
Tolerant Constraint-Preserving Snapshot

Isolation: Extended Concurrency

for Interactive Transactions

Stephen J. Hegner
Ume̊a University

Department of Computing Science
SE-901 87 Ume̊a Sweden

hegner@cs.umu.se

http://hegner.people.cs.umu.se

Abstract

In a database setting involving writers, there is a delicate balance between allowing
sufficient concurrency for adequate performance and adequate isolation to prevent trans-
actions from interfering with each other. This problem is particularly acute for interactive
transactions; that is, ones which involve human input, since state-of-the-art approaches,
such as serializable snapshot isolation (SSI), which rely upon an abort-and-restart strat-
egy to resolve conflicts, do not provide a suitable solution. In this work, an extension of
constraint-preserving snapshot isolation (CPSI) is provided. As does CPSI, this extension
provides snapshot-isolation (SI) plus constraint preservation. By employing a model in
which the values of data objects, and not just their identities, are used, it provides a
significantly higher level of concurrency without sacrificing isolation than do approaches
without such value modelling. In addition to the theory, an operational model of trans-
action execution is provided.

1 Introduction

Support for concurrent database transactions has long been recognized as a difficult problem. In
the ACID characterization [6, pp. 166-167], [7, Sec. 1.1], transactions must run in isolation; that
is, they must not interfere with one another. In practice, enforcing the theoretical ideal view
serializability [13, Sec. 2.4] of isolation has proven difficult to enforce efficiently. Consequently,
lower levels of isolation are commonly found in practice, including snapshot isolation (SI) at
an intermediate level and read committed (RC) among the lowest levels, with the level of
acceptability dependent upon the application.

Strategies for managing concurrency may be classified along a pessimistic-optimistic di-
mension. In a pessimistic policy, a transaction must wait until it may be given access to the
resource(s) which it needs. In an optimistic strategy, a transaction is given access to a (copy
of a) resource immediately, with conflicts resolved before the writes of the transaction become
part of the persistent database. Roughly speaking, pessimistic policies use waiting to avoid
problems, while optimistic policies require transactions to abort and restart. All real policies
involve both pessimism and optimism, but the classification is nevertheless a useful one.

1

For the purposes of this paper, an interactive transaction is one which requires interactive
human input at certain stages in order to continue. Business processes, in which humans
authorize tasks and provide input, such as the allocation of funds for a business trip [8] [11],
are prime examples. The problem of providing suitable isolation while supporting adequate
concurrency is particularly acute for such transactions. Human input for transaction T may
not be available at the time at which it is needed, or additional time may be needed in order
to reach a decision before input can be provided. If a pessimistic strategy for concurrency is
employed, then another transaction T ′ which needs resources which cannot be allocated until
T commits or at least continues, must wait, perhaps for days, until T finally completes the
interaction and proceeds with its execution. If T ′ is also interactive, such a long delay is likely
unacceptable. On the other hand, if an optimistic strategy for concurrency is employed, then
in the case of such a conflict, one of T and T ′ must be aborted and restarted. In many cases,
that may not be suitable, since further input may be required, and even if not, the state of
the database will likely have changed, and the inputs may have depended upon the state. In
short, neither pessimistic nor optimistic policies are appropriate for interactive transactions.
On the other hand, since human interaction is many orders of magnitude slower than computer
operations, there is ample time to take more complex measures in order to minimize conflicts
in the first place.

Virtually all mainstream work on transaction concurrency is based upon an object-level
model, in which conflict between two transactions is characterized entirely with respect to
access to data objects, without any regard to their current values or to how the transactions
might alter those values. The prospects for supporting interactive transactions within such
a framework are limited. Using a finer granularity for the data objects (for example, fields
instead of tuples in a relational context) may help occasionally, but often conflicts between two
transactions are inherent to atomic, indecomposable attributes, such as balances in accounts.
The resulting conflicts must still be addressed, by waiting or else by aborting at least one of
the transactions involved, neither of which is desirable.

To maintain an adequate level of isolation while minimizing waits and aborts, another
approach is to employ a finer-grained notion of conflict. In a value-level model, not only the
identity of a data item but also its current value, as well as how the transactions involved intend
to change that value, may be taken into account. In this case, the transaction manager will
be more complex, but the payoffs in terms of increased concurrency may be substantial. The
idea is not new; it was proposed more than thirty years ago for long-running transactions in
computer-aided design [1], with a more comprehensive theory along the same lines presented in
[12]. Those works, however, are focused upon sets of nested transactions, assembled to realize
a single goal via cooperation, and have not seen widespread use outside of that context.

The focus of this paper is the development of a simple value-level model for concurrency
of transactions, called tolerant constraint-preserving snapshot isolation, or TCPSI. It builds
upon constraint-preserving snapshot isolation (CPSI) [10], a framework based upon object-
level modelling, which provides the isolation and efficiency of SI, together with a guarantee of
constraint preservation1. Although not providing true serializability, the constraint preservation

1 Most modern relational DBMSs enforce all built-in constraints, such as primary-, secondary-, and foreign-
key dependencies, internally, in real time, regardless of the level of isolation. However, this is not the case for
extended constraints, defined using triggers or via application programs. CPSI guarantees the preservation of
all constraints, including extended ones. See [10, Summary 2.4] for further explanation.

2

of CPSI avoids well-known anomalies such as write skew [2, A5B], [5, Ex. 2.2]. This is significant
because, while lack of true serializability may be tolerable, violation of integrity constraints
almost never is. Additionally, substantially fewer conflict situations arise with CPSI than with
serializable SI (SSI) [4], [5]. TCPSI is a true extension of CPSI, in that all concurrency allowed
under CPSI is also allowed under TCPSI.

To illustrate the main idea of this paper, consider the classical write-skew example [2, A5B],
which illustrates how SI can fail to preserve constraints. Let E0 be a schema with two integer-
valued data objects x1 and x2, related by the constraint x1 +x2 > 0. Let T01 be the transaction
which reduces the value of x1 by 1 if the result satisfies the constraint and otherwise does
nothing; i.e., if (x1 + x2 > 1) then x1 ← x1 − 1; here the values of x1 and x2 seen by T01

are those found in the snapshot taken when T01 starts; after that point, it never sees updates
performed by other transactions. Similarly, let T02 be the analogous transaction for x2, i.e.,
if (x1 + x2 > 1) then x2← x2 − 1. Under SSI, and even under CPSI, these transactions are
prevented from running concurrently, since an illegal state may arise under certain conditions.
Indeed, if x1 = x2 = 1 initially, then each transaction may run successfully in isolation, but if
they run concurrently under SI, the resulting state, with x1 = x2 = 0, is not legal. Each model
identifies T01 as a writer of x1 and a reader of x2, as well as T02 a writer of x2 and a reader of
x1. Thus, each transaction reads an object written by the other, indicating a potential conflict.
However, that does not mean that there will be a conflict, only that there might be. Whether
or not a violation of integrity occurs depends upon the initial state. Under TCPSI, for T01,
rather than prohibiting a concurrent transaction from writing x2, a tolerance on the range of
writes is stipulated. If the initial snapshot of T01 has x1 = x2 = 2, for example, then T01 will
tolerate updates to x2, as long as the final value of x2 is at least 0. Likewise, T02 will tolerate
updates to x1, as long as the final value of x1 is at least 0. In that situation, T01 and T02 would
be allowed to execute concurrently under TCPSI, although such concurrency would be blocked
both under CPSI and under SSI.

For more than two concurrent transactions, additional issues arise. Let E1 be the extension
of E0 to three data objects. More precisely, E1 has three integer-valued data objects x1, x2,
and x3, constrained by x1 + x2 + x3 > 0. For i ∈ {1, 2, 3}, define the transaction T1i by
if (x1 + x2 + x3 > 1) then xi ← xi − 1. For an initial state with x1 + x2 + x3 = 3 (e.g.,
M10 with x1 = x2 = x3 = 1), it is easy to see that at most two of the three transactions in
{T11, T12, T13} may execute concurrently without a constraint violation. For T11 (for example),
the admissibility of its update for the initial state M10 requires that x2 + x3 > 0, a combined
condition of the objects to be updated by T12 and T13. To retain pairwise testing, the solution
forwarded in this work is to require T11 to place separate conditions on x2 and x3 which imply
that x2 + x3 > 0 remains true during its lifetime. For example, it may require that x2 ≥ 0 and
x3 > 0 (in which case T13 is blocked from concurrent execution while T12 may proceed), or it
may choose that x2 > 0 while x3 ≥ 0, (in which case T12 is blocked but T13 may proceed). In
return for creating some false positives and thus reducing potential concurrency, a far simpler
test for admissible concurrency results. For k > 3 a positive integer and 0 < m < k, this
form of example extends to to k transactions, of which at most k may execute concurrently;
thus, no test which does not involve all transactions simultaneously is sufficient to guarantee
concurrency without false positives. The reader who is curious about these details now is
invited to look at 4.4 for a detailed example of the concurrency problems, at 4.10 for details
of the proposed solution sketched above, and at 5.7 for a detailed operational example of how

3

the approach works. Although some aspects will require reading other parts of the paper, it
should be possible to grasp the main ideas with only the above example as background.

The paper is organized as follows. Section 2 provides the database framework used, while
CPSI is reviewed in Sec. 3. Both sections are summaries of ideas developed in detail in [10]. In
Sec. 4, the theory of TCPSI is developed in detail, while Sec. 5 provides an operational model
of how the entire process proceeds. Finally, Sec. 6 contains conclusions and further directions.

2 The Database Framework

In this section, the database framework which is used throughout this paper is sketched. With
few exceptions, the concepts are taken from [10], to which the reader is referred for details and
examples. Although [10] is based upon the earlier paper [9], the frameworks differ substantially;
the journal article [10] should in all cases be taken as the primary reference.

2.1 Notation f(x)↓ indicates that the partial function f is defined on x. f(x)↓ ∈ Y
indicates that both f(x)↓ and f(x) ∈ Y . Z denotes the set of integers. For i, j ∈ Z, [i, j] =
{n ∈ Z | i ≤ n ≤ j}.

2.2 Data objects, constraints, and schemata A data object x is a mutable object; that
is, an object whose value may be altered. A simple data object x is indecomposable; it is
characterized by the set States〈x〉 of its states. A compound data object (or just data object)
is a set x of simple data objects. A database over x is a function M : x →

⋃
x∈x States〈x〉

with the property that M(x) ∈ States〈x〉 for each x ∈ x, with the set of all databases over
x denoted DB(x). Put another way, M defines an x tuple s ∈

∏
x∈x States〈x〉 of values, with

πx(s) = M(x).
An unconstrained database schema d is just a data object DObj〈d〉. A database of d is

a database over DObj〈d〉. The set of all databases of d is denoted DB(d). Thus, DB(d) is
shorthand for DB(DObj〈d〉).

A constrained database schema is a triple D = 〈DObj〈D〉, LDB(D),ELDB(D)〉 in which
DObj〈D〉 is a set of data objects, LDB(D) is a subset of DB(DObj〈D〉), the set of legal databases
of D, and ELDB(D) is a subset of LDB(D), the set of extended legal databases, or x-legal
databases, of D. Think of DB(D) as the set of all databases, regardless of constraints. The
reason for the distinction between LDB(D) and ELDB(D) is that, as noted in the footnote of
Sec. 1, most modern relational DBMSs enforce all built-in constraints. LDB(D) represents the
databases which satisfy all such internal constraints, while ELDB(D) represents those databases
which satisfy all constraints, including those defined by means such as triggers; for example,
x1 + x2 > 0 of E0, described in Sec. 1. The work in this paper, as well as the earlier work on
CPSI, [10], is concerned with isolation which preserves not only membership in LDB(D) but
also in ELDB(D).

Define SubObj〈D〉 = {y | y ⊆ DObj〈D〉} to be the set of subobjects of D. Let x,y ∈
SubObj〈D〉. For M ∈ DB(x), the restriction of M to y is the database on x ∩ y defined by
M|x∩y , the function M restricted to x ∩ y. As a slight abuse of notation, this restriction will
also be written as simply M|y , with the understanding that subobjects in y which do not apply
to M (i.e., which are not in x also) are ignored. For M ⊆ DB(x), M|y = {M|y | M ∈ M}.

4

The database schema JD|yK = 〈y, LDB〈D|y〉,ELDB〈D|y〉〉, in which LDB〈D|y〉 = {M|y |M ∈
LDB(D)} and ELDB〈D|y〉 = {M|y |M ∈ ELDB(D)}.

A compound data object may be the empty set ∅. In that case DB(∅) is a function on
domain ∅. There is only one such function, so the empty database object has just one possible
database, which will be denoted by �DB. It is always the case that �DB ∈ ELDB〈D|∅〉.

2.3 Notational convention Throughout the rest of this paper, unless stated specifically to
the contrary, take D = 〈DObj〈D〉, LDB(D),ELDB(D)〉 to be a (constrained) database schema.

2.4 Updates and updateable objects A (syntactic) update on D is a pair u = 〈u(1), u(2)〉
∈ LDB(D) × DB(D). u(1) is the current or old state before the update; u(2) the new state
afterwards. SynUpdates(D) denotes the set of all syntactic updates on D. u ∈ SynUpdates(D)
is legal if u(2) ∈ LDB(D), with the set of all legal updates on D denoted LUpdates(D). It
is extended legal (or x-legal) if u(1), u(2) ∈ ELDB(D). The set of all extended legal updates
on D is denoted ELUpdates(D). Note that ELUpdates(D) ⊆ LUpdates(D) ⊆ SynUpdates(D).
u ⊆ SynUpdates(D) is complete if for every M ∈ LDB(D), there is a u ∈ u with u(1) = M .
Define u1 ◦ u2 = {(M1,M3) | (∃M2 ∈ LDB(D))((M1,M2) ∈ u1 ∧ (M2,M3) ∈ u2)}. The identity
update on x ∈ DObj〈D〉 is 1x = {(N,N) | N ∈ DB(x)}.

For u ∈ SynUpdates(D), y ⊆ DObj〈D〉, define u|y = 〈u(1)

|y , u
(2)

|y〉. For u ⊆ SynUpdates(D),
define u|y = {u|y | u ∈ u}. The trimming of u to M ∈ LDB(D) is TrimM〈u〉 = {u ∈ u | u(1) =
M}. If x,y ⊆ DObj〈D〉, M ∈ LDB〈D|x〉, and u ⊆ SynUpdates(JD|yK), then TrimM〈u〉 is
shorthand for TrimM|y 〈u〉 = TrimM|x∩y 〈u〉. In general, for any M ∈ LDB(D), u(M) denotes
{u(2) | (u ∈ u) ∧ (u(1) = M)} = {u(2) | u ∈ TrimM〈u〉}. Call u ⊆ SynUpdates(D) functional
if for every M ∈ LDB(D), u(M) contains at most one element, and for M ⊆ LDB(D), define
u(M) = {u(M) |M ∈M}.

An updateable object over D is a pair 〈c,u〉 in which c ⊆ DObj〈D〉, and u ⊆
SynUpdates(JD|cK), with 〈c,u〉 functional, (resp. complete, resp. legal, resp. x-legal) precisely
in the case that u has that property; it is called singleton if u consists of just one update.
The updateable object 〈DObj〈D〉,u〉 is abbreviated to 〈D,u〉. For 〈c,u〉, x ⊆ DObj〈D〉 with
c ⊆ x, and M ∈ LDB〈D|x〉, define TrimM〈〈c,u〉〉 = 〈c,TrimM〈u〉〉; and for y ⊆ c, define
〈c,u〉|y = 〈y,u|y〉.

2.5 Transactions A black-box transaction T over D is represented by an updateable object
〈D,UT 〉 which is functional, complete, and x-legal. The set of all black-box transactions over
D is denoted BBTransD . The notation 〈D,UT 〉 will be used throughout the rest of this paper
to denote the updateable object which underlies the transaction T .

2.6 The contexts of a transaction The contexts of a transaction are central to this work.
Here, only brief illustration via example is provided. For a full discussion, see [10, Disc. 3.18].

Let E2 be the schema with four integer-valued data objects: x1, x2, y1, and y2, constrained by
x1 +x2 > 0. Let T21 be the transaction defined by the rule if (x1 +x2)−y1 > 0 then x1←x1−y1;
in other words, the value of x1 is reduced by the value of y1, provided the result will satisfy
the constraints. Otherwise, no update is performed. For M20, defined by (x1 = 3, x2 = 3, y1 =

1, y2 = 0), the grounded write of this update is {3 x1 2}, representing the update on ELDB(E2)

5

which changes x1 from 3 to 2, leaving the other three data objects fixed. The write context is
the set of all data objects which are written; in this case {x1}. The grounded write specifies
a change to the write context, without referring to other data objects. For M21, defined by
(x1 = 3, x2 = −1, y1 = 2, y2 = 2), the ground write is ∅; i.e., there is no change to the state,
with the write context is ∅ as well. For full details on ground updates, see [10, Def. 3.9].

Continuing with the example, the read context is {x2, y1}, and the members of this set
are further subclassified into the the integrity context, consisting of {x2}, and the grounding
context, consisting of {y1}. The integrity context consists of those reads which are necessary to
verify that the integrity constraints will be satisfied after the update; it will be formalized via
the notion of guard in 3.4. The grounding context consists of those reads which are necessary
to determine the grounded write. The grounding and integrity contexts need not be disjoint.
Formally, the read and write contexts are always taken to be disjoint. If a data object is written
by a transaction, its old value (before the update) is irrelevant to constraint satisfaction after
the update, while the new value is automatically considered in checking integrity constraints.

2.7 Write sets and trimming The write set WSet〈〈c,u〉〉 of the updateable object 〈c,u〉
is the set of all y ∈ c for which there is a legal u ∈ u which alters the state of y. For-
mally, WSet〈〈c,u〉〉 = {y ∈ c | (∀x ∈ x)(∃u ∈ u ∩ LUpdates(JD|cK))(u(1)

|{x} 6= u(2)

|{x})}.
WUpd〈〈c,u〉〉 = u|WSet〈〈c,u〉〉 is the set of write updates of 〈c,u〉, while WObj〈〈c,u〉〉 =
〈WSet〈〈c,u〉〉,WUpd〈〈c,u〉〉〉 is its set of write objects. 〈c,u〉 is a full write object if 〈c,u〉 =
WObj〈〈c,u〉〉.

For M ∈ LDB(D), the write trim of 〈c,u〉 to M is WTrimM〈〈c,u〉〉 = 〈c,u〉|WSet〈TrimM 〈〈c,u〉〉〉.
WTrimM〈〈c,u〉〉 is a full write object, and if 〈c,u〉 is functional and complete, then WUpd〈〈c,u〉〉
consists of exactly one update. If c = ∅, that update must be 〈�DB,�DB〉.

For a transaction T whose initial snapshot is M ∈ LDB(D), the update which it performs
is represented by the (single) update of the updateable object WTrimM〈〈D,UT 〉〉. Data objects
not in WTrimM〈〈D,UT 〉〉 are left unchanged.

2.8 Lifting of updates Let 〈c,u〉 be an updateable object on D, and let x ⊆ DObj〈D〉
with c ⊆ x. 〈c,u〉 may be lifted to an update x by requiring that it be the identity on all data
objects in c\x. Formally, LiftJD|xK〈〈c,u〉〉 = {v ∈ SynUpdates(JD|xK) | (v|c ∈ u) and (v(1)

|x\c =
v(2)

|x\c)} is the lifting of 〈c,u〉 (or just of u) from JD|cK to JD|xK. If 〈c,u〉 is functional, then
so too is LiftJD|xK〈〈c,u〉〉. In that case, FLiftJD|xK〈〈c,u〉〉 : LDB〈D|x〉 → DB(x) is the partial
function defined by M 7→ M ′ if 〈M,M ′〉 ∈ LiftJD|cK〈〈c,u〉〉 and is undefined otherwise. If
u consists of a single update, then 〈c,u〉 is functional, so LiftJD|xK〈〈c,u〉〉 is functional as
well. When x = DObj〈D〉, a simpler notation is used: LiftJD|DObj〈D〉K〈〈c,u〉〉 is abbreviated to
LiftD 〈〈c,u〉〉, and FLiftJD|DObj〈D〉K〈〈c,u〉〉 is abbreviated to FLiftD 〈〈c,u〉〉.

3 SI and CPSI

Tolerant CPSI is an extension of ordinary CPSI; thus, it is first necessary to present the core
ideas of the latter in a manner which is precise enough to allow their application and extension
to the former. Due to space limitations, the presentation is abbreviated; for full details, the
reader is referred to [10].

6

3.1 Transaction Schedules and Snapshot Isolation Both ordinary and tolerant CPSI
are built upon snapshot isolation (SI) [14, 12.5], [15, Sec. 10.6.2], a commonly used level of
isolation in modern DBMSs which employ multiversion concurrency control (MVCC) [3, Ch.
5], [14, Ch. 12], [15, Ch. 5]. Under SI, each transaction T receives, when it starts, a private
copy of the database, called its snapshot. All operations by T , both reads and writes, during its
duration, are on this private copy. T is allowed to commit its writes to the global database (the
version of the database consisting of committed values, which is visible to other transactions)
only if none of them writes a data object which another, concurrent transaction has already
written.2

Each transaction T has a start time and an end time. Actual times are not important;
rather, it is only the order of events which is significant. Let T be a finite set of transactions,
and let SCSet〈T〉 = {T s | T ∈ T}∪{T c | T ∈ T}, with the members of SCSet〈T〉 just symbols.
An SI-schedule on T is a total order ≤T on SCSet〈T 〉 with the property that for each T ∈ T,
T s <T T

c. (x <T y denotes that x ≤T y but x 6= y.) The schedule indicates the temporal order
of events, with T s (resp. T c) representing the relative start time (resp. commit time) of T . For
T1, T2 ∈ T, if neither T c1 <T T s2 nor T c2 <T T s1 holds, then T1 and T2 execute concurrently and
{T1, T2} forms a concurrent pair.

Fix an SI-schedule ≤T for T ⊆ BBTransD and let M ∈ ELDB(D). As the transactions
in T execute according to ≤T , the global database is updated by the transactions, as they
commit. Given M ∈ ELDB(D) as the initial global database, (i.e., before any transaction
in T commits), there are three classes of values of interest for the global database which
occur as the transactions run. InitSnap〈≤T: M〉〈T 〉 is the initial snapshot of T , the database

which T reads at the beginning of its execution. Observe that InitSnap〈≤T: M〉〈T 〉 = M iff

no transaction of T commits before T starts. BeforeCmt〈≤T: M〉〈T 〉 is the state of the global
database immediately before T commits. It may differ from InitSnap〈≤T: M〉〈T 〉 because other
transactions, running concurrently with T , may have committed before T and made changes
to the global database. AfterCmt〈≤T: M〉〈T 〉 is the state of the global database immediately
after T commits. It differs from BeforeCmt〈≤T: M〉〈T 〉 to the extent that T made changes to
the global database upon its commit. It suffices to model only transactions which commit,
since those which do not commit have no effect upon the global database, and so can simply
be removed. Call ≤T constraint preserving for (initial state) M ∈ ELDB(D) if for every
T ∈ T, AfterCmt〈≤T: M〉〈T 〉 ∈ ELDB(D). In other words, constraint preservation, as used in
the remainder of this paper, entails preservation of both internal and external constraints, as
distinguished in 2.2.

For a more comprehensive presentation of SI, see [10, Sec. 2 and 4].

3.2 Notational convention In 3.3 and 3.4, take T to be a finite subset of BBTransD and
≤T an SI-schedule for T.

3.3 State assignment Let T′ ⊆ T. A state assignment for T′ is a function ι : T′ →
LDB(D). The most important use is the state assignment for ≤T with initial state M ∈

2 In practice, some details may differ; in particular, internal constraints are always enforced immediately,
and checks for concurrent writes to the same data object may be made earlier. However, those details do not
affect the theory developed here materially. See [10, Summaries 2.2-2.4] for details.

7

LDB(D), the function StAssign〈≤T : M〉 : T → LDB(D) given on elements by T 7→
InitSnap〈≤T: M〉〈T 〉, identifying the initial snapshot of each T ∈ T, when the entire schedule

begins with database state M . For T′ ⊆ T, StAssign
|T′
〈≤T : M〉 : T′ → LDB(D) is the function

StAssign〈≤T : M〉 restricted to T′. In particular, for Ti, Tj ∈ T, StAssign
|{Ti,Tj}
〈≤T : M〉 is the function

StAssign〈≤T : M〉 restricted to {Ti, Tj}. When working with a general state assignment ι, think
of it as a (possible) restriction of StAssign〈≤T : M〉 for an SI-schedule ≤T with initial state M .

The state assignment ι : T′ → LDB(D) is nonoverlapping if none of its transactions writes a
common data object (as required for concurrent transactions under SI). Formally, ι is nonover-
lapping if for every T1, T2 ∈ T′ with T1 6= T2,

WSet〈Trimι(T1)〈〈D,UT1〉〉〉 ∩WSet〈Trimι(T2)〈〈D,UT2〉〉〉 = ∅.
Given M ∈ ELDB(D), ι is extendedly legal (or x-legal) for M if, for every T ∈ T′,

FLiftD 〈WTrimι(T)〈〈D,UT 〉〉〉(M)↓ ∈ ELDB(D).

3.4 Guards and guard functions Database constraints are frequently quite localized in
nature. If a data object c is to be written, only a small subset of the remaining data objects y
must be checked to determine whether or not that write will preserve the integrity constraints.
The notion of a guard object formalizes this. Let 〈c, {u}〉 be a singleton full write object over
D; that is, a full write object with just one update. A guard object for 〈c, {u}〉 is a y ∈ DObj〈D〉
which satisfies the following two properties.

(go-i) y ∩ c = ∅.
(go-ii) For every M ∈ ELDB(D) with M|c = u(1),

FLiftD 〈〈c, {u}〉〉(M)↓ ∈ ELDB(D)⇔ FLiftJD|y∪cK〈〈c, {u}〉〉(M|y∪c)↓ ∈ ELDB(JD|y ∪ cK).

Condition (go-ii) states that the update 〈c, {u}〉 is x-legal when lifted to all of D iff it is x-legal
when lifted to just JD|y ∪ cK, Thus, a global test for constraint satisfaction may be replaced
by a much more localized one.

A guard function for a transaction provides a guard object for the write defined by each
snapshot. Formally, a guard function for a transaction T is a g : LDB(D) → SubObj〈D〉
which assigns to each N ∈ ELDB(D) a guard object g(N) for WTrimN〈〈D,UT 〉〉, subject to the
additional condition that the guard depends only upon the update, and not the initial snapshot
which induced it:

(∀N1, N2 ∈ ELDB(D))((WTrimN1〈〈D,UT 〉〉 = WTrimN2〈〈D,UT 〉〉)⇒ (g(N1) = g(N2))).
Given N ∈ ELDB(D), g(N) is called the guard object for N . The set of all guard functions for
T is denoted GuardsD〈T 〉. This set is always nonempty; i.e., a guard function always exists.
See [10, 5.10] for details.

A guarded black-box transaction T is represented by a pair 〈〈D,UT 〉,GT 〉 in which 〈D,UT 〉 ∈
FUpdObj(D) and GT ∈ GuardsD〈T 〉, with T represented by 〈D,UT 〉 in the latter. The set of all
guarded black-box transactions over D is denoted GBBTransD .

The notion of a guard is closely related to, but not the same as, the idea of integrity
context, as presented in 2.6. Consider again the schema E2 and the transaction T21 of 2.6. For
snapshot M20, the guard object is exactly the integrity context {x2}. However, for snapshot
M21, although the integrity context is also {x2}, the guard is ∅. The difference is that while the
integrity context is used to determine whether or not a candidate ground write will preserve
the integrity constraints (i.e., whether that update would satisfy the consistency property of

8

ACID [6, p. 166]), the purpose of the guard is to identify a read set which must be protected
from change in order to ensure isolation of ACID, once a consistent ground write has been
selected. For an extensive set of examples of guards, see [10, 5.11-5.14].

3.5 Notational convention From now on, unless stated explicitly to the contrary, aug-
ment 3.2 so that T is taken to be a finite subset of GBBTransD , and not just of BBTransD .
In other words, assume that every transaction in T has a guard function associated with it.
Furthermore, as explained in 3.4 above, the guard function of T ∈ T will be denoted GT , while
<T continues to be an SI-schedule for T.

3.6 Independent pairs of guarded transactions A pair of nonoverlapping concurrent
transactions is guard independent if at least one does not write the guard of the other. Formally,
given {T1, T2} ⊆ GBBTransD , a state assignment ι : {T1, T2} → ELDB(D) is guard indepen-
dent if it is nonoverlapping and at least one of WSet〈Trimι(T1)〈〈D,UT1〉〉〉 ∩ GT2(ι(T2)) = ∅ or
WSet〈Trimι(T2)〈〈D,UT2〉〉〉∩GT1(ι(T1)) = ∅ holds, See [10, Thm. 5.17] for a proof of the following
result, which is central to the results of Sec. 4.

3.7 Theorem — guard independence ⇒onstraint preservation Let M ∈ ELDB(D).

If StAssign
|{T,T ′}
〈≤T : M〉 is guard independent for every concurrent pair {T, T ′} of T, then ≤T is

constraint preserving for initial state M . 2

3.8 Guard-write dependencies and CPSI Constraint-preserving snapshot isolation, or
CPSI, is the application of guard independence to establish that a schedule of transactions,
run under SI, will not result in any constraint violations, internal or external. In other words,
under CPSI, for the schedule ≤T to be constraint preserving, every pair {T1, T2} of distinct
concurrent transactions must satisfy one of the disjointness conditions identified in 3.6.

This may be expressed in another way; let T1, T2 ∈ T. There is a gw-dependency from T1 to
T2 for ≤T with initial state M ∈ ELDB(D), written T1

gw−→ T2, if T2 writes the guard of T1; that
is, if WSet〈TrimInitSnap〈≤T: M〉〈T2〉〈〈D,UT2〉〉〉 ∩ GT1(InitSnap〈≤T: M〉〈T1〉) 6= ∅. {T1, T2} is a guard-

write pair, or gw-pair, in GDSG〈≤T :M〉 if it forms a concurrent pair for which both T1
gw−→ T2

and T2
gw−→ T1 hold. The result of 3.7 may be restated to say that if ≤T does not contain any

guard-write pairs, then it is constraint preserving. For extensive examples surrounding CPSI,
including in particular ones for which SSI flags conflict but CPSI does not, see [10, Examples
5.18 and 5.22]. For implementation issues, see [10, Disc. 5.25].

3.9 Examples of guard pairs and gw-dependency Consider again the transactions T01

and T02 on the schema E0, introduced in Sec. 1. Let n1, n2 ∈ Z with n1 + n2 > 0, and let
M0〈n1,n2〉 ∈ ELDB(E0) be the database with x1 = n1 and x2 = n2. It is easy to see that, for
i ∈ {1, 2}, GTi(M0〈n1,n2〉) = {x3−i} if the update xi←xi − 1 is allowed; i.e., if n1 + n2 > 1. If
n1 + n2 ≤ 1, the update would violate the integrity constraint x1 + x2 > 0, so the transaction
executes the identify update instead, and GTi(M) = ∅. Thus, under ordinary CPSI, T01 and
T02 may not execute concurrently on the same initial snapshot M0〈n1,n2〉 with n1 +n2 > 1, since

the gw-dependencies T01
gw−→ T02 and T02

gw−→ T01 both hold, identifying a gw-dependency (see

9

3.8). Nevertheless, it is clear that if n1 +n2 > 2, the two may execute concurrently, on the same
initial snapshot, with no integrity violation. In order to permit such concurrent execution, the
guards need to be made tolerant, as developed in the next section.

4 Tolerant CPSI

In this section, the main ideas of tolerant CPSI are developed, as an extension of the ideas of
CPSI outlined in Sec. 3.

4.1 Tolerant guard pairs, functions, and transactions Under CPSI, given two con-
current transactions, at least one is not allowed to write the guard of the other. Under tolerant
CPSI, on the other hand, for each transaction, a set of allowable writes to its guard is speci-
fied. A concurrent transaction is allowed to write the guard, provided those writes lie within
the specification. Formally, a tolerant guard function h for T ∈ BBTransD assigns to each
N ∈ ELDB(D) a pair 〈GObjh(N),GTolh(N)〉, with the following properties.

(tgp-i) GObjh is a guard function for T ; i.e., GObjh(N) is a guard object for WTrimN〈〈D,UT 〉〉.
(tgp-ii) GTolh(N) ⊆ DB(GObjh(N)) with N|GObjh(N) ∈ GTolh(N).

(tgp-iii) ((N|WSet〈WTrimN 〈〈D,UT 〉〉〉 = WTrimN〈〈D,UT 〉〉(1))
∧ ((WTrimN〈〈D,UT 〉〉(2))|GObjh(N) ∈ GTolh(N))

⇒ (FLiftGObjh(N)∪WSet〈〈D,UT 〉〉〈〈D,UT 〉〉(N)↓ ∈ ELDB(JD|(GObjh(N)∪WSet〈〈D,UT 〉〉)K)).
(tgp-iv) (∀N1, N2 ∈ ELDB(D))((WTrimN1〈〈D,UT 〉〉 = WTrimN2〈〈D,UT 〉〉)

⇒ (h(N1) = h(N2))).

GObjh is called the guard-object assignment, while GTolh is called the tolerance assignment. For
a fixed N ∈ ELDB(D), GObjh(N) is called the guard object and GTolh(N) is called the tolerance
(of h) for N . As a slight abuse of notation, h may be written as 〈GObjh,GTolh〉.

Condition (tgp-i) identifies GObjh as the associated guard function. Condition (tgp-ii) as-
serts that GTolh assigns to each N ∈ ELDB(D) a set of databases of the guard object which
includes in particular the projection of N onto the guard object. Condition (tgp-iii) liberalizes
(go-ii) of 3.4. Instead of requiring that a concurrent transaction T ′ not write the guard object
at all, the the tolerance identifies a range of values, within which a write of T ′ may lie. Since
N|GObjh(N) ∈ GTolh(N), no change to the guard state is allowed, recapturing the requirement of
an ordinary guard function. In view of (go-ii) and the fact that GObjh is a guard function in
the sense of 3.4, (tgp-iii) is equivalent to the following, simpler assertion.

(tgp-iii′) ((N|WSet〈WTrimN 〈〈D,UT 〉〉〉 = WTrimN〈〈D,UT 〉〉(1))
∧ ((WTrimN〈〈D,UT 〉〉(2))|GObjh(N) ∈ GTolh(N))

⇒ (FLiftD 〈〈D,UT 〉〉(N)↓ ∈ ELDB(D)).

Finally, (tgp-iv) corresponds to the similar condition of 3.4; the tolerant guard depends only
upon the ground update, not upon how it was obtained.

It might seem that GTolh(N) should be limited to databases in ELDB(GObjh(N)), but it is
harmless to allow those which do not satisfy the constraints, and that flexibility will prove to
be of use.

10

The tolerant guard function h is zero tolerance if GTolh(N) = {N|GObjh(N)} for every N ∈
ELDB(D). In that case, h is effectively just an ordinary guard function, as defined in 3.4, since
GTolh has no additional effect.

The set of all tolerant guard functions for T is denoted TolGuardsD〈T 〉. A tolerantly guarded
black-box transaction T is a pair 〈〈D,UT 〉,HT 〉 in which 〈D,UT 〉 ∈ FUpdObj(D) and HT ∈
TolGuardsD〈T 〉. As a notational convenience, let HT = 〈HGFn

T ,HTol
T 〉. In other words, HGFn

T is
the function which assigns guard objects, while HTol

T assigns tolerances. The set of all tolerantly
guarded black-box transactions over D is denoted TolGBBTransD .

4.2 Examples of tolerant guard pairs and functions Return to the context of E2,
particularly as developed in 3.9. For i ∈ {1, 2}, the ordinary guard function GTi is renamed
HGFn
Ti

in the tolerant setting. To obtain a tolerant guard which permits as much concurrency
as possible, for any n1, n2 ∈ Z, define HTol

T2i
(M0〈n1,n2〉) = {N ∈ DB(x3−i) | x3−i > 1 − ni} if

n1 + n2 > 1, with HTol
T2i

(M0〈n1,n2〉) = {�DB} otherwise. For example, HTol
T21

(M0〈3,2〉) = {N ∈
DB(x2) | x2 > −2}, and HTol

T22
(M0〈3,2〉) = {N ∈ DB(x1) | x1 > −1}. In that case, T21 and T22

are each tolerant of the other for the state assignment of M0〈n1,n2〉 to each, and so they may
execute concurrently. Indeed, T21 sets x1 to 2, which is within the tolerance range of T22, and
T22 sets x2 to 1, which is within the tolerance range of T21.

To recapture an ordinary guard function within the tolerant framework, a tolerant guard
of zero tolerance is used. Specifically, for any n1, n2 ∈ Z, if n1 + n2 > 1, for i ∈ {1, 2} define
HTol
T2i

(M0〈n1,n2〉) = {(M0〈n1,n2〉)|x3−i
}. If n1 + n2 ≤ 1, HTol

T2i
(M0〈n1,n2〉) = {�DB} The effect of this

tolerant guard is exactly the same as that of the ordinary guard, since no change of value of
x3−i is tolerated by T2i.

4.3 Tolerance among transactions Let T′ ⊆ TolGBBTransD and let ι : T′ → LDB(D)
be a nonoverlapping state assignment for T′. Given an ordered pair 〈T1, T2〉 ∈ T′ × T′, ι is
tolerant for 〈T1, T2〉 if ((FLiftD 〈WTrimι(T1)〈〈D,UT1〉〉〉)(2)(ι(T1))|HGFn

T2
(ι(T2))

∈ HTol
T2

(ι(T2)).

In words, the result of the update of T1, when restricted to the guard object of T2, lies within
the guard tolerance of T2. For an unordered pair {T1, T2} ⊆ T′ of distinct transactions, ι is
tolerant for {T1, T2} if it is tolerant for both 〈T1, T2〉 and 〈T2, T1〉.

4.4 The inadequacy of pairwise tolerance While it would be desirable to be able to
formulate a constraint-preservation result based upon the pairwise property of 4.3, in a manner
similar to the way in which 3.6 is used to establish 3.7, this is unfortunately not possible. To
illustrate by example, let k > 1 be a positive integer, and let E3k be the database schema

with k integer-valued data objects {xi | i ∈ [1, k]}, constrained by (
∑k

j=1 xj) > 0. Extending
the notation of 3.9, for n1, n2, . . . , nk ∈ Z, define M3k〈n1,n2,...,nk〉 ∈ DB(E3k) to have xi =
ni for i ∈ [1, k]. For i ∈ [1, k], define Mxi

3k〈n1,n2,...,nk〉 ∈ DB({xj | j ∈ [1, k] \ {i}}) to be
M3k〈n1,n2,...,nk〉|{xj | j∈[1,k]\{i}}; i.e., M3k〈n1,n2,...,nk〉 with the component for xi removed. Since ni in

the subscript is irrelevant, and may be written -.
For i ∈ [1, k], define the transaction T3ki by the conditional if (

∑k
j=1 xj) > 1 then xi←xi − 1.

If (
∑k

j=1 nj) > 1, the guard object HGFn
T3ki

(M3k〈n1,n2,...,nk〉) = {xj | (j ∈ [1, k] \ {i})}, with

the tolerance set HTol
T3ki

(M3k〈n1,n2,...,nk〉) = {Mxi
3k〈m1,m2,...,mk〉 | (

∑
j∈[1,k]\{i}mj) > (2 − ni)}.

11

If (
∑k

j=1 nj) ≤ 1, the identity update is performed, so HGFn
T3ki

(M3k〈n1,n2,...,nk〉) = ∅ with

HTol
T3ki

(M3k〈n1,n2,...,nk〉) = {�DB}.
For any integer p with 1 < p < k+ 1, and integers 〈n1, n2, . . . , nk〉 satisfying (

∑k
j=1 ni) = p,

at most p− 1 of the transactions in {T3i | 1 ≤ i ≤ k} may be run concurrently, using the same
initial snapshot M3k〈n1,n2,...,nk〉, without a constraint violation. If p or more are run concurrently,
with that same initial snapshot, a constraint violation will result. This is true despite the fact
that, if p > 2, then for any distinct pair {Tj1 , Tj2} ⊆ {T3i | 1 ≤ i ≤ k} the state assignment
which assigns M3k〈n1,n2,...,nk〉 to each, is tolerant for {Tj1 , Tj2}. Thus, the pairwise definition of
tolerance of 4.3 is not adequate, in the general case, to characterize constraint preservation.

It is, however, possible to obtain a pairwise characterization of tolerance, provided that
special conditions are imposed upon the structure of the guard object and guard tolerance.
The main idea is to partition the schema D into complex data objects, called Π-objects, to
require the each guard object be a union of Π-objects, and, most importantly, to require that
each tolerance set be defined by a product of database states, one factor for each Π-object
within the guard object. Although this limits somewhat how liberal the tolerance may be, far
simpler tests suffice to determine whether an update by a transaction lies within the tolerances
specified by the other concurrent transactions. The details constitute the remainder of this
section.

4.5 Schema partitions and partition-compatible subobjects A schema partition for
D is a partition Π on DObj〈D〉. Each x ∈ Π is called a block of Π, with the set of all blocks of
Π denoted Blocks〈Π〉. A subobject x ⊆ DObj〈D〉 is a Π-object if it is the union of some of the
blocks of Π. In that case, BlocksΠ〈x〉 denotes the set of blocks of which it is the union; i.e.,
x =

⋃
BlocksΠ〈x〉. The set of all Π-objects of D is denoted DObjΠ〈D〉.

The Π-closure of a data object z ⊆ DObj〈D〉 is the smallest Π-object containing z. For-
mally, ClosureΠ〈z〉 =

⋃
{x ∈ BlocksΠ〈Π〉 | x ∩ z 6= ∅}. Given an updateable object 〈c,u〉,

WSetΠ〈〈c,u〉〉 denotes ClosureΠ〈WSet〈〈c,u〉〉〉. For N ∈ LDB(D), the Π-closed write trim of
〈c,u〉 to N , denoted WTrimΠ

N〈〈c,u〉〉, is 〈c,u〉|WSetΠ〈TrimN 〈〈c,u〉〉〉. It is the smallest Π-object

containing WSetΠ〈TrimN〈〈c,u〉〉〉; that is, the smallest Π-object which contains the write set
of 〈c,u〉 when trimmed to N .

4.6 Product sets of states Let Π be a schema partition for D, and let x ∈ DObjΠ〈D〉.
A subset M ⊆ DB(x) is a Π-product set for x if there is a Blocks〈Π〉-indexed family {Mz ⊆
DObj〈x〉 | z ∈ Blocks〈Π〉} such that for any N ∈ DB(x), N ∈ M iff N|z ∈ Mz for every
z ∈ Blocks〈Π〉. In other words, a Π-product set for x is a product of sets, one for each
z ∈ BlocksΠ〈x〉.

4.7 Π-compatible guard objects and functions Using the concepts surrounding schema
partitions, a definition of tolerant guard function which will admit a pairwise characterization
of independence may be made. Formally, given a schema partition Π for D, a tolerant guard
function h = 〈GObjh,GTolh〉 for T is Π-compatible if the following three conditions are satisfied.

(Π-tg-i) For each N ∈ ELDB(D),
BlocksΠ〈WSetΠ〈Trimι(T1)〈〈D,UT1〉〉〉〉 ∩ BlocksΠ〈GObjh(N)〉 = ∅.

12

(Π-tg-ii) For each N ∈ ELDB(D), GObjh(N) ∈ DObjΠ〈D〉.
(Π-tg-iii) GTolh(N) is a Π-product set for GObjh(N).

Condition (Π-tg-i) extends (go-i) of 3.4 by requiring that the Π-closure of the write set not
intersect the guard. (Π-tg-ii) and (Π-tg-iii) mandate that the guard object be Π-compatible
and the tolerance be a Π-product set, respectively.

The tolerant guard function h is Π-minimal just in case the guard object cannot be reduced
in size, and the tolerance cannot be increased in size, while still retaining the property of a
guard. Formally, call h Π-minimal if for every N ∈ ELDB(D), no proper Π-compatible subset
H (GObjh(N) is a guard object for T , and for no proper Π-product superset GTolh(N) (P
is condition (tgp-iii) of 4.1 satisfied when, in that formula, GTolh(N) is replaced by P.

A tolerantly guarded transaction T ∈ TolGBBTransD is called Π-compatible if HT has that
property. The set of all Π-compatible tolerantly guarded transactions is denoted
Π-TolGBBTransD .

Extending the definition of 3.3 to the Π-compatible setting, for T′ ⊆ Π-TolGBBTransD ,
call a state assignment ι : T′ → ELDB(D) Π-nonoverlapping for if for every T1, T2 ∈ T′ with
T1 6= T2, WSetΠ〈Trimι(T1)〈〈D,UT1〉〉〉 ∩WSetΠ〈Trimι(T2)〈〈D,UT2〉〉〉 = ∅.

Extending the definition of 4.3 to the Π-compatible setting, given an ordered pair 〈T1, T2〉 ∈
T′ ×T′ and ι Π-nonoverlapping as above, ι is Π-tolerant for 〈T1, T2〉 if, for each

x ∈ BlocksΠ〈WSetΠ〈Trimι(T1)〈〈D,UT1〉〉〉〉 ∩BlocksΠ〈HGFn
T2

(ι(T2))〉,
it is the case that ((FLiftD 〈WTrimΠ

ι(T1)〈〈D,UT1〉〉〉)(2)(ι(T1))
|x
∈ HTol

T2
(ι(T2))|x . Finally, ι is Π-

tolerant for {T1, T2} if is Π-tolerant for both (T1, T2) and (T2, T1).

4.8 Notational convention Extending 3.5, from now on, unless stated explicitly to the
contrary, assume that a partition Π of DObj〈D〉 is fixed, and that T is a finite subset of
Π-TolGBBTransD . Assume further that the guard for transaction T is denoted
HT = 〈HGFn

T ,HTol
T 〉.

4.9 Theorem — constraint preservation under tolerance Let ≤T be an SI-schedule
for T and let M ∈ ELDB(D). If StAssign〈≤T : M〉 is Π-nonoverlapping and {T1, T2}-tolerant
for Π for every pair of distinct concurrent transactions {T1, T2} ⊆ T, then ≤T is constraint
preserving for initial state M .

Proof: The proof is by induction on the number of transactions in T. Let Ti represent the ith

transaction which commits; for n transactions, the commit order is therefore T1, T2, . . . , Tn−1, Tn.
The basis step of the induction, for n ∈ {0, 1}, is trivial. For the inductive step, let n > 1 and
assume that the result is true whenever the number of transactions in T is no more than n,
and consider the case that T consists of n+ 1 transactions. Upon removing Tn+1, the schedule
consisting of the transactions in T \ {Tn+1} is constraint preserving for M by the inductive
hypothesis. To verify constraint preservation for the entire set T, it suffices to verify that
committing the writes of Tn+1 to AfterCmt〈≤T: M〉〈Tn〉 does not violate any integrity constraints.
This is guaranteed by the requirement that, for every Ti with the property that Ti and Tn+1

run concurrently, {Ti, Tn+1} form Π-tolerant pair for StAssign〈≤T : M〉. If the Π-closure of the
update set of Ti overlaps any part of the guard tolerance Tn+1, then for each x ∈ Blocks〈Π〉
which lies in both, the update by Tn+1, restricted to x is guaranteed to lie within the tolerance

13

set HTol
Tn+1

(InitSnap〈≤T: M〉〈Tn+1〉) of Tn+1, as stipulated in 4.3. The key point is that (in contrast

to the general case, as illustrated in 4.4), the actions of other transactions, even concurrent
ones, cannot change this. Thus, the pairwise check for tolerance suffices. 2

4.10 Examples of constraint preservation under tolerance Continue with the setting
and examples of 4.4, specifically the schema E3k for some k > 3. Let the partition ΠE3k

have
each data object of {xj | j ∈ [1, k]} in its own block. It is useful to extend the notation of 4.4
for states to ΠE3k

-product sets. To this end, define
M3k〈n1,n2,...,nk〉 = {M3k〈m1,m2,...,mk〉 ∈ DB(E3k) | (∀j ∈ [1, k])(mi ≥ ni)},

the product set in which, for each database, the value of xi is at least as large as ni. Similarly,
define

Mxi
3k〈n1,n2,...,nk〉 = {Mxi

3k〈m1,m2,...,mk〉 ∈ DB(E3k) | (∀j ∈ [1, k])(mi ≥ ni)}.
Take the initial state to be M3k〈p1,p2,...,pk〉 with (

∑
j∈[1,k] pi) = p, for some integer p with 0 <

p < k + 1. As argued in 4.4, exactly p− 1 of the transactions in {T3i | 1 ≤ i ≤ k} may be run
concurrently with initial snapshot M3〈p1,p2,...,pk〉. However, in contrast to the general setting,
in the setting of partition compatibility, which p + 1 transactions may run depends upon how
tolerance sets are chosen. Consider the transaction T3ki. In the ΠE3k

-compatible context, while

HGFn
T3ki

(M3k〈p1,p2,...,pk〉) = {xj | j ∈ [1, k] \ {i}}, as in 4.4, it is no longer permissible to define

its guard tolerance via (
∑k

j=2 xj) > 1 alone, since a ΠE3k
-product set must be chosen for the

guard. A set of the form Mx1

3k〈-,n2,...,nk〉 must have (
∑

i∈[2,k] ni) > 2 − p1 (in order to allow the

update x1←x1 − 1 to occur without violating the integrity constraint), as well as ni ≤ pi for
i ∈ [2, k] (since the current value of xi must always be present in the range).

To keep things concrete, choose k = 3, with initial snapshot M33〈1,1,1〉. For transaction T331,
a minimal Π34-compatible guard is of the form Mx1

33〈-,q2,q3〉 with q2 + q3 > 1 and both q2 ≤ 1

and q3 ≤ 1. This means that the only two possibilities are Mx1

33〈-,0,1〉 and Mx1

33〈-,1,0〉. If Mx1

33〈-,0,1〉
is chosen, then T333 may not run concurrently, since x2 ≥ 1 is required by T331. Similarly, if
Mx1

33〈-,1,0〉 is chosen, then T332 may not run concurrently. Thus, T331 must in effect choose a
“victim” which cannot run concurrently. Suppose that victim is T323, and T332 attempts to run
concurrently with T321. It will succeed only if it chooses its tolerance correctly. Specifically, it
must choose Mx1

33〈0,-,1〉. If it chooses Mx1

33〈1,-,0〉, its update will not lie in the tolerance specified
by T321. This illustrates that transactions should be given the opportunity to know the guard
functions of other concurrent transactions, and to choose their own guard functions to ensure
success. This idea is explored more thoroughly in Sec. 5.

Although Π-compatibility may seem limiting, two points should be kept in mind. First,
constraints which tie many data objects together are relatively uncommon. For the most part,
constraints relate just two data objects, The examples shown here are specifically designed
to show the theoretical limitations. Second, these problems only occur in border cases. For
example, if the initial state is M33〈2,2,2〉, then all three transactions may execute concurrently,
without any problem, provided the guards are chosen reasonably.

4.11 Tolerant CPSI — TPCSI By tolerant CPSI, or TCPSI for short, is meant the
strategy described in this section, with Π-compatibility.

14

5 An Operational Description of TCPSI

As noted in 4.10, under TCPSI, there is an advantage in allowing transactions to be aware of
the actions of each other, in order to choose guards dynamically. To this end, an operational
version of TCPSI is described, in the spirit of FUW (first-updater wins) of SI [10, Sum. 2.3],
which allows such dynamic choices.

5.1 Declaration-augmented SI schedules and transactions To begin, the simple
model of SI, as and summarized in 3.1, is extended to a third time point of each transac-
tion, the declaration time. It is at this time that a transaction declares its (proposed) update
as well as its guard pair to the system (and to the other transactions), and a check is made
to determine whether these declarations are consistent with the current global database state,
as well as the declarations of the other, concurrent transactions which have already declared.
Formally, given T ⊆ BBTransD , define PSCSet〈T〉 = SCSet〈T〉 ∪ {T d | T ∈ T} = {T s | T ∈
T} ∪ {T d | T ∈ T} ∪ {T c | T ∈ T}. A declaration-augmented SI-schedule on T is a total order
≤T on PSCSet〈T 〉 with the property that for each T ∈ T, T s <T T

d <T T
c. T d represents the

time at which T declares.
A transaction which declares has the same black-box representation, as given in 4.1, as

one which does not declare. Thus, the conditions for constraint preservation, as presented
in 4.9, apply equally well to transactions which declare. However, the interpretation is a
bit different. In a transaction T which declares, the update 〈D,UT 〉 and the guard pair HT =
〈HGFn

T ,HTol
T 〉 need not be specified when the transaction begins; rather, they may be determined

at declaration time, allowing T to make real-time decisions about the choice of guard and even
the choice of update. To highlight this difference, transactions with an explicit declaration point
will be termed grey box. The set of all tolerantly guarded Π-compatible grey-box transactions
over D is denoted Π-TolGBBTransD .

5.2 Notational convention In addition to the conventions of 3.5 and 4.8, from now on,
also assume that ≤T is a declaration-augmented SI schedule, and that T is a finite subset of
Π-TolGBBTransD .

5.3 Global values for declarations The steps which are taken during the execution of a
declaration-augmented SI schedule are based upon the values of certain objects which evolve
during the execution. Each object listed below has a value at each point in time during the
lifetime of the schedule ≤T .

ActiveTrans〈≤T:M〉 is the set of all transactions which are active; that is, which have started
but have not yet committed.

DeclTrans〈≤T:M〉 is the set of all active transactions which have declared.

The remaining three object families have values which are defined at each point in time for
each z ∈ Blocks〈Π〉.
CmtValz〈≤T:M〉 is the current committed value of data object z. It is already present in every

system as a record or set of records in the global database. However, it is convenient to
have this explicit notation for it.

15

PndValz〈≤T:M〉 is the value, if any, which a transaction T ∈ DeclTrans〈≤T:M〉 has proposed as an

update via a declaration (see 5.5 below). It may be realized as a link to a record or records
in the snapshot of T . If no running transaction has proposed an update to x, the value is
that of CmtValz〈≤T:M〉.

CurrTolz〈≤T:M〉 is defined to be⋂
{(HTol

T ′ (InitSnap〈≤T: M〉〈T ′〉)|z
| (z ∈ HGFn

T (InitSnap〈≤T: M〉〈T ′〉) ∧ (T ′ ∈ DeclTrans〈≤T:M〉)}.
It expresses the combined tolerance on z of all transactions which have declared updates. If
there is no active transaction T with z ∈ HGFn

T (InitSnap〈≤T: M〉〈T 〉), the value of CurrTolz〈≤T:M〉

is DB(z).

It should be noted that an explicit value need not be stored for each such z, any more than an
initial snapshot under SI contains an explicit record for each data object. Rather, in the above,
explicit values for z ∈ Blocks〈Π〉 are only required in the case that some active transaction
which has declared uses that data object, either as a writer or else in a guard.

5.4 Transaction-specific instances of global values For each transaction, the values of
the last three objects listed in 5.3, at the point of declaration, are central to the process. A
transaction cannot change the value of CmtValz〈≤T:M〉 until it commits, so a single value at the

point of declaration suffices. Since the transaction may alter PndValz〈≤T:M〉 and CurrTolz〈≤T:M〉

when it declares, separate before and after values are necessary. The formal definitions follow.
Each applies for each T ∈ T and each z ∈ Blocks〈Π〉.
PrCmtValz〈≤T:M〉〈T 〉: the value of CmtValz〈≤T:M〉 at T d.

BeforePrPndValz〈≤T:M〉〈T 〉: the value of PndValz〈≤T:M〉 immediately before T d.

AfterPrPndValz〈≤T:M〉〈T 〉: the value of PndValz〈≤T:M〉 immediately after T d.

BeforePrTolValz〈≤T:M〉〈T 〉: the value of CurrTolz〈≤T:M〉 immediately before T d.

AfterPrTolValz〈≤T:M〉〈T 〉: the value of CurrTolz〈≤T:M〉 immediately after T d.

5.5 Pending-update maintenance under SI The steps (pum-i)-(pum-ix), identified be-
low, when applied to the schedule ≤T with initial database M ∈ ELDB(D), are called collec-
tively pending-update maintenance.

Schedule initialization: At the beginning of the execution of ≤T with initial database M , for
each z ∈ BlocksΠ〈Π〉, the following three assignments are executed, in order to give the
objects the appropriate initial values.

(pum-i) CmtValz〈≤T:M〉←M|z .

(pum-ii) PndValz〈≤T:M〉←M|z .

(pum-iii) CurrTolz〈≤T:M〉←DB(z).

Transaction declaration: When a transaction T declares (at T d), the following assignments
are executed, provided the conditions (decl-i) to (decl-iv) of 5.6 below are satisfied. If

16

those conditions are not satisfied, the transaction may either wait until the conditions are
satisfied, or else abort.

(pum-iv) DeclTrans〈≤T:M〉←DeclTrans〈≤T:M〉 ∪ {T}.
(pum-v) For each z ∈ Blocks〈Π〉

∩WSet〈WTrimΠ
InitSnap〈≤T: M〉〈T 〉〈〈D,UT 〉(InitSnap〈≤T: M〉〈T 〉)〉〉,

execute PndValz〈≤T:M〉←
(WTrimΠ

InitSnap〈≤T: M〉〈T 〉〈〈D,UT 〉(InitSnap〈≤T: M〉〈T 〉)〉
(2))
|z

.

(pum-vi) For each z ∈ BlocksΠ〈HGFn(InitSnap〈≤T: M〉〈T 〉)〉, execute

CurrTolz〈≤T:M〉←CurrTolz〈≤T:M〉 ∩HTol(InitSnap〈≤T: M〉〈T 〉)|z .

Action (pum-v) sets the pending value PndValz〈≤T:M〉 of each data object z which is updated

by T to the new, updated value, while (pum-vi) adds the tolerance for that update to
CurrTolz〈≤T:M〉.

Transaction commit: For any T ∈ T, when T commits, the following three assignments are
executed.

(pum-vii) DeclTrans〈≤T:M〉←DeclTrans〈≤T:M〉 \ {T}.
(pum-viii) For each z ∈ WSet〈WTrimΠ

InitSnap〈≤T: M〉〈T 〉〈〈D,UT 〉(M)〉〉, execute

CmtValz〈≤T:M〉←PndValz〈≤T:M〉.

(pum-ix) For each z ∈ Blocks〈Π〉 ∩HGFn
T (InitSnap〈≤T: M〉〈T 〉), update CurrTolz〈≤T:M〉 to re-

flect that T is no longer active nor declared.

Step (pum-viii) commits the pending update to the global database; (pum-ix) removes the
tolerance required by transaction T , since it is now finished.

5.6 Tolerance-compliant and nonoverlapping schedules The following four conditions
must be verified for each T ∈ T, at T d.

(decl-i) (∀z ∈ Blocks〈Π〉 ∩WSet〈WTrimΠ
InitSnap〈≤T: M〉〈T 〉〈〈D,UT 〉(InitSnap〈≤T: M〉〈T 〉)〉〉)

(InitSnap〈≤T: M〉〈T 〉|z= BeforePrPndValz〈≤T:M〉〈T 〉 = PrCmtValz〈≤T:M〉〈T 〉).

(decl-ii) (∀z ∈ Blocks〈Π〉 ∩HGFn(InitSnap〈≤T: M〉〈T 〉))
((CmtValz〈≤T:M〉 6= (InitSnap〈≤T: M〉〈T 〉)|z)⇒ (CmtValz〈≤T:M〉 ∈ HTol(InitSnap〈≤T: M〉〈T 〉)|z)).

(decl-iii) (∀z ∈ Blocks〈Π〉 ∩HGFn(InitSnap〈≤T: M〉〈T 〉))
((PndValz〈≤T:M〉 6= (InitSnap〈≤T: M〉〈z〉)|z)⇒ (PndValz〈≤T:M〉 ∈ HTol(InitSnap〈≤T: M〉〈T 〉)|z)),

(decl-iv) (∀z ∈ Blocks〈Π〉 ∩WSet〈WTrimΠ
InitSnap〈≤T: M〉〈T 〉〈〈D,UT 〉(InitSnap〈≤T: M〉〈T 〉)〉〉)

((WTrimΠ
InitSnap〈≤T: M〉〈T 〉〈〈D,UT 〉(InitSnap〈≤T: M〉〈T 〉)〉

(2))
|z
∈ CurrTolz〈≤T:M〉).

Condition (decl-i) checks for write overlap; this test must be performed for any implementation
of SI, with or without constraint preservation. Testing at declaration time is nothing more
than FUW (first updater wins) [10, Sum. 2.3] — a transaction T is allowed to continue if its

17

declared update does not conflict with those updates by other transactions which have been
declared since T started.

The remaining three tests concern constraint preservation. When transaction T declares,
it must be established that for each concurrent transaction T ′ which has already declared, the
update of T ′ does not violate the tolerance of T . (decl-ii) verifies this in the case that T ′ has
already committed, while (decl-iii) serves the same purpose in the case that T ′ has declared but
not yet committed. (decl-iv) verifies that no read-write conflict exists in the opposite direction;
it checks whether the proposed writes of T violate the tolerance limits of the other declared
but not yet committed transactions.

5.7 Example An example of operational TCPSI, as described in this section, is summarized
in Table 1. It uses the schema E33 , as well as the associated transactions and notation, described
in 4.4 and 4.10, On transactions, 33 is omitted in the subscript; thus, for 1 ∈ [1, 3], T33i becomes
just Ti. The transaction S2 is new; it executes the update x2←x2 +1 unconditionally. Its guard
object is always ∅, and its tolerance always {�DB}; it can never induce a constraint violation
when run in isolation, since increasing the value of x2 can never decrease the value of a sum
of which it is a summand. The initial state is M33〈1,1,1〉. In the first two lines of the table,

x1 x2 x3 ≥
Tr CmtVal PndVal CurrTol CmtVal PndVal CurrTol CmtVal PndVal CurrTol TrTol

T s
1 1 1 - 1 1 - 1 1 -

T s
2 1 1 - 1 1 - 1 1 -

T d
1 1 0 - 1 1 ≥ 0 1 1 ≥ 1 (-, 0, 1)

T d
2 1 0 ≥ 0 1 0 ≥ 0 1 1 ≥ 1 (0, -, 1)

T s
3 1 0 ≥ 0 1 0 ≥ 0 1 1 ≥ 1

T d
3 1 0 ≥ 0 1 0 ≥ 0 1 1 ≥ 1 blocked

T c
2 1 0 - 0 0 ≥ 0 1 1 ≥ 1

Ss
2 1 0 - 0 0 ≥ 0 1 1 ≥ 1

Sd
2 1 0 - 0 1 ≥ 0 1 1 ≥ 1 (-, -, -)

Sc
2 1 0 - 1 1 ≥ 0 1 1 ≥ 1

[T d
3] 1 0 ≥ 0 1 1 ≥ 1 1 0 ≥ 1 (0, 1, -)

T c
1 0 0 - 1 1 ≥ 1 1 0 -

T c
3 0 0 - 1 1 - 0 0 -

Table 1: Tabular summary of the example of 5.7

T1 and T2 begin, in that order. Note that the CmtVal and the PndVal for each xi carries the
values of the initial state. Next, T1 declares its intent to execute the ground update 1

x1 0
(see 2.6) using the tolerance Mx1

33〈-,0,1〉. Note that PndValx1 has been set to zero, but that
CmtValx2 remains unchanged. In the next step, T2 declares its intent to execute the ground
update 1

x2 0. For this not to conflict with T1, the tolerance Mx2

33〈0,-,1〉 is chosen. Had Mx2

33〈1,-,0〉
been chosen instead, T1 and T2 could not both commit without a constraint violation. This
illustrates the desirability of T2 choosing its guard tolerance interactively, with knowledge of
the pending updates of other, concurrent transactions. In the next two lines, T3 begins and
declares. However, it is blocked by the combination of T1 and T2; there is no choice of tolerance
on x1 and x2 which would allow it to run. At this point, it can either abort or wait; assume that
it waits. Next, T2 commits. This sets CmtValx2 to 0 and the CurrTolx1 and CurrTolx3 constraints

18

which it applied are removed. There is now no constraint on CurrTolx1 , but the constraint on
CurrTolx3 remains since T1 requires it also. Next, S2 starts, declares, and commits, executing
the update 0

x2 1. No changes are made to the value of any CurrTolxi , since the guard object is
∅ for this transaction. The waiting T3 may now continue, asserting the tolerance Mx3

33〈0,1,-〉, since

the value of x2 has increased to 1. Its second declaration point is shown as [T d3]. This illustrates
the advantage of a transaction which is blocked at declaration to wait; in an interactive setting
this is possible. Finally, T1 and then T3 commit, to complete the execution of the schedule.

5.8 Extended and multiple declaration As illustrated in 5.7, it is advantageous to allow
a transaction to determine its declarations later than at the very beginning of execution, and to
wait if conditions are not suitable. It is furthermore advantageous to allow it to make different
parts of its declarations at different times, and even to alter its declarations. Indeed, this
approach has the potential to blend well with cooperative update [8], [11]. The extension is
straightforward, but space limitations preclude a further elaboration here.

6 Conclusions and Further Directions

The ideas of CPSI have been extended to the case in which one transaction may write the guard
of another while preserving satisfaction of integrity constraints. By using a value-oriented
model, in which transactions announce a tolerance on updates to their read sets by other
transactions, significantly greater concurrency is possible. In addition to an abstract model, a
more operational model has been presented as well. There are at least two key areas for further
work.

Extension to concurrent writes: The extension of CPSI presented here supports up-
dates to read sets, but does not allow concurrent writes. An approach which supports
write concurrency under certain conditions is the next step in the theoretical development.

Prototype implementation: A prototype implementation is essential, especially to eval-
uate data structures and algorithms for the management of the declaration phase. The
preferable platform would be to build upon an existing open-source systems, such as Post-
greSQL or MariaDB.

References

[1] Bancilhon, F., Kim, W., Korth, H.F.: A model of CAD transactions. In: A. Pirotte,
Y. Vassiliou (eds.) VLDB’85, Proceedings of 11th International Conference on Very Large
Data Bases, August 21-23, 1985, Stockholm, Sweden, pp. 25–33. Morgan Kaufmann (1985)

[2] Berenson, H., Bernstein, P.A., Gray, J., Melton, J., O’Neil, E.J., O’Neil, P.E.: A critique
of ANSI SQL isolation levels. In: Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, San Jose, California, May 22-25, 1995, pp. 1–10
(1995)

[3] Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in
Database Systems. Addison-Wesley (1987)

19

[4] Cahill, M.J., Röhm, U., Fekete, A.D.: Serializable isolation for snapshot databases. ACM
Trans. Database Syst. 34(4) (2009)

[5] Fekete, A., Liarokapis, D., O’Neil, E.J., O’Neil, P.E., Shasha, D.: Making snapshot isola-
tion serializable. ACM Trans. Database Syst. 30(2), 492–528 (2005)

[6] Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann (1993)

[7] Härder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM Com-
put. Surv. 15(4), 287–317 (1983)

[8] Hegner, S.J.: A simple model of negotiation for cooperative updates on database schema
components. In: Y. Kiyoki, T. Tokuda, A. Heimbürger, H. Jaakkola, N. Yoshida. (eds.)
Frontiers in Artificial Intelligence and Applications XX11, pp. 154–173. IOS Press (2011)

[9] Hegner, S.J.: Guard independence and constraint-preserving snapshot isolation. In:
C. Bierle, C. Meghini (eds.) Foundations of Information and Knowledge Systems: Eighth
International Symposium, FoIKS 2014, Bordeaux, France, March 3-7, 2014, Proceedings,
Lecture Notes in Computer Science, vol. 8367, pp. 231–250. Springer-Verlag (2014)

[10] Hegner, S.J.: Constraint-preserving snapshot isolation. Ann. Math. Art. Intell. 76(3),
281–326 (2016)

[11] Hegner, S.J., Schmidt, P.: Update support for database views via cooperation. In: Y. Ioan-
nis, B. Novikov, B. Rachev (eds.) Advances in Databases and Information Systems, 11th
East European Conference, ADBIS 2007, Varna, Bulgaria, September 29 - October 3, 2007,
Proceedings, Lecture Notes in Computer Science, vol. 4690, pp. 98–113. Springer-Verlag
(2007)

[12] Korth, H.F., Speegle, G.D.: Formal aspects of concurrency control in long-duration trans-
action systems using the NT/PV model. ACM Trans. Database Syst. 19(3), 492–535
(1994)

[13] Papadimitriou, C.: The Theory of Database Concurrency Control. Computer Science
Press (1986)

[14] Sippu, S., Soisalon-Soininen, E.: Transaction Processing: Management of the Logical
Database and its Underlying Physical Structure. Springer (2014)

[15] Weikum, G., Vossen, G.: Transactional Information Systems. Morgan Kaufmann (2002)

20

	Introduction
	The Database Framework
	SI and CPSI
	Tolerant CPSI
	An Operational Description of TCPSI
	Conclusions and Further Directions

