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Abstract. It is well known that the complexity of testing the correct-
ness of an arbitrary update to a database view can be far greater than
the complexity of testing a corresponding update to the main schema.
However, views are generally managed according to some protocol which
limits the admissible updates to a subset of all possible changes. The
question thus arises as to whether there is a more tractable relationship
between these two complexities in the presence of such a protocol. In
this paper, this question is answered in the affirmative for closed update
strategies, which are based upon the constant-complement approach of
Bancilhon and Spyratos. Working within a very general framework which
is independent of any particular data model, but which recaptures rela-
tional schemata constrained by so-called equality-generating dependen-
cies (EGDs), (which include functional dependencies (FDs)), it is shown
that the complexity of testing the correctness of a view update which
follows a closed update strategy is no greater than that of testing a cor-
responding update to the main schema. In particular, if the main schema
is relational and constrained by FDs, then there exists a set of FDs on the
view, against which any candidate update may be tested for correctness.
This holds even though the entire view may not be finitely axiomatizable,
much less constrained by FDs alone.

1 Introduction

In a seminal work [1], Bancilhon and Spyratos showed how well-behaved update
strategies for database views can be modelled in a very general framework using
the so-called constant complement strategy. In more recent work, [2], [3], it is
shown that by augmenting this basic framework with natural order structure,
true uniqueness for so-called order-based updates may be obtained, in the sense
that there is but one way to represent an update to the view in terms of an
update to the main schema, regardless of the choice of complement. (Order-
based updates are those which are realizable as a sequence of insertions and
deletions.)

In this paper, the work of [2] and [3] is continued with an initial investigation
of the complexity of determining whether a proposed view update is valid. This



is hardly an idle question. Indeed, the axiomatization of a view may be infinitely
more complex than that of the base schema, even in very simple cases. For
example, the relational schema E1 with the single relation name R

�
ABCD � on

four attributes and the constraining set of FDs F1 ��� A � D, B � D, CD �
A � , the projection view ΠABC is not finitely axiomatizable [4].

Even without any special data structures, testing whether a relation satisfies
a set of functional dependencies can be performed in time O � n2 � , with n the
number of tuples in the relation, since it suffices to check each pair of tuples
for conflict. If it is known that M is already a legal state and t is a tuple to
be inserted, then testing whether M 	 � t � satisfies the FDs may be performed
in time O � n � . Under certain circumstances (e.g., with key dependencies), if the
tuples are suitably indexed, these times may be reduced to O � n � and O � 1 � ,
respectively. On the other hand, for the view ΠABC identified above, neither
test can be performed in worst-case O � nk � for any natural number k. Thus, the
increase in complexity is indeed substantial, and certainly dashes any notion of
tractability.

However, all is not lost, for testing an arbitrary proposed update to a view
for correctness is far more general a task than is testing a proposed update under
a closed update strategy. To address the latter idea, a notion of relative complex-
ity is introduced, which takes into account that partial information regarding
constraint satisfaction is already known about the proposed new view state.
To illustrate, let E2 be the relational schema with the five-attribute relation
S
�
ABCDE � , with constraints F2 � F1 	 � A � E � . The view to be updated is

ΠABCE , with the allowable updates those which hold the complementary view
ΠABCD constant. The updates which are allowed under the theory of closed
update strategies are precisely those which hold the meet of these two views,
ΠABC , constant. Now ΠABCE is not finitely axiomatizable, for the same reason
that the view ΠABC of E1 is not. However, since ΠABC is to be held constant
under any update to ΠABCE , proposed updates need only be tested against the
embedded FD A � E; it is already known that the “ABC” part of the proposed
new database is legal. Thus, the relative complexity of testing a proposed update
to ΠABCE is O � n2 � , the same as that for proposed updates to the main schema
E2, even though the view ΠABCE itself is not finitely axiomatizable. This idea is
developed more formally in Example 4.15.

The main result of this paper is that this sort of result holds in a very
general context; that is, if the complexity of testing the correctness of a potential
database in the main schema is O � nk � , then the relative complexity of testing
the correctness of a potential database which is the result of a proposed update
under a closed strategy is also O � nk � .

A secondary result is also provided. In [2, 4.2] [3, 4.3], it is shown that the
reflection to the main schema of an update to a closed view is unique, provided
that the update is realizable as a sequence of legal insertions and deletions. In
this paper, it is shown that the intermediate states in fact need not be legal;
that it is enough that the update be realizable as sequence of insertions and
deletions, and that the initial and final states be legal. In other words, essentially
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all updates under closed update strategies in an order-based framework reflect
uniquely back to the main view. To illustrate, let E3 be the schema consisting of
the single relation R

�
ABC � , constrained by F3 � � B � A, B � C � . The view

to be updated is ΠAB , with ΠBC the complement to be held constant. The legal
updates to ΠAB , none of which are insertions or deletions, are those which hold
ΠB constant and which respect the FD A � B. Thus, the results of [2] [3] do not
apply. However, the extensions developed in Sect. 5 do, since the updates may
be realized as sequences of insertions and deletions in which the intermediate
states may violate the FD A � B. A more detailed explanation is provided in
Example 5.9.

2 An Overview of Existing Work

The results presented herein depend heavily upon the earlier work of the author
on closed update strategies, which in turn depends upon the initial work of
Bancilhon and Spyratos. To provide the reader with the essential background,
this section contains two summaries. Summary 2.1 recaps the essential ideas
of closed update strategies within the original set-based framework. Thus, it
provides the essence of the framework of [1], although it is recast within the
formalism of [2] [3]. Summary 2.2 sketches the key ideas developed in [2] [3]
which are necessary to extend the set-based ideas to the order-based context.

While every effort has been made to keep this paper self contained, it may
nevertheless be necessary to consult [2] and/or [3] to resolve detailed technical is-
sues. Also, while the general theory is not attached to any particular data model,
numerous examples are taken from the classical relational theory. Therefore, it is
assumed that the reader is familiar with its standard notation and terminology.

Summary 2.1 (The classical results in the set-based framework). In the
original work of Bancilhon and Spyratos [1], a database schema D is just a set.
To maintain consistency with the more structured frameworks to be introduced
shortly, this set will be denoted LDB � D � and called the legal databases of D.
Thus, a database schema is modelled by its instances alone; constraints, schema
structure, and the like are not explicitly represented. A morphism f : D1 � D2

of database schemata is a function f : LDB � D1
� � LDB � D2

� .
D

V1 V2

γ1 γ2

f

Fig. 1. View morphism

A view of the schema D is a pair Γ � � V, γ � in
which V is a schema and γ : D � V is a surjec-
tive database morphism. A morphism f : Γ1 � Γ2 of
views Γ1 � � V1, γ1

� and Γ2 � � V2, γ2
� is a morphism

f : V1 � V2 of schemata such that the diagram to
the right commutes. Following standard categorical
terminology [5, 3.8], the morphism f is an isomor-
phism if there is a g : V2 � V1 which is both a left and a right inverse
to f . The congruence of Γ is the equivalence relation on LDB � D � defined by
�M1, M2

� �
Congr � Γ � iff γ �M1

� � γ � M2
� . It is easy to see that Γ1 � � V1, γ1

�
and Γ2 � � V2, γ2

� of D are isomorphic iff Congr � Γ1
� � Congr � Γ2

� .
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An update on the schema D is a pair � M1, M2
� �

LDB � D ��� LDB � D � , which
specifies a change of the state of D from M1 to M2. A closed update family U

on D a set of updates which forms an equivalence relation; that is:

(up-r) For each M
�

LDB � D � , � M, M � �
U .

(up-s) If � M1, M2
� �

U , then �M2, M1
� �

U as well.

(up-t) If � M1, M2
� , � M2, M3

� �
U , then � M1, M3

� �
U .

Thus, in a closed update family, all updates are reversible, and compatible up-
dates are composable.

Now let Γ � � V, γ � be a view of the schema D, and let U and T be closed
update families for D and V respectively. An update strategy is a rule which
translates updates on the view (i.e., in T ) to updates on the main schema (i.e.,
in U). Formally, an update strategy for T with respect to U is a partial function
ρ : LDB � D ��� LDB � V � � LDB � D � which satisfies the following five conditions.
(Here X

�
means that X is defined.)

(upt:1) ρ � M, N � � iff � γ � M � , N � �
T . [Admissibility of an update depends only

upon the state of V, and not otherwise upon that of D.]

(upt:2) If ρ � M, N � � , then � M, ρ �M, N � � �
U and γ � ρ �M, N � � � N .

(upt:3) For every M
�

LDB � D � , ρ � M, γ � M � � � M . [Identity updates are re-
flected as identities.]

(upt:4) If ρ � M, N � � , then ρ � ρ � M, N � , γ �M � � � M . [Every view update is glob-
ally reversible.]

(upt:5) If ρ �M, N1
� � and ρ � ρ � M, N1

� , N2
� � , then ρ �M, N2

� � ρ � ρ � M, N1
� , N2
� .

[View update reflection is transitive.]

The idea of such an update strategy is shown in Fig. 2 below. Put another way,
ρ : � current state of D, new state of V ���� new state of D in such a way that the
new state of D gives rise to the desired new state of V. The update to V must
lie in T , and the reflected update to D must lie in U . In practice, U is often
taken to be all possible updates on D, i.e., LDB � D ��� LDB � D � , but this is in no
way essential to the theory.

M1 ρ � M1, N2
�

γ �M1
� � N1 N2 � γ � ρ � M1, N2

� �

reflected update

view update
γ γ

Fig. 2. Update strategy

Some authors have ar-
gued that closed update
strategies are too restric-
tive to be of use [6]. How-
ever, as shown in [3], they
are precisely the view up-
dates which (a) do not
depend upon the corre-
sponding state of the main schema for admissibility, and (b) have their effect
visible entirely within the view. In other words, they are the updates which can
be understood entirely within the context of the view itself.

The idea that all view updates in a closed strategy have their effect contained
entirely within the view itself is further manifested in their characterization
via constant complement. A pair � Γ1 � � V1, γ1

� , Γ2 � � V2, γ2
� � of views of

the schema D is called a subdirect complementary pair if it defines a lossless
decomposition of D. More precisely, the product Γ1

� Γ2 � � V1 γ1� γ2
V2, γ1 � γ2

�

4



has LDB � V1 γ1� γ2
V2
� ��� � γ1 �M � , γ2 � M � ��� M �

LDB � D � � . The morphism γ1 �
γ2 : D � V1 γ1� γ2

V2 is given on elements by M �� � γ1 � M � , γ2 � M � � . The pair

� Γ1, Γ2 � is said to form a subdirect complementary pair, and Γ1 and Γ2 are called
subdirect complements of one another, just in case γ1 � γ2 is a bijection. In other
words, � Γ1, Γ2 � is a subdirect complementary pair precisely in the case that the
state of the schema D is recoverable from the combined states of V1 and V2. In
the classical relational setting, this amounts to a lossless decomposition.

If � Γ1, Γ2 � is a subdirect complementary pair, it is clear that there can be
at most one update strategy on Γ1 which holds Γ2 constant. Specifically, define
UpdStr � Γ1, Γ2 � : LDB � D � � LDB � V1

� � LDB � D � by � M, N � ��
� γ1 � γ2

��� 1 � N, γ2 � M � � whenever � N, γ2 � M � � �
γ1 � γ2 � LDB � D � � , and unde-

fined otherwise. UpdStr � Γ1, Γ2 � is called the update strategy for Γ1 with constant
complement Γ2. As first shown by Bancilhon and Spyratos [1, Thm. 7.3], ev-
ery closed update strategy on a view Γ is of the form UpdStr � Γ, Γ � � for some
view Γ � . Specifically, let T and U closed update strategies for V and D re-
spectively, and ρ an update strategy for T with respect to U . The induced
update family on D is the smallest subset of U which will support the up-
dates in T . It is denoted � ρ and is given by � � M1, M2

� �
LDB � D ��� �
	 N �

LDB � V � � � ρ � M1, N
� � M2

� � . The ρ-complement of Γ , denoted Γ̃ ρ � � Ṽρ, γ̃ρ � , is
defined to have LDB � Ṽρ � � LDB � D ��� � ρ, with the morphism γ̃ρ : D � Ṽρ given
by M �� �M ��

ρ
, with the latter denoting the equivalence class of M in � ρ. In

other words, �M1, M2
� �

Congr � Γ̃ ρ � iff some view update � N1, N2
� �

T changes
the state of D from M1

�
γ � 1 � N1

� to M2

�
γ � 1 � N2

� . Thus, by construction, a po-
tential update � N1, N2

� �
LDB � V � is supported under ρ iff for some (resp. any)

M1

�
γ � 1 � N1

� , there is an M2

�
LDB � D � with � M1, M2

� �
Congr � Γ̃ ρ � . In other

words, the allowable updates to Γ under ρ are precisely those whose reflection
into D leaves ṼΓ fixed; i.e., ρ � UpdStr � Γ, Γ̃ ρ � .

D

V1 V2

V1 γ1 � γ2
V2

γ1 γ2

λ � Γ1, Γ2 � λ � Γ2, Γ1 �

γ1 � γ2

Fig. 3. Relative views

Not all subdirect complements give rise to
closed update strategies. Condition (upt:1) man-
dates that the admissibility of a view update de-
pend upon the state of the view alone. Thus,
any information which is contained in the com-
plement view and which is needed to determine
the admissibility of an update must be contained
in the view to updated as well. The necessary
condition, first observed in [7, 2.10], is that the
congruences must commute. Formally, the pair

� Γ1, Γ2 � of views of D is called a fully commut-
ing pair if Congr � Γ1

��� Congr � Γ2
� � Congr � Γ2

���
Congr � Γ1

� , with “ � ” denoting ordinary relational composition. A subdirect com-
plementary pair � Γ1, Γ2 � which is fully commuting is called a meet-complementary
pair, and Γ1 and Γ2 are called meet complements of one another. In this case,
Congr � Γ1

��� Congr � Γ2
� is also an equivalence relation on LDB � D � , and so it is

possible to define (up to isomorphism) the view Γ1 � Γ2 � � V1 γ1 � γ2
V2, γ1 � γ2

�
with Congr � Γ1 � Γ2

� � Congr � Γ1
��� Congr � Γ2

� . The situation is summed up in the
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Fig. 3 above. Note that V1 γ1 � γ2
V2 is a view not only of D, but of V1 and V2 as

well. Now define UpdFam � Γ1, Γ2 � � � � N1, N2
� �

LDB � V1
� � LDB � V1

� � λ � Γ1, Γ1 �
Γ2 � � N1

� � λ � Γ1, Γ1 � Γ2 � � N2
� � . UpdFam � Γ1, Γ2 � is a closed update family, called

the update family induced by Γ2 on Γ1. The key result [2, 3.9] [3, 3.10] is the
following:

(a) For any update strategy ρ, UpdStr � Γ, Γ̃ ρ � � ρ.
(b) For any meet complement Γ1 of Γ , Γ̃ UpdStr

�
Γ,Γ1 � � Γ1.

In the context of relational schema and views defined by projection, a pair of
views forms a meet-complementary pair iff the decomposition is both lossless and
dependency preserving [2, 2.16] [3, 2.17]. In this case, the meet view is just the
projection on the common columns. To obtain an example in which the views
form a subdirect complementary pair but not a meet complementary pair, it
suffices to consider an example which is lossless but not dependency preserving.

In [8], the connection between decompositions of database schemata and
commuting congruences is investigated thoroughly.

Summary 2.2 (The order-based framework). Despite its simplicity and
elegance, the set-based framework for closed update strategies has a substan-
tial shortcoming; namely, the update strategy depends upon the choice of the
complement. The theory cannot distinguish between complements, even those
which yield identical meets, and so identical update families. For example, let
E1 be the relational schema with the single relation R

�
ABC � , constrained by

the single FD B � C, and let ΠAB be the view defined by the projection map-
ping πAB . Define ΠBC similarly. Since the pair � ΠAB , ΠBC � forms a lossless and
dependency-preserving decomposition of E1, it also forms a meet-complementary
pair [2, 2.16] [3, 2.17]. Indeed, ΠBC is the “natural” complement of ΠAB , and the
one which yields the “obvious” strategy for reflecting updates to ΠAB back to
F0. However, as shown in [2, 1.3] [3, 1.3], it is possible to find other complements
of ΠAB which have exactly the same meet, and so support exactly the same up-
dates to ΠAB . Although these alternate complements are a bit pathological, the
set-based theory outlined above in Summary 2.1 does not prefer ΠBC to them
in any way.

To formalize this preference, additional structure must be incorporated into
the model. Most database models incorporate some sort of order structure. In the
relational model, the databases may be ordered via relation-by-relation inclusion.
Furthermore, the common database mappings built from projection, restriction,
and join are all order preserving with respect to this natural order structure.
In particular, while the views ΠAB and ΠBC are order mappings, the alternate
views identified in [2, 2.16] [3, 2.17] are not.

The theory developed in [2] and [3] provides a systematic extension to the
results outlined in Summary 2.1 above to the order-based setting. A order schema
D is taken to be a partially ordered set (poset) � LDB � D � , � D

� . A order database
mapping f : D1 � D2 is an order-preserving function; i.e., M1 � D1

M2 implies
f �M1

� � D2
f � M2

� . An order view Γ � � V, γ � of D consists of an order schema
V and an open surjection γ : LDB � D � � LDB � V � ; that is, a surjection which
is order preserving and, in addition, which satisfies the property that whenever
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N1 � V N2, there are M1, M2

�
LDB � D � with the properties that M1 � D M2,

f �M1
� � N1, and f � M2

� � N2. For the pair of order views � Γ1, Γ2 � to be a
subdirect complementary pair in the order sense, the mapping γ1 � γ2 : D �
V1 γ1� γ2

V2 must be an order isomorphism, and not merely an order-preserving
bijection. To obtain a closed update strategy in the oder-bases sense, conditions
(upt:1)-(upt:5) identified in Summary 2.1 are augmented with the following three
additions.

(upt:6) If ρ � M, N � � and γ � M � � V N , then M � D ρ �M, N � . [View update
reflects order.]

(upt:7) If ρ � M1, N1
� � with M1 � D ρ � M1, N1

� , then for all M2

�
LDB � D � with

M1 � D M2 � D ρ �M1, N1
� , there is an N2

�
LDB � V � with ρ �M1, N2

� �
M2 and ρ � M2, γ � ρ � M1, N1

� � � � ρ �M1, N1
� . [This condition is called order

completeness.]
(upt:8) If M1, M2

�
LDB � D � with M1 � D M2, then for every N1, N2

�
LDB � V �

for which N1 � V N2, ρ �M1, N1
� � , and ρ � M2, N2

� � , if must be the case that
ρ � M1, N1

� � D ρ �M2, N2
� . [This condition is called order reflection.]

Modulo these modification, it is fair to say, at least in a general way, that [2]
and [3] extend the classical set-based constant complement theory to the order-
based setting. Within the setting of this extension, a number of uniqueness
results are obtained. Most importantly, while complements are not necessarily
unique, order-based updates are. Specifically, let D be a database schema, and
let U be a closed update family for D. A pair � M1, M2

� �
U is called: a formal

insertion with respect to U if M1 � D M2; a formal deletion with respect to U if
M2 � D M1; and an order-based update with respect to U if it is a composition
of a sequence of formal insertions and formal deletions. The main theorem [2,
4.2] [3, 4.3] states that for an order-based view Γ � � V, γ � of the order-based
schema D, all order-based closed update strategies must agree on all order-based
updates. In other words, there is only one way to reflect the view update back
to the main schema. This does not depend upon the choice of complement, or
even the value of the meet. It is unique, period. As a rich source of classical but
important examples, all SPJR-mappings (Select, Project, Join, Rename) in the
classical relational setting define order views [2, 2.5] [3, 2.5].

In [9], a theory of direct decomposition (i.e., situations in which the views
are independent and so the meet is trivial) of order-based schemata is presented.

3 A Framework for Modelling View Updates

The framework described in Summary 2.2 must be extended in two essential ways
in order to recapture the key ideas involved in updates and their complexity. First
of all, to recapture complexity, it must be possible to characterize the size of a
database, and also the size of an update. Secondly, to recapture admissibility of
a candidate database, it must be possible to discuss both those databases which
satisfy the underlying constraints and those which do not. Fortunately, there
is a very simple model which meets both of these requirements. To begin, the
underlying ideas in the world of posets are developed.
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Definition 3.1 (CFA-posets and morphisms). Let X be any set (not nec-
essarily finite), and let PPP f � X � � �Pf � X � , � � denote the poset consisting of
all finite subsets of X , ordered under set inclusion. A concrete finitely-atomistic
poset P � � P, � � (over X) (CFA-poset for short) is any sub-poset of PPP f � X �
which contains the least element � , as well as all singletons of the form � x �
with x

�
X . Define Atoms � P � � � � x � � x �

X � ; these are clearly the atoms of
this poset in the abstract sense [10, 5.2]. The basis of any p

�
P is BasisP � p � �

� a �
Atoms � P � � a � p � � � x �

X � x
�

p � . The term finitely atomistic is
borrowed from the lattice-theoretic world [11, p. 234], and refers to the fact that
every element in P is the supremum of the atoms which are less than it; i.e.,
p � sup � a �

Atoms � P � � a � p � . Note also that X may be recovered from P as�
Atoms � P � � � x � � x � �

Atoms � P � � , so that it is safe to speak of a CFA-poset
without explicitly identifying the underlying set.

To avoid confusion when more than one poset is considered, � P will be
used to denote � when it is regarded as the least element of P. Finally, it
is often useful to have a notation for atoms and basis when the least element
is included as well; thus ExtAtoms � P � � Atoms � P � 	 � � P � , and for p

�
P ,

ExtBasisP � p � � BasisP � p � 	 � � P � ,
Let P � � LDB � P � , � � and Q � � LDB � Q � , � � be CFA-posets. A CFA-morphism

is a function f : P � Q with the property that it is basis preserving, in the pre-
cise sense that for all p

�
P ,

� � f � a � � a
�

BasisP � p � � � BasisQ � f � p � � . It is
clear that a CFA-morphism is monotone, i.e., p1 � p2 implies f � p1

� � f � p2
� ,

and thus a poset morphism in the ordinary sense. Furthermore, f ��� P
� � � Q ,

since BasisP ��� P
� � BasisQ ��� Q

� � � . Thus, the behavior of a basis-preserving
morphism is determined entirely by its action on the atoms of the poset.

The CFA-morphism f : P � Q is open if, for each pair q1, q2

�
Q with

q1 � q2, there are p1, p2

�
P with the properties that p1 � p2, f � p1

� � q1, and
f � p2
� � q2. A CFA-morphism which is surjective is called a CFA-surjection. If

f is both open and surjective, then Q carries the weakest order which renders
f monotone.

Definition 3.2 (CFA-schemata, morphisms, and views). Formally, a con-
crete finitely atomistic database schema (CFA-schema for short) D �
� LDB � D � , � � is just a CFA-poset. A CFA-database morphism is just a CFA-
morphism in the sense given above. A CFA-view is a pair Γ � � V, γ � in which
V is a CFA-schema and γ is an open CFA-surjection.

Example 3.3 (Relational CFA-schemata, morphisms, and views). Let
R be a relational schema consisting of a single relation R

�
A � , with a family C

of constraints; LDB � R � the set of all finite relations satisfying those constraints.
R is automatically an order schema in the sense of [2] and [3], with the order
defined by set inclusion. For it to be a CFA-schema, it must also be finitely
atomistic. Specifically, this means that both the empty relation � and each set

� t � containing exactly one tuple satisfies the constraints of C. These conditions
are satisfied, for example, whenever C consists of universal dependencies, such as
full dependencies [12, Ch. 10].) These sets are very broad, and include equality
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generating dependencies (EGDs) such as FDs, and tuple generating dependencies
(TGDs) such as join dependencies. They do not, however, include dependencies
involving existential quantification, such as inclusion dependencies [12, Ch. 9],
upon which foreign-key dependencies are based. A similar construction applies
in the case in which R contains several relations; in this case, the atoms are
those instances in which one relation contains one tuple, and the rest are empty.

Both projection and restriction are examples of open CFA-morphisms in the
relational context, since each is defined by its action on single tuples. Thus, they
define CFA-views. On the other hand, joins are not in general CFA-morphisms,
since they are not basis preserving.

Definition 3.4 (Unconstrained databases). While the legal databases con-
sist of some finite subsets of the foundation, the potential databases consist of
all of them. Specifically, Let D � � LDB � D � , � � be a CFA-schema, and define
� D � DB � D � , � � with DB � D � � Pf � Foundation � D � � , and let ιD : D � D be
the identity embedding; M �� M . The elements of DB � D � are called the uncon-
strained databases of D. In the relational example R identified in Example 3.3,
DB � D � is the set of all finite relations on attribute set A, regardless of whether
or not the constraints of C are met.

Remark 3.5 (Abstract FA-schemata). A cornerstone of the framework de-
veloped in [2] [3] is that equivalence up to poset isomorphism is adequate to
characterize a database schema. In other words, the theory is indifferent to such
“inessential” variations. However, in the approach taken here, this is not the case.
Rather, the database schemata are required to have a specific form; namely, that
of a sub-poset of a power set. This is not an essential change. It is quite possible
to develop the theory of this paper along the lines of abstract FA-posets, which
may be axiomatized independently of any reference to CFA-posets, but which
amount to those posets which are isomorphic to CFA-posets. The reason for
not taking this direction is that it becomes much less intuitive, and much more
cumbersome notationally, to define the unconstrained databases. The gains real-
ized in having such a natural model for going from constrained to unconstrained
databases seems worth the loss in abstraction. The more concrete approach is
not entirely without its drawbacks, however. In particular, views which are con-
structed axiomatically must then be “concretized.” For example, at the end of
Definition 4.3, a method for constructing a CFA-view from a congruence is pro-
vided.

Definition 3.6 (k-models and subinstance properties). In a relational
schema R constrained by a family F of FDs, to test a candidate relation M

for legality, it suffices to test each pair of tuples for conflict. In other words, if
every two-element subset of M satisfies F , then M itself does. For more gen-
eral families of EGDs, a corresponding property requiring the testing of k tuples
at a time is easily formulated. The following notions extend these ideas to the
abstract framework.

Let D � � LDB � D � , � � be a CFA-database schema, and let k
���

. A k-model of
D is any M

�
DB � D � with the property that every N

�
DB � D � with N � M and

9



Card � Basis
D � N � � � k is in LDB � D � . (Here Card � X � denotes the cardinality of

the set X .) The schema D has the k-submodel property if, for every M
�

DB � D � ,
M

�
LDB � D � iff it is a k-model of D. The schema D is closed under subinstances

if, for any M
�

LDB � D � and any N � BasisD � M � , N
�

LDB � D � as well. The
following observation is immediate.

Observation 3.7. If D is a CFA-schema which has the k-submodel property
for some natural number k, then it is closed under subinstances. �
Remark 3.8 (The limits of k-models). While k-models recapture the idea
of FDs in particular and EGDs in general, they do not recapture the tuple-
generating properties of join dependencies in particular and TGDs in general.
For such dependencies, a more general notion, the � k1, k2

� -model, is needed. See
the comments in Discussion 6.1.

Remark 3.9 (The measure of complexity). In a simple sense, a potential
database M

�
D of a schema D with the k-submodel property may be tested for

membership in LDB � D � in worst-case time O � nk � , with n � Card � BasisD � M � � ,
since there are � n

k � subsets of size k to test, and O ��� n
k � � � O � nk � , when k is taken

to be constant and n the variable. In the context of simple update operations,
this complexity may be further reduced. For example, if the update corresponds
to the insertion of a single atom, then the complexity is O � nk � 1 � , since the only
k-element subsets which need be checked are those whose basis contains the new
atom. In view of Observation 3.7, no checking is needed at all for deletions.

In certain contexts, with the support of appropriate data structures, these
values may be reduced even further. Most notably, with key dependencies in the
case of FDs, satisfaction may be performed in linear time, and the correctness
of simple insertions may be determined in constant time [13]. For reasons of this
dependence upon data structures, as well as space constraints, these issues will
not be pursued further in this paper. Rather, complexity will be characterized
solely in terms of k-submodel properties.

To close this section, a few essential properties of schemata which are closed
under subinstances are developed.

Definition 3.10 (Strong morphisms and injective generators). Let D1 �
� LDB � D1

� , � � and D2 � � LDB � D2
� , � � be CFA-schemata, and let f : D1 � D2

be a CFA-surjection.
(a) The morphism f is a downwardly strong if for every M

�
LDB � D1

� and
N

�
LDB � D2

� for which N � f �M � , there is an M � �
LDB � D1

� with
M � � M and f � M � � � N . Note in particular that if f is surjective and
downwardly strong, then it must be open as well.

(b) The morphism f is injectively generating if for every M2

�
LDB � D2

� ,
there is an M1

�
f � 1 � M2

� with the property that Card � BasisD1
� M1
� � �

Card � BasisD2
� M2
� � .

Proposition 3.11. Let D1 � � LDB � D1
� , � � and D2 � � LDB � D2

� , � � be a CFA-
database schemata, with f : D1 � D2 a CFA-surjection and D1 closed under
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subinstances. Then f is downwardly strong and injectively generating, and D2

is closed under subinstances.

Proof. To show that f is downwardly strong, let M
�

LDB � D1
� and N

�

LDB � D2
� with f � M � � N , and let N � �

LDB � D2
� with N � � N . Set M � �

� A �
M � f � A � �

N � � . Then M � �
LDB � D1

� (since D1 is closed under subin-
stances) with f �M � � � N � .

To show that f is injectively generating, let N
�

LDB � D2
� and choose M

�

f � 1 � N � . For each B
�

N , choose exactly one AB
�

M with the property that
f � A � � B, and put M � � � AB

� B �
N � . Since D1 is closed under subinstances,

M � �
LDB � D1

� , with f � M � � � N � .
Finally, to show that D2 is closed under subinstances, let N

�
LDB � D2

�
and let N � �

DB � D � with N � � N . Choose M
�

f � 1 � N � and set M � � � A �

M � f � A � �
N � � . Since D1 is closed under subinstances, M � �

LDB � D1
� , and so

N � �
LDB � D2

� with f � M � � � N � . �

4 View Constructions and Relative Complexity

The ultimate goal of this section is the proof of the main theorem of this paper
— that the relative complexity of view update for a closed view is no greater
than that of update in the base schema. To achieve this result, certain key results
from [2] [3] must be lifted to the current, more structured framework.

To begin, it is shown that a functional connection, or, equivalently, a sub-
sumption of congruences is sufficient to define a relative view.

Lemma 4.1 (CFA-view fill-in). Let D � � LDB � D � , � � be a CFA-schema,
let Γ1 � � V1, γ1

� and Γ2 � � V2, γ2
� be CFA-views of D, and let f : V1 �

V2 be any function which renders the diagram of Fig. 1 commutative. Then f

is necessarily an open CFA-surjection, and hence defines a relative CFA-view
Λ � Γ1, Γ2

� � � V2, λ � Γ1, Γ2 � � with λ � Γ1, Γ2 � � f .

Proof. It is immediate that f is surjective, since γ2 is. To show that it is open,
let M, N

�
LDB � V2

� with M � N . Then, since γ2 is open, there are M � , N � �

LDB � D � with M � � N � and f � M � � � M , f � N � � � N . Then γ1 �M � � � γ1 � N � �
with γ1 � M � � �

f � 1 � M � , γ1 � N � � �
f � 1 � N � ; i.e., f is open. Finally, to show that

it is basis preserving, let N
�

LDB � V1
� ; then, since γ1 is surjective, there exists

M
�

LDB � D � with γ1 �M � � N . Since γ1 is basis preserving, each a
�

N is of
the form γ1 � b � for some b

�
M . Thus f � N � � f � γ1 � M � � � γ2 � M � � � γ2 � b � � b �

M � � � f � γ1 � b � � � b �
M � � � f � a � � a �

N � . �
Proposition 4.2. Let D � � LDB � D � , � � be a CFA-schema and let
Γ1 � � V1, γ1

� and Γ2 � � V2, γ2
� be CFA-views of D. Then there is a view

morphism f : Γ1 � Γ2 iff Congr � Γ1
� � Congr � Γ2

� . �
In the order-based context, the congruences which define order views are

the order-compatible congruences [2, 2.9] [3, 2.9]. In the present framework, the
appropriate condition is that of being atomically generated ; that is, of being
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defined entirely by the behavior on the basis of the underlying schema. The
formal details are as follows.

Definition 4.3 (Atomically generated equivalence relations). Let D �
� LDB � D � , � � be a CFA-schema, and let R be an equivalence relation on LDB � D � .
Define

�
D � R � � LDB � D ��� R, ���D �

R

� , with LDB � D ��� R the set of equivalence
classes of R, and ���D �

R
the relation on LDB � D � � R given by

�
M � R ���D �

R

�
N � R

iff ��	 M1

� �
M � R � �
	 N1

� �
N � R � �M1 � D N1

� , and define θR : D � LDB � D � � R
by M �� �M � R. In the order-based setting, it is already known that

�
D � R is an

order schema, and that ΘR � � �D � R, θR
� is an order-based view [2, 2.9] [3, 2.9].

To extend this result to the CFA-setting, a few additional conditions must be
imposed. The idea is that since CFA-morphisms are completely characterized by
their action on atoms, the corresponding notion of equivalence relation should
have this same property. Specifically, let D � � LDB � D � , � � be a CFA-schema,
and let R be an equivalence relation on ExtAtoms � D � . Informally, R is atomically
generated if its equivalence classes are defined entirely by the equivalences of its
atoms. Formally, R is atomically generated if, for any �M1, M2

� �
LDB � D � �

LDB � D � , � M1, M2
� �

R iff the following two conditions are satisfied.
(atg:1) � � A1

�
BasisD � M1

� � �
	 A2

�
ExtBasisD � M2

� � � � A1, A2
� �

R � �
(atg:2) � � A2

�
BasisD � M2

� � �
	 A1

�
ExtBasisD � M1

� � � � A1, A2
� �

R � �
Put another way, define the atomic subequivalence AtomicEq � R � �
R � � ExtAtoms � D � � ExtAtoms � D � � . Then, for R to be atomically generated,
it must be entirely recoverable from AtomicEq � R � .

It is easy to see that an atomically generated equivalence relation provides
the correct construction for obtaining an abstract FA-view; however, such a view
is not concrete because the equivalence class

�
M � R is not the union of its basis.

Nonetheless, this is easy to fix. For any M
�

LDB � D � , let JMKR � � � x � R � x �

M � , let LDB � D �
� � R � � JMKR
� M �

LDB � D � � , and let JDKR � � LDB � D ��� � R, � � .
Define JΘRK � � JDKR, JθRK � , with JθRK : D � JDKR given by M �� JMKR. This
construction provides a CFA-view which is defined by the equivalence relation
R; Lemma 4.4 and Proposition 4.5 below formalize this fact.

Lemma 4.4 (Concretization of views defined by equivalence relations).
Let D be a CFA-schema, and let R be an atomically generated equivalence rela-
tion on LDB � D � . Then JDKR is a CFA-schema with Atoms � JDKR

� � � JaKR
� a �

Atoms � D � � , and JΘRK � � JDKR, JθRK � is a CFA-view of D with Congr � JΘRK � �
R. �
Proposition 4.5 (Characterization of CFA-views). Let D be a
CFA-schema, and let R be any equivalence relation on LDB � D � . Then JΘRK
is a CFA-view iff R is an atomically generated equivalence. In particular, if
Γ � � V, γ � is a CFA-view, then Congr � Γ � is an atomically generated equiva-
lence. �

A critical component of the theory is the ability to “lift” the constructions on
a constrained schema D to the associated unconstrained schema D. This includes
also morphisms between such schemata, views, and even equivalence relations
induced by views. To begin, the notion of lifting a morphism is introduced.
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D1 D2

D1 D2

f

�

f

ιD1
ιD2

Fig. 4. The extension of
a CFA-morphism

Definition 4.6 (Extensions of CFA-morphisms
to unconstrained databases). Given CFA-
schemata D1 � � LDB � D1

� , � � and D2 �
� LDB � D2

� , � � and a CFA-morphism f : D1 � D2,
there is a unique natural extension to

�

f : D1 � D2,
which renders the diagram of Fig. 4 to the right
commutative. Specifically, for any M

�
LDB � D1

� ,
define

�

f � M � � � � f � � x � � � x �
M � . The following is

easy to verify.

Proposition 4.7. Let D1 � � LDB � D1
� , � � and D2 � � LDB � D2

� , � � be CFA-
schemata, and let f : D1 � D2 be a CFA-morphism. Then

�

f : D1 � D2 is also
a CFA-morphism, and it is a CFA-surjection iff f is. �

D

V1 V2

V1 γ1 � γ2
V2

γ
1

γ
2

λ � Γ1, Γ2 � λ � Γ2, Γ1 �

γ1 � γ2

Fig. 5. Diagram lifting

Discussion 4.8 (Lifting of entire diagrams
and completions of CFA-equivalences).
The lifting construction described in Definition
4.6 may be applied to any commutative di-
agram containing CFA-morphisms. Thus, the
commutative diagram shown in Fig. 5 to the
right may be obtained from the commutative
diagram shown in Fig. 3. The key results of
this section, however, require a further step;
namely, that the extension operation be moved
from an entire construction to the individual
components.

D

V1 V2

V1 γ1 � γ2
V2

γ
1

γ
2

λ � Γ 1, Γ 2 � λ � Γ 2, Γ 1 �

γ
1 � γ

2

Fig. 6. Individual lifting

In concrete terms, it is necessary to show
that the diagram of Fig. 5 is the same,
component-by-component and morphism-by-
morphism, as that of Fig. 6 to the right. The
key to establishing this equivalence lies within
the associated equivalence relations.
Specifically, given a CFA-schema D, it is the
case that the equivalence relation of D is a nat-
ural completion of that of D. More formally,
proceed as follows. Let R be a CFA-equivalence
on the CFA-schema D. Define the completion
of R to be the equivalence relation R on D
with the property that for M1, M2

�
DB � D � ,

� M1, M2
� �

R
� � � � � A1

�
BasisD � M1

� � �
	 A2

�
ExtBasisD � M2

� � � � A1, A2
� �

R � ���
� � � A2

�
BasisD � M2

� � ��	 A1

�
ExtBasisD � M1

� � � � A1, A2
� �

R � � �
Definition 4.9 (Independence dependencies). Consider a simple relational
schema R

�
ABC � constrained by the single FD B � C, which decomposes loss-

lessly and in a dependency-preserving fashion into the two projections ΠAB and
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ΠBC . There are two equivalent ways of identifying the view states which may
be combined to form a state of the main schema. First, one may say that the
projection of each view on attribute C is the same. Second, on may say that
for each tuple � a, b � of the view ΠAB , there is a tuple � b, c � with a matching
B-value, and conversely. These conditions are so obviously identical that they
are often considered as one. However, in a more general context, they display
an important difference. The first (characterization by equivalent projections)
does not make use explicit use of individual tuples, and thus claims a generaliza-
tion as the ΠC-independence dependency within the framework of [2] [3]. On the
other hand, a generalization of the second condition (tuple-by-tuple matching)
requires a corresponding abstraction of the notion of a tuple; while the frame-
work of [2] [3] does not admit such an abstraction, the more restricted one of
used here does. The formalizations are as follows.

Let D � � LDB � D � , � � be a CFA-schema, let � Γ1, Γ2 � be a subdirect com-
plementary pair of CFA-views, and let Γ3 � � V3, γ3

� be a view of D, with
Congr � Γ3

� � Congr � Γ1
� and Congr � Γ3

� � Congr � Γ2
� . The Γ3-independence de-

pendency on V1 γ1� γ2
V2, denoted � Γ3

, is satisfied iff for any M1

�
LDB � V1

� and
M2

�
LDB � V2

� , the following condition is satisfied ([2, 2.12], [3, 2.13]).

(id) � � M1, M2
� �

LDB � V1 γ1� γ2
V2
� � � � λ � Γ1, Γ3 � � M1

� � λ � Γ2, Γ3 � � M2
� �

On the other hand, the pointwise Γ3-independence dependency is satisfied iff the
following two dual conditions are met.

(id:1)
� � A1

�
BasisV1

� A1
� � ��	 A2

�
ExtBasisV2

� A2
� � � λ � Γ1, Γ3 � � A1

� � λ � Γ2, Γ3 � � A2
� �

(id:2)
� � A2

�
BasisV1

� A2
� � ��	 A1

�
ExtBasisV2

� A1
� � � λ � Γ1, Γ3 � � A1

� � λ � Γ2, Γ3 � � A2
� �

Thus, in the context of CFA-views, conditions (id:1) and (id:2) may replace (id).

Proposition 4.10. Let � LDB � D � , � � be a CFA-schema, and let � Γ1, Γ2 � be a
subdirect complementary pair of CFA-views of D. Then it is also a meet com-
plementary pair iff conditions (id:1) and (id:2) of Definition 4.9 is satisfied.

Proof. Follows directly from the discussion of Definition 4.9 and [2, 2.13] [3,
2.14]. �
Lemma 4.11 (Commuting congruences for completions). Let D be a
CFA-schema and let M1, M2,

�
DB � D � .

(a) Let Γ � � V, γ � be a CFA-view of D. Then � M1, M2
� �

Congr � Γ � iff the
following two dual conditions are satisfied.

� � A1

�
Basis

D
� M1
� � �
	 A2

�
ExtBasis

D
� M2
� � � A1, A2

� �
Congr � Γ � �

� � A2

�
Basis

D � M2
� � �
	 A1

�
ExtBasis

D � M1
� � � A1, A2

� �
Congr � Γ � �

(b) Let Γ1 � � V1, γ1
� and Γ2 � � V2, γ2

� be FA-views of D. Then �M1, M2
� �

Congr � Γ 1
��� Congr � Γ 2

� iff the following two dual conditions are satisfied.

� � A1

�
BasisD � M1

� � �
	 A2

�
ExtBasisD � M2

� � � A1, A2
� �

Congr � Γ1
��� Congr � Γ2

� �
� � A2

�
BasisD � M2

� � �
	 A1

�
ExtBasisD � M1

� � � A1, A2
� �

Congr � Γ1
��� Congr � Γ2

� �
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Proof. Part (a) is a direct consequence of conditions (atg:1) and (atg:2) of Defini-
tion 4.3 and the definition of completion. To establish (b), let A1

�
BasisD � M1

� ,
A2

�
BasisD � M2

� with � A1, A2
� �

Congr � Γ1
� � Congr � Γ2

� . Then, using the condi-
tions of (b), there is an NA1A2

�
DB � D � with � A1, NA1A2

� �
Congr � Γ1

� and
� NA1A2

, A2
� �

Congr � Γ2
� . NA1A2

may furthermore be chosen to be a mem-
ber of ExtAtoms � D � , since every A

�
ExtBasisD � NA1A2

� must be equivalent to
A1 under Congr � Γ 1

� and equivalent to A2 under Congr � Γ 2
� , in view of (a).

Thus, if NA1A2

� � D , any element of BasisD � NA1A2

� will serve as well as
NA1A2

itself. (If NA1A2 � � D , leave it as is.) Now, again by the characteri-
zation of (a), � A1, NA1A2

� �
Congr � Γ 1

� and � NA1A2
, A2
� �

Congr � Γ 2
� . Put N � �� � � NA1A2

� � A1, A2
� �

Congr � Γ 1
� � Congr � Γ 2

� and A1

�
ExtBasisD � M1

� and A2

�

ExtBasisD � M2
� � . Then � M1, N � � �

Congr � Γ 1
� and � N � , M2

� �
Congr � Γ 2

� , whence

�M1, M2
� �

Congr � Γ 1
� � Congr � Γ 2

� . The converse condition follows immediately
from part (a). �
Proposition 4.12 (Extension of commuting congruences). Let D be a
CFA-schema, and let � Γ1, Γ2 � be a fully commuting pair of CFA-views of D.
Then:

(a) Γ1 � Γ2 is a CFA-view of D.

(b) � Γ 1, Γ 2 � is a fully commuting pair of views of D, with Γ 1 � Γ 2 � Γ1 � Γ2 .

Proof. The proof follows immediately from part (b) of Lemma 4.11. �
It is now possible to extend the notions of absolute k-models of Definition

3.6 to relative notions, and to prove the main theorem. A relative (to meet
complement Γ2 � � V2, γ2

� ) k-model in the view Γ1 � � V1, γ1
� is a k-model of

V1 whose Γ1 � Γ2 component is already a legal database of V1 γ1 � γ2
V2. Such

models are central to the update process because the property of the Γ1 � Γ2

component being legal does not change under constant-complement update. The
main theorem then states that, for the view to have this property, it suffices that
the main schema have the k-submodel property.

Definition 4.13 (Relative k-models). Let D � � LDB � D � , � � be a
CFA-schema, let Γ1 � � V1, γ1

� and Γ2 � � V2, γ2
� be CFA-views of D with

Γ2 � Γ1 (i.e., with a morphism f : Γ1 � Γ2) , and let k
� �

.

(a) The database M
�

DB � V1
� is called Γ2-legal if λ � Γ 1, Γ 2 � �M � �

LDB � V2
� ,

and it is called a Γ2-relative k-model for V2 if it is both Γ2-legal and a
k-model of V1.

(b) The view Γ1 � � V1, γ1
� has the Γ2-relative k-submodel property if, for

every M
�

DB � V1
� , M

�
LDB � V1

� iff it is a Γ2-relative k-model for V1.

Theorem 4.14 (Preservation of complexity). Let D be an FA-database
schema, and let � Γ1 � � V1, γ1

� , Γ2 � � V2, γ2
� � be a subdirect complementary

pair of CFA-views of D. Let k
� �

. If D has the k-submodel property, then Γ1

has the � Γ1 � Γ2
� -relative k-submodel property.
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Proof. First of all, note that γ1, γ
1
, γ2, and γ

2
are downwardly strong and injec-

tively generating, and that V1,
�

V1, V2, and
�

V2 are closed under subinstances,
in view of Observation 3.7 and Proposition 3.11.

Let M1

�
DB � V1

� be a Γ2-relative k-model; the goal is to establish that
M1

�
LDB � V1

� . To this end, begin by choosing M2

�
LDB � V2

� with the prop-
erty that λ � Γ 1, Γ 1 � Γ 2 � �M1

� � λ � Γ 2, Γ 1 � Γ 2 � � M2
� � λ � Γ2, Γ1 � Γ2 � � M2

� . Such
a choice of M2 is possible since the view morphism λ � Γ 2, Γ 1 � Γ 2 � is surjective.
Observe that � M1, M2

� �
V1 γ1� γ2

V2. Define M � � γ1 � γ
2

� � 1 � M1, M2
� . Choose

N
�

DB � D � such that N � M with two properties; first, that γ
1 � N � � γ

1 �M � ,
and, second, that γ

1
is injective on BasisD � N � ; i.e., A1, A2

�
BasisD � N � and

γ
1
� A1
� � γ

1
� A2
� implies that A1 � A2. Such a choice is possible since γ

1
is

injectively generating. Now � γ
1 � γ

2

� � N � � � M1, M �
2

� , with M �
2

�
LDB � V2

� � .
(M �

2

�
LDB � V2

� since M2

�
LDB � V2

� and V2 is closed under subinstances.)
Next, let M

� �
DB � D � with M

� � N and Card � BasisD � M � � � � k. Define
�M �

1
, M

�

2

� � � γ1 � γ
2

� � M � � . M
�

2

�
LDB � V2

� since M
�

2
� M �

2
and V2 is closed

under subinstances, and M
�

1

�
LDB � V1

� since M
�

1
� M1, Card � BasisV1

� M �

1

� � �
Card � BasisD � M � � � � k, and M1 is a relative Γ2-model. Thus, M

� �
LDB � D � ,

since γ
1 � γ

2
is an isomorphism. However, M

�

was an arbitrary submodel of N

in DB � D � ; thus, since D has the k-submodel property, N
�

LDB � D � . Finally,
this implies that M1 � γ1 � N � �

LDB � V1
� ; whence Γ1 has the � Γ1 � Γ2

� -relative
k-model property. �
Example 4.15. It is instructive to give a detailed example at this point which
illustrates the ideas of relative complexity. The example is E2, which was already
introduced in Section 1. Specifically, let E2 denote the relational schema on
five attributes with the single relation symbol S

�
ABCDE � . It is constrained

by the set F2 � � A � D, B � D, CD � A, A � E � of FDs. Since this
schema is constrained by FDs, it clearly has the 2-submodel property. The view
to be updated is ΠABCE � � S � ABCE � , πABCE

� , while the complement to be
held constant is ΠABCD � � S � ABCD � , πABCD

� . The pair � ΠABCE, ΠABCD � is
lossless, since the dependency A � E implies the join dependency ABCD

�

ABCE, and it is dependency preserving since every FD in F2 embeds into
one of the two views. Thus, it forms a meet-complementary pair, with meet
ΠABC � � S � ABC � , πABC

� [2, 2.16], [3, 2.17]. The updates which are allowed
on ΠABCE are precisely those which hold ΠABC constant; that is, those which
change only the E-value of a tuple. In view of the above theorem, ΠABCE has
the ΠABC-relative 2-submodel property, since the main schema E2 has the 2-
submodel property. Note that this is the case even though the view ΠABCE

cannot be finitely axiomatizable [4].

5 Update Strategies

To complete the transition to the CFA-context, the connection between the
results of the previous section and formal update strategies must be made. For
the most part, the approach is similar to that taken in [2] and [3]; however, an

16



adjustment is necessary to ensure that the complement view generated by an
update strategy is a CFA-view.

Summary 5.1 (Augmenting update strategies for CFA-views). To adapt
the conditions (upt:1)-(upt:8) summarized in Summary 2.1 and Summary 2.2
to the CFA-context, it is necessary to ensure that the equivalence � ρ of an
update strategy ρ is in fact an atomically generated equivalence, so that the
ρ-complement Γ̃ ρ of the CFA-view Γ is in fact a CFA-view. The appropriate
addition to (upt:1)-(upt:8) is the following.
(upt:9) If ρ � M1, γ � M2

� � � M2, then

� � A1

�
BasisD � M1

� � �
	 A2

�
ExtBasisD � M2

� � � ρ � A1, γ � A2
� � � A2

�
An update strategy ρ which satisfies all of (upt:1)-(upt:9) will be called a CFA-
update strategy. Essentially, this means that every update is composed of updates
on the underlying family of atoms. It is easy to see that this property holds in
the classical setting of the lossless and dependency-preserving decomposition of
a relational schema, as elaborated in [2, 2.15 and 2.16], [3, 2.16 and 2.17].

Lemma 5.2. The induced update family � ρ is an atomically generated equiva-
lence iff ρ is a CFA-update strategy.

Proof. Follows from Definition 4.3 and Proposition 4.5. �
Now the “CFA” equivalent of [2, 3.9] and [3, 3.10] follows directly.

Theorem 5.3. Let D be a CFA-schema, and let Γ be a CFA-view of D. There
is natural bijective correspondence between CFA-update strategies for Γ and meet
complements of that view which are also CFA-views. Specifically:
(a) For any CFA-update strategy ρ, UpdStr � Γ, Γ̃ ρ � � ρ.
(b) For any meet complement Γ1 of Γ which is also a CFA-view, Γ̃ UpdStr

�
Γ,Γ1 � �

Γ1. �
Notation 5.4 (Notational convention). Throughout the rest of this section,
unless stated specifically to the contrary, let D � � LDB � D � , � � be a CFA-schema,
Γ � � V, γ � a CFA-view of D, U and T closed update families for D and V,
respectively, and ρ a CFA-update strategy for T with respect to U .

Definition 5.5 (The completion of an update strategy).
(a) The completion of U , denoted U , is the relation on DB � D � � DB � D � defined

by �M1, M2
� �

U iff the following two (dual) conditions are satisfied.

(i) � � A1

�
Atoms �M1

� � �
	 A2

�
ExtAtoms �M2

� � � A1, A2
� �

U �
(ii) � � A2

�
Atoms �M2

� � ��	 A1

�
ExtAtoms �M1

� � � A1, A2
� �

U �
(b) The completion of ρ is the function ρ : DB � D ��� DB � V � � DB � D � given

by �M1, N2
� �� M2 iff γ � M2

� � N2 and the following two (dual) conditions
are satisfied:

(i) � � A1

�
Atoms �M1

� � �
	 A2

�
ExtAtoms �M2

� � � ρ � A1, γ � A2
� � � A2

�
(ii) � � A2

�
Atoms �M2

� � ��	 A1

�
ExtAtoms �M1

� � � ρ � A1, γ � A2
� � � A2

�
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Lemma 5.6. ρ is a CFA-update strategy for T with respect to
�

U.

Proof. This is a routine verification against the conditions (upt:1)-(upt:9). The
details are omitted. �

In [2, 4.2], [3, 4.3], it is established that there is only one way to reflect
an update on a closed view back to the main schema, provided that update
is realizable as sequence of legal insertions and deletions. Using the framework
developed in this paper, it is possible to drop the condition of legality on the
intermediate states; in other words, the reflection of the view update back to
main schema is unique as long as it is realizable as sequence of insertions and
deletions, even though the intermediate states may not be legal. In other words,
for all practical purposes, there is only one way to reflect an update under a
closed update strategy back to the main schema, regardless of whether or that
update is order realizable. The formal details follow.

Definition 5.7 (Syntactic order-based updates). Following [2, 4.1] and [3,
4.1], a pair � M1, M2

� �
U is called a formal insertion with respect to U if M1 � D

M2; a formal deletion with respect to U if M2 � D M1; and an order-based update
with respect to U if there exists a nonempty sequence � N1, N2

� , � N2, N3
� , . . . ,

� Nk � 2, Nk � 1
� , � Nk � 1, Nk

� of elements of U with the properties that N1 � M1,
Nk � M2, and each pair � Ni, Ni � 1

� , 1 � i � k � 1, is either a formal insertion
or else a formal deletion with respect to U . The update family U is called order
realizable if every pair in U is an order-based update.

More generally, call a pair � M1, M2
� �

U a syntactic order-based update if
�M1, M2

� is an order-based update in U , and call U syntactically order realizable
if every pair in U is a syntactic order-based update. Since ρ is an update strategy,
the following extension of [2, 4.2] and [3, 4.3] follows immediately.

Theorem 5.8 (uniqueness of reflection of syntactic order-based view
updates). Let ρ1 and ρ2 be update strategies for T with respect to U . Then, for
any M

�
LDB � D � and N

�
LDB � V � with � γ � M � , N � �

T a syntactic order-based
update, it must be the case that ρ1 � M, N � � ρ2 � M, N � . In particular, if T is
syntactically order realizable, then ρ1 � ρ2. �
Example 5.9. Let E3 be the relational schema with a single relation symbol
R
�
ABC � on three attributes, constrained by the set F3 � � B � A, B � C � .

Let the view to be updated be ΠAB � � R � AB � , πAB
� , and the complement to

be held constant ΠBC � � R � BC � , πBC
� . In view of [2, 2.16], [3, 2.17], these

two views form a meet complementary pair with meet ΠB � � R � B � , πB
� . The

updates which are allowed on ΠAB are those which hold the projection on B

constant; since the FD B � A holds as well, this means that the only updates
which are possible are those which change the A-value of existing tuples. These
are not order-based updates; therefore, the main theorem [2, 4.2] [3, 4.3] does
not provide a direct guarantee of the uniqueness of their translations. However,
when the integrity constraint B � A is ignored, the resulting update family is
syntactically order based, and so Theorem 5.8 guarantees a unique translation
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of all such updates on ΠAB , regardless of whether or not the complement to be
held constant is ΠBC . Indeed, since the updates to ΠAB which hold ΠB constant
are syntactically order realizable, the update strategy obtained by holding ΠBC

constant is the only one possible.
This elegant solution should be contrasted with the rather complex and ad

hoc approach to establishing uniqueness for the same example in [2, 4.5], [3, 4.6].

6 Final Remarks

Discussion 6.1 (Conclusions and proposed future work). It has been
shown that, under quite general conditions, the explosion in constraint complex-
ity which may occur when moving from a main schema to a view cannot adversely
affect the complexity of updates issued against a closed database view. Essen-
tially, such explosions in complexity must be encapsulated within the meet of
the view to be updated and the complement used to define the update strategy.
Since that part of the view is not alterable during an update, the complexity of
the constraints on the meet are irrelevant. The complexity which is passed along
to the view-update process is no greater than the corresponding complexity on
the main schema.

The scope of the approach presented here is limited to a context which gen-
eralizes EGDs of the relational model, and covers neither TGDs such as join
dependencies nor non-universal dependencies such as foreign-key constraints. In
terms of practical use, the most salient task is to extend the framework to in-
clude foreign-key dependencies, since they are used in real, commercial relational
database systems. To accomplish this, it seems necessary to extend the notion
of a CFA-schema to one which explicitly recaptures the idea of a multi-relation
schema, since such dependencies involve multiple relations in a fundamental way.

Extension to recapture TGDs is more straightforward, involving a general-
ization of the notion of k-model to � k1, k2

� -model, with k1

� �
and k2

�
1 a

real number. Roughly, M
�

DB � D � is a � k1, k2
� -model if there is a k1-model

M � �
DB � D � with M � M � and Card � M � � � k2 � Card � M � . Note that k-models

are just � k, 1 � -models in this extended context. Extension to recapture views
defined by joins is also reasonably straightforward. While the view mappings are
obviously no longer basis preserving, it is nonetheless possible to establish the
necessary properties (i.e., those of Definition 3.10 and Proposition 3.11). All of
these topics will be addressed in a forthcoming full version of this paper.

Finally, since the theory is not tied to any particular data model, it seems
appropriate to apply this theory to models other than the classical relational.
The difficulty is to find a suitable starting point, since the type of complexity
questions addressed here have not been studied in any detail for models other
than the relational.

Discussion 6.2 (Relationship to other work). In an early paper, Cos-
madakis and Papadimitriou [14] present pessimistic complexity results which
would appear to contradict those obtained here. However, they work with general
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subdirect complements, and not meet complements, and so their results do not
apply to the closed update strategies considered here. They also investigate the
complexity of identifying a minimal (not necessarily meet) complement which
will support a given update, again with pessimistic results. Recently, Lecht-
enbörger and Vossen [15] have also looked at the complexity of the problem of
identifying (not necessarily meet) complements to views, but for the purpose of
identifying information missing in the view, and not with an eye towards update
strategies. Their approach, by design, does not concern itself with meet comple-
ments or update strategies. Beyond those works, most of the literature on the
problem of complexity of view updates is focused on logic databases. The fun-
damental issues which arise in that context (theory-oriented database models)
are quite different from those of instance-oriented database models, and so a
meaningful comparison is difficult at best.
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