)}. For ¢ € WFS(D), Info(M, ¢)
denotes Info(M, {¢}). My and My are ®-equivalent if they have the same information content
relative to ®; i.e., Info(M;y, ®) = Info(Ms, ).

3.4 Update difference and optimal reflections The update difference of an update
(M, Ms) on D with respect to a set & C WFS(D) is a measure of how much M, differs from
M; in terms of satisfaction of the sentences of ®. Formally, the positive (AT ), negative (A~),
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and total (A) update differences of (M, Ms) with respect to ® are defined as follows:
A+<(M1,M2), |nfo<]\/[2,q)) \ InfO<M1,(I)>
A_<(M1,M2), |nfO<M1,¢)> \lnfO<M2,¢)>
A<(M1, MQ), (I)> - A+<(M1, Mz), (I)> U A7<(M1, Mz), (I)>

D) =
P) =

Note that, given ¢ € A((M;, M), ®), it is always possible to determine whether ¢ €
AT ((My, M), ®) or ¢ € A= ((My, My), @) by checking whether or not M; € AtModz(y). Given
an update request (M7, Ny), the quality of a realization (M;, M) is measured by its update
difference. Formally, let ® C WFS(D), let (M;, N2) be an update request from I' to D, let
T C UpdRealiz(M;, N5, T'), and let (M, My) € T.

(a) (M, My) is minimal in T with respect to @ if for any (M, M3) € T, if A((My, M), ®) C
A((Mla MQ)a @>7 then A((Mla Mé)’ @) = A((Mlv MQ)? q)>

(b) (My, Ms) is least in T with respect to ® if for all (M, M) € T, A((My, M), ®) C
A((My, Mj), ©).

3.5 Information-monotone sentences and update classifiers For the above defini-
tions of minimal and least to be useful, it is necessary to place certain restrictions on the nature
of ®. As a concrete example of the problems, define GrAtoms™ (D) = {—t | t € GrAtoms(D)},
with GrAtoms® (D) = GrAtoms(D)UGrAtoms™ (D). In the context of B above, it is easy to see
that every reflection (M;, M) is minimal with respect to GrAtoms™ (D), while only identity up-
dates (with M; = M,) are least. Any ® C WFS(D) with the property that GrAtoms™(D) C &
will have this same property. The problem is that the sentences in GrAtoms™(D) are not
information monotone; adding new tuples reduces the information content. The sentence
v € WFS(D) is information monotone if for any M;, M, € DB(D) if M; C M,, then
Info(My,p) C Info(Ms, ). The set & C WFS(D) is information monotone if each ¢ € @
has this property. Any ¢ € WFS(D) which does not involve negation, either explicitly or im-
plicitly (via implication, for example), is information monotone. Thus, in particular, for any
S C Const(D), WFS(D, S,3+), WFS(D, S, 3A+), and GrAtoms(D) all consist of information-
monotone sentences. The total absence of negation is not necessary, however. Sentences which
allow negation of equality terms (e.g., =(z; = z;)) but only existential quantification are also
information monotone.

An update classifier for D is simply a set ¥ of information-monotone sentences. The
idea is simple: updates which involve less change of information are to be preferred to those
which involve more. However, as illustrated in the example of [L1l there are two distinct
measures of optimality. On the one hand, an optimal realization (M, M) of an update re-
quest (Mj, No) must be least with respect to the update classifier, which in that example is
WEFS(D, ConstSym(My), IA+). Unfortunately, this measure cannot always eliminate solutions
which contain two “isomorphic” copies of the same update, such as Mys of that example. To
remedy this, the update must also be minimal with respect to Atoms(D); or, equivalently, with
respect to the symmetric difference My A My = (My \ My) U (My \ M;). Formally, let (M, Ns)
be an update request from I' to D, let T C UpdRealiz{M;, N5, '), and let (M, Ms) € T.

(a) (M, My) is (X, T)-admissible if it is minimal in 7" with respect to both ¥ and Atoms(D).
(b) (My, Ms) is (3, T)-optimal if it is (X, T')-admissible and least in T" with respect to .
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Roughly, (M;, M;) is admissible if no other realization is better, and it is optimal if it is better
than all others, up to the equivalence defined by . Observe that if some update request is
(33, T)-optimal, then all (X, T')-admissible update requests are (3, T')-optimal.

As a notational shorthand, if " = InsRealiz(M;, No, T') (resp. T' = DelRealiz{M;, N5, T')), that
is, if 7" is the set of all possible insertions (resp. deletions) which realize (M, Ny), then (3, T)-
admissible and (X, T')-optimal will be abbreviated to (X, 1)-admissible and (3, T)-optimal (resp.
(32, |)-admissible and (33, | )-optimal).

3.6 Examples of update classifiers For M; € LDB(D), the standard M,-based update
classifier is StdUCP(D, M;) = WFS(D, ConstSym(M;), 3A+). As illustrated in [T, this clas-
sifier is appropriate for characterizing optimal insertions. Because it “hides” new constants,
optimal solutions which are unique up to constant renaming are easily recaptured.

A much simpler example is GrAtoms(D). It yields optimal solutions only in the case that
such solutions are truly unique. For deletions, this equivalence is adequate. In fact, for deletions,
StdUCP(D, M;) and GrAtoms(D) always identify the same optimal solutions.

There are other possibilities which provide different notions of optimality. Let E; be the
schema which is identical to Eq of [T], save that it includes an additional relation symbol S’'[C' D],
and the inclusion dependency R[C] C S[C] is replaced with R[C] C S[C]US’[C]. Let M, be the
state of E; which is the extension of My in which the relation of S” is empty. The view [Izap =
(R[AB], mgiap)) is unchanged. Under the update classifier WFS(E;, ConstSym(M(,), IA+), the
update request (M, No1) (using No; from [[T) no longer has an optimal solution, since a
minimal solution involves adding a tuple either to S or to S’ but not to both. However, opti-
mality can be recovered formally via an alternative update classifier. Let =; denote the subset of
WFS(E;, 3+) obtained from WFS(Eg, 3A+) by replacing each occurrence of the form S(m, 72) by
(S(71, m2)vS'(11,72)). Here 7y and 7» are arbitrary terms (i.e., variables or constants). In effect,
the sentences of =; cannot distinguish a given tuple in S from an identical one in S’. It is easy to
see that Z; is information monotone (since it is a subset of WFF(E;, 34)). Furthermore, both
of the solutions M, = M{,U{R(az, b, ca), S(ca,d2)} and M{, = M[,U{R(ag,ba, c2), S (ca,d2)}
are optimal under this measure.

By choosing a suitable update classifier, rather broad notions of equivalence are hence
achievable, so there is a tradeoff between the generality of the update classifier and how “equiv-
alent” the various optimal solutions really are. In the example sketched above, the solutions are
not isomorphic in any reasonable sense. On the other hand, for StdUCP(Eg, M), all optimal
solutions are naturally isomorphic, a nontrivial result which requires some work to establish;
the rest of this section is devoted to that task.

3.7 Constant endomorphisms An endomorphism on D is a function h : Const(D) —
Const(D) which preserves attribute types, in the precise sense that for each A € Ap and
each a € Constp(A), h(a) € Constp(A). If h is additionally a bijection, then it is called an
automorphism of D. For S C Const(D), call h S-invariant if h(a) = a for all a € S.

Given a database schema D, an endomorphism on D induces a mapping from GrAtoms(D)
to itself given by sending ¢ € GrAtoms(D) to the tuple ¢’ with ¢[RName] = ¢[RName| and
t'[A] = t[h(A)] for all A € Argrname- This mapping on atoms will also be represented by h, as
will the induced mapping from DB(D) to itself given by M +— {h(t) | t € M}.
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3.8 Armstrong models in an information-monotone context Let ¥ C WFS(D) and
let ® C U. Informally, an Armstrong model for ® relative to ¥ is a model of ® which satisfies
only those constraints of ¥ which are implied by ®. More formally, an Armstrong model for
® relative to W is an M € Modz(®) with the property that for any ¢ € U, if M € Modz(¢)),
then Modz(®) C Modz(v). Armstrong models have been studied extensively for database
dependencies; see, for example, [Fag82] and [FV83]. In the current context, it will be shown
that if (M, Ms) is a StdUCP(D, M )-optimal reflection of the update request (M;, Ny), then M,
is a minimal Armstrong model with respect to StdUCP(D, M;). It will furthermore be shown
that if (M;, M) is another such optimal reflection, there is an an automorphism h which is
constant on Constp (M) with M = h(M,).

3.9 Representation of dA+-sentences as sets of D-atoms There is an alternative
syntactic representation for formulas in WFS(D, 3A+) which will be used in that which follows.
Specifically, for ¢ € WFS(D, 3A+) define AtRep(y) to be the set of all atoms which occur as
conjuncts in ¢. For example, if o = (Jxq)(Ix2)(Tz3)(R(x1, a)aR(x1, b)AS (22, a)AT (xg, x3)) then
AtRep(¢) = {R(x1,a), R(x1,b), S(x2,a), T(xq, x3)}.

This representation is dual to that used in theorem-proving contexts in classical artificial
intelligence [GN&7, 4.1]. Here the variables are existentially quantified and the atoms are
conjuncts of one another; in the AI setting the atoms are disjuncts of one another and the
variables are universally quantified.

3.10 Substitutions Let V = {vy,vs,...,v,} C GenVars(D). A (constant) substitution for
V (in D) is a function s : V' — Const(D). If s(z;) = a; for i € {1,2,...,n}, following (some-
what) standard notation this substitution is often written {ay/z1,as/xs, ..., a,/x,} (although
some authors [GN&T, 4.2] write {x1/a1,x2/as, ..., x,/a,} instead).

Let ¢ € WFS(D,3A+) with Vars(p) C V. Call s correctly typed for ¢ if for each t €
AtRep(¢) and each A € Arp(t[RName]), if t[A] € Vars(D) then s(t[A]) € Constp(A). Define
Subst (¢, s) to be the set of ground atoms obtained by substituting s(z;) for x; in AtRep(yp). For
example, with s = {a;/x1, as/xs, a3/x3} and AtRep(p) = {R(z1, a), R(x1,b), S(xe, a), T(x9, x3)},
Subst(p, s) = {R(a1,a), R(ai,b),S(as,a), T(az,a3)}.

Now let & C WFS(D,3A+) be a finite set. A substitution set for ® is a P-indexed set
S = {s, | ¢ € ®} of substitutions, with s, a substitution for Vars(¢). S is free for & if
each s, is correctly typed for ¢, injective, and, furthermore, for any distinct ¢, € @,
S0 (Vars(p1)) 15, (Vars(i)) 0.

For a free substitution S, the canonical model defined by (®,.S) is obtained by applying the
substitution s, to ¢ for each ¢ € ®. Formally, CanMod(®, S) = [J{Subst(y, s,,) | ¢ € ®}.

For an illustrative example, let ¢; = (Jz1)(3xe)(Fzs)(R(x1, x2)aAR(z2,23)), @2 =
(F21)(322) (3ws) (R(ar, 21)AS (21, az)nT (22, 23)8T (22, a3)), 3 = R(a1,a2), and @4 = S(az, as),
with the a;’s all distinct constants, and let ® = {1, @2, p3,0a}. Put s, = {bi1/x1, b12/22,
bis/xs} Sp, = {ba1/x1,b2/xa, bos/xs}, and s,y = s,, = 0, with all of the b;;’s distinct con-
stants. Then S = {s,,, S5, Sp, Sp, } 18 free for @, with Subst(py, s,,) = {R(b11, b12), S(b12, b13)},
SUbSt((pg, S<p2) = {R(al, bgl), S(bgl, CLQ), T(bgg, bgg), T(bgg, ag)}, SUbSt((pg, 8@3) = {R(al, CLQ)}, and
Subst(eps, 5p,) = {S(az, as)}. Unfortunately, while CanMod(®,S) = {Subst(y;,s,,) | 1 <i <
4} is an Armstrong model for {¢; | 1 < i < 4}with respect to WFF(D, 3A+), it is not not
minimal. The problem is that there is redundancy within ®, which results in redundancy in
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the canonical model. For example, it is easy to see that ¢; is a logical consequence of ¢9, and so
Subst(p1, s,,) can be removed from CanMod(®, S) entirely, with the result still an Armstrong
model. While this problem could be resolved by choosing the substitutions more cleverly, it is
more straightforward to normalize the the set of sentences before applying the construction of
the canonical model, as developed next.

3.11 Reduction steps To construct a minimal Armstrong model from a set & C
WFS(D, 3A+), it is first necessary to normalize ® by applying three simple reduction rules,
defined as follows.

Decomposition: For ¢ € &, if {X;, X5} partitions AtRep(y) into disjoint sets, and
Modz(AtRep ' (X)) N Modz(AtRep ' (X5)) = Modz (i), then remove ¢ from ® and add
both AtRep *(X;) and AtRep *(X3).

Collapsing: For ¢ € &, if {X;, Xy} partitions AtRep(p) into disjoint sets, and
Modz(AtRep (X)) € Modz(AtRep '(X3)), then remove ¢ from ® and add AtRep™'(X;).

Minimization: If Modz(® \ {¢}) = Modz(®), then remove ¢ from ®.

It is clear that each of these steps preserves Modz(®), and that they may only be applied
a finite number of times before none is applicable. Call ® reduced if none of these steps is
applicable.

A simple example will help illustrate how these rules work. Let ® be as in above. Using
the decomposition rule, AtRep(ps) = {R(a1,x1), R(x1, as), T(z2, x3), T(x2, az) } may be replaced
with {R(ay,z1), S(x1,a2)} and {T'(z2,x3), T(22,as3)}, since these two sets have no variables in
common. Next, {T'(xq,x3),T(x2,a3)} may be replaced with {T'(x9,a3)} using the collapsing
rule. Finally, ¢; may be removed using the minimization rule, since it is a consequence of Y3rpy.
The final reduced version of @ is thus {(3z1)(R(ai, z1)rS(x1,as)), (Fx2)(T (22, a3)), R(ay, as),
S(ag,ag)}. Note that (Jz1)(R(ay,x1)AS(x1, az)) is not a consequence of R(aq, az) and S(as, as),
and so it cannot be removed by this procedure. A minimal Armstrong model is obtained by
substituting a distinct new constant for each variable: {R(ay,b;), R(b1,a2), T(ba, a3), R(a1, as),
S(as,asz)}. Furthermore, this model is obtained from the one of B above via the endomor-
phism which maps by — ai, bia — ag, b1z — as, by — by, bay — by, bes — a3, and is the
identity on everything else. To establish this result in a completely formal fashion requires a
bit of work, and is presented below.

3.12 Theorem — Characterization of minimal Armstrong models Let & C
WFS(D, 3A+) be a finite set of constraints, and assume furthermore that ® is reduced in the
sense of 11 above. Let S be a substitution set which is free for ®. Then the following hold.

(a) CanMod(®, S) is a minimal Armstrong model for ® relative to WFS(D, ConstSym(®), IA+).

(b) For any M € Modz(®), there is a ConstSym(®)-invariant endomorphism h on D with
h(CanMod(®, S)) C M.

(¢) If M is any other minimal Armstrong model for ® relative to WFS(D, ConstSym(®), IA+),
then there is a ConstSym(®)-invariant automorphism h on D with h(CanMod(®, S)) = M.
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PROOF: It is immediate that CanMod(®, S) is a model of ®. It is furthermore easy to see
that it is minimal; if any tuple is deleted, the ¢ € ® associated with the tuple in CanMod(®, S)
is no longer satisfied, since ® is assumed to be minimized, as defined in B.I1] above. To show
that it is an Armstrong model, let ¢ € WFS(D, 3A+) for which Modz(®) C Modz(v¢)) does
not hold, and let S” be a substitution set, free for ® U {¢}, which is built from S by adding a
substitution associated with 1. Let the resulting set of constraints by the reduction steps of
BIT from ® U {¢)} be denoted by ®'. For the reduction steps of BIT], it suffices to note that ¢
cannot be removed by minimization. Hence CanMod(®’, S") C CanMod(®, S) cannot hold, and
so CanMod(®, S) cannot be a model of ¢, whence CanMod(®, S) is an Armstrong model of .

To establish (b), let M € Modz(®), and for each ¢ € ®, let M, be a minimal subset of A
with M, € Modz(¢). Let V,, denote the set of variables of s, € S. It is easy to see that there
must be a substitution s” with Vars(s”) = V,, and Subst(y, s”) = M,,. Indeed, there is trivially
a substitution with Subst(y, s”) C M,, but if the subset inclusion were proper, M, would not
be minimal.

Now define h : 5,(V,) — s"(V,) by a — s"(s;"(a)). Since s, is injective, h is well defined.
Since s, (Vars(p1)) N s, (Vars(p2)) = 0 for distinct ¢y, p2 € @, there are no conflicts in this
definition of h. Finally, extend h to be the identity on all a € Const(D) which are not covered by
the above definition. The result is a endomorphism on D which satisfies h(CanMod(®, S)) C M.

To show (c), let M be any other minimal Armstrong model for & relative to
WES(D, ConstSym(®))3A+. In the above construction for the proof of (b), the resulting h
must be surjective (else M would not be minimal), and it must be injective (since there must
also be an endomorphism in the opposite direction, and both CanMod(®, S) and M are finite,
by assumption). Hence, h is an automorphism. O

The desired result, that any two optimal realizations are isomorphic up to a renaming via
an automorphism, follows directly as a corollary.

3.13 Corollary — Optimal updates are unique up to constant automorphism Let
(My, Ny) be an update request from T to D, and let (M, My) and (M, M) be
(StdUCP(D, M), UpdRealiz{M;, No, T'))-optimal realizations of (My, N2). Then there is a
ConstSymj (M)-invariant automorphism h on D with My = h(Ms). O

In some ways, the construction given above is similar to the construction of the universal
solutions of [EKMPO5, Def. 2.4], in that both are based upon similar notions of endomorphism
(there termed homomorphism). However, those universal solutions are not required to be
minimal. On the other hand, they are not limited to positive sentences, but rather apply to
XEIDs, as developed in the next section.

4. Optimal Insertion in the Context of XEIDs

In this section, it is shown that in the context of database constraints which are extended
embedded implicational dependencies (XEIDs), and views which are of class A+, all admissible
realizations of an insertion request are optimal. In other words, there cannot be non-isomorphic
minimal realizations of an update request which is an insertion. To establish this isomorphism,
it is necessary to rule out the kind of non-isomorphic alternatives which are illustrated in
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Bl The logical formulation which formalizes this idea is splitting of disjunctions. Informally,
disjunction splitting [Fag82, Thm. 3.1(c)] stipulates that nondeterminism in logical implication
cannot occur. If a set Wy of sentences implies the disjunction of all sentences in W5, then it
must in fact imply some sentence in Wy. Since Wy may be infinite, the notion of disjunction
must be formulated carefully.

4.1 Notational convention Throughout this section, unless stated explicitly to the con-
trary, take X to be an update classifier for D.

4.2 Splitting of disjunctions over finite databases The family ® C WFS(D) splits
disjunctions over finite databases if whenever Wy, Wy C & with U5 nonempty have the property
that RNeModz(¥;) C [J{RNeModz(¢') | /' € Wy}, then there is a ¢ € ¥y with RNeModz(¥;) C
RNeModz(%)). The limitation to relationwise-nonempty databases is a technical one which will
ultimately be necessary. The definition can, of course, be made without this restriction, and
even below is true without it, but the critical result would fail. Since requiring databases
to be relationwise nonempty is not much of restriction, it is easiest to require it throughout.

Define SDConstr(D, I", ¥2) = Constr(D) U GrAtoms(D) U {Subst(v, t) | t € GrAtoms(V)} UX.
Basically, SDConstr(D, T, 3J) is the set of all sentences which can arise in the construction of
updates on D induced via updates on the view I'. Constr(D) is (a basis for) the set of all
constraints on D, GrAtoms(D) is the set of all ground atoms which can occur in a database of
D, {Subst(v,t) | t € GrAtoms(V)} is the set of all sentences on D which can arise by reflecting
an atom of the view I' to the main schema, and X is the set of all sentences which are used in
measuring information content. If all of these together split disjunctions, the constructions will
work. Formally, say that the triple (D, ", X) supports disjunction splitting over finite databases
if SDConstr(D, I', ) splits disjunctions over finite databases.

4.3 Theorem — Disjunction splitting implies that admissible insertions are opti-
mal Assume that (D, T, X) supports disjunction splitting over finite databases, and let (M, No)
be an insertion request from I' to D with the property that M, is relationwise nonempty. Then
all (3, 7)-admissible realizations of (M, No) are (X, 1)-optimal.

PROOF:  First of all, observe that ¥; = Constr(D) U {Subst(v,t) | t € Ny} U M; is pre-
cisely the set of constraints which the updated database of D must satisfy; (M, My) €
InsRealiz(M7, No, T') iff My € Modz(¥;). Furthermore, since W; C SDConstr(D, T, X}, it splits
disjunctions over finite databases.

Now, let S denote the set of all My € LDB(D) for which (M, M;) is a (3, T)-admissible
realization of (Mj, Ny), and assume that S is nonempty. Let Uy denote the set of all ¢ € ¥ with
the property that M, € Modz (1)) for some, but not all, My € S. If Uy = (), then all members of
S are Y-equivalent, and so all are least with respect to ¥ and hence (3, 1)-optimal. If Wy £ (),
then for each M, € S, there must be some ¢ € Uy with the property that M, € Modz(v)).
Otherwise, Info(My,¥) C Info(M), %) for all M5 € S N Modz(v), which would contradict the
Y-admissibility of any such Mj. Thus RNeModz(¥;) C [J{RNeModz(¢') | ¢’ € Wy}. Since
M is relationwise nonempty, so too is each M, € S. Now, using the fact that W, splits
disjunctions, there is some ¢ € W, with the property that RNeModz(¥;) C RNeModz();
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i.e., that My € Modz(¢)) for all My € S. This is a contradiction, and so Wo = (). Thus all
(32, T)-admissible realizations of (Mj, Ny) are are (X, 7)-optimal. O

4.4 Extended tuple databases The results which follow use heavily the framework devel-
oped by Fagin in [Fag82). It is necessary in particular to be able to construct infinite products
of databases. This leads to two complications. First of all, the databases of this paper are
finite, while such products may be infinite. Second, the databases of this paper here have a
fixed bijective correspondence between the domain of the interpretation and constant symbols
which cannot be preserved completely under products. Fortunately, such products are not re-
ally used as databases; rather they are just artefacts which arise in the proof to show that a
certain context supports the splitting of disjunctions. The solution is to embed the D-tuples of
this paper into a larger set, called the extended D-tuples, and to carry out the infinite-product
constructions on databases of these extended tuples. Since every tuple database in the sense of
this paper is also an extended database, the results will follow.
Formally, an extended tuple database M over D consists of the following:

(xtdb-i) A set Dom(M), called the domain of M.
(xtdb-ii) An injective function ¢y, : Domz — Dom(M).
(xtdb-iii) A (not necessarily finite) set XTuples(M) of extended D-tuples over (Dom (M), tps).

For R € Rels(D), an extended R-tuple t over (Dom(M),tps) is a function ¢ : {RName} U
Arp(R) — Dom(M) U Rels(D) with the property that {{RName] = R and, for all A € Ap,
if t{A] € 1y(Domg), then «7/ (t[A]) € Domz(A). An extended D-tuple over (Dom(M),tys)
is an extended R-tuple over that same pair for some R € Rels(D). XTuples(M) denotes
U{XTuples(R, M) | R € Rels(D)}. The collection of all extended tuple databases over D is
denoted XTDB(D), with RNeXTDB(D) denoting the subcollection consisting of all relationwise-
nonempty members (obvious definition). As a slight abuse of notation, t € M will be used as
shorthand for ¢ € XTuples(M).

Note that every M € TDB(D) may be regarded as an extended tuple database by setting
Dom(M) = Domz and taking ¢y, to be the identity function. In an extended D-tuple, domain
elements which are not in ¢);(Domz) are not associated with any constant symbol.

For ¢ € WFS(D), define XModz(¢) to be the set of M € XTDB(D) which interpret the
constant symbols according to IntFnz, and which are models (in the usual logical sense) of both
¢ and UNA(D). For & C WFS(D), XModz(®) = ({XModz(¢) | ¢ € ®}. The relationwise-
nonempty versions, RNeXModz(¢) and RNeXModz(®), are defined analogously. Note that
Modz(y) € XModz(y) and RNeModz () C RNeXModz(y) under these definitions; i.e., ordinary
models are extended models.

4.5 Products of extended tuple databases Let P = {M, | j € J} be an indexed set
of nonempty extended tuple databases over D. The D-product of P, denoted ®7(P), is the
extended tuple database defined as follows:

(i) Dom(®P(P)) = [1,c, Dom(M;).

(ii) tgr(py : > (tar;(2))jes (the J-tuple whose jth entry is ¢z, ()).
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(iii) XTuples(R, ®P(P)) = {®(t;)jes | t; € XTuples(R, M;)}.

In the above, ¢ = ®(t;) ;e is the extended R-tuple with ¢'[A] = (¢;[A]) ey for each A € Arp(R).

Call ®P(P) lossless if each M; can be recovered from it. Note that ®”(P) is lossless if each
M; € P is in RNeXTDB(D); however, given R € Rels(D), if some M contains no R-tuples,
then the entire product will contain no R-tuples. Since it is essential to be able to recover P
from ®” D, the condition that each M; € P be relationwise nonempty will be enforced.

4.6 Splitting of disjunctions over extended databases can be extended in the
obvious fashion to extended databases. Specifically, the family ® C WFS(D) splits disjunc-
tions over extended databases if whenever ¥y C & and ¥, C & with ¥, nonempty have the
property that RNeXModz(¥;) C [J{RNeXModz(¢)) | /' € Wy}, then there is a ¢ € ¥y with
RNeXModz(¥;) € RNeXModz(v). Similarly, the triple SDConstr(D,T",¥) supports disjunc-
tion splitting over extended databases if SDConstr(D,T',¥) splits disjunctions over extended
databases.

Because ordinary tuples may be interpreted as extended tuples, splitting of disjunctions
over extended databases trivially implies splitting of disjunction over ordinary finite databases.
Due to its importance, this fact is recorded formally.

4.7 Observation If the family ® C WFS(D) splits disjunctions over extended databases,
then it splits disjunctions over finite databases as well. In particular, if the triple SDConstr(D, T", ¥)
supports disjunction splitting over extended databases, then it supports disjunction splitting over
finite databases. O

4.8 Faithful sentences Informally, a sentence ¢ € WFS(D) is faithful [Fag82] if it is
preserved under the formation of products and under the projection of factors from products.
Formally, ¢ € WFS(D) is said to be faithful if whenever P = {M; | j € J} C RNeXTDB(D)
is a nonempty (indexed) set, ®”(P) € XModz(yp) iff M; € XModz(p) for each M; € P. The
family ® C WFS(D) is faithful precisely in the case that each ¢ € ® is.

4.9 Theorem — Faithful = disjunction splitting Let ® C WFS(D). Then ® is faithful
off it splits disjunctions over extended databases.

PROOF: See [Fag82, Thm. 3.1]. O

4.10 XEIDs The estended embedded implicational dependencies (XEIDs) form a very gen-
eral class which includes most types of dependencies which have been studied, including func-
tional dependencies, multivalued dependencies, (embedded) join dependencies, and inclusion
dependencies. Formally, an XEID [Fag82, Sec. 7] is a sentence in WFS(D) of the form

(V1) (Va) - . . (Vo) (Aradon . .. aAn) = (3y1)(3ya) - . . 3y, ) (BinBan. . . ABy))

such that each A; is a relational atom for the same relation, i.e., the left-hand side is unirela-
tional, each B, is a relational atom or an equality, each x; occurs in some A;, the left-hand side is
typed in the sense that no variable is used for more than one attribute. In the original definition
of Fagin, it is also required that n > 1. However, this is an inessential constraint which may
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easily be dropped, as long as at least one of the B!s is a relational atom (and not an equality). In-
deed, let ¢ = (Fy1)(3y2) ... (Fy,)(BiaBan ... nBs)) € WFS(D, 3A+), with B;, say, a relational
atom for relation symbol R. Let A = R(xy, 23, .., x,) be a relational atom for R with variables
as arguments. Then ¢ = (Vay)(Vag) ... (Va,)(A = (3y1)(Fy2) - .. (3yr) (ArBiaBan ... ABy)) €
WFS(D) is equivalent to ¢, but with n > 1. Thus, without loss of generality, in this paper
sentences in WFS(D, 3A+) will also be regarded as XEIDs.

The set of all XEIDs on D is denoted XEID(D), while those XEIDs involving only the
constant symbols in S C Const(D) is denoted XEID(D, 5).

The reason that XEIDS are of interest here is the following.

4.11 Proposition FEvery ® C XEID(D) is faithful.

PROOF: This is essentially [Fag82, Thm. 7.2]. The only complication is the constant symbols,
which are not part of the framework of [Fag82], so the integrity of UNA(D) (not a set of
XEIDs) must be verified. To this end, simply note that a domain value in an extended model is
associated with constant a iff each of its projections is the domain value IntFn;(a), so UNA(D)
is enforced by construction. O

4.12 Lemma — XEIDs support disjunction splitting Let Constr(D) C XEID(D), I'
a view of class IN+, and ¥ an update classification pair for D with ¥ C XEID(D). Then
SDConstr(D,T', X} supports disjunction splitting over extended databases.

PROOF: By construction SDConstr(D,I',¥) C XEID(D), and so the result follows from
and ET1. O

Finally, the main result on the existence of optimal reflections may be established.

4.13 Theorem — XEIDs imply optimal insertions Let Constr(D) C XEID(D), I' a
view of class IN+, (My, No) an insertion request from I' to D with M € RNeLDB(D), and ¥
an update classification pair for D with ¥ C XEID(D). Then every (3, 1)-minimal realization

of (My, Ny) is (X, 71)-optimal.
PrOOF: Combine I3 T2, and 7 O

4.14 Dependencies which guarantee minimal realizations The above result states
that whenever an admissible realization exists, it must be optimal. However, it says nothing
about existence, and, indeed it is possible to construct views for which no X-admissible update
exists. For example, let the schema E; have three relational symbols R[A], S[AB], and T[AB|
with the inclusion dependencies R[A] C S[A], S[A] C T[A], and T[B] C S[B]. Let M; =
{R(ao), S(ag,bo), T(ao,by)}. Consider the view Ilga) = (R[A], 7ga)), which preserves R but
discards S and T'. Let the current state of this view be Ny = {R(ag)}; consider updating it to
Ny = NyU{R(a1)}. For ¥ = StdUCP(E,, M;), there is no ¥-admissible realization of (M, Ns).
Indeed, a tuple of the form S(a,b;) must be inserted, and this then implies that one of the
form T'(as,b;) must be inserted as well, which in turn implies that one of the form S(as,b3)
must be inserted, and so forth. It is easy to see that if this sequence is terminated by forcing
an equality (say, by replacing bs with b), then the resulting insertion is not Y-admissible. In
other words, relative to WFS(D, ConstSym; (M), IA+), there are no admissible solutions. In
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the vernacular of traditional dependency theory, this is a situation in which the chase inference
process does not terminate with a finite solution [FKMPOS, Def. 3.2]. To ensure termination,
attention may be restricted to the subclass of XEIDs consisting of the weakly acyclic tuple
generating dependencies (TGDs) together with the equality generating dependencies (EGDs).
See [FKMPOS, Thm. 3.9] for details.

5. Conclusions and Further Directions

A strategy for the optimal reflection of view updates has been developed, based upon the
concept of least information change. It has been shown in particular that optimal insertions
are supported in a reasonable fashion — they are unique up to a renaming of the newly-inserted
constants. Nonetheless, a number of issues remain for future investigation. Among the most
important are the following.

Optimization of tuple modification Although the general formulation applies to all types of
updates, the results focus almost entirely upon insertions. Due to space limitation, deletions
have not been considered in this paper; however, since deletions introduce no new constants
or tuples, their analysis is relatively unremarkable within this context. Modification of single
tuples (“updates” in SQL), on the other hand, are of fundamental importance. With the
standard update classification pair of Bl only very special cases admit optimal solutions. The
difficulty arises from the fact that the framework, which is based entirely upon information
content, cannot distinguish between the process of modifying a tuple and that of deleting it
and then inserting a new one. Consequently, both appear as admissible updates, but neither
is optimal relative to the other. Further work must therefore look for a way to recapture the
distinction between tuple modification and a delete-insert pair.

Application to database components This investigation began as an effort to understand better
how updates are propagated between database components, as forwarded in [Heg07, Sec. 4],
but then took on a life of its own as it was discovered that the component-based problems
were in turn dependent upon more fundamental issues. Nevertheless, it is important to return
to the roots of this investigation — database components. This includes not only the purely
autonomous case, as sketched in [Heg07, Sec. 4], but also the situation in which users cooperate
to achieve a suitable reflection, as introduced in [HS07]

Relationship to work in logic programming The problem of view update has also been studied
extensively in the context of deductive databases. Often, only tuple minimality is considered as
an admissibility criterion, and the focus then becomes one of identifying efficient algorithms for
identifying all such admissible updates [BM(4]. However, some recent work has introduced the
idea of using active constraints to establish a preference order on admissible updates [GSTZ03).
Thus, rather than employing a preference based upon information content, one based upon
explicit rules is employed. The relationship between such approaches and that of this paper
warrants further investigation. Also, there has been a substantial body of work on updates to
disjunctive deductive databases [EGM96|, in which the extensional database itself consists of
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a collection of alternatives. The approach of minimizing information change in the disjunctive
context deserves further attention as well.
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