
Uniqueness of Update Strategies

for Database Views

Stephen J. Hegner

Ume̊a University
Department of Computing Science

SE-901 87 Ume̊a, Sweden
hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Abstract. The problem of supporting updates to views of a database
schema has been the focus of a substantial amount of research over the
years. Since the mapping from base schema to view schema is seldom
injective, there is usually a choice of possibilities for the reflection of
view updates to base-schema updates. This work presents a solution to
this problem which augments the constant-complement strategy of Ban-
cilhon and Spyratos with order-theoretic properties to guarantee unique
reflection of view updates. Specifically, most database formalisms endow
the database states with a natural order structure, under which update
by insertion is an increasing operation, and update by deletion is de-
creasing. Upon augmenting the original constant-complement strategy
with compatible order-based notions, the reflection to the base schema
of any update to the view schema which is an insertion, a deletion, or a
modification which is realizable as a sequence of insertions and deletions
is shown to be unique and independent of the choice of complement.

1. Introduction

Database management systems are typically large and complex, and it is seldom
the case that an individual user is granted full access to the entire system. Rather,
user access is via windows to the entire system, called views. Consequently, a
great deal of research has been devoted to the various issues surrounding such
views. Among these issues, perhaps none is thornier than the update problem.
In general, the mapping from states in the main (or base) schema to states in
the view schema is not injective; rather, a single view state can be the image
of many different base states. At the very least, this leads to the question of
which of the many alternatives should be selected as the appropriate reflection
of an update to the view. However, more comprehensively, it leads to serious
questions about providing a view in which the family of supported updates is
systematic, appropriate, and effectively manageable. This, in turn, suggests that
not all possible updates to a view should be allowed.

1.1 Open vs. closed update strategies Not surprisingly, a wide selection of
approaches to the view update problem has evolved. In [Heg90], the extremes

have been termed open and closed update strategies. Roughly speaking, an open
strategy is very liberal; as many updates as possible are allowed, with the user
expected to be aware of the consequences of such a strategy. A closed strategy,
on the other hand, is very conservative and systematic. The view appears as a
schema unto itself, and the family of updates which is allowed looks exactly as
would a family of updates to a base schema.

As the focus of this paper is support for updates under closed strategies,
it is fair to ask why one should consider such strategies at all, given that open
strategies invariably allow a wider range of updates to the view. The short answer
is that open strategies inevitably give rise to certain anomalies which render them
less than suitable in certain situations. A few examples will illustrate this point.
Let C0 denote the schema with the single relation symbol P [Name, Dept, Proj],
and the initial instance M0 = {(Smith, 1, A), (Jones, 2, A), (Jones, 2, B)}. The
informal semantics of a tuple such as (Smith, 1, A) is that employee Smith works
in department 1 and on project A. It is furthermore assumed that the functional
dependency Name → Dept holds; i.e., that an individual works in only one
department. On the other hand, an individual may work on several projects.

First, let ΠNP = (P [Name, Proj], π(Name,Proj)) denote the view which re-
tains just the Name and Proj attributes; the image of M0 under this view is
{(Smith, A), (Jones, A), (Jones, B)}. Consider deletion of the tuple (Smith, A).
Under an open strategy, it might be argued that such an operation should be
allowed, as the only reasonable reflection is to delete (Smith, 1, A) from M0.
While this reflection is unique and unambiguous, there are nonetheless at least
two points of caution. First of all, this update involves a hidden trigger, in that
information about the department in which Smith works is also deleted. The
user must have access to information beyond the view ΠNP itself in order to
be aware of this. Furthermore, this update is irreversible, in the sense that it
is not possible to undo its effect by re-inserting (Smith, A) into the view, since
the information regarding the department of Smith has been lost. For these rea-
sons, this update would not be allowed in a closed view. On the other hand,
these difficulties do not arise in the deletion of (Jones, A); in this case the view
update may be realized via deletion of (Jones, 2, A) in M0. Since information
about the department of Jones is retained in the tuple (Jones, 2, B), and since
Name → Dept holds, re-insertion of (Jones, A) is unambiguous and restores the
initial state M0. Thus, deletion of (Jones, A) would be allowed, even in a closed
strategy, from the view state resulting from M0.

Next, consider the schema C1, a slight modification of C0 in which nulls are
allowed for the attribute Proj. A state such as M1 = {(Smith, 1, A), (Jones, 2, A),
(Jones, 2, B)(Wilson, 1,Null)} is now allowed. The interpretation is that Wilson
does not work on any projects. Let Π

NeP
= (P [Name, Proj], π

(Name,
gProj)

) denote

the view which projects only those tuples on (Name, Proj) which do not contain
any null values. Thus, the image of M1 under this view is {(Smith, A), (Jones, A),
(Jones, B)}; the tuple (Wilson,Null) is not included. In comparison to the pre-
vious example, many of the complications surrounding deletion of the tuple
(Smith, A) disappear. Indeed, this deletion may be realized in M1 by modify-

2

ing the tuple (Smith, 1, A) to (Smith, 1,Null). This update is reversible, and
involves no hidden triggers. However, there remains a difficulty; namely, the
admissibility of an insertion into the state of the view depends upon informa-
tion not visible within that view. More specifically, it is clear that the tuple
(Wilson, C) may be inserted into the view state by replacing (Wilson, 1,Null)
with (Wilson, 1, C) in M1. On the other hand, the tuple (Young, C) may not be
so inserted, since no department information is available for Young. This situa-
tion involves a hidden dynamic constraint, in the sense that whether or not the
insertion is permitted depends upon information not contained in the view itself.
For this reason, under a closed interpretation, insertion of (Wilson, C) would be
disallowed, although it might be allowed under some open strategies.

Finally, consider the view Π
NbP

= (P [Name, Proj], π
(Name,

dProj)
) of C1 which

does allow for the projection of null values; the image of M1 under this view
is {(Smith, A), (Jones, A), (Jones, B)(Wilson,Null}. Now, even under a closed
interpretation, insertion of (Wilson, C) is allowed; the tuple (Wilson,Null) is
simply replaced with this new value. Insertion of (Young, C) is still not allowed;
however, this information necessary to make this distinction is now embodied in
the view.

It is not the purpose of this paper to argue that closed update strategies
are better than open ones, or that one should be used to the exclusion of the
other. Indeed, no such argument seems possible, as they each have their place.
Open strategies are useful as tools for experienced users who have wide access to
the database, but wish, for convenience, to represent certain operations within
a view. Such users can and will understand the more global implications of view
updates, and so issues such as hidden triggers, irreversibility, and hidden dynamic
constraints pose no real difficulties. On the other hand, there is also a clear need
for views which are totally encapsulated. Many users, for reasons of security, lack
of expertise, or simply effective management of complex schemata, need to work
with views which, for operational purposes, are self contained. In particular, in
such situations, the admissibility and effects of updates must be understandable
within, and restricted entirely to, the view itself. In this context, anomalies
such as hidden triggers, hidden dynamic constraints, and irreversibility must be
avoided. It is to such closed update strategies which this paper is directed.

1.2 The constant-complement strategy The preceding discussion provides
only an anecdotal characterization of the notion of a closed view; it remains to
formalize this concept. Fortunately, to a large degree, this has already been done.
The seminal work on closed strategies is the constant-complement approach,
developed some twenty years ago by Bancilhon and Spyratos [BS81]. The idea
is quite simple. To support updates to the view Γ1 of the main schema D, a
view Γ2 which is complementary to Γ1 is identified; i.e., {Γ1, Γ2} forms a lossless
decomposition of D. Then, the only updates to Γ1 which are allowed are those
which hold the state of Γ2 fixed. Intuitively, the changes are isolated in Γ1; the
“rest” of the schema, which is Γ2, cannot change. This freezing of the state of
the complement under view update eliminates the possibility of hidden triggers

3

and hidden dynamic constraints. Remarkably, it also eliminates the possibility
of anomalies such as irreversibility.

An example will help illustrate. Let the base schema E1 have the single
relation R[ABC], governed by the functional dependency B → C. Let the
view to be updated be ΠAB = (R[AB], πAB), the projection of the main re-
lation onto the attributes AB. (In the context of the example of 1.1, just take
A = Proj, B = Name, and C = Dept.) A natural complement to ΠAB is the
view ΠBC = (R[BC], πBC). It is easy to see that updates to ΠAB which keep
ΠBC constant are precisely those which hold the projection ΠB = (R[B], πB)
of the relation R[AB] constant. The common view ΠB is called the meet of
ΠAB and ΠBC , and the latter two views are called ΠB-complements. In [Heg90,
2.10], it is established that every constant-strategy in the sense of [BS81] is in
fact based upon a meet complement, and the updates which are allowed are pre-
cisely those which hold that
meet constant.
This situation is illustrated
diagrammatically in Fig. 1
to the right. The area with
up-to-right crosshatch is to
be held constant; this in-
cludes in particular the meet
ΠB = ΠAB ∧ΠBC . The rest
of ΠAB, with down-to-right
crosshatching, may be up-
dated without restriction.

Modifiable
component
of user view

ΠAB

Complement ΠBC

held constant

Meet
ΠAB ∧ ΠBC = ΠB

Fixed component
of user view ΠAB

=

Fig. 1: Visualization of the constant complement
strategy

1.3 Overview and scope of this work Part of the appeal of the constant-
complement strategy is its generality; it is formulated in a framework in which
database schemata are sets and database mappings are functions. Thus, it is
applicable, in principle, to almost any data model. With this generality comes
a certain lack of uniqueness. In general, there are many complements to choose
from, and distinct complements yield distinct update strategies. As illustrated
in [BS81, Sec. 6], this ability to choose can sometimes be useful. If Γ2 and Γ3

are both meet complements of the view Γ1 to be updated, and the meet of
{Γ1, Γ2} is different than that of {Γ1, Γ3}, then selecting Γ2 as the constant
complement for an update strategy will result in a different set of allowable
updates than will choosing Γ3 as the complement. On the other hand, if the
pairs {Γ1, Γ2} and {Γ1, Γ3} have the same meet, then the allowable updates to
Γ1 will be the same for each complement; the difference will lie solely in how
they are reflected into the base schema D. This is almost never a desirable
situation; a continuation of the above relational example will illustrate the prob-
lems which can ensue. Let Dom(C) denote the set of allowable domain values
for attribute C, let α : Dom(C) → Dom(C) be any permutation of Dom(C),
and define the view Π ′

BC = (R′[BC], π′
BC) as follows. States of Π ′

BC are bi-
nary tuples on the domains of B and C, just as are states of the projection
R[BC]. However, the tuples which are in the instance of R′[BC] have their C-

4

position values translated by α. Specifically, let M be a state of E1. For any
b ∈ Dom(B), let #A(b) denote the number of distinct values of for attribute A
associated with b in the relation πAB(M). Define π′

BC(M) = {(b, c) | (b, c) ∈
πBC(M) and #A(b) is odd} ∪ {(b, α(c)) | (b, c) ∈ πBC(M) and #A(b) is even}.
It is easy to see that Π ′

BC is a ΠB-complement of ΠAB, and the updates
permitted to ΠAB under constant complement Π ′

BC are exactly the same as
those permitted under constant complement ΠBC . However, the translation
is quite different. As a specific example, suppose that Dom(C) = {c0, c1, c2},
and let α(ci) = c(i+1) mod3. Let M = {(a0, b0, c0), (a1, b1, c1), (a2, b1, c1)}. Then
π′

BC(M) = {(b0, c0), (b1, α(c1))} = {(b0, c0), (b1, c2)}. Now suppose that the tu-
ple (a1, b0) is to be added to the state of ΠAB. Under constant complement ΠBC ,
the translation is simply to insert (a1, b0, c0) to M . However, under constant com-
plement Π ′

BC , the translation is to insert the tuple (a1, b0, α
−1(c0)) = (a1, b0, c2),

and to change the tuple (a0, b0, c0) to (a0, b0, α
−1(c0)) = (a1, b0, c2), so that the

state of E1 after the update is {(a0, b0, c2), (a1, b0, c2), (a1, b1, c1), (a2, b1, c1)}.
It is difficult to imagine a circumstance under which update to ΠAB with

constant complement Π ′
BC would be desirable. It is clear that ΠBC is the comple-

ment to be kept constant. Yet, the constant-complement approach itself gives no
preference to ΠBC over Π ′

BC . The goal of the work reported here is to augment
that approach so that only updates with respect to the “natural” complement
(ΠBC in the example) are permitted, while preserving, to the greatest extent
possible, the generality and data-model independence of the original work of
Bancilhon and Spyratos. Principally, such a theory is useful not because one
might be led to select Π ′

BC over ΠBC as a complement to ΠAB (clearly, based
upon aesthetics alone, one would not), but rather because it is useful to have
a theory which provides a sound foundation as to why ΠBC is preferable. Fur-
thermore, it eliminates the possibility that some other view Γ1 of some schema
S might have two apparently equally aesthetically reasonable complementary
views Γ2 and Γ ′

2 from which to choose.

The solution utilizes natural order structure. Most data models admit an
order on the states under which insertions increase the position of the state in
the order, while deletions decrease it. Furthermore, basic data morphisms are
typically monotonic under this ordering. For example, in the relational model,
the natural ordering is defined by relation-by-relation inclusion, while the basic
morphism operations of projection, selection, and join are monotonic with re-
spect to this ordering. The context of this work is that of ordered schemata and
monotonic morphisms. The central result is that, within this restricted context,
the translation of insertions and deletions is unique, and independent of the par-
ticular choice of complement. This is a very versatile result, in that it does not
depend upon establishing the uniqueness of a complement; indeed, it holds even
across complements with different meets.

Relative to the relational example above, with relation-by-relation inclusion
defining the ordering, it is easy to see that the view mappings πAB and πBC are
monotonic, while π′

BC is not. Thus, Π ′
BC is not a suitable complement to ΠAB

for constant-complement update within the framework presented here. Further-

5

more, since every update to ΠAB which holds ΠB constant may be realized as a
sequence of insertions and deletions (the family of updates is order realizable in
the terminology of 4.1), translation of these updates via constant complement
ΠBC is the only strategy allowed under order-based constant complement.

The results presented here are limited in that they apply only to updates
which are insertions, deletions, or realizable as sequences of such. They do not
apply, in general, to modifications. For example, let E2 be the relational schema
which is identical to E1, save that the additional functional dependency B → A
holds. With constant complement ΠBC , the only updates which are allowed to
ΠAB are those which replace the A component of a tuple (a, b) with a new value.
It is not possible to realize such an update as an insertion followed by a deletion,
since the insertion would result in a violation of the functional dependency B →
A, which embeds in R[AB]. Thus, with the natural relation-by-relation inclusion,
the theory developed here has nothing to say about updates to this view. It is
an order-based theory, and updates which sidestep the order are not covered.
Fortunately, there is still a way to establish uniqueness of the update strategy.
In many cases, including this one, it is possible to find another order which will
render these updates to be order-based, while retaining the monotonicity of the
underlying view mappings. A full solution is presented in 4.5.

1.4 Applicability and relationship to previous work Over the years, there
has been a substantial amount of research on the topic of view updates, a ma-
jority of which has focused upon the relational model; some quite recent [BL98].
The problem has also been studied, to a limited extent, in the context of the ER
model [Tha00, Sec. 8.3] and the object-oriented model [Bel00]. However, except
for the seminal work of Bancilhon and Spyratos [BS81] and that of the author
[Heg90], most of this research has the flavor of open strategies.

The work reported here depends only upon the data model possessing a
natural order structure, and so is potentially applicable to any of the contexts
identified above. Although the examples used in this paper are all relational,
the theory is not tied to that model in any way. Nonetheless, it does presume
a situation in which the state of the database is represented by a single struc-
ture, rather than as a set of constraints, so applicability to deductive models is
not clear. In any case, research on updates to deductive databases has taken a
direction quite its own; see [MT99] for a recent survey.

The choice of order as a tool to establish uniqueness results is motivated by
earlier work [Heg94], in which such tools were used to show that decompositions
into independent components are unique when databases are suitably ordered.
However, the techniques employed in this paper are vastly different than those
of [Heg94], since independence is not a property which most user views have.
This paper is in some way part of a long overdue sequel to [Heg90], which laid
out principles for the support of closed views, but never unified the results to
fruition.

1.5 The results and the relational model Although the results are not spe-
cific to the relational model, it remains not only the most widely used data model,

6

but the one with, by far, the most extensive theoretical foundation. Therefore, it
is important to show applicability to that model. To this end, several examples
set within the classical relational context which illustrate the use of the results
developed here are presented. Unfortunately, it is not practical to summarize
even the full notation and terminology from that model; rather, it must be as-
sumed that the reader is familiar with the standard terminology, notation, and
results within that context. The monograph [AHV95] provides a relatively recent
survey and the necessary background. Only a few key points which are necessary
to show how this model fits into the order-based framework are presented here.
Furthermore, due to space limitations, proofs of results which are specific to the
relational context are only sketched, with many details omitted.

2. Database Concepts in the Order-Based Context

In this section, the fundamental ideas of database schemata, morphisms, views,
and complements are formulated within the context of order. That is, database
schemata are presumed to have an underlying order to their states, and database
mappings are assumed to preserve this order. A few of the ideas are related to
those presented in [Heg94]; however, the details are quite different, since that
work dealt with a much more specialized context.

2.1 Posets Familiarity with the fundamental ideas of posets, such as presented
in [DP90], is presumed; only a few notational and terminological points are
reviewed here. A partially ordered set (poset) is pair P = (P,≤) in which P is a
set and ≤ is a reflexive, transitive, and antisymmetric relation on P . Given posets
P = (P,≤) and Q = (Q,≤), a morphism f : P → Q is a monotone function
f : P → Q; i.e., p1, p2 ∈ P with p1 ≤ p2 implies that f(p1) ≤ f(p2). The
morphism f is open if, for any q1, q2 ∈ Q with q1 ≤ q2, there are p1 ∈ f−1(q1),
p2 ∈ f−1(q2) with p1 ≤ p2. In other words, f is open if Q carries the least order
which renders f a morphism. Following the standard terminology of category
theory [Mac98], the morphism f is an isomorphism iff it has both left and right
inverses. It is easily verified that this is equivalent to being an open bijection.

2.2 Schemata and morphisms Mathematically, a database schema with or-
der is just a partially ordered set, and a morphism of such schemata is a poset
morphism. However, to emphasize the database aspects, a special notation is
employed in this work. Specifically, a database schema with order is a poset
D=(LDB(D),≤D) in which LDB(D) is a set, called the set of legal databases of
D.

In the case that the order ≤D is the identity order in which M ≤D N iff
M = N , D is called a flat or unordered schema. In this case, the order relation
≤D plays no rôle whatever, and the schemata and morphisms are just sets and
functions, respectively.

To simplify terminology, throughout the rest of this paper, the term schema
shall mean schema with order, unless specifically stated to the contrary.

7

Given database schemata D1 = (LDB(D1),≤D1) and D2 = (LDB(D2),≤D2),
a morphism h : D1 → D2 is a function h : LDB(D1) → LDB(D2) which is a
poset morphism with respect to the orders ≤D1 and ≤D2 . It is called an open
surjection precisely in the case that it has that property as a poset morphism.

2.3 Views and congruences An order view of the schema D is a pair
Γ = (V, γ) in which V is a schema and γ : D → V is an open surjection. Given
order views Γ1 = (V1, γ1) and Γ2 = (V2, γ2) of D, a morphism h : Γ1 → Γ2

is a schema morphism h : V1 → V2 with the property that
h ◦ γ1 = γ2, that is, such that the diagram to the right com-
mutes. Since the morphisms γ1 and γ2 are open surjections,
so too is h. The order views Γ1 and Γ2 are isomorphic just in

D
γ1

����
��

� γ2

��8
88

88

V1
h // V2

case they satisfy the standard categorical notion of isomorphism [Mac98]; that is,
there are morphisms h1 : Γ1 → Γ2 and h2 : Γ2 → Γ1 such that h1 ◦h2 and h2 ◦h1

are both identities. The congruence of order view Γ = (V, γ) is the equivalence
relation Congr(Γ) on LDB(V) defined by (M, N) ∈ Congr(Γ) iff γ(M) = γ(N).
Given M ∈ LDB(D), the notation [M]Γ is shorthand for the more cumbersome
[M]Congr(Γ). Both denote the equivalence class of M under the equivalence rela-
tion Congr(Γ).

Throughout the remainder of this work, unless specifically stated to the con-
trary, the term view will mean order view, as defined above.

Before proceeding further, it is important to establish that the general notions
introduced here are applicable to the classical relational setting. The result 2.5
below shows that the common Select-Project-Join mappings of the relational
theory define order based views in the sense of 2.2 above. First, some clarification
of terminology and notation is in order.

2.4 Order-based schemata and morphisms in the classical relational
context The named perspective [AHV95, Sec. 3.2] is used; this means that the
columns if relations are identified by attribute names from a universe U. For
a given attribute A, Dom(A) denotes the set of all allowable values for that
attribute. A relational schema D consists of a finite set of relational symbols
Rel(D), each with an arity Arity(R) ⊆ U. An unconstrained database M over
a relational schema D consists of a set of relations {MR | R ∈ Rel(D)} of
the appropriate arities. The set of all unconstrained databases on D is denoted
DB(D). The natural ordering ⊆D on the databases of D is defined via relation-
by-relation inclusion; i.e., M1 ⊆D M2 iff RM1 ⊆ RM2 for all relation symbols R
of D.

Relational schemata are commonly constrained by Horn sentences. If only
universal quantifiers are allowed, such constraints are termed full dependencies ;
if existential quantifiers are allowed on positive atoms, they are termed embed-
ded dependencies [AHV95, Chap. 10]. Functional dependencies (fd ’s) and join
dependencies (jd ’s) are full dependencies. If there is a set Φ of full (resp. em-
bedded) dependencies such that LDB(D) = {M ∈ DB(D) | M |= Dep(D)}, then
D is said to be constrained by full (resp. embedded) dependencies; in both cases
the notation Dep(D) is used to denote Φ.

8

It is critical to know that the most common types of morphisms within
the relational framework define views in the order-based context. The database
mappings which will be considered in this work are those which are built up
from compositions of the primitives selection, projection, join, and renaming.
Such compositions are termed SPJR-morphisms. [AHV95, Sec. 4.4]. It is clear
that SPJR-mappings are monotonic with respect to the natural orderings, and
so define morphisms in the order-based sense. It is equally important to note
that database mappings which involve negation, such as difference and division,
are not monotonic.

2.5 Proposition — SPJR-morphisms define views Let D and V be re-
lational schemata, and suppose furthermore that D is constrained by full de-
pendencies. Let γ : D → V be a surjective SPJR-morphism. Then V is also
constrained by full dependencies, and γ is an open poset morphism with respect
to the natural orderings ⊆D and ⊆V , so that Γ = (V, γ) is a view of D in the
order-based sense.

Proof outline: First of all, that the class of full dependencies is closed under
projection and join is established in [Hul84, Thm. 5.4]. Selection may be added
easily using the submodel characterization of universal Horn sentences [Mon76,
Thm. 25.13]. Thus, V is also constrained by full dependencies.

To establish that γ is open, break the problem into three cases, one each
for projection, selection, and join, each with possible renaming. Let N1, N2 ∈
LDB(V) with N1 ⊆V N2. Now, reflect N1 and N2 back into D as minimal
structures P1 and P2, respectively, possibly with variables, and apply the chase
inference procedure [AHV95, Sec. 10.2] to generate legal databases of D. When
variables occur (this will happen with projection), they must be the same in
tuples which are in both N1 and N2, and their eventual bindings to domain
values must be the same in each case. Let P̂1, P̂2 ∈ LDB(D) be the models
generated from the chase on P1 and P2, respectively. Then P̂1 ⊆D P̂2, with
γ(P̂1) = N1 and γ(P̂2) = N2. 2

2.6 Relational projections The key relational examples used in this work are
projections. Although this framework has already been used in the introduction,
it is important to crystallize the notation for the formal part of the paper.
Let D be a relational schema which is constrained by full dependencies, let
R ∈ Rel(D), let A = Arity(R), and let B ⊆ A. The B-projection of R is the view
ΠB = (R[B], πB) with R[B] the schema with a single relational symbol R on
attribute set B, and πB : D → R[B] the morphism which sends M ∈ LDB(D)
to the projection onto attributes in B of the relation R in D. Dep(R[B]) is taken
to be the set of full dependencies which render πA an open surjection. In view
of 2.5 above, Dep(R[B]) is guaranteed to exist, and ΠB is guaranteed to be a
view in the order-based sense.

The focus now returns to the more general context. The following proposition
characterizes views and their isomorphism classes in terms of their congruences.
The proof is completely straightforward, and so omitted.

9

2.7 Proposition Let D be a schema, and let Γ1 = (V1, γ1) and Γ2 = (V2, γ2)
be views of D.

(a) Every view morphism Γ1 → Γ2 is an open surjection of posets.
(b) There is at most one morphism Γ1 → Γ2.
(c) There is a morphism Γ1 → Γ2 iff Congr(Γ1) ⊆ Congr(Γ2).
(d) The views Γ1 and Γ2 are isomorphic iff Congr(Γ1) = Congr(Γ2). 2

2.8 View equivalence and order The (equivalence) class of all views which
are isomorphic to Γ is denoted [Γ]. In view of 2.7(d) above, [Γ1] = [Γ2] iff
Congr(Γ1) = Congr(Γ2). The notation [Γ2] ≤ [Γ1] denotes that there is a mor-
phism Γ1 → Γ2, or, equivalently, that Congr(Γ1) ⊆ Congr(Γ2). As a shorthand,
Γ2 ≤ Γ1 shall also be written to denote this fact, with the understanding that
≤ is not a partial order on the views themselves, but only on the underlying
equivalence classes.

If Γ1 = (V1, γ1) and Γ2 = (V2, γ2) are views of the schema D with Γ2 ≤ Γ1,
then the unique morphism Γ1 → Γ2 is denoted λ〈Γ1, Γ2〉. In this case, V2 may
be regarded as a view of V1 under the view mapping λ〈Γ1, Γ2〉. Specifically, the
relativization of Γ2 to Γ1 is the view Λ(Γ1, Γ2) = (V2, λ〈Γ1, Γ2〉) of V1.

2.9 Order-compatible congruences In the context of a flat schema D with
no order relation, every equivalence relation R on LDB(D) gives rise to a view
whose states are the equivalence classes of R, with the view mapping the natural
projection of an element to its equivalence class. In the context of order-based
schemata, an additional constraint mandating that the equivalence respect the
order on the database states must be imposed.

Specifically, let D be an order-based schema, and let R be an equivalence re-
lation on LDB(D). Call R order compatible for D if for every pair (M1, M2) ∈ R
with M1 ≤D M2 and every M3 ∈ LDB(D) with M1 ≤D M3 ≤D M2, (M1, M3) ∈
R as well. Now, define ΘR = (LDB(D)/R, θR) to be the view of D with
LDB(D)/R the schema whose underlying set is LDB(D)/R, the set of equiv-
alence classes of R, with θR : D → LDB(D)/R the morphism which sends each
M ∈ LDB(D) to its equivalence class [M]R under R. The order ≤ΘR

is given by
[M]R ≤ΘR

[N]R iff (∃M1 ∈ [M]R)(∃N1 ∈ [N]R)(M1 ≤D N1). The order com-
patibility of R ensures that ≤ΘR

is a partial order, and the construction itself
ensures that θR is an open surjection. Thus, ΘR is indeed an order-based view
of D.

Note, conversely, that for any view Γ = (V, γ), Congr(Γ) is an order-based
congruence, since otherwise the order ≤V would not be well defined.

2.10 Products and complements of views Let Γ1 = (V1, γ1) and Γ2 =
(V2, γ2) be views of the schema D. The product view Γ1×Γ2 = (V1 γ1⊗γ2V2, γ1⊗
γ2) has LDB(V1 γ1⊗γ2V2) = {(γ1(M), γ2(M)) | M ∈ LDB(D)}. The morphism
γ1 ⊗ γ2 : D → V1 γ1⊗γ2V2 is given on elements by M 7→ (γ1(M), γ2(M)). The
order on V1 γ1⊗γ2V2 is that which renders γ1 ⊗ γ2 an open poset morphism.

The pair {Γ1, Γ2} of views is said to form a subdirect complementary pair
just in case γ1 ⊗ γ2 : D → V1 γ1⊗γ2V2 is a poset isomorphism.

10

It is entirely possible for γ1 ⊗ γ2 to be a bijection and a poset morphism
without being a poset isomorphism, since the order on V1 γ1⊗γ2V2 induced by
the product order on V1 ×V2 is, in general, strictly stronger than that induced
by the morphism γ1 ⊗ γ2. Thus, two order-based views may be complementary
in a “flat” environment in which order is ignored, without being complements
in the order-based sense.

In the examples of 1.2 and 1.3, the common view ΠB was referred to as the
meet of ΠAB and ΠBC . This notion of the common component of two views
is extremely important in a number of contexts involving views and database
decomposition, including the generalization of acyclic decompositions [Heg93]
and decomposition into independent components [Heg94]. Not surprisingly, it is
also central to the constant complement strategy. For it to be well defined, the
congruences of the two views must commute; the definition follows.

2.11 Fully commuting views and meet complements The pair {Γ1, Γ2}
of views of D is called a fully commuting pair if Congr(Γ1) ◦ Congr(Γ2) =
Congr(Γ2) ◦ Congr(Γ1), with “◦” denoting ordinary relational composition. A
subdirect complementary pair {Γ1, Γ2} which is fully commuting is called a
meet-complementary pair, and Γ1 and Γ2 are called meet complements of one
another.

2.12 Generalized dependencies Let {Γ1, Γ2} be a subdirect complementary
pair.
(a) The {Γ1, Γ2}-reconstruction dependency on V1 γ1⊗γ2V2, denoted ⊗[Γ1, Γ2],

is satisfied iff for any M1, N1 ∈ LDB(V1) and M2, N2 ∈ LDB(V2), if any
three of the elements of the set {(M1, M2), (M1, N2), (N1, M2), (N1, N2)}
is in V1 γ1⊗γ2V2, then so too is the fourth.

(b) Let Γ3 = (V3, γ3) be a view of D, with [Γ3] ≤ [Γ1] and [Γ3] ≤ [Γ2]. The
Γ3-independence dependency on V1 γ1⊗γ2V2, denoted ⊗Γ3 , is satisfied iff for
any M1 ∈ LDB(V1) and M2 ∈ LDB(V2), ((M1, M2) ∈ LDB(V1 γ1⊗γ2V2)) ⇔
(λ〈Γ1, Γ3〉(M1) = λ〈Γ2, Γ3〉(M2))

The following characterization first appeared in [Heg90, 1.13]. Unfortunately,
due to space constraints, no proof was presented. Because of its importance,
the proof is sketched here. Note that this result is essentially independent of
additional constraints imposed by the order-based context.

2.13 Theorem – characterization of meet-complementary pairs Let
{Γ1, Γ2} be a subdirect complementary pair. Then the following conditions are
equivalent.
(a) {Γ1, Γ2} is a meet-complementary pair.
(b) Congr(Γ1) ◦ Congr(Γ2) is an equivalence relation.
(c) V1 γ1⊗γ2V2 satisfies ⊗[Γ1, Γ2].
(d) V1 γ1⊗γ2V2 satisfies ⊗Γ3 , with Γ3 the view (unique up to equivalence) whose

congruence is the smallest equivalence relation on LDB(D) containing both
Congr(Γ1) and Congr(Γ2).

11

Proof: The implications (a) ⇔ (b) and (a) ⇒ (c) are straightforward and left
to the reader, while (a) ⇔ (d) is a special case of the Chinese-remainder charac-
terization for schema decomposability [Heg93, 2.1.5]. To show the implication,
(c) ⇒ (a) let (M, N) ∈ Congr(Γ1) ◦ Congr(Γ2). Then, there is a P ∈ LDB(D)
with (M, P) ∈ Congr(Γ1) and (P, N) ∈ Congr(Γ2). Let (M1, M2), (N1, N2), and
(P1, P2) denote the images, under γ1 ⊗ γ2, of M , N , and P , respectively. Since
(M, P) ∈ Congr(Γ1), M1 = P1. Similarly, since (P, N) ∈ Congr(Γ2), N2 = P2.
Thus, (P1, P2) = (M1, N2). In particular, (M1, N2) ∈ LDB(V1 γ1⊗γ2V2). So,
applying ⊗[Γ1, Γ2] to the set {(M1, M2), (M1, N2), (N1, N2)}, it follows that
(N1, M2) ∈ LDB(V1 γ1⊗γ2V2). Thus, ((γ1 ⊗ γ2)

−1(M1, M2), (γ1 ⊗ γ2)
−1(N1, M2))

∈ Congr(Γ2) and ((γ1 ⊗ γ2)
−1(N1, M2), (γ1 ⊗ γ2)

−1(N1, N2)) ∈ Congr(Γ1), so
that (M, N) ∈ Congr(Γ2)◦Congr(Γ1), whence Congr(Γ1)◦Congr(Γ2) ⊆ Congr(Γ2)◦
Congr(Γ1). The opposite inclusion is proved in an analogous fashion, so that
Congr(Γ1) ◦ Congr(Γ2) = Congr(Γ2) ◦ Congr(Γ1). 2

2.14 Meets and Γ -complements Let Γ1 = (V1, γ1) and Γ2 = (V2, γ2) be
views of D which form a subdirect complementary pair. In the case that the
equivalent conditions of 2.13 above are satisfied, the view Γ3 guaranteed by (d) is
called the meet of {Γ1, Γ2}, and is denoted Γ1∧Γ2 = (V1 γ1∧γ2V2, γ1∧γ2). The set
{Γ1, Γ2} is then said to form a meet-complementary pair, or Γ3-complementary
pair, and Γ1 and Γ2 are called Γ3-complements of one another.

The meet view Γ3 is defined only up to isomorphism of views, but this is no
limitation for the work presented here. Also, since V1 γ1∧γ2V2 factors through
both Γ1 and Γ2, it is immediate that the order on LDB(V1 γ1∧γ2V2) induced by
either ≤V1 or ≤V2 is the same as that induced by ≤D , so there is no question
that this order is well defined.

2.15 Products and meets in the relational context Let D be a relational
schema, and let Γ1 = (V1, γ1) and Γ2 = (V2, γ2) be views of D defined by SPJR-
morphisms. The relation names of V1 γ1⊗γ2V2 will be the disjoint union of those in
V1 and V2. Furthermore, if the pair {Γ1, Γ2} forms a subdirect decomposition,
then, in general, there will interrelational constraints. For example, let E1 be
the schema introduced in 1.2, with the single relation symbol R[ABC], governed
by the fd B → C. Let Γ1 = ΠAB and Γ2 = ΠBC . On V1 γ1⊗γ2V2, which
contains relation symbols R1[AB] and R2[BC] (the subscripts on the R’s are
used here to avoid name collision), the fd B → C holds on R2[BC], and the
jd R1[AB] 1 R2[BC] binds the two relations together. In this case, it is easy
to see that {Γ1, Γ2} are ΠB-complements, as condition (d) of 2.13 applies. On
the other hand, if the fd A → C ∈ Dep(D) as well, as in the schema E2 of 1.3,
then while {Γ1Γ2} remains a subdirect complementary pair, it is no longer a
meet-complementary pair, as condition (d) of 2.13 fails [Heg90, 1.11].

The generalization of this idea makes use of the idea of dependency preserva-
tion. A decomposition {Γ1 = (V1, γ1), Γ2 = (V2, γ2)} of a relational schema D is
dependency preserving if Dep(D) is recoverable from the reconstruction depen-
dency (usually a join dependency), together with Dep(V1)∪Dep(V2). If Dep(D)
consists of fd’s, this means that a cover of Dep(D) embeds in the relations of the

12

view schemata. For details, see [AHV95, Sec. 11.2]. The formalization is then
the following.

2.16 Proposition — meets of projections in the relational context Let
D be a relational schema consisting of a single relation R[U], and let A,B ⊆
U. Assume further that Dep(D) is generated by full dependencies, and that 1

[A,B] ∈ Dep(D). Then the pair {ΠA, ΠB} forms a meet-complementary pair iff
the decomposition is dependency preserving. In this case, ΠA ∧ ΠB = ΠA∩B.

Proof outline: It is straightforward to verify that condition (d) of 2.13 is
satisfied for these projections. 2

3. Updates in the Order-Based Context

Using the context established in the previous section, the ideas of constant-
complement update within an order-based framework are now established. These
results extend those of Bancilhon and Spyratos [BS81] to the order-based case.
Because this extension is far from trivial, and because the formalism employed
here is different than that of [BS81], all results are proven directly. The results
presented here strengthen those of [BS81], not only in extension to the order-
based case, but also in that meet complementation is used to provide a complete
bijective correspondence between update strategies and complements.

3.1 Update strategies Let D be a database schema. A closed update family
for D is an order-compatible equivalence relation U on LDB(D). Think of a
pair (M1, M2) ∈ U as describing an update of the database from state M1 to
state M2. The equivalence-relation requirement implies that the identity update
is always allowable, that all updates are reversible, and that updates may be
composed.

Now let Γ = (V, γ) be a view of D, and let T be a closed update family
for V. An update strategy for T with respect to U is a partial function ρ :
LDB(D) × LDB(V) → LDB(D) which has the eight properties listed below.
The first five, (upt:1)-(upt:5), constitute an alternative formulation of those in
the original work [BS81], while the last three, (upt:6)-(upt:8), are specific to
the order-based context. The notation ρ(M, N) ↓ means that ρ is defined on
the argument (M, N). If a formula involving ρ appears in a formula, then it is
implicitly assumed that it is defined.

(upt:1) ρ(M, N)↓ iff (γ(M), N) ∈ T .
(upt:2) If ρ(M, N)↓, then (M, ρ(M, N)) ∈ U and γ(ρ(M, N)) = N .
(upt:3) For every M ∈ LDB(D), ρ(M, γ(M)) = M . [Identity updates are

reflected as identities.]
(upt:4) If ρ(M, N)↓, then ρ(ρ(M, N), γ(M)) = M . [Every view update is

globally reversible.]
(upt:5) If ρ(M, N1)↓ and ρ(ρ(M, N1), N2)↓, then ρ(M, N2) = ρ(ρ(M, N1), N2).

[View update reflection is transitive.]

13

(upt:6) If ρ(M, N)↓ and γ(M) ≤V N , then M ≤D ρ(M, N). [View update
reflects order.]

(upt:7) If ρ(M1, N1)↓ with M1 ≤D ρ(M1, N1), then for all M2 ∈ LDB(D)
with M1 ≤D M2 ≤D ρ(M1, N1), there is an N2 ∈ LDB(V) with
ρ(M1, N2) = M2. [This condition is called chain reflection.]

(upt:8) If M1, M2 ∈ LDB(D) with γ(M1) ≤V γ(M2) and
(∃N1, N2 ∈ LDB(V))(ρ(M1, N1) ≤D ρ(M2, N2)), then M1 ≤D M2.
[This condition is called order inheritance.]

The induced update family on D is the smallest subset of U which will support
the updates in T . It is denoted ≡ρ and is given by {(M1, M2) ∈ LDB(D) | (∃N ∈
LDB(V))(ρ(M1, N) = M2)}.

While conditions (upt:7) and (upt:8) are somewhat technical, it will be seen
in the following that they are exactly what is required to ensure that the update
strategy defines an order-based complement, and conversely.

3.2 Notational convention For 3.3 through 3.6 below, D will be a database
schema, Γ = (V, γ) will be a view of D, U and T will be closed update families
for D and V, respectively, and ρ will be an update strategy for T with respect
to U .

3.3 Proposition ≡ρ is a an order-compatible equivalence relation for D.

Proof: The reflexivity, symmetry, and transitivity of ≡ρ follow from condi-
tions (upt:3), (upt:4), and (upt:5), respectively. Order compatibility follows from
(upt:7). 2

3.4 The complementary view for an update strategy The ρ-complement
of Γ , denoted Γ̃ ρ = (Ṽρ, γ̃ρ), is defined to have LDB(Ṽρ) = LDB(D)/≡ρ, with
the morphism γ̃ρ : D → Ṽρ given by M 7→ [M]≡ρ . The order ≤Ṽρ is just that
which makes γ̃ρ an open surjection. More specifically, [M1]≡ρ ≤Ṽρ [M2]≡ρ iff
there are M3 ∈ [M1]≡ρ , M4 ∈ [M2]≡ρ , with the property that M3 ≤D M4.

The reflection of T along γ is defined to be the relation Reflγ(T) = {(M1, M2)
∈ LDB(D) × LDB(D) | (γ(M1), γ(M2)) ∈ T }.
3.5 Proposition {Γ, Γ̃ ρ} forms a meet-complementary pair, with meet
ΘReflγ(T) = (LDB(D)/Reflγ(T), θReflγ(T)).

Proof: First, it will be shown that γ ⊗ γ̃ρ : D → V γ⊗γ̃ρṼρ is a bijection.
It suffices to establish that it is an injection, i.e., that Congr(Γ) ∩ Congr(Γ̃ ρ) =
{(M, M) | M ∈ LDB(D)}. Let (M1, M2) ∈ LDB(D) × LDB(D). If (M1, M2) ∈
Congr(Γ̃ ρ), then (∃N ∈ LDB(V))(ρ(M1, N) = M2); in particular, N = γ(M2).
Since (M1, M2) ∈ Congr(Γ) iff γ(M1) = γ(M2), condition (upt:3) ensures that
(M1, M2) ∈ Congr(Γ) iff M1 = M2.

Next, it will be shown that γ⊗γ̃ρ is open. Let M1, M2 ∈ LDB(D) be such that
([M1]Γ , [M1]Γ̃ ρ) ≤Γ⊗Γ̃ ρ ([M2]Γ , [M2]Γ̃ ρ); i.e., γ(M1) ≤V γ(M2) and γ̃ρ(M1) ≤Ṽρ

γ̃ρ(M2). The latter inequality implies that there are M3 ∈ [M1]Γ̃ ρ and M4 ∈
[M2]Γ̃ ρ with the property that M3 ≤D M4. By the definition of Congr(Γ̃ ρ),

14

there are N1, N2 ∈ LDB(V) with the property that M3 = ρ(M1, N1) and M4 =
ρ(M2, N2), whence condition (upt:8) mandates that M1 ≤D M2, as required.

Finally, it will be established that Congr(Γ) ◦ Congr(Γ̃ ρ) = Congr(Γ̃ ρ) ◦
Congr(Γ) = Reflγ(T). It is immediate that Congr(Γ) ⊆ Reflγ(T) and Congr(Γ̃ ρ) ⊆
Reflγ(T). To establish the converse, let (M1, M2) ∈ Reflγ(T). Then there is a
N1 ∈ LDB(D) with γ(M1) = γ(N1) and ρ(M2, γ(M1)) = N1. In other words,
(M1, N1) ∈ Congr(Γ) and (N1, M2) ∈ Congr(Γ̃ ρ). Thus, Reflγ(T) ⊆ Congr(γ) ◦
Congr(Γ̃ ρ), and so Congr(Γ) ◦ Congr(Γ̃ ρ) ⊆ Reflγ(T) ◦ Reflγ(T) = Reflγ(T) i.e.,
Reflγ(T) = Congr(Γ) ◦Congr(Γ̃ ρ). Since Reflγ(T) is an equivalence relation, con-
dition (b) of 2.13 is satisfied, and so {Γ, Γ̃ ρ} is a meet-complementary pair with
meet ΘReflγ(T). 2

The following theorem is the order-based analog of the characterization first
reported by Bancilhon and Spyratos in their seminal paper [BS81, Thm. 7.3].

3.6 Theorem – constant complement representation of update For ev-
ery (N1, N2) ∈ T and M ∈ LDB(D) with γ(M) = N1, ρ(M, N2) =
(γ ⊗ γ̃ρ)−1(N2, [M]Γ̃ ρ).

Proof: Follows from 3.5 and the definition of Γ̃ ρ. 2

Bancilhon and Spyratos also present a result which associates an update
strategy for a closed update family T of Γ1 = (V1, γ1) to each complement
view Γ2 which admits a translation of T (Γ2-translatable in their terminology)
[BS81, Thm. 7.1]. However, their characterization does not provide conditions
under which Γ2 admits such a translation. The result 3.8 below makes this
characterization precise in terms of the existence and character of the meet
Γ1 ∧ Γ2.

3.7 The update strategy associated with a meet complement Let {Γ1 =
(V1, γ1), Γ2 = (V2, γ2)} be a meet-complementary pair of the schema D.

(a) Define UpdStr〈Γ1, Γ2〉 : LDB(D) × LDB(V1) → LDB(D) by (M, N) 7→
(γ1 ⊗ γ2)

−1(N, γ2(M)). UpdStr〈Γ1, Γ2〉 is called the update strategy for Γ1

with respect to Γ2.

(b) Define UpdFam〈Γ1, Γ2〉 = {(N1, N2) ∈ LDB(V1) × LDB(V1) | λ〈Γ1, Γ1 ∧
Γ2〉(N1) = λ〈Γ1, Γ1 ∧ Γ2〉(N2)}. UpdFam〈Γ1, Γ2〉 is called the update family
induced by Γ2 on Γ1.

3.8 Theorem Let {Γ1 = (V1, γ1), Γ2 = (V2, γ2)} be a meet-complementary
pair of the schema D. Then UpdFam〈Γ1, Γ2〉 is a closed update family for Γ1,
and UpdStr〈Γ1, Γ2〉 is an update strategy for UpdFam〈Γ1, Γ2〉 with respect to
LDB(D) × LDB(D).

Proof: First of all, UpdFam〈Γ1, Γ2〉 must be an order-compatible equivalence
relation, since it is the congruence of a view. Next, it is completely straightfor-
ward to verify that UpdStr〈Γ1, Γ2〉 satisfies conditions (up1:1)-(upt:6) of 3.1. To
show (upt:7), let M1, M2 ∈ LDB(D), N1 ∈ LDB(V1), be such that

15

UpdStr〈Γ1, Γ2〉 ↓ with M1 ≤D M2 ≤D UpdStr〈Γ1, Γ2〉(M1, N1). Then (γ1 ⊗
γ2)(M1) is of the form (γ(M1), P) for some P ∈ LDB(V2), and
(γ1 ⊗γ2)(UpdStr〈Γ1, Γ2〉(M1, N1)) = (N, P). Thus, (γ1 ⊗γ2)(M2) = (γ(M2), P),
whence (γ(M1), γ(M2)) ∈ T .

Finally, to show that (upt:8) holds, let M1, M2 ∈ LDB(D) with γ1(M1) ≤V

γ2(M2). Then (γ1 ⊗ γ2)
−1(M1) is of the form (γ1(M1), P1) and (γ1 ⊗ γ2)

−1(M2)
is of the form (γ1(M2), P2) for some P1, P2 ∈ LDB(V1). Now if (∃N1, N2 ∈
LDB(V1))(UpdStr〈Γ1, Γ2〉(M1, N1) ≤D UpdStr〈Γ1, Γ2〉(M2, N2)), then
(γ1 ⊗ γ2)

−1(UpdStr〈Γ1, Γ2〉(M1, N1)) = (Q1, P1) and
(γ1 ⊗ γ2)

−1(UpdStr〈Γ1, Γ2〉(M2, N2)) = (Q2, P2), with Q1, Q2 ∈ LDB(V1) and
(Q1, P1) ≤V1 γ1⊗γ2V2 (Q2, P2). In particular, P1 ≤V2 P2, whence
(γ1(M1), P1) ≤V1 γ1⊗γ2V2 (γ1(M2), P2), and so M1 ≤D M2. 2

Note carefully the definition of UpdFam〈Γ1, Γ2〉 in the above. The allowable
updates to Γ1 under constant complement Γ2 are precisely those which hold
the meet Γ1 ∧ Γ2 constant. Thus, only Γ1 ∧ Γ2,and no further properties of Γ2,
influence which updates are allowed. However, it may very well influence how
those updates are reflected, as illustrated by the ΠB-complement views ΠBC

and Π ′
BC to ΠAB in the example schema E1 in 1.2 and 1.3. This uniqueness

issue will be addressed in the next section.
To close, the following corollary, which identifies explicitly the natural asso-

ciation between meet complements and update strategies, is presented. It follows
from the combination of 3.6 and 3.8.

3.9 Corollary Let D be a database schema, and let Γ be a view of D. There
is natural bijective correspondence between update strategies for the view Γ and
(equivalence classes of) meet complements that view. Specifically:

(a) For any update strategy ρ, UpdStr〈Γ, Γ̃ ρ〉 = ρ.
(b) For any meet complement Γ1 of Γ , Γ̃ UpdStr〈Γ,Γ1〉 = Γ1. 2

4. Uniqueness Results for Update Strategies

The necessary background having been established, the main results on the
uniqueness of view update strategies and meet complements in the order-based
context are presented. First, it is necessary to make precise the relationship
between the order properties and types of updates.

4.1 Types of updates Let D be a database schema, and let U be a closed
update family for D.

(a) A pair (M1.M2) ∈ U is called:
(i) a formal insertion with respect to U if M1 ≤D M2;
(ii) a formal deletion with respect to U if M2 ≤D M1;
(iii) an order-based update with respect to U if there exists a nonempty se-

quence
(N1, N2), (N2, N3), . . . (Nk−2, Nk−1), (Nk−1, Nk) of elements of U with
the properties that N1 = M1, Nk = M2, and each pair (Ni, Ni+1),

16

1 ≤ i ≤ k − 1, is either a formal insertion or else a formal deletion
with respect to U .

(b) The update family U is called order realizable if every pair in U is an
order-based update.

The main theorem of this paper states that within the constant-complement
order-based framework, the reflection of an order-based update of a view to the
base schema is unique, period. It does not depend upon the choice of complement,
and it does not matter whether other updates are or are not order based. In short,
the reflection of order-based updates is unique in a strong and global sense.

4.2 Theorem – uniqueness of reflection of order-based view updates
Let D be a database schema, let Γ = (V, γ) be a view of D, and let U and T
be a closed update families for D and V, respectively. Let ρ1 and ρ2 be update
strategies for T with respect to U . Then, for any M ∈ LDB(D) and N ∈ LDB(V)
with (γ(M), N) ∈ T an order-based update, it must be the case that ρ1(M, N) =
ρ2(M, N). In particular, if T is order realizable, then ρ1 = ρ2.

Proof: The diagram to the right
provides a general view of how
updates are processed under the
two different strategies. From top
to bottom, the first leg of each
path corresponds to translation
from D to the corresponding sub-
direct complement representation,
the second leg (µ1 and µ2) corre-
sponds to the actual update, and
the final leg corresponds to trans-
lation back to D. The horizontal

D
γ⊗γ̃ρ1

{{www
ww

ww
ww

γ⊗γ̃ρ2

##GG
GG

GG
GGG

V γ⊗γ̃ρ1 Ṽρ1

µ1

��

oo ∼= // V γ⊗γ̃ρ2 Ṽρ2

µ2

��
V γ⊗γ̃ρ1 Ṽρ1 oo ∼= //

(γ⊗γ̃ρ1)−1

##GGGG
GG

GG
G

V γ⊗γ̃ρ2 Ṽρ2

(γ⊗γ̃ρ2)−1

{{ww
www

ww
ww

D

arrows marked with “∼=” indicate the natural isomorphism between the two de-
compositions of the schema D. Suppose that the state of the schema D is M ,
and that it is desired to update the state of the view Γ from γ(M) to N , with
(γ(M), N) ∈ T . Relative to the diagram above and to the right, the two diagrams
on the next page show how this update proceeds on elements. The diagram to
the left below corresponds to ρ1 or constant complement Γ̃ ρ1 , and the diagram
to the right below to ρ2 or constant complement Γ̃ ρ2 . Thus, in the diagram to
the left, µ1 corresponds to update under constant complement Γ̃ ρ1 , while µ2

gives the corresponding update in the schema V γ⊗̃γρ2 Ṽρ2 . In the diagram to the
right, the situation is reversed; µ2 gives the update under constant complement
Γ̃ ρ2 , while µ1 gives the corresponding update in the schema V γ⊗γ̃ρ1 Ṽρ1

The goal is to show that, in these diagrams, P1 = γ̃ρ1(M), and P2 = γ̃ρ2(M),
which in turn forces ρ1(M, N) = ρ2(M, N). First of all, assume that the up-
date (γ(M), N) ∈ T is a formal insertion. Since (γ(M), γ̃ρ1(M)) ≤V γ⊗γ̃ρ1 Ṽρ1

(N, γ̃ρ1(M)), the order isomorphisms guarantee that (γ(M), γ̃ρ2(M)) ≤V γ⊗γ̃ρ1 Ṽρ1

(N, P2) as well. Thus ρ2(M, N) = (γ ⊗ γ̃ρ2)−1((N, γ̃ρ2(M))) ≤V γ⊗γ̃ρ2 Ṽρ2

17

(γ ⊗ γ̃ρ2)−1((N, P2)) = (γ ⊗ γ̃ρ1)−1((N, γ̃ρ1(M))) = ρ1(M, N); i.e., ρ2(M, N) ≤D

ρ1(M, N). An analogous argument establishes that ρ1(M, N) ≤D ρ2(M, N), so
that ρ2(M, N) = ρ1(M, N). The proof is now finished easily. A formal deletion
is handled analogously, and a general order-based update is managed by gluing
together the insertions and deletions of which it is composed. 2

M:
γ⊗γ̃ρ1

||zz
zz

zz
zz �

γ⊗γ̃ρ2

""DD
DD

DD
DD

(γ(M), γ̃ρ1(M))
_

µ1

��

oo ∼= // (γ(M), γ̃ρ2(M))
_

µ2

��
(N, γ̃ρ1(M)) oo ∼= //

�

(γ⊗γ̃ρ1)−1
!!C

CC
CC

CC
C

(N, P2);

(γ⊗γ̃ρ2)−1
}}{{

{{
{{

{{

ρ1(M, N)

Update with Γ̃ ρ1 constant

M:
γ⊗γ̃ρ1

||zz
zz

zz
zz �

γ⊗γ̃ρ2

""DD
DD

DD
DD

(γ(M), γ̃ρ1(M))
_

µ1

��

oo ∼= // (γ(M), γ̃ρ2(M))
_

µ2

��
(N, P1) oo ∼= //

�

(γ⊗γ̃ρ1)−1
!!C

CC
CC

CC
C

(N, γ̃ρ2(M));

(γ⊗γ̃ρ2)−1
}}{{

{{
{{

{{

ρ2(M, N)

Update with Γ̃ ρ2 constant

Although it is primarily uniqueness of view update strategies which is the
focus of this work, it is nonetheless worthwhile to note that in the case that the
update family in the view is order realizable, the view complement defined by
that update family is unique.

4.3 Corollary – uniqueness of meet complements Let D be a database
schema, let Γ = (V, γ) be a view of D, and T be an order-realizable closed update
family for V. Then there is at most one view of D which is a ΘT -complement
of Γ .

Proof: Follows immediately from 3.9 and the above theorem. 2

4.4 Example Recall the schema E1 from 1.2, with relation schema R[ABC],
constrained by the fd B → C. The view to be updated is ΠAB. From 2.16, it
follows that ΠBC is a ΠB-complement of ΠAB, and the corresponding update
family on ΠAB is precisely that which holds ΠB constant. This update family
is order realizable, since there are no constraints on ΠAB. Any change can be
realized by first inserting the new tuples, and then deleting the ones which are no
longer wanted. Thus, in view of 4.2, the only update strategy in the sense of 3.1
which supports these updates is that which holds ΠBC constant. Furthermore,
4.3 above guarantees that ΠBC is the only order-based ΠB-complement of ΠAB.
In particular, in view of 2.5, ΠBC is the only SPJR-view of E1 which is a ΠB-
complement of ΠAB. In short, the theory has very strong things to say about
E1.

4.5 Example — using tuple ordering to force order realizability Now,
revisit the example schema E2 from 1.3. It is identical to E1, save that it is
constrained by the additional fd B → A. ΠBC is still a ΠB-complement of ΠAB,

18

since the dependency B → A embeds in ΠAB. Thus, the update family in which
ΠB is held constant is again that induced on ΠAB by the complement ΠBC .
However, this time the states in ΠAB are constrained by the fd B → A. This
has the consequence that none of the allowable updates on ΠAB is order based;
thus, under the natural order, the theory developed above has nothing to say
either about updates to or about ΠB-complements of ΠAB.

Fortunately, in this situation, there is a way to establish results similar to
those for E1. The trick is to add additional order to the relational states. Let �A,
�B and �C be partial orders on Dom(A), Dom(B) and Dom(C), respectively.
Define the ordering �ABC on tuples over ABC by (a0, b0, c0) �ABC (a1, b1, c1)
iff a0 �A a1, b0 �B b1, and c0 �C c1. Finally, extend the ordering �ABC to
relations on ABC by M1 �ABC M2 iff (∀t0 ∈ M1)(∃t1 ∈ M2)(t0 �ABC t1). It is
easy to see that this induces a partial order on the relations of R[ABC] which
is stronger than ≤E2 in general, and the same as ≤E2 if each of the three orders
�A, �B, and �C is flat (i.e., no ordering at all). Define a similar ordering, using
the same base orders �A, �B, and �C , on the states of R[AB] and R[BC].

Now, for the specific problem at hand, let �A be any total order on Dom(A),
and let �B and �C be the flat orders on Dom(B) and Dom(C), respectively.
Using the orders �ABC on R[ABC], �AB on R[AB], and �BC on R[BC], ev-
ery allowable update to ΠAB under constant complement ΠBC becomes order
realizable. Furthermore, ΠBC is completely unchanged. Thus, the above results
apply; update with constant complement ΠBC is the unique order-based up-
date strategy on ΠAB with constant complement ΠB, and ΠBC is the unique
order-based ΠB-complement of ΠAB.

5. Conclusions and Further Directions

It has been shown that the use of order as a central property of database
schemata and morphisms leads to strong uniqueness results for view updates
under the constant-complement strategy. In many cases, the natural order de-
fined by inclusion is adequate for uniqueness; however, it has also been shown
(4.5) that an “artificial” order may be used to achieve uniqueness in certain
other situations.

In terms of future theoretical directions for this work, the most immediate one
is to examine the circumstances under which update strategies may be combined
to yield a single, larger strategy. Ultimately, it would be interesting and useful to
identify circumstances under which a given view Γ1 has a least meet complement
Γ2, in the sense that for any other meet complement Γ3, Γ1 ∧Γ2 ≤ Γ1 ∧Γ3. This
would imply that Γ1 has a largest update family which can be supported via the
constant-complement strategy. Other theoretical directions to consider include
a more systematic treatment of the kind of artificial orders used in 4.5, as well
as study of the complexity of these forms of updates under specific data models.

In terms of more practical follow-up work, certainly a closer examination
of how this work might be applied to data models other than the relational is
high on the list. However, it seems that there is a more fundamental issue which

19

must be addressed first. Most of the research on the view update problem has
focused upon open strategies, with the goal to support the largest possible family
of updates, even at the expense of violating the isolation principles which are
implicit in the constant-complement strategy. Indeed, very little work has been
done which builds upon the constant complement strategy, and even in the few
cases in which it has, the axioms have been weakened so that critical properties,
such as reversibility, have been sacrificed [GPZ88]. In the opinion of the author,
this situation exists because in traditional database design, the main schema
is established first, and only afterwards are views fitted to it. Therefore, view-
centered schema design, a research direction in which schema design is focused
upon the support of views, including view updates based upon the constant-
complement strategy, is proposed. The conjecture is that, with the judicious use
of null values, most view updates can be accommodated within the constant-
complement strategy. The most natural framework in which to pursue these ideas
would be within HERM, the H igher-order Entity-Relationship M odel [Tha00].
Since HERM is a meta model, conclusions about most modern data models could
be extracted from a study based upon it.

References

[AHV95] Abiteboul, S., Hull, R., and Vianu, V., Foundations of Databases, Addison-
Wesley, 1995.

[BS81] Bancilhon, F. and Spyratos, N., “Update semantics of relational views,”
ACM Transactions on Database Systems, 6(1981), pp. 557–575.

[Bel00] Bellahsène, Z., “Updates and object-generating views in ODBS,” Data &
Knowledge Engr., 34(2000), pp. 125–163.

[BL98] Bentayeb, F. and Laurent, D., “View updates translations in relational
databases,” in: Proc. DEXA ’98, Vienna, Sept. 24-28, 1998, pp. 322–331,
1998.

[DP90] Davey, B. A. and Priestly, H. A., Introduction to Lattices and Order, Cam-
bridge University Press, 1990.

[GPZ88] Gottlob, G., Paolini, P., and Zicari, R., “Properties and update semantics of
consistent views,” ACM Trans. Database Systems, 13(1988), pp. 486–524.

[Heg90] Hegner, S. J., “Foundations of canonical update support for closed database
views,” in: Proc. ICDT’90, Paris, Dec. 1990, Springer-Verlag, 1990.

[Heg93] Hegner, S. J., “Characterization of desirable properties of general database
decompositions,” Ann. Math. Art. Intell., 7(1993), pp. 129–195.

[Heg94] Hegner, S. J., “Unique complements and decompositions of database
schemata,” J. Comput. System Sci., 48(1994), pp. 9–57.

[Hul84] Hull, R., “Finitely specifiable implicational dependency families,” Journal
of the Association for Computing Machinery, 31(1984), pp. 210–226.

[Mac98] Mac Lane, S., Categories for the Working Mathematician, Springer-Verlag,
second edition, 1998.

[MT99] Mayol, E. and Teniente, E., “A survey of current methods for integrity
constraint maintenance and view updating,” in: Proc. ER ’99 Workshops,
Paris, Nov. 15-18, 1999, Springer-Verlag, 1999.

[Mon76] Monk, J. D., Mathematical Logic, Springer-Verlag, 1976.
[Tha00] Thalheim, B., Entity-Relationship Modeling, Springer-Verlag, 2000.

20

