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Abstract A formalism for constructing database schemata from simple components

is presented in which the components are coupled to one another via communicating
views. The emphasis is upon identifying the conditions under which such components
can be interconnected in a conflict-free fashion, and a characterization of such, based
upon the acyclicity of an underlying hypergraph, is obtained. The work is further-
more oriented towards an understanding of how updates can be supported within the
component-based framework, and initial ideas of so-called canonical liftings are pre-
sented.

1. Introduction

Large systems typically possess a complex structure; database systems are no exception.
Schemata with thousands of relations are not uncommon; the largest have tens of thousands.
If not designed properly, such systems are certain to be unmanageable intellectually, leading
to redundancy, design errors, and difficulties as the schema evolves over time. In many en-
gineering settings, including in particular computer hardware, this problems associated with
complexity are addressed, at least in part, by designing a large system as the interconnection
of simpler (often prefabricated) components. In the field of logic design, for example, this
approach has become completely standard [16]. For a variety of reasons, it has not seen as
much success in software engineering [17], and in database systems in particular.

Although the idea that formal objects which describe computations, such as automata,
can be the basic modules of an interconnection calculus dates back to relatively early days
of theoretical computer science (see, for example, [2, Sec. 3.2]), corresponding ideas have
not found great success in application to more concrete problems. To address some of the
shortcomings of more classical approaches, Broy [5] [6] has proposed a formal interconnec-
tion calculus for components, including software components in particular. His approach has
two flavors. The first is based upon input and output streams with otherwise stateless compo-
nents; the state being effectively recaptured in the stream. The second is based upon a more
conventional state-transition approach.

Thalheim [24] [22] [25] has recently forwarded the idea of basing database design upon
components. While his formal calculus is based upon the state-transition model of Broy,
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the emphasis is solidly upon a less formal approach to the design and synthesis of schemata
within the context of the higher-order entity-relationship model (HERM) [23], which is in
turn based upon the classical entity-relationship (ER) model [8].

The present work was motivated by the desire to understand the various aspects of up-
dates, in particular their propagation, in the the context of the database components of Thal-
heim. As the investigation evolved, however, it gradually became apparent that a somewhat
different model of database component was necessary. Although database systems are a form
of software system, and therefore it is not unreasonable to use similar formalisms for both,
database systems also have special characteristics not shared by all software systems. In par-
ticular, in many database modelling scenarios, the central notions are sequences or streams
of data, but rather database schemata and their views. This is particularly true in the context
of updates. Furthermore, while the ER model and its extensions are widely used in database
modelling and design, few if any actual systems are based upon it. Rather, ER-based designs
are invariably converted to operational models, such as the relational model or an object-
relational model, for final realization.

That an understanding of database updates is closely tied to database views has been
recognized since the seminal work of Bancilhon and Spyratos [3], and has been elaborated
greatly in [12] [13]. Thus, in an attempt to understand updates in the context of database
components, it seems most natural to seek a model of components in which views play a
central rôle. In this work, an alternative notion of database component, based upon schemata
and views, is forwarded. Roughly speaking, the components are schemata which are inter-
connected via common views, called ports. Communication is then not via sequences or
streams, but rather by applying updates to these ports.

An approach to components which is based upon the notions of database schema and
view must begin with a choice for the representation of these notions. It turns out that there
is relatively little to be gained by restricting the investigation to a particular data model, such
as the relational model and its relatives. Rather, much more abstract models, in which a
database schema is represented by a (possibly structured) set which represents its databases,
and a database morphism is a structure preserving morphism, suffice completely. The for-
malizations surrounding the constant-complement strategy [3] [12] [13] adapt naturally to
the component framework. In particular, the notions developed in these works for view up-
dates provide, perhaps somewhat surprisingly, precisely the notions which are necessary for
the representation of component interconnection.

The organization of this paper is as follows. In Section 2, the fundamental notions of
view-based database components and their interconnections are presented. In Section 3, the
notion of the hypergraph of a component is presented, and characterizations of “good” com-
ponents, in terms of properties of their underlying hypergraphs, are presented. In Section
4, the topic of updates to to interconnections of components is explored briefly. Finally, in
Section 5, some conclusions and further directions are presented.

2. The Basic Ideas of View-Based Database Components

The component-based approach is compositional, not decompositional. In other words, in-
stead of beginning with a large main schema and breaking it into its constituent parts, the
starting point is a collection of smaller schemata, together with information on how they may
be combined. Since the decomposition of relational schemata is a topic which should be fa-
miliar to most readers, it is helpful to begin with a simple example of such decomposition,
and then identify the conditions under which it may be reversed to yield a component-based
composition theory.
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2.1 Example — Reconstructing simple components from a decomposition Let E0 be
the relational schema comprised of the single relation name R0[B1B2B3], constrained by the
set F0 = {B1 → B2, B2 → B3} of functional dependencies (FDs), and let LDB(E0) denote
the (finite) legal databases (i.e., relations) of this schema (relative to appropriately chosen
domains). The view Π

E0
B1B2

= (E1,π
E0
B1B2

) of E0 is the projection of E0 onto the attributes
B1B2. More precisely, E1 denotes the schema whose single relation is R1[B1B2] and whose
databases, denoted LDB(E1), are precisely the projections of members of LDB(E0) onto
the attributes B1B2, with the view mapping π

E0
B1B2

: r 7→ {(b1,b2) | (∃b3)((b1,b2,b3) ∈ r}.

By construction, πE0
B1B2

is surjective. Define the views Π
E0
B2B3

= (E2,π
E0
B2B3

) and Π
E0
B1B3

=

(E′
2,π

E0
B1B3

) similarly, with R2[B2B3] and R3[B1B3], their relation schemes, respectively.
It follows from one of the earliest and most widely known results in relational database

theory [10, p. 31] that the decomposition of E0 into the views {Π
E0
B1B2

,Π
E0
B2B3

} is lossless, in
the sense that the decomposition mapping ∆(B1B2,B2B3) : LDB(E0) → LDB(E1)× LDB(E2)

defined by r 7→ (πE0
B1B2

(r),πE0
B2B3

(r)) is injective. Similarly, the decomposition of E0 into

{Π
E0
B1B2

,Π
E0
B1B3

} is lossless. However, the decomposition {Π
E0
B1B2

,Π
E0
B2B3

} enjoys a second

property which {Π
E0
B1B2

,Π
E0
B1B3

} lacks. Specifically, define

(∗) LDB(E1)⊗LDB(E2) = {(r1,r2) ∈ LDB(E1)×LDB(E′
2) | πE1

B2
(r1) = πE2

B2
(r2)}

with πE1
B2

and πE2
B2

the obvious projections onto attribute B2. Then ∆(B1B2,B2B3)(LDB(E0)) =
LDB(E1)⊗LDB(E2). Viewed another way, there is a bijective correspondence between the
legal databases of E0 and those pairs of databases of E1 and E2 which agree on the common
column B. Rissanen [21, Sec. 3] calls this property independence, and shows that it holds
precisely in the case that the decomposition is lossless and dependency preserving; the latter
meaning that a cover of the FDs of the original schema embeds into the views. In this case,
the embedding is particularly simple, with B1 → B2 lying in E1 and B2 → B3 lying in E2.
Indeed, LDB(E1) (resp. LDB(E2)) is exactly the set of relations which satisfy B1 → B2 (resp.
B2 → B3). On the other hand, there is no embedded cover of F0 into {Π

E0
B1B2

,Π
E0
B1B3

}. and
so this independence property does not hold for that context. In [12, 2.17], this property is
generalized to much more general classes of constraints.

R1[ B1 B2 ]

K1

R2[ B2 B3 ]

K2

G1

Figure 1: The interconnection
of K1 and K2

What is remarkable about independence is that the ques-
tion of whether a pair (r1,r2) ∈ LDB(E1)×LDB(E2) arises
from a database of the main schema may be answered with
reference only to a combination of local constraints on the
component schemata and a view-based compatibility condi-
tion between them; no other knowledge of the main schema
is necessary. This leads naturally to the component-based
philosophy. Define the components K1 = (E1,{Π

E1
B2
}) and

K2 = (E2,{Π
E2
B2
}). The set {Π

E1
B2
} identifies the ports of K1, and {Π

E2
B2
} likewise for K2, with

ΠEi
B2
, for i ∈ {1,2}; the obvious views being defined by projection. The underlying schemata

of these two ports are identical. Denote it by G1; it has T1[B2] as its sole relational symbol.
The interconnection of K1 and K2 is depicted graphically in Figure 1 above.

This property — that the view schemata of two ports are identical — is called star com-

patibility, and is central to the interconnection of these components. The star interconnection
of K1 and K2 is in effect a join of K1 and K2; its schema is the “union” of the schemata of
K1 and K2, subject to the constraint that the two relations agree on the views defined by the
components. In more detail, define the schemaE12 to have the two relation symbols R2[B1B2]
and R3[B2B3], constrained by the FDs B1 → B2 and B2 → B3 respectively, as well as the port

Draft: 20070115 EJC2007 page 3



constraint which stipulates that for any (r1,r2) ∈ LDB(E1)×LDB(E2), πE1
B2

(r1) = πE2
B2

(r2).
Formally, this join ofK1 and K2, the compound component defined by the star interconnection
{ΠE1

B2
ΠE2

B2
}, is denoted Cpt〈{K1,K2},{ΠE1

B2
,ΠE2

B2
}〉, and is given explicitly by (E12,{ΠE12

B2
}),

with Π
E12
B2

the view whose schema is E12 and whose view mapping projects either of the
two relations of E12 onto attribute B2. Note that E12 is the schema which is obtained by
decomposing E0 into E1 and E2, and since E12 and E0 are isomorphic in a natural way, es-
sentially the same information is represented. However, the component-based approach is
compositional – the components K1 and K2 make no reference whatever to any main schema.

This same construction does not work for {Π
E0
B1B2

,Π
E0
B1B3

}. Upon defining ∆(B1B2,B1B3) :

LDB(E0) → LDB(E1)×LDB(E′
2) by r 7→ (πE0

B1B2
(r),πE0

B1B3
(r)), with

(∗′) LDB(E1)⊗LDB(E′
2) = {(r1,r2) ∈ LDB(E1)×LDB(E′

2) | πE1
B1

(r1) = π
E′
2

B1
(r2)}

it is not the case that ∆(B1B2,B1B3)(LDB(E0)) = LDB(E1)⊗LDB(E′
2). Rather, to determine

whether a pair (r1,r
′
2) ∈ LDB(E1)×LDB(E′

2) arises as the projection of some r ∈ LDB(E0),
it is necessary first to compute the join of that pair, since the constraint A2 → A3 cannot be
checked within either of the projections alone. In other words, upon defining the component
K′
2 = (E′

2,{Π
E0
B1B3

}), it is not the case that the interconnection ofK1 and K′
2 will have a schema

which is isomorphic to E0. Mathematically, the congruences of the pair {Π
E0
B1B2

,Π
E0
B2B3

}

commute, while those of {Π
E0
B1B2

,Π
E0
B1B3

} do not. For details of these ideas, as well as their
connection to the constant-complement update strategy for views, consult [12].

2.2 Database contexts As noted in the introduction, the the ideas developed here are not
limited to a specific data model, such as the relational model or the ER model. Rather, they
apply to virtually any database model. Formally, a database context is a pair S = (D,LDB) in
whichD is a class of database schemata and their morphisms, and LDB is a function which as-
sociates to each schema D of D a set LDB(D) of legal states, and to each database morphism
f : D1 → D2 of D a function LDB( f ) : LDB(D1) → LDB(D2). The idea is that a database
schema D is modelled by its legal states alone, and that a database morphism is modelled by
its underlying function. This is precisely the framework which is used in the original work
on the constant-complement update strategy [3]. Suitable examples forD include the context
of all relational schemata with morphisms defined by the relational algebra, nested relational
models [20, Ch. 7], and the HERM model [23] together with suitably defined morphisms.

This modelling assumption must be faithful to the more structured framework which it
represents. In particular, joins, as exemplified in equation (∗) of 2.1, must translate back and
forth between the full data model and the LDB-based abstraction. These conditions are so
natural that it is difficult to envision any reasonable formalization of database schemata and
morphisms which would not satisfy them. Therefore, the straightforward but lengthy list of
conditions which must be satisfied are not given here. However, for those readers familiar
with the basic language of category theory [1] [15], these conditions can be characterized
succinctly by requiring that the database schemata and morphisms form a concrete category
D with finite limits over the category Set, with the further condition that the grounding functorLDB :D → Set both preserve and reflect limits.

As a notation convenience, since the LDB notation on morphisms can become quite cum-
bersome, for a database morphism f :D1 →D2 inD, f̊ or ( f )̊ will often be used as shorthand
for LDB( f ).

2.3 Notational convention Throughout the rest of this paper, unless stated specifically to
the contrary, take S to be a database context. Unless stated specifically to the contrary (e.g.,
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in examples), all database schemata and morphisms will be assumed to be based in S.

Since views are central to the approach to components given here, a precise definition
within the context S is essential. The following definition is based in large part upon those
found in [12] and [13], to which the reader is referred for more detail.

2.4 Views LetD be a database schema. A view ofD is a pair Γ = (V,γ)withV a database
schema and γ : D → V a database morphism with the property that γ̊ : LDB(D) → LDB(V)
is surjective.

The zero view onD is ZViewD = (ZSchema,ZMorD), with ZSchema is a database schema
with the property that LDB(ZSchema) consists of exactly one element, and
(ZMorD )̊ : LDB(D) → LDB(ZSchema) the function which sends every M ∈ LDB(D) to the
unique element of LDB(ZSchema). In other words, ZSchema is a constant schema with ex-
actly one state, and ZViewD is the view of D which maps every M ∈ LDB(D) to that state.
Under the conditions identified in 2.2, a zero view exists for every schema D, and is further-
more unique up to isomorphism.

Views occur very frequently in this work. To avoid the need to spell out the complete
definition every time, the following convention will be followed. If a view is named by the
Greek letter Γ, then the view morphism will be denote using γ , and Schema〈Γ〉 will be used
as an alias for the underlying view schema. This convention furthermore extends to all sub-
scripted and superscripted variants. For example, for the view Γ defined above, Schema〈Γ〉
is an alias for V. Similarly, for a view named Γ′

i, the full definition is Γ′
i = (Schema〈Γ′

i〉,γ
′
i ).

Additionally, when Schema〈X〉 appears as the argument of another notation, X will frequently
be used in its stead when no confusion can result. In particular, LDB(Γi) will be used as an
abbreviation for LDB(Schema〈Γi〉).

2.5 Components The formal definition of a component follows the pattern introduced
in the example of 2.1, but is based not upon the relational model but rather upon the more
general model of database schemata and views in the context S. Specifically, a component is
an ordered pairC = (Schema(C),Ports(C)) which satisfies the following two conditions.

(cpt-i) Schema(C) is a database schema.

(cpt-ii) Ports(C) is a finite set of views of Schema(C), called the ports ofC, with the prop-
erty that none of the ports are zero views.

LDB(C) will be used as notational shorthand for LDB(Schema(C)).

2.6 Name-normalized components In describing interconnections of components, it is
essential to be able to recover the identity of the embodying component from the name of a
port. While an elaborate tagging formalism could be developed, the solution proposed here is
much simpler; namely, that for a given set of components, all port names are globally unique.
Since this is only a naming convention, there is no loss of generality in such an assumption.
Specifically, let X be a finite set of components.

(a) X is called name normalized if for distinctC,C′ ∈ X , Ports(C)∩Ports(C′) = ∅.

(b) For Y ⊆ X , define Ports〈Y 〉 =
⋃

{Ports(C) |C ∈Y}. Thus, Ports〈Y 〉 is just the set of all
ports which are associated with some component in Y .

(c) If X is name normalized and Γ ∈ Ports〈X〉, then SrcCpt(Γ) denotes the source compo-
nent of Γ, which is the uniqueC ∈ X for which Γ ∈ Ports(C).
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2.7 Star interconnections and interconnection families Let X be a finite set of compo-
nents.

(a) For I ⊆ Ports〈X〉, Components(I) denotes {SrcCpt(Γ) | Γ ∈ I}. Thus, Components(I)
is just the set of all components which are associated with a port in I.

(b) A star-compatible set for X is an I ⊆ Ports〈X〉 with the property that for all Γ,Γ′ ∈ I,
Schema〈Γ〉 = Schema〈Γ′〉.

(c) A star interconnection over X is a star-compatible set I for X with the property that for
distinct Γ,Γ′ ∈ I, SrcCpt(Γ) and SrcCpt(Γ′) are distinct as well. In this case, I is called
a star interconnection of Components(I).

(d) A interconnection family for X is a finite set of star interconnections over X .

The above definitions are critical to the interconnection model. For a set {C1,C2, . . . ,Ck}
of components to be coupled in a single star configuration using ports Γ1,Γ2, . . . ,Γk, respec-
tively, the schemata of the ports must be identical (and not just isomorphic). This is necessary
because in the interconnection, the states of these views must always be the same. The result-
ing star interconnection, as defined formally below, is illustrated for k = 4 in Figure 2. This
is somewhat distinct from the notion of a star component, as defined in [24]. Here it is the
interconnection, and not the component itself, which has the star property.

C1

V1

Γ1
C2

V2

Γ2

C3

V3Γ3

C4

V4 Γ4

C1 C2

C3 C4

V

Vi
def
= Schema〈Γi〉

V1 = V2 = V3 = V4 = V
def
= Schema〈Γ〉

7→

Figure 2: The star-compatibility condition and the interconnection of four components

It is possible to construct a maximal interconnection family, from which all others can be
obtained via appropriate subset operations.

(e) For Γ ∈ Ports〈X〉, define MaxStarX(Γ) = {Γ′ ∈ Ports〈X〉 | Schema〈Γ〉 = Schema〈Γ′〉},
and define MaxStar(X) = {MaxStarX(Γ) | Γ ∈ Ports〈X〉}.

Each member of MaxStar(X) is a maximal star-compatible set for X . Thus, J is an inter-
connection family for X iff J is the union of disjoint subsets of members of MaxStar(X).

2.8 Notational convention Unless specifically stated to the contrary, for the rest of this
paper, take X to be a name-normalized set of components with J an interconnection family
for X .

2.9 Annotated examples In 2.12 and 2.13, examples are presented which illustrate many
of the ideas which have been developed thus far, as well as those which will be developed
in the rest of this section. Rather than distributing fragments of these examples throughout
the text, it seems more appropriate to present them in unified fashion. The reader is there-
fore encouraged to look ahead to these examples for clarification of the concepts which are
developed.
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2.10 The compound component defined by an interconnection family A central idea
surrounding the component philosophy is that simple components may be combined to form
more complex ones. While this idea is simple in principle, there are nevertheless some com-
plicating details which mandate that not every possible interconnection family is suitable for
the formation of a complex component. These issues are now investigated in more detail.

(a) The schema Schema〈X ,J〉 defined by J on X is given as follows.

LDB(Schema〈X ,J〉) ={〈MB〉 ∈
∏

B∈Y

LDB(B) |

(∀I ∈ J)(∀{Γ1,Γ2} ⊆ I)(γ̊1(MSrcCpt(Γ1)) = γ̊2(MSrcCpt(Γ2)))}

(b) For C ∈ X , define the natural projection morphism NatProj〈J;X�C〉 : Schema〈X ,J〉 →
Schema(C) on elements by 〈MB〉B∈X 7→MC.

It is clear that Schema〈X ,J〉 is the natural schema for the interconnection of the elements
of X into a single component, using J as the interconnection family. There is, however, a
complication. For this complex component, it is necessary to identify the ports. The obvious
solution is to define one common port for each star interconnection. In light of the definition
of (a) above, the view of this common port will not depend upon which of the components
from X is used to define it. Unfortunately, the combined ports may no longer be views,
because the underlying mapping is no longer surjective. In general, the constraints on the
schemata of the constituents which arise by combining components may limit the values
which may appear on the ports. It is therefore essential to identify conditions under which
these problems do not occur. The following definitions lay the framework for studying this
question in more detail.

(c) The component C ∈ X is free in X if for any N ∈ LDB(C), there is an 〈MB〉B∈X ∈
LDB(Schema〈X ,J〉) with the property thatMC = N.

(d) LetC ∈Y and let Γ ∈ Ports(C). The port Γ is said to be free in X with respect to J if for
any N ∈ LDB(Γ), there is an 〈MB〉B∈X ∈ LDB(Schema〈X ,J〉) with γ̊(MC) = N.

(e) X is free for ports with respect to J if for every C ∈ X and Γ ∈ Ports(C), Γ is free in X

with respect to J.

The condition of the componentC being free in X is the stronger of the two; it essentially
states that the interconnection does not further constrain C. It is very easy to find examples
of situations in which constituent components are not free; see 2.12.

The condition of a view Γ being free in X with respect to J is strictly weaker, since
the entire component C need not be unconstrained, but rather only that each of its ports
must be unconstrained individually. In the example of 2.12, all ports are free with respect to
MaxStar(L). Nevertheless, it is possible to construct relatively simple relational examples in
which this condition is not satisfied, as illustrated in 2.13.

The weaker condition of X being free for ports with respect to J is sufficient to admit a
consistent definition for the ports of a compound component. By its very nature, it guarantees
that the view mapping for the combined port will be surjective — it is both necessary and
sufficient. The formal details are as follows.

For parts (f)-(i), assume further that X is free for ports with respect to J.
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(f)
Schema〈Y,J〉 Schema(C)

Schema(Γ)

NatProj〈J;X�C〉

[〈X ,J〉]γ
γ

Let C ∈ X and let Γ ∈ Ports(C). Define
the lifting of Γ to Schema〈X ,J〉 to be the
pair [〈X ,J〉]Γ = (Schema〈X ,J〉, [〈X ,J〉]γ) with
[〈Y,J〉]γ : Schema〈X ,J〉 → Schema〈Γ〉 given
as the composition illustrated to the right.

(g) Let I ⊆ J, and let Γ,Γ′ ∈ Ports〈X〉. Define the equivalence relation ≡〈X ,J〉 on liftings of
such views by [〈X ,J〉]Γ ≡〈X ,J〉

[〈X ,J〉]Γ′ iff Γ = Γ′ or else there is a I ∈ J with {Γ,Γ′} ⊆ X .
Let [[〈X ,J〉]Γ] denote the equivalence class of [〈X ,J〉]Γ under this equivalence relation.

(h) Define Ports〈X ,J〉= {[[〈X ,J〉]Γ] | Γ ∈ Ports〈X〉}.

(i) The compound component defined by 〈X ,J〉 is given as follows.

Cpt〈X ,J〉 = (Schema〈X ,J〉,Ports〈X ,J〉)

It is worth repeating that the above notion of compound component is well defined only
in the case that X is free for ports with respect to J.

It should perhaps be noted that it is not always necessary (or desirable) to include all

ports from the constituents in the compound component. However, the choice of which ones
to include and which ones to exclude cannot be made on a formal level; rather, it must be a
modelling decision. For example, consider forming a compound component from {L1,L2}
of 2.12. If one decides to exclude from the compound component those ports which have
already been matched, then it would be impossible to connect L3 to the compound of L1
and L2, since the necessary port has been removed. This must be a design decision, not a
mathematical one.

2.11 Subcomponents of compound components Just as simple components may be
combined to construct more complex ones, so too may simpler components be extracted
from complex ones. For this extraction process to yield well-defined subcomponents, certain
conditions must be met, which are now explored in more detail. In the following, let Y ⊆ X .

(a) For J an interconnection family for X , the relativization of J to Y is Relt〈J,Y〉 = {I ∩
(
⋃

{Ports(C) | C ∈ Y}) | I ∈ J}. Thus, Relt〈J,Y〉 is obtained from J by removing all
ports which are not associated with components in Y .

(b) The relative schema Schema〈Y,J〉 defined by J on Y is given as follows.

LDB(Schema〈Y,J〉) ={〈MB〉 ∈
∏

B∈Y

LDB(B) |

(∀I ∈ Relt〈J,Y〉)(∀{Γ1,Γ2} ⊆ I)(γ̊1(MSrcCpt(Γ1)) = γ̊2(MSrcCpt(Γ2)))}

Thus, Schema〈Y,J〉 = Schema〈Y,Relt〈J,Y〉〉. In other words, the relative schema
Schema〈Y,J〉 is precisely the schema of the compound component Cpt〈Y,Relt〈J,Y〉〉. On
the other hand, one can also consider the schema obtained by projecting from Schema〈X ,J〉
the constituent schemata which arise from components in Y .

(c) The projected schema ProjSchX〈Y,J〉 is defined as follows.

LDB(ProjSchX〈Y,J〉) ={〈MB〉 ∈
∏

B∈Y

LDB(B) |

(∃〈NB〉B∈X ∈ LDB(Schema〈X ,J〉))(∀B∈ Y )(NB = MB)}
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(d) Call Y closed in X with respect to J if ProjSchX〈Y,J〉 = Schema〈Y,J〉.

The above closure conditions is very important, because it states that Cpt〈Y,Relt〈J,Y〉〉
is embedded in Cpt〈X ,J〉 without the latter imposing any additional constraints. Clearly
LDB(ProjSchX〈Y,J〉) ⊆ LDB(Schema〈Y,J〉); the reverse inclusion LDB(Schema〈Y,J〉) ⊆
LDB(ProjSchX〈Y,J〉) holds precisely when Y Is closed in X with respect to J.

The definition of a subcomponent now proceeds similarly to that of a compound compo-
nent, as given in 2.10(i).

(f) Under the condition that Y is closed in X with respect to J and that Y is free for ports
with respect to Relt〈J,Y〉, define the subcomponent of 〈X ,J〉 generated by Y as follows.

SubCpt〈X ,J〉〈Y 〉 = (ProjSchX〈Y,J〉,Ports〈Y,Relt〈Y,J〉〉)

An illustration of why the closure condition is essential for this definition is given at the
end of 2.12.

As noted at the end of 2.10, the choice of which ports to include and which to exclude
in a compound component is a design condition. This is equally true for subcomponents.
However, in the latter case, there is a classification which is useful — to partition the ports of
SubCpt〈X ,J〉〈Y 〉 into those which connect it to other parts of X and those which do not. The
formalization is as follows. Again, for this definition to make sense, it must be assumed that
Y is free for ports with respect to Relt〈Y,J〉.

(g) Define the set of all ports, external ports, the internal ports, of Y with respect to J,
respectively, as follows.

AllPorts〈Y,J〉 ={[[〈Y,Relt〈Y,J〉〉]Γ] | Γ ∈ Ports〈Y〉}

ExtPorts〈Y,J〉 ={[[〈Y,Relt〈Y,J〉〉]Γ] | (∃I ∈ J)(∃Γ′)(({Γ,Γ′} ⊆ I) ∧

(Γ ∈ Ports〈Y 〉) ∧ (Γ′ 6∈ Ports〈Y 〉))}

IntPorts〈Y,J〉 =AllPorts〈Y,J〉 \ExtPorts〈Y,J〉

Finally, there is a natural projection morphism, whose underlying function is guaranteed
to be surjective, defined as follows.

(h) For Z ⊆Y , define the natural projection morphism NatProj〈X ;J;Y�Z〉 : ProjSchX〈Y,J〉 →

ProjSchX〈Z,J〉 on elements by 〈MB〉B∈Y 7→ 〈MB〉B∈Z. Define the natural projection view
of ProjSchX〈Y,J〉 to Z to be ProjView〈J;Y�Z〉 = (ProjSchX〈Y,J〉,NatProj〈X ;J;Y�Z〉).

2.12 Example — An illustrative set of components The purpose of this example is to
provide a setting in which many of the concepts which are introduced in this paper may be
illustrated. It is not intended to model a “real” database situation, but rather to illustrate a wide
variety of possibilities. All components are based upon the relational model, and all ports are
defined via projections, although neither of these limitations is inherent to the model. By
using the familiar relational model, the key ideas can be illustrated in a relatively compact
fashion, and certain modelling pitfalls can be highlighted.

Table 1 summarizes the key information for each atomic component. For the port names,
the superscript identifies the component, while the subscript identifies the attributes which are
projected. Since each attribute name is used at most once in each component, this convention
is unambiguous. For simplicity, it will be assumed that with each attribute Ai is associated a
countably infinite domain dom(Ai), while the legal relations themselves must be finite.
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Table 2 summarizes information about the ports, grouped by those which have identical
underlying schemata. This is a natural grouping, since ports with identical schemata are
precisely those which may be coupled to one another. Figure 3 shows all possible (star)
interconnections of these components. That is, it connects all ports with identical underlying
schemata. The components are shown as rectangles, while the port schemata are displayed
as circles. Letting L = {L1,L2,L3,L4,L5,L6,L7}, the associated interconnection family is

MaxStar(L) = {{Π
F1
A1

,Π
F2
A1

,Π
F3
A1
},{Π

F3
A4A5

,Π
F4
A4A5

},{Π
F4
A7

,Π
F5
A7
},

{ΠF4
A8

,Π
F7
A8
},{Π

F5
A0

,Π
F6
A0
},{Π

F6
A9

,Π
F7
A9
},{Π

F3
A4

,ΠF4
A4
}}

Of course, there is no requirement that when a set of components is interconnected, all
possible connections must be included. Any subset of a member of MaxStar(L) is a valid star
interconnection. Thus, any set consisting of disjoint subsets of members of MaxStar(L) is a
valid star interconnection over L.

Comp.
Name

Schema
Name

Relations
Schema

Constraints
Ports

L1 F1 R1[A1A2] ΠF1
A1

L2 F2 R2[A1A3] ΠF2
A1

L3 F3 R3[A1A4A5] A4 → A5 Π
F3
A1

Π
F3
A4A5

L4 F4 R4a[A4A5A6] R4b[A7A8] A4 → A5 A7 → A8 ΠF4
A4A5

ΠF4
A7

ΠF4
A8

L5 F5 R5[A7A0] A0 → A7 Π
F5
A7

Π
F5
A0

L6 F6 R6[A9A0] A9 → A0 Π
F6
A9

Π
F6
A0

L7 F7 R7[A8A9] A8 → A9 Π
F7
A8

Π
F7
A9

Table 1: The atomic components of the running example

R1[ A1 A2 ]

L1

R2[ A1 A3 ]

L2

R3[ A1 A4 A5 ]

L3

R4a[ A4 A5 A6 ] R4b[ A7 A8 ]

L4

R5[ A7 A0 ]

L5

R6[ A9 A0 ]

L6

R7[ A8 A9 ]

L7

H1 H2 H3 H4

H5 H6

H7

Figure 3: Graphical depiction of all possible interconnections

Observe that the components L4, L5, L6, and L7 are not free in L with respect to
MaxStar(L). Indeed, the interconnection forces the additional constraints A8 → A7, A7 → A0,
A0 → A9, and A9 → A8 on L4, L5, L6, and L7, respectively. On the other hand, L is free for
ports with respect to MaxStar(L).

Finally, an illustration of the need for the closure condition in the definition of sub-
component is given. Let X567 = {L5,L6,L7}, J567 = {{Π

F5
A0

,Π
F6
A0
},{Π

F6
A9

,Π
F7
A9
}}, and Y57 =
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Schema
Name

Schema
Relations

Schema
Constraints

Associated Ports
and View Mappings

H1 T1[A1]

ΠF1
A1

πF1
A1

: F1 →H1

ΠF2
A1

πF2
A1

: F2 →H1

Π
F3
A1

π
F3
A1

: F3 →H1

H2 T2[A4A5] A4 → A5
Π

F3
A4A5

π
F3
A4A5

: F3 →H2

ΠF4
A4A5

πF4
A4A5

: F4 →H2

H3 T3[A7]
ΠF4

A7
πF4
A7

: F4 →H3

Π
F5
A7

π
F5
A7

: F5 →H3

H4 T4[A8]
ΠF4

A8
πF4
A8

: F4 →H4

Π
F7
A8

πF7
A8

: F7 →H4

H5 T5[A0]
Π

F5
A0

π
F5
A0

: F5 →H5

Π
F6
A0

π
F6
A0

: F6 →H5

H6 T6[A9]
Π

F6
A9

π
F6
A9

: F6 →H6

Π
F7
A9

πF7
A9

: F7 →H6

H7 T7[A4]
Π

F3
A4

π
F3
A4

: F4 →H7

ΠF4
A4

πF4
A4

: F4 →H7

Table 2: The port schemata of the running example

{L5,L7}. Then Relt〈Y57,J567〉 = {{Π
F5
A0
},{Π

F7
A9
}}. Operationally, Relt〈Y57,J567〉 is equiv-

alent to ∅; that is, it imposes no constraints at all. This implies that the subcomponent
SubCpt〈X567,J57〉〈ProjSchX567〈Y57,J567〉〉 is not well defined. To illustrate this directly, let
ML5 = {(a7,a0)} ∈ LDB(F5) andML7 = {(a8,a9),(a′8,a9)} ∈ LDB(F7) with a8 6= a′8. In view
of the FD A9 → A0 on F6, there can be no ML6 ∈ LDB(F6) such that (ML5,ML6,ML7) ∈

LDB(ProjSchX567〈Y57,J567〉), since the fact thatML5 contains only one tuple implies that ML7

can consist of only one tuple as well.

2.13 Example — A pair of components whose interconnection is not free for ports

It is useful to show how a simple interconnection of relational components can violate the
condition 2.10(e) of being free for ports. To this end, let A1 and A2 be attributes with the
same countably infinite domain; dom(A1) = dom(A2). There are three components over
these domains, as identified in Table 3. Each component has two ports, one for the pro-

jection of its relation on A1, and a second for A2. For the ports ΠFα
A1
, Π

Fβ

A1
, and Π

Fδ
A1
, let

the port schema have the single relation symbol TA1[A1], and for the ports ΠFα
A2
, Π

Fβ

A2
, and

Π
Fδ
A2
, let the port schema have the single relation symbol TA2[A2]. There are no constraints

associated with these port schemata, other than the domain constraints. However, if Lα

and Lβ are interconnected via Jαβ = {{ΠFα
A1

,Π
Fβ

A1
},{ΠFα

A2
,Π

Fβ

A2
}}, then it is easy to see that

LDB(Schema〈{Lα ,Lβ},Jαβ 〉) = ∅. Similarly, letting Jαδ = {{ΠFα
A1

,Π
Fβ

A1
},{Π

Fγ

A2
,Π

Fγ

A2
}}, it

follows that LDB(Schema〈{Lα ,Lδ},Jαδ 〉) = {∅}. Thus, {Lα ,Lβ ,Lδ} is not free for ports
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with respect to either Jαβ or Jαδ .

Comp.
Name

Schema
Name

Relations
Schema

Constraints
Ports

Lα Fα Rα [A1A2] Rα [A1] ⊆ Rα [A2] ΠFα
A1

ΠFα
A2

Lβ Fβ Rβ [A1A2] Rβ [A1] 6⊆ Rβ [A2] Π
Fβ

A1
Π

Fβ

A2

Lδ Fδ Rδ [A1A2] Rδ [A1]∩Rδ [A2] = ∅ Π
Fδ
A1

Π
Fδ
A2

Table 3: The atomic components for 2.13

3. Acyclic Interconnections of Components

As observed in 2.10 and 2.11, the property of a set X of components being free for ports
with respect to an interconnection family J is critical for the definition of both compound
components and subcomponents. Therefore, it is crucial to identify conditions under which
this condition is met. Fortunately, by requiring the acyclicity of a hypergraph derived from the
interconnection, it is possible to guarantee the even stronger condition that each constituent
component of is free in X .

The reader is perhaps familiar with the use of hypergraphs in characterizing the structure
of relational decompositions [9]. However, there are very substantial differences between the
hypergraph of a compound component, as defined here, and the hypergraph of a relational
decomposition. The use of hypergraphs in this paper is closer to that found in more general
characterizations of desirable schemata, as studied in [11]. In any case, it seems appropriate
to give a self-contained presentation of the ideas.

3.1 Hypergraphs and acyclicity To begin, a very brief summary of the key notions from
the theory of hypergraphs is given. The standard reference on this subject is the monograph
of Berge [4] , to which the reader is referred for details.

A hypergraph is a pairG= (V,H) in whichV is a finite set of vertices andH ⊆P(V ) (the
set of all subsets ofV ), with each h ∈H containing at least two distinct elements.1 The mem-
bers of H are called hyperedges. A path from v1 to vn in G is a sequence
〈v1,h1,v2,h2, ..,vn−1,hn−1,vn〉 in which the following conditions hold:

(i) vi ∈V for 1≤ i≤ n with {vi | 1≤ i≤ n−1} all distinct, and {vi | 2≤ i≤ n} all distinct.
It may be the case that v1 = vn, but this is not necessary.

(ii) hi ∈ H for 1≤ i≤ n−1 with {hi | 1≤ i≤ n−1} all distinct.

(iii) {vi,vi+1} ∈ hi for 1≤ i≤ n−1.

The number n−1 is called the length of the path. A (Berge)2 cycle in G is a path of length
at least two from a vertex v to itself. G is called (Berge) acyclic if it does not contain any
(Berge) cycles.

ForV ′ ⊆V , the full subhypergraph of G generated by V ′ is SubHGraph〈G,V ′〉= (V ′
,{h∩

V ′ | h∈H}). V ′ ⊆V is closed inG if whenever v1,vn ∈V ′ and 〈v1,h1,v2,h2, ..,vn−1,hn−1,vn〉
is a path from v1 to vn in G, then 〈v1,h1∩V ′

,v2,h2∩V ′
, ..,vn−1,hn−1∩V ′

,vn〉 is a path from
v1 to vn in SubHGraph〈G,V ′〉.

1In [4, Ch. 17, §1], hyperedges (arêtes) are allowed to have only one member, implying that a hyperedge
may connect a vertex to itself. Such edges are not allowed in the formalism presented here.

2In [4], such entities are called simply cycles, but in other contexts, such as that of [9], many different types
of cycles for hypergraphs are investigated, so the qualifier “Berge” is appended.
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3.2 The hypergraph of an interconnection family Interconnection hypergraphs are de-
fined as follows.

(a)
L1 L2 L3 L4

L5 L6 L7

Figure 4: The inter-
connection hypergraph of
MaxStar(L) of 2.12

The interconnection hypergraph of X defined by J, denoted
IntGraphX(J), has X as its set of vertices and
{Components(I) | I ∈ J} as its hyperedges. The intercon-
nection hypergraph for MaxStar(L) of 2.12 is shown in Fig-
ure 4 to the right. Each hyperedge is represented as an el-
lipse, with its members the component names which it en-
circles.

(b) For Y ⊆ X , the interconnection hypergraph of Y defined by
J, denoted IntGraphY (J), is the full subhypergraph of IntGraphX(J) generated by Y .

The key result is the following.

3.3 Proposition Assume that IntGraphX(J) is acyclic.

(a) Every C ∈ X, and hence every Γ ∈ Ports〈X〉, is free in X with respect to J.

(b) If Y ⊆ X is a closed set of vertices of IntGraphX(J), then Y is closed in X with respect

to J.

PROOF OUTLINE: The idea is very simple. Assume that IntGraphX(J) is acyclic, and choose
anyC ∈ X andMC ∈ LDB(C). For each I ∈ J, Γ ∈ I∩Ports(C), and Γ′ ∈ I with Γ 6= Γ′, choose
any MSrcCpt(Γ′) ∈ LDB(SrcCpt(Γ′)) with γ̊(MC) = γ̊ ′(MSrcCpt(Γ′)). Since IntGraphX(J) is
acyclic, it is guaranteed that this construction will not result in any conflicts of other port
matchings. Now choose anotherC ∈ X from those which were included in the previous step,
and repeat the process. The formal proof proceeds by induction. This establishes (a). Part (b)
is almost identical, except that the starting point is a member of LDB(Schema〈Y,J〉) instead
of a member of LDB(C). 2

Thus, whenever IntGraphX(J) is acyclic, the notion of compound component 2.10(i) is
well defined. Furthermore, for all Y ⊆ X with the property that Y is a closed set of vertices in
IntGraphX(J), the subcomponent SubCpt〈X ,J〉〈Y 〉, as given in 2.11(f), is well defined as well.

3.4 Attribute hypergraphs Since Berge acyclicity is not viewed as the appropriate one
for the characterization of good schema construction in the relational context [9], it is worth-
while to present a short example to show how the notion of hypergraph for a relational schema
differs from that of component interconnection.

L3 L4

A1 A4 A5 A6 A7 A8

Figure 5: The attribute hypergraph
(above) and interconnection hyper-
graph (below) for L3 and L4 of 2.12

Consider just the components L3 and L4 of 2.12.
The attribute hypergraph for this pair, as well as the
component hypergraph, are shown in Figure 5 to the
right. It is easy to see that the attribute hypergraph
is cyclic. Indeed, (A4,{A1,A4,A5},A5,

{A4,A5,A6,A7,A8},A4) is a path from A4 to itself.
However, no such corresponding path occurs in the
component hypergraph. The key distinction is that in
the relational representation, as studied in [9], each attribute is a vertex of the hypergraph,
while in the model of this paper, each component is a single vertex, regardless of how many
attributes the relations of its schemata may have. In the relational representation, any port
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view with more than one attribute will result in a Berge-cyclic hypergraph. Thus, the funda-
mental properties of the underlying hypergraphs in the two representations can be completely
different.

4. Updates to components

The initial motivation for developing the ideas reported here was to study how updates to
components propagate throughout the interconnection, and in particular to look for canonical
ways to extend an update on a subcomponent to the entire network. While a complete pre-
sentation of these ideas must be deferred to a separate article, it is nevertheless instructive to
illustrate the key ideas.

4.1 Liftings and feasible environments Let Z ⊆ Y ⊆ X , and let (M1,M2) be an update
on ProjSch〈Y,J〉.

(a) (M1,M2) is internal to SubCpt〈X ,J〉〈Z〉 if γ̊(M1) = γ̊(M2) for all Γ ∈ ExtPorts〈Z,J〉.

Thus, if (M1,M2) is internal, the update can be made without involving any components
not in Z. If the desired update is not internal, then it must be lifted to a larger subcomponent.

(b) An update (M′
1,M

′
2) on SubCpt〈X ,J〉〈Y〉 is called an internal lifting of (M1,M2) to

SubCpt〈X ,J〉〈Y 〉 if (M′
1,M

′
2) is internal to SubCpt〈X ,J〉〈Y 〉 and (NatProj〈X ;J;Y�Z〉)̊(M

′
i) =

Mi for i ∈ {1,2}.

(c) Y is called a uniformly feasible environment for (M1,M2) relative to J if for everyM′
1 ∈

LDB(SubCpt〈X ,J〉〈Y〉) with (NatProj〈X ;J;Y�Z〉)̊(M
′
1) = M1, there is an M′

2 ∈
LDB(SubCpt〈X ,J〉〈Y〉) with the property that (M′

1,M
′
2) is an internal lifting of (M1,M2)

to SubCpt〈X ,J〉〈Y 〉.

Uniform feasibility is crucial because it says that the update (M1,M2) on SubCpt〈X ,J〉〈Z〉 has
an internal lifting to SubCpt〈X ,J〉〈Y 〉 regardless of the actual state of that subcomponent.

4.2 Order and canonical updates There is one additional issue regarding the lifting of
updates which is not recaptured in the formalism of 4.1. In general, there are many possible
liftings of an update (M1,M2) from SubCpt〈X ,J〉〈Z〉 to SubCpt〈X ,J〉〈Y 〉, even in the case thatY
is a least uniformly feasible environment for it. The further goal is to find the canonical such
lifting — characterized by that which adds the least amount of additional information to the
database. The problem of recapturing such minimality has received significant attention in
the context of view updates, particularly in the context of logic programming [19]; however
here the databases do not generally consist of sets of clauses, and so a different approach is
necessary. For the component context developed here, the approach which is currently being
developed is to regard the best lifting to be those defined by free updates. The details will
be reported in a separate article, but the following example provides a glimpse of the main
ideas.

4.3 Example — Canonical liftings of updates to components In this example, there is
a total of eight components, including the two which were introduced in 2.1. The overall
format is similar to that employed in 2.12; therefore, only significant differences will be
elaborated. Information about the atomic components and the ports is given in Tables 4 and
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5, respectively. The interconnection family I1 which will be used is shown below; Figure 6
illustrates this family in graphical form.

I1 = {{ΠE1
B2

,ΠE2
B2
},{Π

E3
A2

,ΠE4
A2
},{ΠE4

A4A5
,Π

E5
A4A5

},{Π
E5
A6

,Π
E6
A6

,ΠE7
A6
},{Π

E6
A7

,Π
E8
A7
}}

Comp.
Name

Schema
Name

Relations Constraints Ports

K1 E1 R1[B1B2]
B1 → B2

ForbidNulls(B1B2)
Π

E1
B2

K2 E2 R2[B2B3]
B2 → B3

ForbidNulls(B2B3)
Π

E2
B2

K3 E3 R3[A1A2]
A1 → A2

ReqNullTup(A1A2)
NoPartNulls(A1A2)

Π
E3
A2

K4 E4
R4[A2A3A4A5]

S4[B1B2]

A2 → A3A4A5

R4[A3] ⊆ S4[B1]
NoPartNulls(A2A3A4A5)
ReqNullTup(A2A3A4A5)

ForbidNulls(B2)

Π
E4
A2

Π
E4
A4A5

Π
E4
B2

K5 E5 R5[A4A5A6]
A4A5

n⊲→ A6

NoPartNulls(A4A5)
ReqNullTup(A4A5A6)

Π
E5
A4A5

Π
E5
A6

K6 E6 R6[A6A7]
A6

n⊲→ A7

ReqNullTup(A6A7)
Π

E6
A6

Π
E6
A7

K7 E7 R7[A6A8]
A6

⊳n⊲→ A8

ReqNullTup(A6A8)
Π

E7
A6

K8 E8 R8[A7A9]
A7

n⊲→ A9

ReqNullTup(A7A9)
Π

E8
A7

Π
E8
A9

Table 4: The atomic components of the example of 4.3

R3[ A1 A2 ]

K3

R4[ A2 A3 A4 A5 ]

S4[ B1 B2 ]

K4

R5[ A4 A5 A6 ]

K5

R6[ A6 A7 ]

K6

R7[ A6 A8 ]

K7

R8[ A7 A9 ]

K8

R1[ B1 B2 ]

K1

R2[ B2 B3 ]

K2

G1

G2 G3 G4 G5

Figure 6: Graphical representation of the interconnection family I1

For simplicity, this example will be limited to the characterization of canonical least lift-
ings for insertions. For the realization of such liftings to be nontrivial, it must be possible to
insert partial information into relations, and to pad out the remainder with nulls. However,
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Schema
Name

Schema
Relations

Schema
Constraints

Associated Ports
and View Mappings

G1 T1[B2] ForbidNulls(B2)

ΠE1
B2

πE1
B2

: E1 →G1

ΠE2
B2

πE2
B2

: E2 →G1

Π
E4
B2

πE4
B2

: E4 →G1

G2 T2[A2]
Π

E3
A2

π
E3
A2

: E3 →G2

ΠE4
A2

πE4
A2

: E4 →G2

G3 T3[A4A5]
NoPartNulls(A4A5)

ReqNullTup(A4A5)

ΠE4
A4A5

πE4
A4A5

: E4 →G3

Π
E5
A4A5

π
E5
A4A5

: E5 →G3

G4 T4[A6]

Π
E5
A6

π
E5
A6

: E5 →G4

Π
E6
A6

π
E6
A6

: E6 →G4

Π
E7
A6

πE7
A6

: E7 →G4

G5 T5[A7]
Π

E6
A7

π
E6
A6

: E6 →G5

Π
E8
A7

πE8
A6

: E8 →G5

G6 T6[A9] Π
E8
A9

πE8
A9

: E8 →G6

Table 5: The port schemata of the example of 4.3

this must be done in a systematic way, paying careful attention to constraints which specify
where nulls may appear, and how functional dependencies (FDs) behave in their presence.

Nulls: There is a distinguished null marker, denoted n, with n ∈ dom(A) for every attribute
A. This null marker is similar to the placeholder described in [18, Sec. 12.5.2]. There
are three associated constraint types, each of which takes a list of attribute names as its
argument. Since attribute names can occur in only one relation name of a schema, the
semantics described below are unambiguous.

ForbidNulls(−): This constraint specifies that no tuple may have the value n in any of
the attribute positions listed.

NoPartNulls(−): (No partial nulls) This constraint specifies if a tuple has the value n in
one of the attribute positions listed, then it must have the value n in every position
listed.

ReqNullTup(−): (Require null tuple) This constraint specifies that a relation must have
at least one tuple which has the value n in every position listed in the argument.

Functional dependencies and nulls: In addition to the usual semantics for an FD A → B,
there are several variations which further specify the special way in which the null
marker n is handled. In all descriptions below, assume (without loss of generality) that
R[U] is a relation scheme on attribute set U with A,B ⊆ U, and that r is a tuple over
R[U].

n-FDs: The relation r satisfies the n-FD A n→ B iff the following two conditions are
satisfied.

Null extension: For every t ∈ r there is a t ′ ∈ r with t ′[A] = t[A] and t ′[B] = n for
every B ∈ B.
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Quasi-functionality: If t, t ′ ∈ r with the property that t[A] = t ′[A], then at least one
of the following three conditions must hold: (i) t = t ′; (ii) t[B] = n for every
B ∈ B; or (iii) t ′[B] = n for every B ∈ B.

In words, for an n-FD A → B to be satisfied, there may be at most two tuples over
associated with each distinct value for A, one with all nulls in B (required) and possibly
one other which is not all null on B.

There are three extensions of the notion of an n-FD, which are identified below.

Null preservation: The n-FD A n→ B is null preserving if whenever t ∈ r with t[A] = n
for some A ∈ A, then t[B] = n for every B ∈ B. The notation A n⊲→ B indicates that
the n-FD A n→ B is null preserving.

Null reflection: The n-FD A n→ B is null reflecting if whenever If t ∈ r with t[B] = n
for every B ∈ B, then t[A] = n for every A ∈ A. The notation A ⊳n→ B indicates that
the n-FD A n→ B is null reflecting.

Simultaneous preservation and reflection: The notation A ⊳n⊲→ B indicates that the n-FD
A n→ B is both null preserving and null reflecting.
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Figure 7: An example database for the interconnection I1

Figure 7 shows an example of a consistent database for the interconnection I1. To illus-
trate the ideas of canonical updates, a few selected examples will now be considered.

Suppose that it is desired to insert the tuple (a15,a25) into the relation of R3[A1A2] of the
schema E3 of K3. The goal is to identify the canonical lifting of this update from K3 to to a
compound component under which this update may be supported naturally, without making
any arbitrary choices.

First of all, it is important to clarify what is meant by an arbitrary choice. Consider a solu-
tion which lifts the update to the compound component Cpt〈{K3,K4},{Π

E3
A2

,ΠE4
A2
}〉 by insert-

ing the tuple (a25,a31,a41,a51) into R4[A2A3A4A5], leaving the state of all other components
unchanged. This lifting makes an arbitrary choice for the values for attributes A3A4A5; note
that (a25,a32,a42,a52) or (a25,a33,a43,a53) would work just as well, and there is no reason to
prefer one over the other. All involve parts of tuples which already occur in the database, and
so make arbitrary semantic choices for the information associated with (a15,a25).

The canonical solution involves using completely new values in these positions, and so is
independent of the other values in these relations. More precisely, let a35 ∈ dom(A3) \ {n},
a45 ∈ dom(A4)\{n}, a55 ∈ dom(A5)\{n}, and b25 ∈ dom(B2)\{n} be distinct domain values
which have not already used in any relation. First insert (a25,a35,a45,a55) into the relation of
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R4[A2A3A4A5] and (a35,b25) into the relation of S4[B1B2]. Note that the second tuple is man-
dated by the inclusion dependency R4[A3] ⊆ S4[B1]. This further mandates an insertion into
E5, so the update must be extended to Cpt〈{K3,K4,K5},{Π

E3
A2

,Π
E4
A2
}{Π

E4
A4A5

,Π
E5
A4A5

}〉. Insert
(a45,a55,n) into the relation of K5. The use of the null is a recognition that the constraints do
not force one to select a specific value for A6. Note that this insertion does not violate the
n-FD is A4A5

n⊲→ A6, so that the resulting state is legal. Furthermore, it does not make use of
any arbitrary values which already occur in other relations and it is least, in the sense that no
subset of the specified insertions will do, and there is no smaller set of components which
will support such an insertion using new values.

One issue still remains; namely, that arbitrary choices for a35, a45, a55, and b25 were
made. Formally, this is reconciled by noting that all other such solutions are isomorphic, up
to a renaming of the values. A solution to the update problem is thus not a single update,
but rather an equivalence class of isomorphic updates. Replacing a35, a45, a55, and b25 by
different values which do not occur elsewhere, say a′35, a

′
45, a

′
55, and b′25, results in a solution

which is structurally indistinguishable. The resulting solution is canonical, and identifies the
natural scope for lifting an insertion to K3 as {K3,K4,K5}.

A formal justification of the canonicity of this solution is rooted in the construction of
free objects [15, §31] [1, 8.22] over a suitable category of updates, and is beyond the scope
of this paper; the details will appear in forthcoming report. However, it is possible to give
an informal justification. The idea is that every other possible lifting of the desired update
to K3 can be obtained from the canonical one via a combination of adding additional tuples
and forcing the “free” values in the canonical update to take on specific values. For exam-
ple, the lifting which inserts the tuple (a25,a31,a41,a51) can be obtained from the canonical
one identified above which inserts the tuples (a25,a35,a45,a55), (a45,a55,n), and (a35,b25) by
mapping the “free” values a35, a45, a55, and b25 to the existing values a31, a41, a51, and b21,
respectively.

The case of deletions is handled similarly, although it turns out to be somewhat simpler,
since there is no need to group isomorphic solutions (as no new values need be inserted).

5. Closing Remarks

5.1 Conclusions The foundations of a component-based model of database schemata,
with the interconnection of components realized via communicating views, has been pre-
sented. Particular attention has been paid to the question of when such interconnections are
well behaved, and a characterization in terms of the acyclicity of an underlying hypergraph
has been presented. Furthermore, the way in which updates propagate through such compo-
nents has been illustrated, although not fully formalized.

5.2 Further directions This paper is only a beginning, and many topics remain to be
studied. Among them are the following.

Updates in the component-based framework: This work began as a study of updates in the
context of components. Consequently, an important future direction is to complete the
formalization of canonical liftings, as discussed in 4.3. A related direction is update via
cooperation, in which the realization of a proposed update requires that other compo-
nents be updated as well, not as a canonical update but rather as one chosen by a user
who has update rights for that component. First results on this topic, including a formal
model for the update process, are reported in [14]. Upon following the communication
between ports that update by cooperation entails, it is possible to infer much about the

Draft: 20070115 EJC2007 page 18



necessary workflow patterns behind such updates. Initial investigations on this latter
topic are now being pursued.

Component-based HERM to relational design theory: It is a standard design technique to
begin by modelling the enterprise using a flavor of ER, such as the HERM model, and
then to translate that design to a relational schema [23, Ch. 10]. A future direction of
this research is to extend this design theory to components; that is, to develop systematic
tools for the translation of a HERM design based upon components, such as elaborated
in [25], to a relational design which preserves the component structure, using the com-
ponent model developed here for this final schema.

Rapprochement with the behavioral theory: As already noted in the introduction, the work
presented here is motivated by the database-component model of Thalheim [25], which
is in turn based upon the more general component model of Broy [6]. It is important to
pursue an understanding of the degree to which these two models can be unified, and to
understand their fundamental differences as well.

5.3 Remarks on the literature Nearly thirty years ago, Weber [26] suggested that mod-
ular design techniques could be applied fruitfully to database systems as well, although no
detailed formalization was presented. In [7], a software tool for modular database design is
presented. In that approach, the emphasis is not so much upon building systems by inter-
connecting components as it is in refining the design, specifically by combining and even
redefining the so-called conceptual modules via subsumption modules. As such, it does not
emphasize basic communication between components as does the framework presented here.
Rather, it has much more of a software-engineering flavor. As noted in the introduction, the
flavor of component-based modelling of database systems upon which this paper has its roots
in the approach of Thalheim [24] [22] [25].
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