
A Simple Model of Negotiation

for Cooperative Updates

on Database Schema Components

Stephen J. HEGNER

Umeå University, Department of Computing Science

SE-901 87 Umeå, Sweden

hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Abstract. Modern applications involving information systems often require the

cooperation of several distinct users, and many models of such cooperation have

arisen over the years. One way to model such situations is via a cooperative update

on a database; that is, an update for which no single user has the necessary access

rights, so that several users, each with distinct rights, must cooperate to achieve

the desired goal. However, cooperative update mandates new ways of modelling

and extending certain fundamentals of database systems. In this paper, such exten-

sions are explored, using database schema components as the underlying model.

The main contribution is an effective three-stage process for inter-component ne-

gotiation.

Keywords. database, component

Introduction

The idea of modelling large software systems as the interconnection of simpler com-

ponents, or componentware [3], has long been a central topic of investigation. In re-

cent work, Thalheim has forwarded the idea that a similar approach, that of database

componentware, is a fruitful direction for the modelling of large database systems [23].

Database componentware is a true software-component approach, in that it embodies the

principle of co-design [24] [10] — that applications should be integrated into the design

of information systems. Indeed, the formal model [25] is closely related to that of the

software components of Broy [5] [6]. While this approach has obvious merits, it does in-

volve one substantial compromise; namely, the classical notion of conceptual data inde-

pendence [17, p. 33] is sacrificed, since the applications are integral to the design. As new

applications become necessary, or as existing applications must be modified, a change

to the entire design may become necessary. It is therefore appropriate to ask whether a

component-based approach to modelling database systems which preserves conceptual

data independence, and thus mirrors more closely the traditional notions of a database

schema, is feasible. In [12], the foundations for such a framework were presented. The

core idea is that of a schema component, consisting of database schema and a collection

Final pre-conference version: 20100417 EJC2010, page 1

of its views, called ports. Interconnections are formed by connecting ports; that is, by re-

quiring the states of connected ports to match. Such an interconnection defines a compos-

ite database schema. The idea is closely related to lossless and dependency-preserving

decomposition, but it is really a theory of composition— the main schema is constructed

from components rather than decomposed into constituents. The structure necessary to

connect components together is part of the definition of the components themselves.

The ultimate value of any concept lies in its applicability. In [15], initial ideas sur-

rounding the use of schema components as the underlying framework for the support of

cooperative update were presented. The model developed was a proof-of-concept effort,

and many simplifying assumptions were made. Furthermore, the focus was upon a for-

mal computational model rather than upon an illustration of how the technique may be

used to model situations requiring cooperative update. The goal of this paper is to com-

plement and extend [15]. The main contribution the presentation of a simple yet effec-

tive negotiation process. Any approach to cooperative update must support negotiation

while still providing for reasonable convergence. While the process described in [15] is

guaranteed to converge, the number of steps which are possible can be very large [15,

3.5(a)]. In this paper, a much more efficient negotiation process is developed in which

each component executes at most three negotiating steps. This process is illustrated via

an extended and annotated example, rather than via a completely formal model.

There are a number of other aspects of cooperative update which were not even men-

tioned, much less addressed, in [15]. In this paper, several of the most important are dis-

cussed briefly, and illustrated relative to the running example. One of the most important

is relative authority. Even in cooperative situations, there will typically be a hierarchy

of authority, so that some players will be obligated in certain ways to accommodate the

proposals of others. Others include models of behavior when actors are presented with

choices for supporting an update request, and models for ensuring the cooperation does

not lead to corruption.

There has been considerable research on the general topic of cooperative work in

general and cooperative transactions in particular [16] [22] [28]. There has also been

some very recent work on synchronizing updates to repositories [18]. Relative to these,

the focus of this paper is upon how an update which is proposed by a single agent (the

initiator) to a single schema component may be realized via suitable updates to other

components. It does not address more general situations in which a group of agents

must begin from scratch to produce a desired final result, although such situations could

conceivably be modelled within the context of schema components also.

1. Fundamentals of Schema Components and Cooperative Update

The work of this paper is based upon the formal foundations of schema components and

cooperative update, as presented in [12] and [15], respectively. While a complete under-

standing of the formalisms of those papers is not absolutely necessary for this paper, it is

nevertheless useful for the reader to be familiar with the basic concepts and notation. The

purpose of this section is to summarize the material from those two references which is

central to the rest of this paper. The reader may wish to skim this section rather briefly,

referring back to it as the need arises. In any case, the reader is referred to those papers

for details and a more systematic presentation. The ideas are presented in terms of the

Final pre-conference version: 20100417 EJC2010, page 2

classical relational model, although they may easily be generalized to any data model

admitting the notions of state and of view.

1.1. Schema Components

Let E0 be the relational schema with the single relation symbol R[ABCDE], constrained
by the functional dependencies (FDs) F = {B→C,C→DE}. The notation LDB(E0) is
used to represent the set of all legal databases of E0; that is, the set of all relations on

ABCDE which satisfy the FDs in F, while DB(E0) denotes the set of all databases on

E0 which may or may not satisfy the constraints of F.
Consider the decomposition of this schema into its four projections in {AB,BC,

CD,CE}. Using classical relational database theory, it is easy to establish that this de-

composition is lossless, in the sense that the original database may be reconstructed by

joining together the projections, and dependency preserving in the sense that the ele-

ments of F may be recovered from the dependencies which are implied on the pro-

jections. Together, these two properties imply that there is a natural bijective corre-

spondence between LDB(E0) and the decomposed databases. More precisely, if N =
〈NAB,NBC,NCD,NCE〉 is a quadruple of databases, with NAB a relation on AB which satis-

fies all of the dependencies in (the closure of) F which embed into AB, and likewise for

NBC, NCD, and NCE on their respective projections, then there is an M ∈ LDB(E0) which
decomposes into N.

To proceed further, a more comprehensive notation is essential. Define Π
E0
BC =

(EBC
0 ,π

E0
BC) to be the view which is the projection of R onto BC. Here EBC

0 is the rela-

tional schema with the single relation symbol RBC, constrained by FAB = {B→C}, and

π
E0
BC : E0→ EBC

0 is the projection of R onto RBC. The views Π
E0
AB, Π

E0
CD, and Π

E0
CE are de-

fined in a completely analogous fashion, with analogous notation, as the projections onto

the given sets of attributes.

Modelling using components embraces explicitly two related notions which are only

implicit in the above view-based approach. First, the model is totally distributed, in the

sense that no reference to a main schema is necessary. Second, because of this lack of

an explicit main schema, the means by which the components are interconnected must

be made explicit. These ideas are now examined in more detail in the light of the above

example.

The component corresponding to Π
E0
AB consists of the schema EAB

0 together with the

viewΠ
EAB0
B of EAB

0 which projects AB onto B. Write KAB = (EAB
0 ,{Π

EAB0
B }). The viewΠ

EAB0
B

is called a port of KAB because it is used to connect to other components. A component

may have more than one port. Indeed, KBC = (EBC
0 ,{Π

EBC
0

B ,Π
EBC
0

C }) has two ports. The

componentsKCD = (EBC
0 ,{Π

ECD
0

C }) and KCE = (EBC
0 ,{Π

ECE
0

C }), each with a single port, are
defined similarly. For each of these components, the first entry is the schema and the sec-

ond its set of ports. It is convenient to have a graphical notation for the representation of

interconnected components. Figure 1 illustrates this notation for the example just given.

The components are represented as rectangles, with the ports depicted as circles. When

two ports are connected, they are shown as a single circle.

The interconnection family for Figure 1 specifies how the components are inter-

connected, and gives the sets of ports which are connected together. In this case, it is

J0 = {{Π
EAB
0

B ,Π
EBC
0

B },{Π
EBC
0

C ,Π
ECD
0

C ,Π
ECE
0

C }}. A single member of an interconnection fam-

Final pre-conference version: 20100417 EJC2010, page 3

RAB[AB]

KAB

RBC[BC]
B→C

KBC
RCD[CD]
C→ D

KCD

RCE [CE]
C→ E

KCERB[B] RC[C]
π
AB
B π

BC
B π

BC
C

π
CD
C

π
CE
C

Figure 1. An interconnection of components

ily is called a star interconnection. Thus, J0 consists of two star interconnections. For

this notation to be unambiguous, the set of components must be name normalized, in

that globally, over all components, no two ports have the same name. Since this is just a

naming convention, it can always be met through suitable renaming. Note, on the other

hand, for two ports to be members of the same star interconnection, they must have iden-

tical schemata. For example, even thoughΠ
EAB0
B and Π

EBC
0

B are distinct ports, from distinct

components, they have identical (and not just isomorphic) schemata. This condition is

essential because the semantic condition on such an interconnection is that the states of

all such view schemata must be identical. When the port schema (defined by RB in this

case) is from a view of a main schema (Π
E0
B in this case), this happens automatically, but

in the case of component interconnection without reference to a main schema, it must

be enforced explicitly. Note further that the graphical notation of Figure 1 embodies this

idea implicitly, since each common port schema is represented by a single circle.

1.2. Cooperative Update

For convenience, assume that the current state of the main schema is M =
{R(a1,b1,c1,d1,e1),R(a2,b2,c2,d2,e2)}. The state of Π

E0
AB is then MAB = {RAB(a1,b1),

RAB(a2,b2)}, with the states MBC, MCD, and MCE of Π
E0
BC, Π

E0
CD, and Π

E0
CE obtained sim-

ilarly. Suppose that a given user aAB has access to the database only through view Π
E0
AB,

and wishes to insert RAB(a3,b2). This update can be realized entirely within Π
E0
AB. By in-

serting R(a3,b2,c2,d2,e2) intoM, the desired update to Π
E0
AB is achieved without altering

the state of any of the other three views. Indeed, this is an instance of update via the

classical constant-complement strategy [2]. The mutual viewΠ
E0
B , the projection onto B,

is called the meet of Π
E0
AB and Π

E0
BC, and is precisely that which must be held constant

under the constant complement strategy [11].

Now suppose that instead that user aAB wishes to insert RAB(a3,b3). This update

cannot be realized by a change to the state of Π
E0
AB which holds the states of the other

three views constant. Indeed, it is necessary to insert a tuple of the form RBC(b3,c?) into

the state of Π
E0
BC. Since user aAB does not have write access to view Π

E0
BC, the cooperation

of another user who has such write access, say aBC, is necessary. If that user chooses to

insert, say, RBC(b3,c2), then the process terminates without any need for cooperation from

Π
E0
CD orΠ

E0
CE . However, if user aBC chooses to cooperate by inserting, say, RBC(b3,c3), then

the cooperation of additional users, one for Π
E0
CD and one for Π

E0
CE is necessary. Finally,

if these additional users choose to insert RCD(c3,d3) and RCE(c3,e3), respectively, then

Final pre-conference version: 20100417 EJC2010, page 4

the tuple R(a3,b3,c3,d3,e3) may be inserted into the stateM of E0 to achieve the desired

result. Note that no single user, of a single view, could effect this update; by its very

nature it requires the cooperation of distinct views, likely controlled by distinct users.

2. Three-Stage Negotiation for Cooperative Update

In this section, a three-stage negotiation process for cooperative update on an intercon-

nection of schema components is developed. Rather than presenting a completely formal

model, the main ideas are developed in detail in the context of a simple business pro-

cess, the approval of a travel request. This example is superficially similar to that found

in [15]; however, not only the example process but also the underlying schema differs

substantially, because the points which require emphasis are quite different.

2.1. The Schemata and Components of the Example

Figures 2 and 3, together with Table 1, provide the basic definitions for the example,

which is presented in the relational model. In Figure 2, the immutable relations of the

model; that is, the ones which may not be updated (at least for the purposes of servicing

a business process) are shown. Keys are marked with an underline, while set-valued

attributes (i.e., multisets in the terminology of SQL:2003 [8]) are marked with a
::::

wavy

underscore. Thus, each employee has an employee ID, a home department defined by the

ID of that department, and a set of assigned projects. Similarly, each department has a

supervisor, each account has an account manager, and each project has a supervisor and

a set of accounts (for travel funds). These relations are shared by all components.

Employee [EmpID, DeptID, ProjIDs
:::::

]

Project [ProjID, SupID, ProjAccts
:::::::

]

Department [DeptID, SupID]

Account [AcctID, AMgrID]

Figure 2. The immutable relations of the running example

Figure 3, which employs the symbolic notation which was introduced in [12] and

is summarized in Section 1, shows the basic schema components and ports. The upper

line in each rectangle (e.g., Accounting) gives the name of the associated component,

while the lower line (e.g., RActg SBank) identifies the mutable relations which define the

schema of that component; that is, the relations which may be modified in the course of

servicing a travel request. Shown within each circle is the relation defining the schema

of the associated port.

Information on the attributes of the individual relations of the components, aside

from the port relations, is given in Table 1. For each attribute name, a checkmark

in the column of a relation indicates that the attribute is included in that relation,

and an underline of a checkmark indicates that the given attribute is a key. Thus,

for example, RActg may be expressed more completely in standard relational nota-

tion as RActg[TripID,EmpID,ProjID,TotalCost,AcctID,ApprvAcct]. Since TripID is a

key for every relation of the form Rxxx (i.e., every relation except SBank), those rela-

tions may be joined together to form one large relation R on the set of all attributes

Final pre-conference version: 20100417 EJC2010, page 5

Employee
REmpl

Secretariat
RSecrt

ProjectMgr
RProjMgr

DeptMgr
RDeptMgr

Hotel
RHotel

Accounting
RActg SBank

AccountMgr
RActtMgr

RSeEm

RSeHt RSeAc

RAcAm

RSePm

RSeDm

Figure 3. The components of the running example and their relations

Travel REmpl RSecrt RHotel RActg RActtMgr RProjMgr RDeptMgr SBank

TripID 3 3 3 3 3 3 3

EmpID 3 3 3 3 3 3

ProjID 3 3 3 3 3 3

Purpose 3 3 3 3

StartDate 3 3 3 3 3

EndDate 3 3 3 3 3

Location 3 3 3 3 3

HotelCost 3 3 3

TotalCost 3 3 3 3

AcctID 3 3 3 3

ApprvProj 3 3

ApprvSup 3 3

ApprvAcct 3 3 3

HotelName 3 3 3

Balance 3

Table 1. The mutable relations of the running example

shown in Table 1, save for the last one, Balance, which is used only in SBank. Then

SBank may be joined with R, since AcctID is a key for it, and thus a universal rela-

tion Travel on all of the attributes may be obtained, with each of the component rela-

tions a projection of Travel. Each relation associated with a port is also a projection

of Travel; the attributes of a port schema are given by the intersection of the attributes

associated with the connecting components. For example, the attributes of RSeAc are

{TripID,EmpID,ProjID,TotalCost,AcctID,ApprvAcct}.

The semantics of the attributes of Table 1 are self explanatory, for the most part.

Each trip is taken by a single employee and is associated with a single project. It has a

purpose, a start date, and end date, and a location. There is a total cost for the entire trip,

as well as the cost of just the hotel. The costs are charged to a single account. A trip must

receive three distinct approvals, one by the project supervisor, one by the department

supervisor, and one by account manager for the account to which the charges are made.

Final pre-conference version: 20100417 EJC2010, page 6

Finally, the relation SBank recaptures that each account has a balance, which is reduced

accordingly when a trip is charged to that account.

The component interconnection of Figure 3 illustrates a spoke-and-hub topology, in

that there is a central vertex (in this case Secretariat) which embodies most, but not all,

of the mutable information. This is not an essential feature of the schema-component

model, but it is a very useful architecture for many applications, such as the travel-request

example considered here. Also, in Figure 3, each port schema connects only two compo-

nents, but this is not a general requirement either, as the example of Section 1 illustrates.

2.2. The Representation of a Simple Update Request

In principle, a travel request may be initiated as an update to any of the components.

Indeed, this is one of advantages of the using schema components to model business

processes — the actual control flow need not be specified; rather, only the constraints

on that flow imposed by the model need be respected. One of the most common cases is

that that an employee, say Annie for the sake of concreteness, initiates a request for her

own travel. Annie has write access only to the component Employee, and indeed, only

to tuples of REmpl which are associated with her EmpID. Suppose that she is working on

the French project and wishes to travel to one of Nantes or Nice from April 1 to April 5.

To express this request as an update, she obtains a new TripID from a server and proposes

an insertion of a single tuple into REmpl satisfying the following expression.

uEmpl:0 := +〈TripID = 12345, EmpID = Annie, ProjID = French,

Purpose = “meet with project partners”,

StartDate = 01.04.10, EndDate = 05.04.10,

(〈Location = Nantes〉 ∨ 〈Location = Nice〉),
1000≤ TotalCost≤ 1500, HotelCost≤ 1500, HotelName = ∗〉.

The plus sign indicates that the update is an insertion; that is, the tuple(s) indicated by the

expression are to be inserted. It actually represents many possibilities, and so is termed

a nondeterminstic update request, and the expression uEmpl:0 identifies an update family.

Each possible update inserts only one tuple, but the values of the TotalCost, HotelCost,
and HotelName fields are not fixed. No values for HotelCost and HotelName are ex-

cluded. Since Annie does not know Nantes, she has used the ∗ wildcard to indicate that

she expresses no preference for a hotel, and allows a cost up to and including the total

amount for the trip. Similarly, any value for TotalCost between 1000 and 1500 Euros

inclusive is a possibility. In effect, an update family may be thought of as a set of ordi-

nary, deterministic updates. In this case, there is one deterministic update in uEmpl:0 for

each quadruple (Loc,TC,HC,HN) in which Loc ∈ {Nantes,Nice}, 1000≤ TC≤ 1500,

0≤ HC≤ 1500, and HN is the name of a hotel in the appropriate city.

It is assumed that all such update families are checked for integrity with the given

constraints. For example, the relation Employee must reflect that Annie is a member of

the French project.

2.3. The Three Stages of the Negotiation Process

Annie has the authority to update REmpl only insofar as that update does not affect the

other components. However, any of these proposed updates would affect the state of

Final pre-conference version: 20100417 EJC2010, page 7

RSeEm as well. Thus, the cooperation of neighboring components, in this case the Sec-

retariat component, must be obtained in order to obtain a completion of her initial re-

quest. The component Secretariat will then need to cooperate with other components.

The process by which all components come to agreement on a completion of the initial

update request uEmpl:0 is called negotiation.

In [15], a negotiation process is described in which any component can make a

decision at any time. While such a model is very attractive theoretically and is well suited

for the formal model presented there, convergence may be very slow. Here, a simple

negotiation process is described in which each component goes through three distinct

stages, although different components may be in different stages at different times. For

a given component, each stage requires the execution of one well-specified task. Once

these tasks are completed, the negotiation process is complete. In particular, negotiation

cannot continue indefinitely in a back-and-forth fashion.

The description given below assumes that the interconnection are acyclic [12,

Sec. 3], in the sense that there are no cycles in the graph which represents the in-

terconnection of the components. The example interconnection of Figure 3 is acyclic.

It also requires a few simple definitions. For components K and K′, a simple path

from K to K′ goes through no component more than once. For example, in Figure

3, 〈Employee,Secretariat,DeptMgr〉 is a simple path from Employee to DeptMgr,

while 〈Employee,Secretariat,ProjectMgr,Secretariat,DeptMgr〉 is a path which is

not simple. For an acyclic graph, there is at most one simple path between any two com-

ponents. Let Γ be a port of K′. Call Γ inner relative to K if it occurs on the simple

path from K to K′, and outer otherwise. For example, the port of Accounting defined

by RSeAc is inner with respect to Employee, while the port defined by RAcAm is outer.

Call a component K′ extremal with respect to another component K if there is a simple

path K = K0,K1, . . . ,Kn = K′ from K to K′ and this path cannot be extended beyond K′

while keeping it simple. Relative to Employee, the components Hotel, AccountMgr,

ProjectMgr, and DeptMgr are extremal, while the others are not.

The three stages of the negotiation process are described as follows.

Stage 1 — Outward propagation: During Stage 1, the initial update request is radiated

from the initiating component outwards to the other components. Each user of a given

component, as it receives information about the initial update request, makes a deci-

sion regarding the way in which it is willing to support that request. It is only during

this stage that such decisions may be made. In the later stages, each user must respect

the decisions which were made in Stage 1. Since the underlying graph is assumed to be

acyclic, each component receives information about the proposed update from at most

one of its neighbors. Thus, there is no need to integrate information from different

sources during this step.

The component which initiates the update request enters Stage 1 immediately. It then

projects this request onto its ports; each neighboring component then lifts state on the

port to an update request on its own schema. These neighboring components enter

Stage 1 as soon as they have performed this lifting. The process then continues, with

each component which are newly in Stage 1 projecting its lifting onto their inner ports

relative to the initiating component. It ends when the liftings have been propagated to

the extremal components.

Final pre-conference version: 20100417 EJC2010, page 8

Stage 2 — Propagate inward and merge: During Stage 2, the liftings which were chosen

during Stage 1 are radiated back inwards towards the initiating component. In each

component, the information from its neighbors which are connected to its outer ports

ismerged into a single update family. Since an extremal component has no outer ports,

it enters Stage 2 as soon as it has decided upon a lifting for the update request. After

that decision has been made, it is transmitted it back to the component from which the

initial update request was received during Stage 1 by projecting it onto the appropriate

port. Components which are not extremal enter Stage 2 when they have received a

return update request from each neighbor which is connected to an external port, and

then have merged the possibilities of these into a single update family. This merged

update family is then transmitted back towards the initiating component via the inner

ports of the current component. This merger may be empty, in which case it is impos-

sible to realize the initial update request. However, even if it is empty, it is transmitted

back.

Stage 3 — Choose final state and commit: Once the initiator of the update request has

received and merged all of the incoming requests, it has reached Stage 2, and that

marks the end of Stage 2 for all components, since all components have now merged

the information from their more outward neighbors. The final step is for the initiating

component to select one of the possibilities which it has computed in its merge as the

actual update to its schema. (If this set of possibilities is empty, the update request

fails.) Once it has chosen a possibility, it transmits this decision outward, just as in

Stage 1. Each component must make a decision as to which of the possibilities in the

update family determined in Stage 2 will be the actual update. This decision process

is called Stage 3. Once all of these decisions are made, the update can be committed

to the database.

There is one detail which was not elaborated in the above description. It is possi-

ble that some components will not need to be involved in the negotiation process, be-

cause none of the possible liftings will change their states. These components are simply

ignored in the process.

2.4. The Negotiation Process via Example

The three-stage process described above is now illustrated on the running example, using

the update family uEmpl:0 defined in 2.2.

In the first step, the update to the component Employee is projected onto the view

RSeEm; in this case RSeEm and REmpl have the same attributes and so this projection

is the identity. At this point, Employee has completed Stage 1. Next, this projection

must be lifted to an update family on the schema of the component Secretariat, which

must include values for every attribute of RSecrt; that is, every attribute listed in Table 1

save for Balance. Without further restrictions, a user of the Secretariat component (a

human secretary, say) could choose any subset of the set of possible liftings to propagate

forward, including the empty set, which would abort the proposed update. This liberal

model is in fact used in [15]. In a real modelling situation, the set of liftings which are

allowed must be regulated in some way; this topic is discussed further in 3.3. For now,

assume that the rôle of the Secretariat carries no decision-making authority; thus, it

must allow all possible liftings which do not involve extraneous riders, such as additional

Final pre-conference version: 20100417 EJC2010, page 9

travel for someone else. See 3.2 for an elaboration of this notion. The lifting will then

have a representation of the following form.

uSecrt:0 := +〈TripID = 12345, EmpID = Annie, ProjID = French,

Purpose = “meet with project partners”,

StartDate = 01.04.10, EndDate = 05.04.10,

(〈Location = Nantes〉 ∨ 〈Location = Nice〉),
HotelName = ∗, HotelCost≤ 1500, 1000≤ TotalCost≤ 1500,

ApprvProj = Carl, ApprvSup = Barbara,

(〈AcctID = A1, ApprvAcct = AM1〉
∨〈AcctID = A2, ApprvAcct = AM2〉
∨〈AcctID = A3, ApprvAcct = AM3〉
∨〈AcctID = A4, ApprvAcct = AM4〉)〉

The IDs for the project supervisor and department manager have been filled in, since

these are single valued and given in the immutable tables Project and Department. Sim-

ilarly, the identities of the four accounts which are associated with the French project,

together with their managers, are obtained from the table Account. No decision on the

part of the secretariat is required to determine these values. To complete the process for

Stage 1 for component Secretariat, uSecrt:0 is projected onto each outer port. At this

point, Stage 1 for component Secretariat is complete.

Consider first the communication with the component Hotel, which is assumed to

be autonomous (with no decision-making authority) and simply returns a list of available

hotel rooms for the given time interval. Suppose that the following lifting is obtained.

uHotel:0 := +〈TripID = 12345, StartDate = 01.04.10, EndDate = 05.04.10,

Location = Nantes,

(〈HotelCost = 1600, HotelName = TrèsCher〉
∨〈HotelCost = 1200, HotelName = AssezCher〉
∨〈HotelCost = 400, HotelName = PasCher〉
∨〈HotelCost = 200, HotelName = Simple〉)〉

Thus, there are no hotels available in Nice for the request period of time, but there are

four from which to choose in Nantes (although one turns out to be too expensive). Hotel

is an extremal component, so upon placing this lifting on the port defined by RSeHt, both

Stage 1 and Stage 2 for that component are complete. This result is held by Secretariat

until the other responses are received and it can complete its processing for Stage 2.

Next, consider the projection onto the outer port defined by RSeAc, connected to

component Accounting. Only the values for TripID, EmpID, ProjID, and TotalCost,

as well as the alternatives for AcctID and ApprvAcct, are included. The lifting to the

component Accounting must add information on the relation SBank, as shown below.

uActg:0 := +〈TripID = 12345, EmpID = Annie, ProjID = French,

(〈AcctID = A1, 1000≤ TotalCost≤ 1500, ApprvAcct = AM1〉
∨〈AcctID = A2, TotalCost = 1000, ApprvAcct = AM2〉
∨〈AcctID = A3, 1000≤ TotalCost≤ 1100, ApprvAcct = AM3〉)

∪ ±〈Balance← Balance−TotalCost〉〉

Final pre-conference version: 20100417 EJC2010, page 10

The account A4 has been excluded because the balance was insufficient to fund the

trip. (Assume that it was 900 Euros, say.) Similarly, the amounts allowed for accounts

A2 and A3 are below those of the initial request, since these accounts cannot fund the

entire 1500 Euros. This process of reducing the allowed liftings is called trimming. A

decision to exclude other accounts, such as A2, might also be made; whether or not this

would be allowed would depend upon the authority of the user of this component (see

3.3). However, in this example, all applicable accounts with sufficient balance have been

included. Also, in this model, the entire cost of the trip must be paid from one account;

the cost of a single trip may not be shared amongst accounts. In contrast to the update

families which have been obtained thus far, this one is not a pure insertion. In order to

pay for the trip, funds must be removed from the paying account. Thus, the update, which

is tagged with a “+” indicating an insertion, also has a sub-update which is tagged with

a “±”, indicating a modification. Standard imperative programming notation has been

used to express this.

To complete Stage 1 for Accounting, this update family is passed to component

AccountMgr via the port with schema RAcAm. Here there is not a single user which must

construct a lifting; rather, each account manager must make a decision, and these de-

cisions subsequently combined into a single lifting. However, no negotiation amongst

these managers is required; the individual decisions are independent of one another. Sup-

pose that two of the account managers agree to funding, each at a different level, but a

third (AM2 for account A2) does not, so that the lifting in AccountMgr is given by the

following expression.

uActg:0 := +〈TripID = 12345, EmpID = Annie, ProjID = French,

(〈AcctID = A1, 1000≤ TotalCost≤ 1500, ApprvAcct = AM1〉
∨〈AcctID = A3, 1100≤ TotalCost≤ 1100, ApprvAcct = AM3〉)〉

Since AccountMgr is an extremal component, this lifting is transmitted back to compo-

nent Accounting, thus completing not only Stage 1 but also Stage 2 for AccountMgr.

This information requires that componentAccounting trim its initial proposal to remove

the possibility of using account A2. The following is computed as the final lifting in

Accounting.

uActg:1 := +〈TripID = 12345, EmpID = Annie, ProjID = French,

(〈AcctID = A1, 1000≤ TotalCost≤ 1500, ApprvAcct = AM1〉
∨〈AcctID = A3, 1000≤ TotalCost≤ 1100, ApprvAcct = AM3〉)

∪ ±〈Balance← Balance−TotalCost〉〉

ComponentAccounting now projects this result back to its inner port defined by RSeAc,

thus completing its Stage 2.

The component Secretariat is still in Stage 1, and must communicate the initial

update request to the other two manager components, ProjectMgr and DeptMgr. The

project manager and department manager make only approve/disapprove decisions; no

other parameters are involved. They are presented only with the proposed values for

TripID, EmpID, ProjID, Purpose, StartDate, EndDate, and Location. They indicate

approval by placing their IDs in the respective approval fields: ApprvProj or ApprvSup.

For example, the update expression which is passed to the component ProjectMgr is

Final pre-conference version: 20100417 EJC2010, page 11

uSePm:0 := 〈TripID = 12345, EmpID = Annie, ProjID = French,

Purpose = “meet with project partners”,

StartDate = 01.04.10, EndDate = 05.04.10,

(〈Location = Nantes〉 ∨ 〈Location = Nice〉),

ApprvProj = Carl 〉

Observe in particular that the location is given as either Nantes or else Nice. Even though

there are no hotels available in Nice, for this simple model, the communication of com-

ponent Secretariat with Hotel, Accounting, ProjectMgr, and DeptMgr occurs in par-

allel. Thus, it is not necessarily known that there are no hotels available in Nice when this

update request is sent to ProjectMgr. Furthermore, even if Secretariat had received the

reply from Hotel before initiating communication with ProjectMgr, it may not have the

authority to pass this information along to that component. See 3.1 and 3.3 for a further

discussion of this type of situation.

Returning to the communicationwith ProjectMgr, it indicates approval by returning

this same expression, and indicates rejection by returning the empty expression. In either

case, since it is an extremal component, returning the decision completes Stages 1 and

2 for it. An analogous expression applies for communication with the component Dept-

Mgr. In the decision flow of this example, assume that both return positive decisions.

At this point the Secretariat component has received all of the responses, and is in

a position to complete its Stage 2. To do this, it merges all of these responses to find a

greatest common expression; that is, the largest update family which respects each of the

update families which was reflected back to it. The expression which is obtained is the

following.

uSecrt:1 := +〈TripID = 12345, EmpID = Annie, ProjID = French,

Purpose = “meet with project partners”,

StartDate = 01.04.10, EndDate = 05.04.10, Location = Nantes,

ApprvSup = Barbara, ApprvProj = Carl,

(〈1200≤ TotalCost≤ 1300, AcctID = A1, ApprvAcct = AM1,

HotelCost = 1200, HotelName = AssezCher〉

∨〈1000≤ TotalCost≤ 1300, AcctID = A1, ApprvAcct = AM1,

(〈HotelCost = 400, HotelName = PasCher〉

∨〈HotelCost = 200, HotelName = Simple〉)〉

∨〈1000≤ TotalCost = 1100, AcctID = A3, ApprvAcct = AM3,

(〈HotelCost = 400, HotelName = PasCher〉

∨〈HotelCost = 200, HotelName = Simple〉)〉)〉

To complete Stage 2 for Secretariat, this expression is projected back to component

Employee as the following. Note that details about approval and about which account

can fund the trip are not included; such information is not part of the view for Employee.

Final pre-conference version: 20100417 EJC2010, page 12

uEmpl:1 := +〈TripID = 12345, EmpID = Annie, ProjID = French,

Purpose = “meet with project partners”,

StartDate = 01.04.10, EndDate = 05.04.10, Location = Nantes,

(〈1200≤ TotalCost≤ 1300,

HotelCost = 1200, HotelName = AssezCher〉
∨〈1000≤ TotalCost≤ 1300,

(〈HotelCost = 400, HotelName = PasCher〉
∨〈HotelCost = 200, HotelName = Simple〉)〉)〉

This completes Stage 2 for Employee. Now, for Stage 3, Annie must choose one of the

possibilities. If she decides to take as much travel funds as possible, namely 1300 Euros,

she will have only 100 Euros left for the hotel. So, she chooses the hotel PasCher for 400

Euros. Because she is a very responsible person, and because the hotel is so inexpensive,

she decides to take only 1100 Euros in total expenses, since 700 is more than enough to

cover the other expenses. Her final, deterministic update request is thus the following.

uEmpl:2 := +〈TripID = 12345, EmpID = Annie, ProjID = French,

Purpose = “meet with project partners”,

StartDate = 01.04.10, EndDate = 05.04.10, Location = Nantes,

TotalCost = 1100, HotelCost = 400, HotelName = PasCher〉

To complete Stage 3 for all components, this decision must be propagated to the other

components, and then committed to the database. This is not quite trivial, because even

though Annie has made a decision, there is still a choice to be made in another com-

ponent. In this example, since she chose to take only 1100 Euros, either account A1 or

account A3 may be charged. It is within the domain of the administrator who has update

rights on the Accounting component to make this decision. In any case, the process of

propagating the decision to the other components is again a simple project-lift process,

which will not be elaborated further here. Once these decisions are made, the update may

be committed to the database, completing Stage 3.

2.5. Analysis of the Three-Stage Negotiation Process

The process presented here is a very simple one. Basically, there are only two points

at which an actor may make a decision. The first is during Stage 1, when the set of

alternatives which the actor will accept is asserted. In effect, the actor agrees to support

each of these alternatives for the life of the negotiation process. This stands in sharp

contrast to the model forwarded in [15], in which an actor may at any time decide to

withdraw alternatives which it previously agreed to support. Similarly, in Stage 3, an

actor must decide which of the alternatives to support in the final update, but this is also a

single decision which may not be modified once it is made. Stage 2 does not involve any

decisions at all. Rather, its purpose is to merge the decisions made in Stage 1, and may

be carried out in an entirely automated fashion, without any input at all from the actors.

Again, this is in contrast to the approach of [15], in which the actors may examine the

results of merging the previous results and make new decisions as to which alternatives

to support and which to reject. The upshot is that the total number of steps required in the

negotiation process is effectively independent of the number of alternatives considered.

Final pre-conference version: 20100417 EJC2010, page 13

In contrast, the process described in [15] will in the worst case require a number of steps

proportional to the total number of alternatives possible for satisfying the update request.

Of course, this reduction comes at the expense of some flexibility in the process itself,

but for many applications it should be more than adequate.

The dominant cost for this approach is governed not by the number of decisions but

rather by the resources required to specify and manage nondeterministic update speci-

fications. This is indeed an important issue which requires further work. It may be ad-

dressed both by exploring efficient methods for representing such specifications, as dis-

cussed in Section 4.2, and by controlling the number of such alternatives and the ways

in which they are propagated, as discussed further in Sections 3.1 and 3.2. However, the

point is that with the approach to negotiation presented here, the evolution of that process

itself is not the bottleneck.

3. Further Modelling Issues for Cooperative Update

In describing the update and negotiation process via the running example of Section

2, some issues were glossed over in the interest of not clouding the main ideas with

details. In this section, some of these more important details are elaborated. On the other

hand, issues which are not addressed at all in this paper, such as concurrency control, are

discussed in 4.2.

3.1. Context Sensitivity of the Lifting Strategy

In the lifting uactg:0 in the example of Section 2, employee Annie made a request to

travel either to Nantes or else to Nice for the French project, and department manager

Barbara approved this request. However, suppose that Barbara had instead rejected this

request, but would have approved a reduced request which includes only the possibility

to travel to Nantes, but not to Nice. In other words, she would reject the request to travel

to Nantes were it accompanied by an alternative to travel to Nice, but not if Nantes were

given as the sole possibility for the destination. In this case, it is said that her decision

is context sensitive. Although context-sensitive lifting behavior might seem less than

completely rational, it must be acknowledged that human actors may sometimes exhibit

such characteristics in their decision making.

This work is not primarily about modelling human decision makers. However, con-

text sensitivity in lifting behavior does have important implications. Suppose that, for

efficiency purposes, the component Secretariat were allowed to check hotel availabil-

ity before forwarding travel requests on to the managers. In that case, since no hotel is

available in Nice for the requested time period, the department manager would not see

that Annie had requested also to travel to that city, since that information would be fil-

tered out before being transmitted to DeptMgr. Thus, Barbara would see only the re-

quest to travel to Nantes, and so would approve it. In this case, whether or not the travel

request is approved depends upon the order in which impossibilities are filtered out. On

the other hand, if Barbara exhibited a context-free decision behavior; that is, if whether

she would approve the trip to Nantes were independent of any other requests which An-

nie had made, allowing the Secretariat to check hotel availability before forwarding the

request on to the managers would not affect the final outcome.

Final pre-conference version: 20100417 EJC2010, page 14

It is important to emphasize that this notion of context sensitivity relates to alterna-

tives in the update family, and not upon conjunctive combinations. For example, if the

request of Annie contained two alternatives, one to travel just to Nantes, and a second to

travel both to Nantes and to Nice, then to approve the travel to Nantes, but not the com-

bined travel to both Nantes and Nice would be perfectly context free. Context sensitivity

has only to do with rejecting a given alternative on the grounds of the presence of other

alternatives.

3.2. Admissibility for the Lifting Strategy

In Stage 1 of the negotiation process, the liftings should be minimal in the sense that

they do not make any changes which are not essential to the update request. Within the

limited framework of the running example, it is difficult to illustrate liftings which are not

minimal. However, suppose that the componentDeptMgr contains an additional relation

SBudget(DeptID,Amount) which represents the department budget, and this component

is connected to an additional component UpperMgt representing upper management, as

illustrated in Figure 4.

DeptMgr
RDeptMgr SBudget

UpperMgt
SBudget

RDmUmRSePm

Figure 4. Additional component for rider update

Now, suppose that in approving the travel for the trip of Annie, the department man-

ager also adds an increase of 100000 Euros to the department budget to the lifting, so

that it becomes

uDeptMgr:0′ := 〈TripID = 12345, EmpID = Annie, ProjID = French,

Purpose = “meet with project partners”,

StartDate = 01.04.10, EndDate = 05.04.10,

(〈Location = Nantes〉 ∨ 〈Location = Nice〉),

ApprvProj = Carl〉

∪ 〈DeptID = CDpt, ; Amount← Amount+100000〉

Here Carl has added a rider to the update request; to be approved, an additional update

which is irrelevant to the original request must be realized as well. This lifting is not min-

imal because the rider could be removed without compromising support for the original

update request.

It may not always be possible to characterize minimality of a lifting in terms of

inserting and deleting the minimal number of tuples. There might be a situation, such as

a funds transfer, in which the amount should be minimal. However, the principle remains

clear.

Final pre-conference version: 20100417 EJC2010, page 15

3.3. The Model of Authority

A suitable framework for describing and managing access rights in the context of co-

operative update requires certain special features beyond those of conventional database

systems, since traditional access rights do not take into account any form of cooperation.

One suitable model builds upon the widely-used notion of rôle-based access control,

which was introduced in [1] using the terminology named protection domain or NPD,

and which is elaborated more fully in articles such as [20]. The key idea is that rights are

assigned not to individual users, but to rôles. Each user may have one or more rôles, and

each rôle may have one or more users as members. For example, Barbara may have the

rôle of manager of the French project, but she may also be an ordinary employee when

making a travel request for herself.

In addition to the usual privileges hierarchy, in which A ≤ B means that B has all

privileges which A has, there is a authority hierarchy, in which A≤ B means that Amust

support fully the requests of B. A possible authority hierarchy for the example of Section

2 might be the following, in which the ordering is represented from left to right.

TravelAgent Manager

Scientist

Secretary Accountant

<

<<

<

<

The employee Annie might make the travel request from the component Employee in

the rôle of Scientist, in which case someone (or something— a program perhaps) in the

rôle of Secretary using the component Secretariat and someone/something in the rôle

of TravelAgent using the component Hotel would need to respect the update request

of Annie, but those assuming the rôles of Accountant or of Manager (in the compo-

nents with corresponding names) would have the right to trim her request as they see fit.

This is only a sketch of how the model of authority works; the details will appear in a

forthcoming paper.

3.4. The Model of Representation and Computation

The representation of update families, and the computations involved in lifting and merg-

ing them, are illustrated via example in Section 2, with the basic ideas hopefully clear.

It is nevertheless appropriate to provide a bit more information as to what is allowed.

First of all, update families are generally taken to be finite; that is, they represent only a

finite number of alternatives. This means that, at least in theory, the liftings of Stage 1

of the negotiation process can be computed on a case-by-case basis. Consider the initial

update request uEmpl:0 of 2.2. While the ranges on values for TotalCost and HotelCost

are finite, the ranges for HotelName is specified by a wildcard and thus appear to be

unconstrained. However, it is assumed that there are only a finite number of hotels, so

this range may be taken to be finite.

A second, computational issue arises in the context of computing merges in Stage 2

of the negotiation process. Here the set of liftings which agree with the update requests

on each of several ports must be computed. In the most general case, this is an unsolvable

problem. There is nevertheless a very natural case in which such problems do not arise.

If the port views are defined by basic SPJ (select-project-join) queries, and if the schema

Final pre-conference version: 20100417 EJC2010, page 16

has the finite-extension property [13, Def. 28]; that is, if the classical chase procedure

[9] always terminates with a finite structure, then the merger can be computed as the

result of the chase. Of course, there will be one such chase for each set of alternatives in

the respective update families, but the total number of such alternatives is finite. In [19],

many cases which guarantee such termination, and thus the semantic-extension property,

are identified. Included in these is the classical situation of schemata constrained by

functional dependencies and unary inclusion dependencies (which include in particular

foreign-key dependencies), provided that the latter have the property of being acyclic [7].

The bottom line is that, from a theoretical standpoint, there are no problems with

representation and computation. However, further work is needed to identify suitable

cases which are both useful and efficiently solvable. See 4.2 for a further discussion.

4. Conclusions and Further Directions

4.1. Conclusions

A straightforward but useful model of negotiation for cooperative update on database

schemata defined by components has been presented. In contrast to the approach given

in [15], the method presented here involves only three simple stages for each component

and thus terminates rapidly. The key idea is that decisions are made only during the first

stage; thereafter the operations involve only merging those decisions and then selecting

one of them as the final result. Other aspects of the modelling process, such as the rep-

resentation of update requests, have been illustrated via a detailed example. This has il-

lustrated that, at least for some examples, such representation is a viable alternative to

more traditional, task-based representations. Nevertheless, there are many issues which

remain to be solved before the ideas can be put into practice.

4.2. Further Directions

Relationship to workflow and business-process modelling formalisms The kinds of ap-

plications which can be modelled effectively via cooperative update overlap in sub-

stantial part those which are typically modelled using workflow [26] and/or business-

process modelling languages [4]. Furthermore, some database transaction models,

such as the ConTract model [27], [21], are oriented towards modelling these sorts of

processes. Relative to all of these, the cooperative update approach developed here

is constraint based, in that it does not specify any flow of control explicitly; rather,

it places constraints on what that flow may be. The identification of workflow and

business-process representations for those flows of control which are representable by

cooperative update, as well as a way to translate between the various representations,

is an important direction which warrants further investigation.

An appropriate model of concurrency control Update requests to databases, whether co-

operative or not, typically overlap, thus requiring some form of concurrency con-

trol. However, traditional approaches are generally inadequate for cooperative update.

Since they typically involve at least some human interaction, cooperative update pro-

cesses are by their very nature long running, and so locking large parts of the database

in order to avoid unwanted interaction of distinct transactions is not a feasible solu-

Final pre-conference version: 20100417 EJC2010, page 17

tion. On the other hand, cooperative transactions typically involve changes to only a

very small part of the overall database. Work is currently underway on a non-locking

approach which uses information contained in the initial update request to identify

tight bounds on the part of the database which must be protected during a cooperative

transaction [14].

A distributed model of control and communication The operation of a database system

constructed from schema components, particularly in the context of cooperative up-

dates, involves the passing of messages (i.e., projections and liftings) from compo-

nent to component. Thus, a unified model of control and communication which is

distributed amongst the components is essential to an effective realization of systems

with this architecture. Future work will look at the properties and realization of such

models.

An efficient representation for nondeterministic update families This issue has already

been discussed briefly in 3.4. Work is currently underway in two areas. The first is to

identify economical and computationally flexible representations for nondeterministic

update families. The second is to identify ways of computing merges of such nonde-

terministic update families using only one, or at least relatively few, instances of the

chase procedure.

More complex models of negotiation The model of negotiation which has been devel-

oped and presented in this paper is a very simple one. Although it is useful in mod-

elling many business processes, there is clearly also a need for more complex negoti-

ation processes, particularly ones with a back-and-forth nature in which parties com-

promise to reach a decision. Future work will look at such general notions of negotia-

tion.

Acknowledgments

For three to four months each year from 2005-2008, the author was a guest researcher at

the Information Systems Engineering Group at Christian-Albrechts-Universität zu Kiel,

and many of the ideas in this paper were developed during that time. He is particularly

indebted to Bernhard Thalheim for suggesting the idea that his ideas of database compo-

nents and the author’s work on views and view updates could have a fruitful intersection,

as well as for inviting him to work with his group on this problem. He is furthermore

indebted to Peggy Schmidt, for countless discussions and also for fruitful collaboration

on the ideas of schema components. She furthermore read initial drafts of this paper and

made several insightful comments.

References

[1] R. W. Baldwin. Naming and grouping privileges to simplify security management in large databases.

In Proc. 1990 IEEE Symposium on Research in Security and Privacy, pages 116–132. IEEE Computer

Society Press, 1990.

[2] F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Trans. Database Systems,

6:557–575, 1981.

[3] G. Beneken, U. Hammerschall, M. Broy, M. V. Cengarle, J. Jürjens, B. Rumpe, and M. Schoenmakers.

Componentware - State of the Art 2003. In Proceedings of the CUE Workshop Venedig, 2003.

Final pre-conference version: 20100417 EJC2010, page 18

[4] Business process modeling notation v1.1. http://www.omg.org/spec/BPMN/1.1/PDF, 2008.

[5] M. Broy. A logical basis for modular software and systems engineering. In B. Rovan, editor, SOFSEM,

volume 1521 of Lecture Notes in Computer Science, pages 19–35. Springer, 1998.

[6] M. Broy. Model-driven architecture-centric engineering of (embedded) software intensive systems:

modeling theories and architectural milestones. Innovations Syst. Softw. Eng., 3(1):75–102, 2007.

[7] S. S. Cosmadakis and P. C. Kanellakis. Functional and inclusion dependencies. Advances in Computing

Research, 3:163–184, 1986.

[8] A. Eisenberg, J. Melton, K. G. Kulkarni, J.-E. Michels, and F. Zemke. SQL:2003 has been published.

SIGMOD Record, 33(1):119–126, 2004.

[9] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and query answering.

Theoret. Comput. Sci., 336:89–124, 2005.

[10] G. Fiedler, H. Jaakkola, T. Mäkinen, B. Thalheim, and T. Varkoi. Co-design of Web information sys-

tems supported by SPICE. In Y. Kiyoki, T. Tokuda, H. Jaakkola, X. Chen, and N. Yoshida, editors,

Information Modelling and Knowledge Bases XX, 18th European-Japanese Conference on Information

Modelling and Knowledge Bases (EJC 2008), Tsukuba, Japan, June 2-6, 2008, volume 190 of Frontiers

in Artificial Intelligence and Applications, pages 123–138. IOS Press, 2008.

[11] S. J. Hegner. An order-based theory of updates for closed database views. Ann. Math. Art. Intell.,

40:63–125, 2004.

[12] S. J. Hegner. A model of database components and their interconnection based upon communicating

views. In H. Jakkola, Y. Kiyoki, and T. Tokuda, editors, Information Modelling and Knowledge Systems

XIX, Frontiers in Artificial Intelligence and Applications, pages 79–100. IOS Press, 2008.

[13] S. J. Hegner. Internal representation of database views. Submitted for publication, 2010.

[14] S. J. Hegner. A model of independence and overlap for transactions on database schemata. Submitted

for publication, 2010.

[15] S. J. Hegner and P. Schmidt. Update support for database views via cooperation. In Y. Ioannis,

B. Novikov, and B. Rachev, editors, Advances in Databases and Information Systems, 11th East Euro-

pean Conference, ADBIS 2007, Varna, Bulgaria, September 29 - October 3, 2007, Proceedings, volume

4690 of Lecture Notes in Computer Science, pages 98–113. Springer-Verlag, 2007.

[16] G. E. Kaiser. Cooperative transactions for multiuser environments. In W. Kim, editor,Modern Database

Systems: The Object Model, Interoperability, and Beyond, pages 409–433. ACM Press and Addison-

Wesley, 1995.

[17] M. Kifer, A. Bernstein, and P. M. Lewis. Database Systems: An Application-Oriented Approach.

Addison-Wesley, second edition, 2006.

[18] L. Kot and C. Koch. Cooperative update exchange in the Youtopia system. Proc. VLDB Endow.,

2(1):193–204, 2009.

[19] M. Meier, M. Schmidt, and G. Lausen. On chase termination beyond stratification. CoRR,

abs/0906.4228, 2009.

[20] S. L. Osborn and Y. Guo. Modeling users in role-based access control. In ACMWorkshop on Role-Based

Access Control, pages 31–37, 2000.

[21] A. Reuter and F. Schwenkreis. ConTracts – a low-level mechanism for building general-purpose work-

flow management-systems. IEEE Data Eng. Bull., 18(1):4–10, 1995.

[22] M. C. Sampaio and S. Turc. Cooperative transactions: A data-driven approach. In 29th Annual Hawaii

International Conference on System Sciences (HICSS-29), January 3-6, 1996, Maui, Hawaii, pages 41–

50. IEEE Computer Society, 1996.

[23] B. Thalheim. Database component ware. In K.-D. Schewe and X. Zhou, editors, Database Technologies

2003, Proceedings of the 14th Australasian Database Conference, ADC 2003, Adelaide, South Australia,

February 2003, volume 17 of CRPIT, pages 13–26. Australian Computer Society, 2003.

[24] B. Thalheim. Co-design of structuring, functionality, distribution, and interactivity for information sys-

tems. In S. Hartmann and J. F. Roddick, editors, APCCM, volume 31 of CRPIT, pages 3–12. Australian

Computer Society, 2004.

[25] B. Thalheim. Component development and construction for database design. Data Knowl. Eng.,

54(1):77–95, 2005.

[26] W. van der Aalst and K. van Hee. Workflow Management: Models, Methods, and Systems. MIT Press,

2002.

[27] H. Wächter and A. Reuter. The ConTract model. In A. K. Elmagarmid, editor, Database Transaction

Models for Advanced Applications, pages 219–263. Morgan Kaufmann, 1992.

Final pre-conference version: 20100417 EJC2010, page 19

[28] W. Wieczerzycki. Multiuser transactions for collaborative database applications. In G. Quirchmayr,

E. Schweighofer, and T. J. M. Bench-Capon, editors, Database and Expert Systems Applications, 9th

International Conference, DEXA ’98, Vienna, Austria, August 24-28, 1998, Proceedings, volume 1460

of Lecture Notes in Computer Science, pages 145–154. Springer, 1998.

Final pre-conference version: 20100417 EJC2010, page 20

