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Abstract

Type hierarchies are a central feature of current systems which employ feature
structures for the representation and manipulation of linguistic knowledge, such
as TFS, ALE, CUF, and LKB. The system CUF stands out amongst these in its
very general language for describing such hierarchies. While the other systems use
a description language which allows only the specification of meets (greatest lower
bounds of types), CUF provides a very general type definition language which allows
a full complement of Boolean operations. This flexibility permits much simpler and
more natural specifications of certain types of knowledge representation which occur
naturally in paradigms such as HPSG. However, along with this increased power of
expressiveness comes an increase in computational complexity. Specifically, while
the simpler type systems are in fact so restrictive that any admitted specification is
semantically meaningful, the power of the CUF type-specification language results
in highly nontrivial decision question about well-formedness. These well-formedness
questions revolve around the property of distributivity, as any semantically mean-
ingful hierarchy — that is, one in which meet represents intersection of object classes
and join represents union — must be distributive.

The contribution of this report is twofold. First of all, we provide a very general
development of extension problems for partial type hierarchies to full distributive
hierarchies, which is exactly the problem one needs to solve to determine well-
formedness and other properties of type hierarchies in the CUF spirit. Secondly, we
analyze the computational complexity of deciding the existence of various forms of
distributive extensions. We show that under relatively weak assumptions concerning
the height and fanout of the partial specification, all of the various decision problems
are NP-complete. However, in the process of developing the formalism necessary for
this detailed analysis, we also identify some close connections to certain kinds of
satisfiability problems in propositional logic, which will hopefully prove useful in
identifying useful special cases in which the computational problems are tractable.
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0. Introduction

0.1 Motivation

The use of unification-based formalisms in computational linguistics has become
commonplace. Systems based upon such formalisms depend fundamentally upon
logical inference, in which constraints are collected as the parsing process proceeds,
and the final results are the models (often taken to be feature structures) of the
constraints. There are basically two flavors of such formalisms. In one school, which
is currently represented most visibly by LFG [Kap89], the parsing process has a
context-free backbone, and the unification-based formalism is used as a constraint-
enforcement mechanism to “weed out” incorrect parses. Both Johnson’s [Joh88]
and Shieber’s books [Shi92] describe recent theoretical efforts in this direction. In
the other school, which is currently represented most visibly by HPSG [PS87], the
context-free backbone is eschewed entirely. Rather, the entire parsing process be-
comes one of constraint satisfaction. This is a rather intriguing idea, but it also
presents several new and unique problems which must be addressed if it is to be
successful. One aspect is that “ordinary” feature structures, as described, for ex-
ample in [Shi86], are no longer adequate to describe the inference process. Rather,
so-called typed feature structures are used to express certain kinds of constraints. In
typed feature structures, there is an extant finite type hierarchy, and each node of
the feature structure is assigned a type. These types become an integral part of the
inference mechanism.

In response to the idea of deductive computation in the context of typed feature
structures, a number of specialized programming languages have evolved. Among
the most visible are TFS [Zaj91], [Zaj92], ALE [Car92a], and CUF [DD93]. Re-
cently, a similar system, LKB, has arisen from the ACQUILEX project [BdPC93].
In addition, the programming language LIFE [AP93], [Ait93] and its predecessor
LOGIN [AN86], although not specifically designed for linguistic knowledge repre-
sentation and manipulation, nonetheless shares many ideas with these linguistically
motivated languages. No two of these systems handle the notion of typing in exactly
the same way. However, they all begin with a simple, parameterless, type hierarchy.
That is to say, a hierarchy in which we can say things such “Type a is subtype of
type b” (a ≤ b), or “An object is of type c if and only if it is of type a and of type
b” (c = a ∧ b).

Despite their individual differences with respect to the declaration of the type
hierarchy, these systems may be partitioned into two broad categories. On the
one hand, TFS, ALE, LKB, LOGIN, and LIFE all build the type hierarchy in a
particular way from a specification which is a partially ordered set. CUF, on the
other hand, works with a much more powerful language, and therefore admits the
specification of more general hierarchies. (See [Man93] for a comparison of CUF to
the systems ALE and TFS.) With this generality, however, come some more difficult
computational problems as well. Indeed, in other contexts, the tradeoff between
expressive power and computational complexity in type hierarchies is well-known
[LB87]. In this report, we study in detail some of the special algebraic aspects,



2 0. INTRODUCTION

and the associated computational complexity problems, of type declarations of the
form admitted by CUF. Specifically, we address the question of when such a set
of declarations is semantically well-formed. We shall argue that such hierarchies
should be distributive, and we shall then show that the computational complexity
of testing whether or not such a hierarchy is indeed distributive is NP-complete,
even under relatively constrained circumstances.

In so doing, we shall not be concerned with the underlying logical language at
all in this report. We take this tact for two reasons. First of all, having the type
hierarchy be “satisfactory” from an algebraic point of view, while not a sufficient
condition for the system to be well-specified overall, is certainly a necessary one. In
particular, our work relates directly to an important subproblem which the CUF
system must solve. Secondly, it is our thesis that a type/sort system which yields
full Turing-complete power is not the optimal way to approach HPSG-style parsing,
because in so doing we give up any hope of having automatically decidable parsing,
such as off-line parsability in LFG provides [Joh88, 3.5]. In future reports, we shall
document this idea of decidable parsing in HPSG-style contexts more fully.

We will not provide a self-contained introduction to typed feature structures
here. In fact, we will not explicitly discuss features structures at all. Rather, we
will focus completely upon the algebraic properties of the form of type hierarchies
which appear in CUF and ALE, and at least implicitly, in TFS and LIFE as well.
For the interested reader, Carpenter’s book [Car92b] provides a rather thorough
introduction to the ideas of typed feature structures, and how type hierarchies are
involved in their definition1. However, virtually all of this report, with the exception
of some details in motivating examples, may be understood without any knowledge
of feature structures.

Within this introductory section, we assume a minimal acquaintance with the
algebraic notions of partial order and lattice. We also present very simple examples
of CUF and ALE syntax, although no detailed knowledge of these systems is needed
to understand what is written here.

0.2 A Simple Technique for Realizing Distributive Type
Hierarchies

Before describing the type declaration system employed by CUF, it is helpful to
understand the features and limitations of the simpler method employed by the
other systems mentioned above. Let us start by considering the type hierarchy
depicted in Figure 0.1, which is taken from [AN86]. This particularly hierarchy is
a lattice, and as per the usual convention for a pictorial representation of a lattice,
one follows the arrows upwards to a common point to get the join of two elements,
and downwards to get the meet.

An intuitive idea with any such hierarchy is that each type represents a sub-
set of the objects in some universe U . For any type t, let us write V(t) to denote

1Be aware that Carpenter expresses type hierarchies “upside down” from the way that we do.
> denotes the empty type and ⊥ the universal type in his formalism.
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Figure 0.1: A non-distributive type hierarchy.

the set of all objects of type t. The symbol > denotes the universal type, and so
V(>) = U , and ⊥ denotes the empty type, so that V(⊥) = ∅. Also, as a first assump-
tion, let us take the lattice operations to represent the natural operations on sets
of objects. Thus, join represents union, and meet represents intersection, of these
sets of instances. For example, we have that V(adult) ∪ V(child) = V(person) and
V(adult)∩V(child) = V(teenager). However, we must then have that V(monarch)∩
V(witch) = V(wickedqueen) and V(queen) ∩ V(witch) = V(wickedqueen). Thus,
V(monarch) ∩ V(witch) = V(queen) ∩ V(witch). But, arguing similarly with union
(qua join), we can show that V(monarch) ∪ V(witch) = V(queen) ∪ V(witch). How-
ever, V(monarch)∩V(witch) = V(queen)∩V(witch) means that the monarchs that
are witches are precisely the queens that are witches, while V(monarch)∪V(witch) =
V(queen)∪V(witch) means that the monarchs that are not witches are precisely the
queens that are not witches. In other words, we must have that V(monarch) =
V(queen). Thus, if we require that each type be distinct, and if we require that
the operations of join and meet correspond to union and intersection of the cor-
responding sets of objects in the universe, then we cannot admit such a lattice as
the definition of our type hierarchy. What we need is precisely that the lattice be
distributive2.

The “>-witch-monarch-queen-wickedqueen” component of this lattice is a par-
ticular instance of what is known as a pentagon; a generic pentagon is depicted in
Figure 0.2. To guarantee that a lattice is distributive, it is both necessary and suf-
ficient to ensure that it contains neither a pentagon nor a diamond [Gra78, Ch. II,

2Remarkably, a necessary and sufficient condition that that a lattice be distributive is that
join correspond to union and meet to intersection. In other words, the only distributive lattices
are those which, up to isomorphism, are lattices of subsets of a universal set, with union and
intersection as join and meet, respectively. This is the classical representation theorem of Birkhoff
and Stone, and is discussed in more detail in 1.1.3.
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Figure 0.2: A generic pentagon in a lattice.

Sec. 1, Thm. 1]. A generic diamond is depicted in Figure 0.3.
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Figure 0.3: A generic diamond in a lattice.

The reason that nondistributive type hierarchies, such as the example just given,
are not a problem in systems such as ALE, LKB, FTS, LOGIN, and LIFE, is that
the full lattice operations are not interpreted in the fashion described. The initial
hierarchy, such as that given in Figure 0.1, is interpreted not as the final type
hierarchy, but rather as a specification for the construction of a more extensive type
hierarchy. Indeed, all that is required in these systems is that the specification
be a meet semilattice — that is, that any pair of elements have a greatest lower
bound. Then, greatest lower bound is interpreted as intersection of object classes,
but least upper bound is left uninterpreted. The “true” lattice — in which both
meet and join have natural interpretations as intersection and union, respectively, of
object classes — is constructed from the meets using a construction which builds the
joins in a “free” fashion. From our initial type hierarchy, we build a new hierarchy
consisting of all of the order ideals of the original hierarchy; that is, the set of all
subsets which are closed under the “less than” relation. (In other words, S is an
order ideal if x ∈ S and y ≤ x implies y ∈ S.) It is well-known that the set of all
order ideals of a finite poset forms a distributive lattice [DP90, 8.20]. Furthermore,
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this distributive lattice contains, as an embedded partially ordered set, the original
poset S. Specifically, call an element x of a lattice join-irreducible if it is not the
least element of the lattice (if indeed the lattice has a least element), and, whenever
x may be written in the form a ∨ b, then x = a or x = b. The join-irreducible
order ideals are in bijective correspondence with the elements of the poset itself
[DP90, 8.20]. We illustrate by constructing the ideals of the pentagon of Figure 0.2.
Figure 0.4 gives two “views” of this construction. On the left, we show the order
ideals, with those which correspond to the original elements of the poset enclosed
in a rectangle. On the right, we show the same lattice, but with a more informative
labelling relative to the original poset, which shows only the maximal elements of
the order ideals. Notice that neither a = b∨ c nor a = b∨d holds in this new lattice.
Rather, explicit new elements representing b ∨ c and b ∨ d have been constructed.
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Figure 0.4: Two views of the “actual” distributive type hierarchy corresponding to
the pentagon of Figure 0.2.

This construction has a further advantage. Even if the original type hierarchy did
not have greatest lower bounds, it will create them automatically. This is illustrated
in Figure 0.5. On the left is a simple specification without a greatest lower bound
for b and c, and to its right is the corresponding distributive hierarchy.

0.3 The Power of CUF-like Specifications

Before going on, let us stop and take inventory of the features of the construction
just described.
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Figure 0.5: A type specification without a lower bound, and the order-ideal con-
struction of the corresponding distributive hierarchy.

(a) Any distributive lattice may be represented in this fashion3.

(b) Verifying that a specification is “legal” is trivial, since any partial order is
legal.

(c) The representation of a distributive lattice in this fashion can be quite com-
pact.

With respect to the last point, authors such as Carpenter [Car92b, pp. 15-17]
argue that, for reasons of sparseness of the concept hierarchy, type hierarchies need
not be distributive. However, what is (apparently) meant by such comments is that
it is not practical to represent each and every type that would arise in an appropri-
ate distributive hierarchy. Thus, the actual distributive hierarchy is encoded in the
nondistributive fashion described above. Furthermore, meets represent actual logi-
cal meets. However, in such representations, the join operation does not necessarily
correspond to logical disjunction of types. Rather, it simply corresponds to supre-
mum amongst the explicitly specified types. Whether or not such a join operation
could nonetheless be used in a productive way in such a system is an interesting
question which, to our knowledge, has not been addressed. In all of the systems of
which we are aware, it is not used explicitly at all.

Despite the attractive features of this method of specifying type hierarchies,
there is a serious disadvantage. Principally, requiring the use of such specifications
constrains the user completely in how a type hierarchy is specified. The construc-
tion is very rigid, and very asymmetric, in how it interprets a specification of type

3This follows from the duality between finite distributive lattices and finite partially ordered
sets. See, for example, [DP90, 8.17 – 8.20]. Any finite partially ordered set may be turned into a
lattice by adding a least element ⊥ and a greatest element >, in case these do not already exist.
Then, define the greatest lower bound of two elements which previously had no lower bound to
be ⊥, and the least upper bound of two elements which previously had not upper bound to be >.
It is easy to show that the resulting structure is a lattice, and that it yields the same distributive
lattice under this duality as did the originally partially ordered set.
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inheritance. With this formalism, in some applications, it may be very difficult to
correctly and efficiently express the type constraints which are desired. Hence, it is
useful to have other means of specification at hand. Perhaps the most natural one is
to forego any sort of clever encoding, and just specify the known constraints on the
types, be they meet constraints, join constraints, or complement constraints. From
there, it becomes the job of the system to check these constraints for consistency
and to interpret them as a distributive lattice. This is precisely the tact taken with
by the CUF system. Simply put, a CUF type hierarchy specification is just a set of
constraints on how elements in the hierarchy should be related. CUF then attempts
to build the most general hierarchy which satisfies those constraints, without making
any particular assumptions. For this reason, we call the kind of type specifications
which CUF admits constraint-based specifications.

Some examples will help illustrate the generality and advantages of this approach.
Suppose that we are given three types, t1, t2, and t3, and that they are related
as shown in Figure 0.6. There are (at least) two possible interpretations to this

t1

t2 t3
�
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Figure 0.6: A simple upward type specification with two possible interpretations.

hierarchy. On the one hand, it may simply state that t3 < t1 and t2 < t1. This is the
interpretation that the construction described in the previous subsection assigns to
it. On the other hand, a specification with this graphical representation may provide
more information; namely that t1 = t2∨ t3. In other words, it may actually say that
V(t1) = V(t2) ∪ V(t3). A specification of the latter type is not at all unusual. It
amounts to a disjunctive specification of a type. For example, in HPSG, an element
of type sign must be either lexical or phrasal; there are no other possibilities. Thus,
a program which is processing an object of type sign may decompose the processing
into two cases, one for type phrasal and one for type lexical. Unfortunately, the
method of defining a type hierarchy which was outlined in the previous section is
incapable of recapturing such a specification. Thus, in systems using that approach,
the semantics of this join must be realized outside of the type hierarchy. For example,
in ALE, we may write a specification such as

bot sub [sign].

sign sub [phrasal, lexical].

but this only tells us that phrasal < sign and lexical < sign in the type hi-
erarchy. The effect of the disjunctive processing must be recaptured by explicit
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statements in the ALE program itself; it cannot be an automatic consequence of
the specification of the type hierarchy. On the other hand, in CUF, we may write a
specification such as

sign = phrasal ; lexical.

The semicolon denotes disjunction, so this specification means precisely that the
collection of objects of type sign is the union of those of type phrasal and those
of type lexical. If we do not want this disjunctive specification, but only wish to
specify that phrasal and lexical are subtypes of sign, then we may write

phrasal < sign.

lexical < sign.

Actually, in CUF, the most appropriate specification for this pair would be

sign = phrasal | lexical.

which means that phrasal and lexical are disjoint types which join to sign. That
is, that both lexical ∨ phrasal = sign and lexical ∧ phrasal = ⊥ hold.

Similar ideas hold for meets. Consider the description shown in Figure 0.7.
Again, there are (at least) two possible interpretations. It may mean simply that

t1

t2 t3
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Figure 0.7: A simple downward type specification with two possible interpretations.

t1 < t2 and t1 < t3 in the type hierarchy, or it may mean that t1 = t2 ∧ t3. In ALE,
in the absence of further specifications about supertypes of t1, the specification

bot sub [t2, t3].

t2 sub [t1].

t3 sub [t1].

can mean only that t1 = t2 ∧ t3. On the other hand, we may write the following
specification in CUF.

t1 < t2.

t1 < t3.
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It means only that t1 is a subtype of both t2 and t3. There is no implication that
these are the only subtypes. To realize a similar situation in ALE, we would have to
declare a greatest lower bound for t2 and t3, and then make sure that t1 is smaller
than that bound, as illustrated in the following declaration.

bot sub [t2, t3].

t2 sub [t23].

t3 sub [t23].

t23 sub [t1].

This is illustrated graphically in Figure 0.8. On the other hand, CUF will auto-

t1

t2 t3

t23

6

@
@@I

�
���

Figure 0.8: Adding a greatest lower bound.

matically generate the greatest lower bound, under the name t2 & t3, if needed.
There is no need to identify it explicitly and give it a special name. Of course, the
direct declaration of meets are also possible in CUF. To recapture the semantics of
t1 = t2 ∧ t3, that is, that V(t1) = V(t2) ∩ V(t3) in the notation of the previous
subsection, we may write the following CUF specification.

t1 = t2 & t3.

Sometimes, the relationship between types is not binary. For example, in at least
some versions of HPSG, [PS87, p. 197], a headed-structure must be either a head-
complement-structure, a head-filler-structure, or a head-adjunct-structure. This is
suggested by the diagram of Figure 0.9. This relationship may be declared explicitly
in CUF as

headed-structure = head-complement-structure ;

head-filler-structure;

head-adjunct-structure.

The semantics is V(headed-structure) = V(head-complement-structure) ∪
V(head-filler-structure) ∪ V(head-adjunct-structure). Again, the simple technique
for describing distributive type hierarchies outlined in 0.2 cannot recapture this
form of interaction. Therefore, in systems such as ALE, its semantics must be ex-
pressed with more direct representation outside of the type hierarchy description.
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Figure 0.9: An upward type specification from HPSG.

Note also that there are no intermediate types for binary joins defined. They could
be defined; in this case there would be three of them, head-complement-structure ∨
head-filler-structure, head-complement-structure ∨ head-adjunct-structure, and
head-filler-structure ∨ head-adjunct-structure.

The problem with intermediate elements, and the contrast in expressive power
between the type specification of CUF and the other systems, is most easily illus-
trated via an example of the meet of several elements. Figure 0.10 depicts a situation
in which we want type t1 to be the meet of the four types t2, t3, t4, and t5. In other

t1

t2 t3 t4 t5
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Figure 0.10: A downward type specification of four elements.

words, the semantics is V(t1) = V(t2)∩V(t3)∩V(t4)∩V(t5). In CUF, we may easily
express this sort of relationship with the comparatively simple declaration

t1 = t2 & t3 & t4 & t5.

To realize the same sort of thing in ALE (or LIFE or LKB), we would have to
introduce all of the (ten) intermediate types, and then express the relationship
between them. In ALE, we would have to write something like that depicted in
Figure 0.11. Clearly, this is much more tedious, and requires us to name and declare
explicitly many new types that we may never use. The number of such types grows
combinatorially; for a declaration expressing a type to be the intersection of n types,
there will be a total of

∑n−1
i=2

(
n
i

)
= 2n − (n + 2) intermediate types. It is therefore

an immense advantage not to have to specify them explicitly. In fact, for large
expressions, it is a necessity. This is yet another advantage of the CUF formalism.
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bot sub [t2, t3, t4, t5].

t2 sub [t23, t24, t25].

t3 sub [t23, t34, t35].

t4 sub [t24, t34, t45].

t5 sub [t25, t35, t45].

t23 sub [t234, t235].

t24 sub [t234, t245].

t25 sub [t235, t245].

t35 sub [t235, t345].

t45 sub [t245, t345].

t234 sub [t1].

t235 sub [t1].

t245 sub [t1].

t345 sub [t1].

t1 sub [].

t1

t2 t3 t4 t5

t23 t24 t25 t34 t35 t45

t234 t235 t245 t345

Q
Q

QQk

A
AAK
�
���
�
�
��3

@
@@I 6

��
��
��*

HH
HH

HHY 6
��
��
��*

HH
HH

HHY

@
@@I

��
��
��*

@
@@I 6

�
���

�
���

��
��
���*6

��
��
���*

@
@@I
@

@@I
@
@@I 6

HH
HH

HHHY 6

HH
HH

HHHY

@
@@I

Figure 0.11: ALE declaration of the hierarchy of Figure 0.9 and the resulting com-
pleted type hierarchy.

The CUF type specification language allows one more form of construction that
we have not mentioned. Namely, we may explicitly work with the complement of a
type. If t is any type at all, then ~t represents the complement of that type. That
is to say, V(t)∩ V(˜t) = ∅ and V(t)∪ V(˜t) = U . In ALE and the other languages
mentioned, there is no facility at all for explicitly identifying complementary types.

0.4 Truly Nondistributive Type Hierarchies

A question which arises repeatedly when studying type hierarchies is whether or not
they must be distributive. The answer to this question, of course, depends upon
what such hierarchies are intended to represent. If each type represents a certain
class of objects in some domain, and if meet corresponds to intersection of object
classes and join corresponds to union of object classes, then the type hierarchy
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must be distributive. This is a consequence of the classical Birkhoff representation
theorem, which is discussed in 1.1.3 of this report. It is not clear, at least to this
author, that there are conditions under which one would have a type hierarchy in
which types would not be associated with object classes in this fashion. (Of course, a
nondistributive lattice may be used to represent a distributive one, as outlined in 0.2,
but that is a different issue.) Nonetheless, we do not claim to make any argument
for or against modelling type classes distributively in this report. We simply present
a theory which is valid under the assumption that a distributive hierarchy is desired.

0.5 Overview of this Report

The general philosophy of a constraint-based type specification language, such as
that of CUF, is that only those relationships between the types which are required
to hold need be specified. We start with a set of type names, and then we may
express (almost) any Boolean constraint (based upon join, meet, and complement)
between the types identified by these names. Indeed, complex expressions, such as

t = ((t1 & t2 & t3) ; (t4 & (~t5 ; t6)) & t7).

are allowed in CUF4. We have argued that this general type declaration system
offers substantial advantages over the more restrictive methods employed by other
systems. However, this increased power comes at a price. Namely, testing for
consistency becomes a nontrivial task. In the simple technique described in Section
0.2, any poset whatever may be used to construct a distributive type hierarchy.
There are no consistency questions of any form to worry about. In the more general
approach of constraint-based specifications, however, we must address a consistency
question. Namely, we need to determine whether or not the specification which is
given may be extended to a distributive lattice. That this question is nontrivial is
immediate. Indeed, we may specify any finite lattice in this language, and hence
any finite nondistributive lattice. So there is definitely some testing which needs to
be performed.

In the case that the partial specification is in fact total — that is, that it is
specified as a lattice, then we can check in time 0(n3), where n denotes the number
of type names, whether or not it is distributive. Indeed, all we need do is test each
ordered triple (a, b, c) of elements against the distributive law (a∨b)∨(a∧c) = a∧(b∨c)
[Gra78, Ch. I, Sec. 4, Lem. 10]. However, if the specification is partial, then the
testing process is much more complicated. A main result of this report is that this
problem of testing for distributivity on partially specified structures is NP-complete,
even under quite restrictive conditions about the constraints. This is true whether
we talk of any extension at all (possibly non-injective, in which two names may be
forced to represent the same set of objects), an injective extension, a free extension

4There are a few restrictions, imposed for practical reasons, but they are “inessential” from a
mathematical point of view, and may be safely ignored from the point of view of a conceptual
understanding. A more systematic overview of the type language for CUF may be found in the
appendix of this report.
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(one with the fewest constraints possible), or an extension to a Boolean lattice (i.e.,
one with complements). Regarding the form of the constraints, even if the fanout
— the number of disjuncts or conjuncts in any given declaration — is bounded by
two, the problem is NP-complete, provided that the height of the specification —
the length of the longest chain — is at least three. And if we allow a fanout of
three, then even considering specifications of height two results in an NP-complete
problem.

Beyond the complexity results, our main contribution is to provide a rigorous
mathematical framework for studying constraint-based type specifications, and this
allows us to demonstrate several important theoretical results. We show, for exam-
ple, that in the absence of declarations of constant types (i.e., types which cannot
have nonempty subtypes), a consistent specification always has a free extension —
that is, a natural one which imposes the minimum set of constraints possible. Thus,
there never needs to be any “nondeterministic” choice about which types are col-
lapsed and which are distinct; a type specification can always be expanded to a most
general consistent distributive lattice.

Let us consider this freeness problem a bit more. The CUF system checks to see
whether or not a type specification is consistent — that is, whether or not there is
some assignment of nonempty sets of elements to each type (except for ⊥) which
makes the specification consistent. It is easy to see that this problem is equivalent
to the satisfiability problem for certain classes of propositional Boolean formulas.
CUF, however, does not check for so-called separability — that is, whether or not
each type symbol may be assigned a subset of the universe which is distinct from
the set assigned to each other type symbol. Thus, if we give CUF a specification
which describes the diamond depicted in Figure 0.3, such as the specification shown
below,

a = b ; c.

a = b ; d.

a = c ; d.

e = b & c.

e = b & d.

e = c & d.

it will accept this specification without complaint, even though all of the types must
have the same denotation. We show that this separability problem is, up to de-
terministic polynomial-time equivalence, of the same complexity as the consistency
problem. For the user, it would be very useful to know which types are collapsed
and which are not, as two types which must always have the same denotation might
well signal an error in the specification. However, this might not appear at first
sight to be a well-defined question, because there might be some “nondeterminism”
involved. That is, we might be able to separate t1 and t2, but only at the expense of
being unable to separate t3 and t4, with the latter being separable if t1 and t2 are
given the same denotation. Our theory shows that this cannot be the case — that
is, that separability may be tested pairwise, and combined. Thus, if we have n type
names, we may get away with 0(n2) tests rather than 2n to determine the complete
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separability picture. This “pairwise” separability idea also extends to types built up
as expressions, such as t1 & ~t2, and it is this observation that allows us to build
the free distributive lattice over a specification.

Unfortunately, if we allow constant types, the situation becomes much more
complicated. In this case, we show that we may be forced to make nondeterministic
choices in which elements are coalesced.

0.6 A Roadmap of this Report

Since this is quite a long report, we will give a brief overview of how it is organized.
Section 1 is devoted to the study of a formal theory of partially specified dis-

tributive structures. The intent is to be reasonably general, so, for example, no
assumptions of finiteness are made, even though the type hierarchies which arise in
actual applications generally are finite.

1.1 is a review of partially ordered sets and lattices, including distributive struc-
tures and structures with complements. The purpose of this subsection is largely to
establish terminology, notation, and to point out the key results in the field which
we use.

In 1.2, we turn to the issue of generalizing such structures in such a way that
the operations (join and meet) are only partially defined. The work in this section
may be viewed as a natural generalization of the idea of a weak partial lattice, as
described in [Gra78, Ch. I, Sec. 5]. Our concepts are more general than those
given in this reference in that we do not restrict attention to binary operations. Of
course, when one is dealing with total associative operators, it suffices to consider
binary operations, and this is precisely what is done in lattice theory. But, one may
have partial structures in which the join of, say, three given elements is defined,
without the joins of two-element subsets of this set being defined. Indeed, this kind
of partial definition of varying arity occurs frequently in computational-linguistics
applications, so this generalization is critical. We provide two extended concepts.
With bounded posets with partial operators (BPPO’s), we work with a structure
which has both an order structure and partial join and meet operations (with non-
fixed arity) defined. With generalized bounded weak partial lattices (GBWPL’s), we
work with structures in which everything is defined in terms of the partial join and
meet operations. The latter concept is a direct generalization of weak partial latices.
We show that the concepts of BPPO and of GBWPL are equivalent.

In 1.3, we define the notion of extension. Roughly, an extension of a partial
structure P is a lattice L and a morphism η : P → L. The type of extension is
catalogued by two things: properties of the lattice L (such as distributivity and
being Boolean), and by properties of the morphism η (such as being injective, being
an embedding, or having certain universal properties). A key point is that there is
no single notion of extension which works for all applications. Each type of extension
has advantages and disadvantages. A main result of this section is that any BPPO
has an injective extension (in which η is an injective function.) We emphasize that
L is not required to be distributive in this result.

In 1.4, we turn to the problem of extensions in which the lattice L is required
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to be distributive. In contradistinction to the result of 1.3, it is not the case that
an arbitrary BPPO has a distributive extension. Also, it may have a distributive
extension without having an injective one, and universal extensions need not be
injective. The main technique of characterization is that of ideal binary decom-
positions. Roughly, what the theory provides is that, to completely characterize
the distributive extensions of a BPPO P, it suffices to characterize the morphisms
P → 2, with 2 representing the (unique up to isomorphism) two-element lattice. A
further result, as mentioned previously, is that, if there is any nontrivial extension
at all, then there is a “maximal” extension. No nondeterministic choice is involved.

In 1.5, the complications which arise when one introduces atoms (constant types)
into the type hierarchy are investigated. Particularly, we show that there no longer
need be a maximal extension.

Section 2 turns to the issue of computational complexity. We know that not
every BPPO has a distributive extension, so we naturally ask how difficult it is to
decide whether or not is has one. Of course, in this section, we restrict our attention
to finite structures. We break the investigation into two steps. The first involves
determining whether or not a prespecification defines a BPPO, the second involves
determining whether or not a BPPO has an extension of a given kind.

In 2.1, we develop the idea of a prespecification. When a type hierarchy is
specified in practice, the complete algebraic structure of a BPPO is not given by
the user. Rather, a skeletal specification, which may be extended to a BPPO, is
given. The extension involves applying associative and other laws which hold in
any BPPO. In terms of the general type of statements involved, our notion of a
prespecification corresponds quite closely to that of a CUF program. In 2.1, we
show that if a prespecification defines a BPPO, then there is a natural least (in
terms of the size of the extension) BPPO which it defines. We also show that it may
be decided in deterministic polynomial time whether or not such an extension of a
prespecification to a BPPO exists.

In 2.2, we investigate the complexity of determining whether or not a BPPO has
a distributive extension. The crux of the results is that the question is NP-complete,
regardless of what kind of extension (injective, universal, arbitrary) we are seeking,
so long is it is required to be distributive. For the case of an arbitrary extension, this
question may be easily viewed as a satisfiability problem for propositional formulas.
However, to determine whether or not there is an injective extension, some rather
nontrivial transformations from so-called separability problems are involved, and the
main mathematical contribution is to show how these transformations are realized.

In 2.3, we refine the problems under consideration some, by looking at the com-
plexity of special cases in which the size of various parameters characterizing the
prespecification (join fanout, meet fanout, length of the longest path in the hierar-
chy) are restricted. We show that as long as all of these parameters are at least two,
and at least one of them is at least three, then the problem remains NP-complete.
This effectively demonstrates that placing reasonable restrictions on these parame-
ters is not likely to lead to tractable cases.

In 2.4, we do identify some cases which are tractable. In one case, we show that
if meet fanout, join fanout, and height of the hierarchy are all restricted to be no
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more than two, then the problem may be solved in deterministic polynomial time.
However, this case is admittedly not of much practical interest. A second case is
possibly of more interest. If the specifications involve only meets or only joins (but
not both), then the decision problem is also solvable in deterministic polynomial
time. However, in this case, we are effectively reduced to the type of specification
outlined in 0.2.

Finally, in 2.5, we examine how the complexity is affected by the introduction
of atoms and by requiring intermediate levels of injectivity. Nothing becomes worse
than NP-complete, although some of the problems identified in 2.4 may not remain
solvable in deterministic polynomial time.

In Section 3, we present some conclusions and suggestions for further directions.

In an appendix, we present a more complete description of the CUF type speci-
fication system, and show how it is formally related to our work. Finally, an index
is provided to make it easier for the reader to find definitions of key concepts and
the meaning of notational symbols.

0.7 Prerequisites

We expect the reader to be familiar with the general ideas of lattice theory, as may be
found in [Gra78]. However, we do not use any serious theorems or definitions without
at least providing a complete reference. Also, we use very elementary language of
category theory, because it allows us to unify otherwise cumbersome notions. The
definitions of category, morphism and isomorphism are all that we use, and even
the most elementary reference, such as [Wal91], will prove far more than adequate.
However, we use [HS73] as our standard for notation and terminology.

For the complexity theory part, we assume familiarity with the basic notation,
terminology and results in the theory of algorithm analysis, as may be found in
[CLR90], and NP-completeness, as may be found in [GJ79] or [AHU74].

1. The Theory of Distributive Partial Structures
In this section, we develop the general theory of distributive partial structures —
that is, a theory of partially specified lattice-like structures, and the conditions under
which they may be extended to bounded distributive lattices and bound Boolean
lattices of various kinds. The results do not really depend upon finiteness in any
way, and restricting our attention to finite structures would only simplify a few
definitions and proofs slightly. Therefore, we present the results in full generality,
without making unnecessary assumptions.

1.1 Review of Total Order-Theoretic Structures

We begin with a review of total order-theoretic structures, including bounded posets
and various forms of lattices. Although we expect that the reader is familiar with
these ideas, it is important to present them explicitly in order that we establish both
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a consistent notation and a visible context for the various generalizations to partial
structures that we develop. We start with bounded posets.

1.1.1 Bounded Posets and Notational Conventions A bounded poset is a
four-tuple P = (P,≤,>,⊥) such that

(bp-i) P is a nonempty set (the underlying set).

(bp-ii) ≤ is a partial order (reflexive, transitive, and antisymmetric) on P .

(bp-iii) ⊥ ∈ P is called the least element and satisfies ⊥ ≤ p for all p ∈ P .

(bp-iv) > ∈ P is called the greatest element and satisfies p ≤ > for all p ∈ P .

(bp-v) ⊥ and > are distinct elements.

Even when working with several bounded posets, we will usually use the same sym-
bols for the order relation (≤), the least element (⊥), and the greatest element (>) in
each. When it is absolutely necessary to use distinct symbols, we will use subscripts
or other indicators. Also, to avoid the need to write out detailed specifications at
every turn, we shall adopt the convention that when such a poset is named by a
boldface letter (e.g., P), then the underlying set is named by the same letter in
roman italic font (e.g., P ). We adopt similar conventions for the other types of
structures (lattices and the like) which we define and use later on in this report.
Also, as is customary, we write x < y to mean x ≤ y and x 6= y.

In a bounded poset P = (P,≤,>,⊥), an upper bound of a set S ⊆ P is any
p ∈ P such that s ≤ p for all s ∈ S. Note that > is an upper bound for any S ⊆ P .
The least upper bound (lub) of S, when it exists, is the unique upper bound p ∈ P
such that p ≤ r for all r which are upper bounds of S. Dually, a lower bound of S
is any p ∈ P such that p ≤ s for all s ∈ S, and the greatest lower bound (glb) of S,
when it exists, is the unique lower bound p ∈ P such that r ≤ p for all r which are
lower bounds of S. Note that ⊥ is a lower bound for any S ⊆ P . For a given set S,
we write lub(S) (resp. glb(S)) to denote the least upper bound (resp. greatest lower
bound) of S, when it exists.

Let P1 = (P1,≤,>,⊥) and P2 = (P2,≤,>,⊥) be bounded posets. A morphism
f : P1 → P2 is a function f : P1 → P2 such that the following conditions are
satisfied.

(bpmor-i) f(⊥) = ⊥ and f(>) = >.

(bpmor-ii) For all p, q ∈ P1 with p ≤ q, f(p) ≤ f(q).

We let BdPos denote the category of bounded posets, with morphisms as defined
above. When we speak of isomorphisms of bounded posets, or of algebraic structures
more generally, we shall always use the categorical definition [HS73, 5.13]. That is,
a morphism f : P1 → P2 is an isomorphism if there is a morphism g : P2 → P1

such that g ◦ f is the identity on P1 and f ◦ g is the identity on P2. In the case of
bounded posets, it is easy to see that the morphism f : P1 → P2 is an isomorphism
iff the underlying f : P1 → P2 is bijective and satisfies f(x) ≤ f(y) ⇒ x ≤ y.
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1.1.2 Bounded Lattices and Related Concepts The simplest definition of
a bounded lattice is that it is a bounded poset P = (P,≤,>,⊥) for which any two
elements have a least upper bound and a greatest lower bound. The join operation
∨ : P × P → P and the meet operation ∧ : P × P → P are then defined by
p ∨ q = lub({p, q}) and p ∧ q = glb({p, q}) [Gra78, p. 3]. Unfortunately, this
definition will not be compatible with our definitions of partial operations (unless
we were to work with two distinct partial orders). Therefore, we prefer the definition
of a bounded lattice as an algebra. More precisely, we define a bounded lattice to be
a five-tuple L = (L,>,⊥,∨,∧) in which:

(blat-i) L is a nonempty set (the underlying set).

(blat-ii) ∨ : L × L → L and ∧ : L × L → L are idempotent, commutative, and
associative operations.

(blat-iii) For all x, y ∈ L, x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x. (These are the
so-called absorption identities.)

(blat-iv) ⊥,> ∈ L are such that for all x ∈ L, x ∨ ⊥ = x and x ∧ > = x.

It is well known that this definition is equivalent to the characterization in terms
of bounded posets, and that we may recover the partial order via x ≤ y iff x∨ y = y
[Gra78, Ch. I, Sec. 1, Thm. 1].

Let L1 = (L1,>,⊥,∨,∧) and L2 = (L2,>,⊥,∨,∧) be bounded lattices. A
morphism f : L1 → L2 is a function f : L1 → L2 such that

(blmor-i) f(⊥) = ⊥ and f(>) = >.

(blmor-ii) For all x, y ∈ L1, f(x ∨ y) = f(x) ∨ f(y) and f(x ∧ y) = f(x) ∧ f(y).

If f : L1 → L2 is an injective morphism, then it is automatically an embedding. That
is to say, the image f(L1), under the operations inherited from L2, is isomorphic to
the lattice L1 itself. This is a consequence of a more general theorem from universal
algebra [Gra68, Ch. I, Sec. 7, Lem. 3]. In particular, bijective morphisms are always
isomorphisms. We remark, however, that this result does not extend to bounded
posets, nor to the various forms of partial structures that we discuss in the next
section.

Let L = (L1,>1,⊥1,∨1,∧1) and L = (L2,>2,⊥2,∨2,∧2) be bounded lattices.
L1 is a bounded sublattice of L2 if L1 ⊆ L2, ⊥1 = ⊥2, >1 = >2, and for every
x, y ∈ L1, x ∨1 y = x ∨2 y and x ∧1 y = x ∧2 y. Note particularly that the greatest
and least elements must be preserved.

The bounded lattice L = (L,>,⊥,∨,∧) is distributive if it satisfies any one of
the following equivalent conditions [Gra78, Ch. I, Sec. 4, Lem. 10].

(dist-i) For all x, y, z ∈ L, (x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ z).

(dist-ii) For all x, y, z ∈ L, (x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ z).

(dist-iii) For all x, y, z ∈ L, ((x ∨ y) ∧ z) ∨ (x ∨ (y ∧ z)) = x ∨ (y ∧ z).

A complement of an element x ∈ L is a y ∈ L such that x∨y = > and x∧y = ⊥. L
is complemented if every x ∈ L has a complement. A Boolean lattice is a distributive,
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complemented lattice. It is well-known that, in a distributive lattice, an element can
have at most one complement [Gra78, Ch. I, Sec. 6, Lem. 1]. A Boolean algebra is
a Boolean lattice augmented by a specific operation for the complement. More
precisely, a Boolean algebra is a six-tuple L = (L,>,⊥,∨,∧, ′) in which

(ba-i) (L,∨,∧,⊥,>) is a Boolean lattice.

(ba-ii) ′ : L → L is the complement operation.

It is easy to verify that if f : L1 → L2 is a surjective morphism of lattices and
L1 is distributive (resp. Boolean), then so too is L2. Furthermore, complements
are preserved under morphisms, so that a morphism of Boolean lattices is also a
morphism of Boolean algebras.

We let BdLat, BdDiLat, and BoolLat denote the categories of bounded lattices,
bounded distributive lattices, and bounded Boolean lattices, respectively.

The dual of the bounded lattice L = (L,>,⊥,∨,∧) is the structure Dual(L) =
(L,⊥,>,∧,∨). In other words, join becomes, meet, meet becomes join, and top
and bottom are switched. The dual of a lattice is itself a lattice, and is distributive
(resp. Boolean) iff the original lattice is. Note, however, that we usually do not use
these reversed symbol conventions when working with the dual of a lattice. More
specifically, we will use ⊥, >, ∨, ∧ to denote the least element, greatest element,
join operation, and meet operation, respectively, in the dual. When dealing with
duals, we will always make it clear from the context exactly of which operations we
speak.

There is a special Boolean lattice which we will use frequently in this work.
We let 2 denote the Boolean lattice whose underlying set is just the two elements
{⊥,>}.

We will also have occasion to work with products of bounded lattices in this
work. Given an indexed family {Li | i ∈ I} of bounded lattices, their product is
the lattice

∏
i∈I Li = (

∏
i∈I Li,>,⊥,∨,∧). Elements are just I-indexed tuples, with

the ith entry coming from Li. We often write 〈xi〉i∈I for such an I-tuple. The least
element is the tuple with every position ⊥, and the greatest element is the tuple
with every position >. Join and meet are defined componentwise. Given a subset
J ⊆ I, we define the projection πJ :

∏
i∈I Li → ∏

j∈J Lj to be the function which
preserves the entries indexed by J and discards the others. If J is a singleton {j},
we may write πj for π{j}. It is easy to see that the product of distributive (resp.
Boolean) lattices is distributive (resp. Boolean), as is any projection. Again, these
results are consequences of more fundamental results from universal algebra. See
[Gra68] for details.

A Boolean lattice is called perfect if it is isomorphic to a product of copies
of 2. Instead of writing Πi∈I2, we may write 2I . It is not the case that every
Boolean lattice is perfect; rather, the perfect ones are those that have the additional
properties of being complete and completely distributive [Bir67, Ch. 5, Thm. 17].
However, it is the case that every finite Boolean algebra is perfect [Gra78, Ch. 2,
Sec. 1, Cor. 12]. We let PerfBoolLat denote the category of all perfect Boolean
lattices.
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1.1.3 Bit-Vector Lattices Let S be a set. A function S → {0, 1} is called a bit
vector over S, and we write BitVec(S) for the set of all such bit vectors. We define
the full bit-vector lattice over S to be BitVec(S) = (BitVec(S),1,0, ∨, ∧), with 0
the function which maps s 7→ 0 for each s ∈ S, and 1 the function which maps s 7→ 1
for each s ∈ S. The operation ∨ : BitVec(S) × BitVec(S) → BitVec(S) is bitwise
logical disjunction; For f, g ∈ BitVec(S), s ∈ S, (f∨g)(s) = max({f(s), g(s)}).
Similarly, ∧ : BitVec(S) × BitVec(S) → BitVec(S) is bitwise logical conjunction;
(f∧g)(s) = min({f(s), g(s)}). It is easy to see that, for any set S, BitVec(S) is
naturally isomorphic to the perfect Boolean lattice 2S, just by replacing 0 by ⊥ and
1 by > in each S-tuple.

A bounded bit-vector lattice over S is any bounded sublattice of BitVec(S) which
contains both 0 and 1; in particular these elements must be the least and greatest
elements, respectively, of the sublattice. The set S is called the index set of the
lattice.

It is easy to view a bounded bit-vector lattice as a lattice of subsets of S. Indeed,
identify the bit vector f with {s ∈ S | f(s) = 1}. Then ∨ translates to set-theoretic
union, ∧ to set-theoretic intersection, 0 to the empty set, and 1 to S. What we
obtain is the lattice associated with a ring of sets, that is a collection of subsets of
a set S which is closed under union and intersection. Our boundedness condition
yields a bounded ring of sets; that is, a ring which contains both ∅ and the full
set S. A classical result of G. Birkhoff states that any distributive lattice may be
represented by a ring of sets [Gra78, Ch. 2, Sec. 1, Thm. 19]. Similarly, according
to a result of M. H. Stone, any Boolean lattice may be represented by a field of sets,
which is a ring of sets which is also closed under relative complementation with the
base set S [Gra78, Ch. 2, Sec. 1, Cor. 21]. Adding bounds is a trivial modification
to these results. We summarize the key results in the following.

1.1.4 Proposition — representation of distributive and Boolean lattices
Let L be a bounded lattice.

(a) L is distributive iff it is isomorphic to a bounded bit-vector lattice.

(b) If L is finite, then it is Boolean iff it is isomorphic to BitVec(S) for some
finite set S.

(c) If L is distributive, then it may be embedded into a perfect Boolean lattice. 2

1.1.5 Distributive extension categories This report is concerned with ex-
tending partial structures to total distributive ones. The categories of distributive
lattices which we shall consider extending to are BdDiLat, BoolLat, and PerfBoolLat.
Collectively, we shall call these categories the distributive extension categories.

1.2 Structures with Partial Operations

We now turn to the axiomatization of lattice-like structures with partial operations.
Since we are interested in modelling n-ary specifications, for arbitrary finite n, such
as CUF specifications like the example below,
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t = t1 & t2 & .. & tn.

these partial operations are not constrained to be binary. Rather, we allow general
partial join and meet operations, which range over finite subsets of the underlying
set.

We provide two equivalent characterizations. In the first, we start with a bounded
poset and add the partial generalized join and meet operations on top of it. In
the second, we eschew an explicit presentation of the underlying partial order en-
tirely, and express everything in terms of partial operations and axioms. This latter
characterization, when restricted to binary partial operations, yields precisely the
(bounded) weak partial lattices of Grätzer [Gra78, p. 41].

1.2.1 Notation There is some notation which we use throughout, and we collect
it here. Whenever we write A ⊆f B, we mean that A is a finite subset of B. And,
we let Pf (P ) denote the set of all finite subsets of P , while P(P ) denotes the full
powerset of P , consisting of all subsets, finite or not.

Given a partial function f : A → B we write f(a) ↓ to mean that f is defined
on the argument a. When we speak of a partial function, we do not discount the
possibility that the function is in fact defined on all of its arguments. In other words,
total functions are partial in our terminology.

1.2.2 Bounded Posets with Partial Operations A bounded poset with par-
tial operations (BPPO) is a 6-tuple P = (P,≤,>,⊥,

∨
,
∧

) in which

(bppo-i) (P,≤,>,⊥) is a bounded poset, called the underlying poset.

(bppo-ii)
∨

: Pf (P ) → P is partial a operation, called the generalized join.

(bppo-iii)
∧

: Pf (P ) → P is partial a operation, called the generalized meet.

The operations
∨

and
∧

are subject to the following conditions.

(bppo-iv) For any S ⊆f P , if
∨

S ↓, then
∨

S = lub(S). Dually, if
∧

S ↓, then∧
S = glb(S).

(bppo-v) For S ⊆f P , if lub(S) ↓ and lub(S) ∈ S, then
∨

S ↓. Dually, if glb(S) ↓
and glb(S) ∈ S, then glb(S)↓.

(bppo-vi)
∨ ∅ = ⊥ and

∧ ∅ = >.

(bppo-vii) If S1, S2, . . . , Sn ⊆f P are such that
∨

Si ↓ for all i, 1 ≤ i ≤ n, then∨
(
⋃n

i=1 Si) ↓ iff
∨{∨ S1,

∨
S2, . . .

∨
Sn} ↓, and

∨{∨ S1,
∨

S2, . . .
∨

Sn} =∨
(
⋃n

i=1 Si) in this case. Dually, if
∧

Si ↓ for all i, 1 ≤ i ≤ n, then∧
(
⋃n

i=1 Si) ↓ iff
∧{∧ S1,

∧
S2, . . .

∧
Sn} ↓, and

∧{∧ S1,
∧

S2, . . .
∧

Sn} =∧
(
⋃n

i=1 Si) in this case. These are called the generalized associativity
laws. .

Condition (bppo-iv) requires that, if a generalized join (resp. meet) exists, then
it must be the lub (resp. glb) in the partial order. Note, however, that we do not
demand that subsets which have an lub (resp. glb) in the partial order have a join
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(resp. meet). We simply require that, whenever they are defined, joins and meets
agree with these bounds. Condition (bppo-v) says that any finite subset of P which
contains its lub (resp. glb) has this lub (resp. glb) as its join (resp. meet). Note well
that the lub (resp. glb) must already be in S; it is not enough that it exist in P .
Condition (bppo-vi) is a natural rule for the empty set. Condition (bppo-vii), the
natural associativity laws, just say that the join and meet are associative in a more
general context. For example, given the following CUF specifications,

t1 = t11 & t12 & t13.

t2 = t21 & t22 & t23.

t3 = t31 & t32 & t33.

t4 = t11 & t12 & t13 & t21 & t22 & t23 & t31 & t32 & t33.

we may write these in our notation as
∧

({t11, t12, t13}) = t1,
∧

({t21, t22, t23}) =
t2,

∧
({t31, t32, t33}) = t3, and

∧
({t11, t12, t13, t21, t22, t23, t31, t32, t33}) =

t4. The generalized associativity law for meets then tells us that we must have∧
({t1, t2, t3}) = t4,

Let P1 = (P1,≤,>,⊥,
∨

,
∧

) and P2 = (P2,≤,>,⊥,
∨

,
∧

) be BPPO’s. A mor-
phism f : P1 → P2 is a poset morphism f : (P1,≤,>,⊥) → (P2,≤,>,⊥) subject
to the following additional constraint.

(bppomor-i) For S ⊆f P1, if
∨

S ↓, then
∨

(f(S)) ↓ and f(
∨

S) =
∨

(f(S)). Dually,
if

∧
S ↓, then

∧
(f(S))↓ and f(

∧
S) =

∧
(f(S))5.

Notice that a morphism automatically preserves ⊥ and >. For example, f(⊥) =
f(

∨ ∅) =
∨

f(∅) =
∨ ∅ = ⊥.

We let BPPO denote the category of BPPO’s.

We now turn to an alternate representation of a BPPO which eschews the explicit
use of a partial order.

1.2.3 Generalized Bounded Weak Partial Lattices In [Gra78, Ch. I, Sec.
5], Grätzer introduces the notion of a weak partial lattice. We provide a defini-
tion which generalizes his concept to meet and join operations with more than two
arguments. A generalized bounded weak partial lattice (GBWPL) is a five-tuple
L = (L,>,⊥,

∨
,
∧

) in which

(gbwpl-i) L is a set (the underlying set).

(gbwpl-ii)
∨

: Pf (L) → L is partial operation, called the generalized join.

(gbwpl-iii)
∧

: Pf (L) → L is partial operation, called the generalized meet.

(gbwpl-iii) ⊥,> ∈ L with ⊥ 6= >.

The operations
∨

and
∧

are subject to the following conditions.

(gbwpl-iv)
∨ ∅ = ⊥,

∧ ∅ = >. For all a ∈ L,
∨{a} = a,

∧{a} = a,
∨{a,⊥} = a,∧{a,>} = a,

5f(S) denotes {f(s) | s ∈ S}.
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(gbwpl-v) The generalized associativity laws stated in (bppo-vii) (with P replaced
by L.)

(gbwpl-vi) If S ⊆f L with
∨

S ↓, then for all a ∈ S,
∧{a,

∨
S}↓ with

∧{a,
∨

S} = a.
Dually, for all a ∈ S,

∨{a,
∧

S} ↓ with
∨{a,

∧
S} = a. These are called

the generalized absorption identities.

In (gbwpl-iv), the condition
∨{a} = a is just a restatement of the idempotency of

the join, which becomes a∨a = a in a lattice. The condition
∨{a,⊥} = a just states

that ⊥ is the least element. The other two new conditions are dual. In (gbwpl-vi),
The condition

∧{a,
∨

S} = a for a ∈ S and
∨

S ↓ is a generalization of the absorption
identity a ∧ (a ∨ b) = a of an ordinary lattice [Gra78, Cond. (L4), p. 4]. The other
condition is dual.

Let L1 = (L1,>,⊥,
∨

,
∧

) and L2 = (L2,>,⊥,
∨

,
∧

) be GBWPL’s. A mor-
phism f : L1 → L2 is a function f : L1 → L2 subject to the following additional
constraints.

(gbwplmor-i) For S ⊆f L1, if
∨

S ↓, then
∨

(f(S))↓ and f(
∨

S) =
∨

(f(S)). Dually,
if

∧
S ↓, then

∧
(f(S))↓ and f(

∧
S) =

∧
(f(S)).

We let GBWPL denote the category of GBWPL’s.

1.2.4 Relationship between BPPO’s and GBWPL’s The concepts of
BPPO and GBWPL are equivalent, as we shall prove in the next proposition. First of
all, we need to define the appropriate transformations. To obtain a GBWPL from a
BPPO, we just “forget” the order structure. Given a BPPO B = (B,≤,>,⊥,

∨
,
∧

),
the associated GBWPL is just L = (L,>,⊥,

∨
,
∧

), which we denote by GBWPL(B).
The underlying function of a BPPO morphism f : B1 → B2 is the same as the under-
lying function of the corresponding GBWPL morphism GBWPL(f) : GBWPL(B1) →
GBWPL(B2). Thus, as a simplification of notation, we use the same symbol f for
the morphism in each case. In the other direction, things are a bit more compli-
cated. We start with a GBWPL L = (L,>,⊥,

∨
,
∧

). Define the relation ≤ on L
by a ≤ b iff either there is a subset S ⊆f L with

∨
S ↓, a ∈ S, and b =

∨
S, or

else such an S with
∧

S ↓, b ∈ S, and a =
∧

S. The associated BPPO is then just
L = (L,≤,>,⊥,

∨
,
∧

), and is denoted BPPO(L). Again, the underlying function of
a GBWPL morphism f is the same as the underlying function of the associated BPPO
morphism BPPO(f), and so we use the same symbol f in each case. We will show
that BPPO : GBWPL → BPPO and GBWPL : BPPO → GBWPL are functors which
are mutual inverses, in the sense that GBWPL ◦ BPPO is the identity on GBWPL
and BPPO ◦ GBWPL is the identity on BPPO.

1.2.5 Proposition Let L = (L,>,⊥,
∨

,
∧

) be a GBWPL. Then BPPO(L) is
a BPPO. Furthermore, if f : L1 → L2 is the underlying function of a morphism
between two GBWPL’s L1 and L2, then it is also the underlying function for a
morphism f : BPPO(L1) → BPPO(L2).

Proof: We begin by establishing that the induced order relation ≤ is indeed a
partial order. It follows immediately from (gbwpl-iv) that it is reflexive. To show
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antisymmetry and transitivity, first observe the following. Suppose that a ≤ b. If
there is an S ⊆f L such that

∨
S ↓, b =

∨
S, and a ∈ S, then

∨{a, b} = b by a
simple application of the generalized associativity laws. On the other hand, if there
is an S ⊆f L such that

∧
S ↓, a =

∧
S, and b ∈ S, then

∧{a, b} = a, also by
a simple application of the generalized associativity laws. But in this latter case∨{a, b} =

∨{a,
∧

S} = a, by the generalized absorption identities. Thus, in either
case

∨{a, b} = b.
To show antisymmetry, it suffices to observe that if a ≤ b and b ≤ a, then both∨{a, b} = a and

∨{a, b} = b hold, whence a = b. To show transitivity, assume that
a ≤ b and b ≤ c. Then we must have that

∨{a, b} = b and
∨{b, c} = c. A simple

application of the generalized associativity laws yields that
∨{a, b, c} = c, whence

a ≤ c, by the definition of ≤.
To complete the proof, we must prove that generalized joins are lub’s, and gen-

eralized meets are glb’s. So, suppose that S is a finite subset of L with a =
∨

S, and
let b be any upper bound for S. Then s ≤ b for all b ∈ S. Now, by the generalized
associativity laws, we have

∨{b, a} =
∨{b, ∨

S} =
∨{∨{b, s} | s ∈ S} =

∨
S = a.

Hence b = a, and so a = lub(S). The proof for glb’s is dual. This establishes con-
dition (bppo-iv). To establish (bppo-v), let S ⊆f L, and let a ∈ S. Then, by the
generalized absorption identities,

∧{a,
∨

S} = a. So, in particular, if a = lub(S),
then we have (bppo-v), with the condition for glb’s dual.

The fact that a morphism for GBWPL’s is also a morphism for BPPO’s is im-
mediate. 2

The other direction is much easier.

1.2.6 Proposition Let L = (L,≤,>,⊥,
∨

,
∧

) be a BPPO. Then GBWPL(L) is
a GBWPL. Furthermore, if f : B1 → B2 is the underlying function of a morphism
between two GBWPL’s L1 and L2, then it is also the underlying function for a
morphism f : GBWPL(L1) → GBWPL(L2).

Proof: The only non-obvious conditions to prove are those of (gbwpl-vi), the
generalized absorption identities. But if S ⊆f B and a ∈ S, then

∧{{a}, ∨
S} =∧{{a}, lub(S)} = a, since a ≤ lub(S), and so is the glb of {a,

∨
S}. The other

absorption condition is dual. 2

We can now conclude formally that the notions of BPPO and of GBWPL are
just two ways of talking about the same thing.

1.2.7 Proposition — equivalence of BPPO’s and GBWPL’s The functors
BPPO and GBWPL are mutually inverse. More specifically, we have the following.

(a) For any BPPO P, BPPO(GBWPL(P)) = P.

(b) For any GBWPL L, GBWPL(BPPO(L)) = L.

Proof: Most of the proof is clear from the constructions of the previous two
propositions. The only question might be whether the transitions BPPO→GBWPL
→ BPPO might add pairs to the order relation. The key to observing that this
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cannot be the case is to note that the order relation of a BPPO is in fact already
recaptured in the partial operations

∨
and

∧
. Indeed, a ≤ b iff

∨{a, b} = b, as we
can readily conclude from (bppo-v). 2

1.2.8 Natural interpretation of a lattice as a BPPO and as a GBWPL
Often, in what follows, we will speak of a bounded lattice as being a BPPO or a
GBWPL. In this sense, a lattice will simply be a BPPO or GBWPL in which the
generalized join and generalized meet functions are total. Thus, for example, if
S = {s1, s2, . . . , sn}, then

∨
S = s1 ∨ s2 ∨ ..∨ sn. That the axioms of a GBWPL are

sufficient to guarantee that we obtain a bounded lattice whenever
∨

and
∧

are total
functions follows from an elementary axiomatization of a lattice. (See, e.g., [Gra78,
pp. 4–5].) Thus, whenever both

∨
and

∧
are total functions, we shall speak of the

corresponding BPPO or GBWPL as a lattice, with the obvious translation being
made. Formally, we think of BdLat, as well as each of the distributive extension
categories (1.1.5), as subcategories of BPPO.

1.3 Extensions of BPPO’s to Lattices

We now turn to the key question of this section — the extension of BPPO’s to
bounded lattices of varying sorts. For consistency, we work with the problem of
extending BPPO’s; although, of course, in the light of the results above, we could
equally well work with extending GBWPL’s.

1.3.1 Definitions of Forms of Extensions Note that BdLat and any of the
distributive extension categories may be naturally regarded as a subcategory of
BPPO. For each such category C, we have a natural forgetful functor which is the
“identity” on objects — it forgets that the structure is more than just a BPPO.
It is also the identity on morphisms, in the sense that the underlying functions
are the same. The extension problem, simply put, is to find natural inverses to
these functors. That is, to find natural ways to extend BPPO’s to bounded lattices,
bounded distributive lattices, and to Boolean lattices. Unfortunately, the situation is
somewhat complex. First of all, there is not a unique notion of extension, but rather
several distinct notions, each with its advantages and disadvantages. Secondly,
in the cases of extensions which are required to be distributive, such extensions
need not always exist. Indeed, the main topic of Section 2 of this report is to
establish the computational complexity of the decision problem for the existence of
such extensions. We must therefore address the problem on a case-by-case basis.
Nonetheless, it is conceptually simpler to collect the basic definitions about extension
into a common framework, and that is what we do here.

Let P = (P,≤,>,⊥,
∨

,
∧

) be a BPPO, and let C be BdLat or one of the dis-
tributive extension categories. All of the types of extension have the form (L, η),
in which L is an object of C and η : P → L is a BPPO-morphism. (Recall that C
is always a subcategory of BPPO, so such a morphism is well-defined.) Let us call
such a pair an extension pair for P to C. The particulars for the special cases are
as follows.
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(a) The extension pair (L, η) is an injective extension of P to C if η is injective.
More generally, for Q a set of pairs of distinct elements of P , (L, η) is called a
Q-injective extension if for each pair {x, y} ∈ Q, η(x) 6= η(y).

(b) The extension pair (L, η) is an embedding extension if η is an embedding. By an
embedding, we mean that it has the property that it is injective and whenever
S ⊆f P is such that

∨
η(S) ↓ (resp.

∧
η(S) ↓), then

∨
S ↓ (resp.

∧
S ↓), and∨

η(S) = η(
∨

S) (resp.
∧

η(S) = η(
∧

S)).

(c) The extension pair (L, η) is universal if for every object M of C and every
BPPO morphism f : P → M, there is a unique C morphism g such that the
diagram in Figure 1.1 commutes.

P L

M

-η

Z
Z
Z
Z
Z
ZZ~

f

?

g

Figure 1.1: Universal extension.

In some sense, a universal extension is the most natural kind to seek, because it im-
poses the least amount of constraints, since any other extension is the homomorphic
image of it. This idea arises in many mathematical settings. For a more general
discussion of the merits of universal constructions, consult [Wal91, Ch. 5, Sec. 6] or
[HS73, Sec. 26].

There are a few general facts about universal extension pairs which are worth
recording at this point.

1.3.2 Proposition Let P be a BPPO, and let C be the category BdLat or one
of the distributive extension categories.

(a) A universal extension pair for P to C, if it exists, is unique up to isomorphism.

(b) If P has an injective (resp. embedding) extension to C, then a universal exten-
sion pair, if it exists, is also injective (resp. embedding).

Proof: Part (a) is a standard result from category theory; see, for example,
[HS73, 26.7]. To prove (b), let (M, f) be an injective extension of P, and let (L, η)
be a universal extension pair. Then there is a morphism g : L → M which renders
the diagram of Figure 1.1 commutative. But then η must be injective; again this
is a special case of a standard categorical result [HS73, 6.1]. Finally, suppose that
(M, f) of Figure 1.1 is an embedding extension, with (L, η) a universal extension.
Let S ⊆f P and a ∈ P with

∨
η(S) = η(a). Then, since g is a morphism, we have
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that
∨

g(η(S)) = g(η(a)). But g ◦ η = f , thus
∨

h(S) = h(a), and since h is an
embedding,

∨
S ↓ with

∨
S = a. The proof for the case of

∧
is similar. Thus η is an

embedding, as was to be proved. 2

1.3.3 Remark on injectivity of universal extensions In many mathematical
domains, universal (or free) constructions have an injective “η”. However, this is not
necessarily the case with extensions of BPPO’s to distributive extension categories.
In 1.4.15, examples of universal extensions (Lη) for BPPO’s are presented for which
η is not injective.

1.3.4 Remark on embedding We should emphasize that for lattices, as we
noted in 1.1.2, injective morphisms are always embeddings. That is, if f : L1 → L2

is a morphism of lattices, with S ⊆ L1 and a ∈ L1 such that
∨{f(s) | s ∈ S} = f(a)

(resp.
∧{f(s) | s ∈ S} = f(a)) holds in L2, then

∨
S = a (resp. (

∧
S = a) holds in

L1. However, this is not true for partial structures. For example, if we have that∨
S = > in a BPPO, then in any extension to a lattice we must also have that∨
T = > for any finite T with the property that S ⊆ T . However, the axioms of a

BPPO do not force
∨

T = > to hold for every such superset T of S. For a less trivial
example, see [Gra78, pp. 41–42]. Thus, for the notions of extension identified above,
there may be a distinction between injective and embedding extensions. This issue
is examined more closely in 1.3.6 and 1.3.7.

1.3.5 Ideals of a BPPO Let P = (P,≤,>,⊥,
∨

,
∧

) be a BPPO. A set I ⊆ P
is called an ideal of P if it satisfies the following conditions:

(ideal-i) ⊥ ∈ I.

(ideal-ii) a ∈ I and b ≤ a implies b ∈ I.

(ideal-iii) S ⊆ I and
∨

S ↓ implies
∨

S ∈ I.

We let Ideals(P) denote the set of all ideals of P. Observe that if P is a bounded
lattice, then an ideal in this sense corresponds to a lattice ideal [Gra78, p. 17].
As in the case of lattices ([Gra78, Ch. I, Sec. 3, Cor. 2]), the set of ideals of a
BPPO admits a natural structure as a lattice. Specifically, we define the bounded
lattice Ideals(P) = (Ideals(P), P, ∅,∪,∩) associated with the BPPO P as follows.
It is trivial to verify that the intersection of any number (possibly infinite) of ideals
is itself an ideal. Intersection of (two) ideals thus forms the meet operation in
Ideals(P). The join of two ideals is the intersection of all of the ideals which
contain their union. More precisely, for I, J ∈ Ideals(P), define I∪J =

⋂{K ∈
Ideals(P ) | I ⊆ K and J ⊆ K}.

Given a set S ⊆ P , the ideal generated by S is the intersection of all ideals
containing S, and is denoted by Ideal(S), or by Ideal(S,P) if we need to make explicit
which BPPO we are talking about. Since P itself is such an ideal, this intersection
is nontrivial. As in the case of ideals of lattices, for a ∈ P we call Ideal({a}) the
principal ideal generated by a.
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The dual concept is defined as follows. I ⊆ S is a dual ideal if it satisfies the
following conditions.

(dideal-i) > ∈ I.

(dideal-ii) a ∈ I and a ≤ b implies b ∈ I.

(dideal-iii) S ⊆ I and
∧

S ↓ implies
∧

S ∈ I.

We let DualIdeals(P) denote the set of all ideals of P. The dual ideals form a
bounded lattice DualIdeals(P) = (DualIdeals(P), P, ∅,∪d,∩) in a completely anal-
ogous fashion, with I∪dJ =

⋂{K ∈ DualIdeals(P) | I ⊆ K and J ⊆ K}. The dual
ideal generated by the set S is denoted by DualIdeal(S), or DualIdeal(S,P).

Given the BPPO P = (P,≤,>,⊥,
∨

,
∧

), we have two natural injections. The
first, LowerExt(P) : P → Ideals(P), called the lower extension of P, is defined by
a 7→ Ideal({a}). The second, UpperExt(P) : P → Dual(DualIdeals(P)), called the
upper extension of P, is defined by a 7→ DualIdeal({a}). It is trivial to verify that
each of these functions is injective and a BPPO morphism. We clearly have the
following.

1.3.6 Theorem — extension of a BPPO to a bounded lattice Any BPPO
has an injective extension pair to BdLat.
Proof: (Ideals(P), LowerExtP)) and (Dual(DualIdeals(P)), UpperExt(P)) are
each such extensions. 2

Thus, the extension problem for BPPO’s to lattices is, in some sense, trivial. We
shall show in the next section, however, that it is far from trivial if we demand that
the extension be distributive. First, though, let us take a closer look at the question
of when such an extension is an embedding. We start with a generalization of the
notion of a generalized bounded partial lattice, which is a direct generalization of
the concept of partial lattice identified in [Gra78, Ch. I., Sec. 5, Def. 12].

1.3.7 Generalized Bounded Partial Lattices A GBWPL is a Generalized
Bounded Partial Lattice (GBPL) if it has an embedding extension into a bounded
lattice.

A GBWPL (or, equivalently, a BPPO) P satisfies the lower ideal condition if
for any S ⊆f P and any a ∈ S, if Ideal(S,P) = Ideal({a},P) then

∨
S ↓ and∨

S = a. Dually, it satisfies the upper ideal condition if for any S ⊆f P and a ∈ P ,
if DualIdeal(S,P) = DualIdeal({a},P) then

∧
S ↓ and

∧
S = a.

1.3.8 Theorem — characterization of GBPL’s Let P be a GBWPL. Then
P is a GBPL iff it satisfies both the lower and the upper ideal conditions.

Proof: The proof is a generalization of that given in [Gra78, Ch. I, Sec. 5, Thm.
20], which is attributed to Funayama. First of all, assume that P is a GBPL,
and let (L, η) be an embedding extension of P. Let S ⊆f P and a ∈ P be
such that Ideal(S,P) = Ideal({a},P). Then η(Ideal({a},P)) = η(Ideal(S, P )) ⊆
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Ideal(η(S),L) ∩ η(P ) = Ideal(
∨

η(S),L) ∩ η(P ). Thus, we have that η(a) ≤ ∨
η(S)

in L. On the other hand, we also have that η(s) ≤ η(a) for each s ∈ S, just by the
assumed conditions on the ideals, and so we must have that η(a) =

∨
η(S). But

since η is an embedding, this means that
∨

S ↓, with a =
∨

S. Proving that the
upper ideal condition holds is dual.

Conversely, assume that P satisfies both the lower and upper ideal conditions.
Let L = Ideals(P) × Dual(DualIdeals(P)), and define the function η : P → L
by a 7→ (Ideal({a}), DualIdeal({a})). We claim that the pair (L, η) is an embedding
extension of P. It follows immediately from 1.3.5 that η is an injective morphism.
We need to show that it is an embedding. Let S ⊆f P and a ∈ P be such that
η(a) =

∨
η(S). Then, by the lower ideal condition, we have that

∨
S ↓ and a =

∨
S.

Similarly, if we have T ⊆f P and b ∈ P with η(a) =
∧

η(T ), then we may use the
upper ideal condition to establish that b =

∧
T . Thus η is an embedding, as was to

be shown. 2

1.3.9 Universal Extensions The question of universal extensions of arbitrary
BPPO’s is a rather complex one, and we will not address it here. The interested
reader may wish to look at [Gra78, Ch. I, Sec. 5] or [Bir67, Ch. 6, Sec. 8] for more
information. From a computational point of view, one of the problems is that a free
(universal) lattice over a finite BPPO may be infinite. Fortunately, the problem of
existence of free distributive lattices is somewhat more accessible, and it is to this
important problem that we now turn.

1.4 Extensions of BPPO’s to Distributive and Boolean
Lattices

Extensions of BPPO’s to distributive lattices are closely related to forms of binary
decompositions of the lattice — that is, to the set of morphisms from the BPPO
into the two-element lattice 2. We now turn to a development of these ideas.

1.4.1 Ideal binary decompositions Let P be a BPPO. An ideal binary de-
composition of P is a pair (I, J) in which I ∈ Ideals(P), J ∈ DualIdeals(P), and
{I, J} forms a partition of the underlying set P , i.e., I ∪ J = P and I ∩ J = ∅.

1.4.2 Lemma — characterization of ideal binary decompositions Let P
be a BPPO, and let f : P → {⊥,>}. Then f is the underlying function of a BPPO
morphism P → 2 iff (f−1({⊥}), f−1({>})) is an ideal binary decomposition of P.

Proof: Assume that f : P → 2 is a BPPO morphism. Suppose that S ⊆f P
is such that

∨
S ↓, with S ⊆ f−1(⊥). Then, ⊥ =

∨
f(S) = f(

∨
S), so

∨
S ∈

f−1(⊥). Hence f−1(⊥) ∈ Ideals(P). Similarly, f−1(>) ∈ DualIdeals(P). Since
{f−1({⊥}), f−1({>})} is clearly a partition of P , we have an ideal binary decompo-
sition.

Conversely, suppose that f : P → {⊥,>} is a function with the property that
(f−1({⊥}), f−1({>})) is an ideal binary decomposition of P. Then if S ⊆f P is
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such that
∨

S ↓ and for each s ∈ S, f(s) = ⊥, then f(
∨

S) = ⊥ as well, since
f−1({⊥}) ∈ Ideals(P). Similarly, if S ⊆f P is such that

∧
S ↓ and for each s ∈ S,

f(s) = >, then f(
∧

S) = > as well, since f−1({>}) ∈ DualIdeals(P). Hence f is a
morphism, as required. 2

This correspondence between ideal binary decompositions and morphisms into
2 is so central to our results that we need to make the identification explicit. This
is done as follows.

1.4.3 Morphisms into the lattice 2 Let P be a BPPO, and let (I, J) be an
ideal binary decomposition of P. Define the morphism Ifn(I,J) : P → 2 by

Ifn(I,J) =

{
⊥ if p ∈ I;
> if p ∈ J .

Let IdBinDecomp(P) = {Ifn(I,J) | (I, J) is an ideal binary decomposition of P}.
For bounded bit-vector lattices, we employ an additional notation. Let L be a

bounded bit-vector lattice over the set S, and let s ∈ S. Define the s-projection
πs : L → {⊥,>} by

πs(v) =

{
⊥ if v(s) = 0;
> if v(s) = 1.

1.4.4 Nonredundancy and independence Let L be a bounded bit-vector
lattice over the set S. We say that the pair s1, s2 ∈ S is logically identical if for
every f ∈ L, f(s1) = f(s2). In a situation with s1 and s2 logically identical, one
of them may be removed without changing the lattice, up to isomorphism. L is
called nonredundant if it does not contain any logically identical pairs. Clearly, we
can always render a bounded bit-vector lattice nonredundant, provided the axiom
of choice is assumed. For the most part, it will be convenient for us to work with
nonredundant representations.

Let v ∈ L. For any R ⊆ S, we define BitComp(v, R) to be the function defined
by

BitComp(v, R) =

{
1− v(x) if x ∈ R;
v(x) otherwise.

Now let M be any bounded lattice, and let f : L → M be a morphism. For
s ∈ S, we say that f is independent of s if for any bit vector v ∈ L, we have that
whenever BitComp(v, {s}) ∈ L, then f(v) = f(BitComp(v, {s})). Otherwise, we say
that f is dependent upon s.

The following critical observation tells us that the only morphisms from a
bounded bit-vector lattice into 2 are the projections of a single “bit.”

1.4.5 Proposition — characterization of morphisms into the lattice 2
Let S be a set, let L be a bounded bit-vector lattice over S. Then f : L → {⊥,>} is
the underlying function of a morphism L → 2 iff f = πs for some s ∈ S.
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Proof: It is trivial to verify that each of the πs’s are morphisms; we need to
establish the opposite direction. So, let f : L → 2 be a morphism. Without
loss of generality, assume that S does not contain any distinct logically identi-
cal pairs. Suppose that there are two distinct elements s1, s2 ∈ S which f is
dependent upon. Then there are vectors v11, v12, v21, v22 ∈ L such that v12 =
BitComp(v11, {s1}), v22 = BitComp(v21, {s2}), v11(s1) = 1, v21(s2) = 1, f(v11) =
f(v21) = 1 and f(v12) = f(v22) = 0. Now, since f is a morphism, we must have
that f(v11∧v21) = 1 and f(v12∨v22) = 0. But it follows from the above defini-
tions that v11(s1)∧v21(s1) = v12(s1)∨v22(s1). For if not, then we must have that
v11(s1) = v21(s1) = 1 and v12(s1) = v22(s1) = 0. But this cannot happen, since
v21(s1) = v22(s1). Similarly, v11(s2)∧v21(s2) = v12(s2)∨v22(s2). Additionally, v11

and v12 agree on all positions other than s1, and v21 and v22 agree on all positions
other than s2. Thus v11(s)∧v21(s) ≤ v12(s)∨v22(s) for all s other than s1 or s2.
But we have just shown that v11(s)∧v21(s) = v12(s)∨v22(s) for s = s1 or s2. Thus
v11(s)∧v21(s) ≤ v12(s)∨v22(s) for all s ∈ S; i.e., v11∧v21 ≤ v12∨v22. Since a lattice
morphism is monotonic, this means that f(v11∧v21) ≤ f(v12∨v22), a contradiction.
Hence f can be dependent upon only one of s1 and s2. From this it follows that it
must be a projection. 2

The ideal binary decompositions of a bounded bit-vector lattice are then in
bijective correspondence with the projections of “bits.”

1.4.6 Proposition — decompositions of bounded distributive lattices
Let S be a set, and let L be a bounded bit-vector lattice over S. Let I, J ⊆ L.
Then (I, J) is an ideal binary decomposition of L iff there is an s ∈ S such that
I = {x ∈ L | πs(x) = ⊥} and J = {x ∈ L | πs(x) = >}.
Proof: Follows from 1.4.2 and 1.4.5. 2

We are now ready to state our first extension result to distributive extension
categories. Namely, the existence of such an extension depends entirely upon the
existence of an ideal binary decomposition.

1.4.7 Theorem — existence of extension pairs Let P be a BPPO. Then,
for any of the distributive extension categories, P has an extension pair iff it has an
ideal binary decomposition.

Proof: If P has an ideal binary decomposition, then by 1.4.2 it has a morphism
f : P → 2, which renders (2, f) an extension pair. Conversely, let (L, η) be an
extension pair. Since L is distributive, by 1.1.4(a) we know that it is isomorphic
to a bounded bit-vector lattice M over a set S. Then, by 1.4.6, we know that for
any s ∈ S there is a projection πs : M → 2. Then, letting ι : L → M denote the
isomorphism between L and M, we have that πs ◦ ι◦η : P → 2. So, finally, applying
1.4.2, we get an ideal binary decomposition. 2

1.4.8 Examples Let us illustrate these ideas with an example. Let P1 be the
lattice (qua BPPO) represented by the diamond of Figure 0.3. It is easy to see that it
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has no ideal binary decompositions at all. Indeed, let (I, J) be such a decomposition.
Then we must have that e ∈ I. Now if any pair {x, y} of elements from {b, c, d} is
in I, then we must also have that a ∈ I as well, since the constraint x∨ y = a holds.
But if both a, e ∈ I, then the decomposition is trivial; i.e., J = ∅. Dually, if the
pair {x, y} is in J , then we must also have that e ∈ J as well, since the constraint
x ∧ y = e holds. Since some pair of elements from {b, c, d} must be in either I or
else in J , it follows that no ideal binary decomposition can exist.

On the other hand, let P2 be the lattice (qua BPPO) represented by the pentagon
of Figure 0.2. Then we have two ideal binary decompositions, ({a, b}, {c, d, e}) and
({a, c, d}, {b, e}).

To get injective decompositions, we essentially need to ensure that there are
enough ideal binary decompositions, where “enough” means a sufficient number to
ensure that for any two distinct elements, there is a decompositions which sends
those elements to distinct members of {⊥,>}.

1.4.9 Separating families of decompositions Let P be a BPPO, and let
{x, y} ⊆ P . We say that x and y are separable if there is a morphism f : P → 2
with f(x) 6= f(y). In this case, we call f a separator for {x, y}. We say that P
is somewhere separable if there is a pair {x, y} ⊆ P which is separable. It is clear
that somewhere separability is equivalent to the separability of {⊥,>}, since any
morphism must separate ⊥ from >.

Now let ∆ be a family of BPPO morphisms, each of the form P → 2, and let
Q be a set of pairs of elements of P . The family ∆ is called a separator for Q (or
a Q-separator) if it contains a separator for each pair in Q. It is called a (full)
separator for P if it contains a separator for every pair {x, y} ⊆ P with x 6= y. In
the case that such a ∆ exists, we say that P is fully separable.

1.4.10 Theorem — existence of extensions Let P be a BPPO, and let C be
one of the distributive extension categories.

(a) P has an extension pair into C iff it is somewhere separable.

(b) For Q a set of pairs of elements of P , P has a Q-injective extension pair into
C iff Q has a separator.

(c) P has an injective extension into C iff it is fully separable.

Proof: Part (a) is just a restatement of 1.4.7 in terms of separators. To show part
(b), let Q be a set of pairs of elements of P , and (L, η) be a Q-injective extension
into C. Without loss of generality, we may take L to be a bounded bit-vector lattice.
Let S be the index set over which this lattice is taken. It is clear that {πs | s ∈ S}
is fully separating for L. But then, since η is injective, it must be the case that
{πs ◦ η | s ∈ S} is separating for each pair in Q.

Conversely, suppose that Q has a separator ∆. Write this set as an indexed set:
∆ = {fs : P → 2 | s ∈ S}. Let L =

∏
s∈S 2, and let η : P → L be given by

p 7→ 〈fs(p)〉s∈S. Then η(x) 6= η(y) for any pair {x, y} ∈ Q, since fs(x) 6= fs(y) for
some s ∈ S. Thus (L, η) is Q-injective, as required.
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Part (c) is a special case of (b), with ∆ consisting of all pairs of distinct elements
of P . 2

1.4.11 Examples We continue with the examples of 1.4.8. Since P1 has no ideal
binary decompositions, it has no distributive extensions at all. Neither can P2 have
an injective distributive extensions, since there is not an ideal binary decomposition
which separates the pair {c, d}. In effect, what this says is that to make a pentagon
distributive, we must collapse the two elements on the “long” path from the bottom
to the top. In a diamond, we have no choice but to collapse the whole thing to a
single element.

Finally, we turn to the issue of universal extensions. For the distributive exten-
sion category of perfect Boolean lattices, the universal extension uses the product of
all extension pairs. For the other categories, it is a matter of restricting this product
appropriately. The details follow.

1.4.12 Theorem — existence of universal extensions over PerfBoolLat
Let P be a BPPO. Then, P has a universal extension over PerfBoolLat iff it has an
extension over PerfBoolLat. The universal extension is injective iff there is some
injective extension over PerfBoolLat. The explicit construction is as follows. Let
F = IdBinDecomp(P), and let η : P → 2F be defined by p 7→ 〈f(p)〉f∈F . Then
(2F , η) is a universal extension of P to a perfect Boolean lattice.

Proof: If P has no extension at all, then it certainly has no universal extension.
Thus, let us assume that it has at least one extension to PerfBoolLat. In view of
1.4.7, this can happen iff F is nonempty. Now, let M be any perfect Boolean lattice,
and let g : P → M be a BPPO morphism. Without loss of generality, we may take
M to be 2S for some set S. Now, consider the diagram of in Figure 1.2.

P 2F

2T 2

-η

@
@
@
@
@
@@R

g

@
@
@
@
@
@@R

πf = ht

-
πt

?

ĝ

Figure 1.2:

We need to show that there is a unique morphism ĝ which makes the left triangle
commute. First of all, for t ∈ T , πt ◦ g : P → 2, and so must be a member of F .
Hence there is some f ∈ F such that πf ◦ η = πt ◦ g. Name this πf as ht. Now, since
2T is a product in PerfBoolLat, there is a unique morphism ĝ : 2F → 2T making
the right triangle commute. But πt ◦ ĝ ◦ η = πt ◦ g for each t ∈ T . Thus, using the



34 1. THE THEORY OF DISTRIBUTIVE PARTIAL STRUCTURES

fact once again that 2T is a product, we have that ĝ ◦ η = g. The uniqueness of ĝ
follows from the uniqueness of the fill-in for a product [HS73, 18.1]. Hence (2F , η)
is a universal extension of P over PerfBoolLat.

Now if P has an injective extension, then by 1.4.10(b) we know that it has a sepa-
rating set of ideal binary decompositions. Thus, in particular, the set
IdBinDecomp(P) must be separating. From this it follows directly that η is injective.
2

1.4.13 Corollary — existence of universal extensions over distributive
extension categories Let P be a BPPO, and let C be a distributive extension
category. Then P has a universal extension over one of the categories in C iff it has
a universal extension over all of them. If one of these extensions is injective, then
they all are. The explicit construction is as follows. Let (2F , η) be the universal
extension described in the above theorem. For the distributive extension category
PerfBoolLat, we are done. Otherwise. let L be the C-subalgebra of 2F (distributive
lattice or Boolean lattice) generated by η(P ), and let ηC : P → L be the morphism
which is identical to η, except that its codomain is restricted to be L. Then (L, ηC)
is a universal extension of P to C.
Proof: If C is PerfBoolLat, then the result has already been proven in the above
theorem. Otherwise, let (2F , η) be a universal extension of P to PerfBoolLat, let
M be a C object, and let g : P → M be a BPPO morphism. Consider the diagram
of Figure 1.3.

P L 2F

M 2T

-ηC -ιL

?

g̃

?

ĝ

-ιM

@
@
@
@
@
@@R

g

Figure 1.3:

Here L is the C object generated by η(P ) and ιL is the natural inclusion of L
into 2F . That is to say, if C is BdDiLat, then L is the smallest distributive sublattice
containing η(P ). Explicitly, its underlying set is the intersection of the underlying
sets of all distributive sublattices of 2F which contain η(P ). If C is BoolLat, then it
is the smallest Boolean lattice containing η(P ).

Since M is a distributive lattice, in view of 1.1.4(c), we may embed it into a
perfect Boolean lattice 2T . We let ιM be such an embedding. From the previous
theorem, we then have a morphism ĝ such that the pentagon of the diagram com-
mutes. To obtain the fill-in g̃, we simply use the appropriate restriction of ĝ. Now
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ĝ(ιL(L)) is the underlying set of the smallest sublattice of 2T in C which contains
ĝ(ιL(ηC(P ))) = ιM(g(P )) = ι−1

M(g(P )). The image of M under ιM is also a sublat-
tice of 2T which contains ιM(g(P )), and so ĝ(ιL(L)) ⊆ ιM(M). Thus, there is a
unique well-defined fill-in g̃ defined by x 7→ ι−1

M(ĝ(ιM)(x)). It is easily verified that
this fill-in is a morphism, thus completing the proof. 2

1.4.14 Remark on the existence of complements The preceding corollary
states that, from a fundamentals point of view, once we can get distributivity, a
guarantee of the existence of various forms of complements comes for free. This is
quite important because negation (qua complementation) is an important operation
in many practical specifications. Once we know that we have a distributive extension
of a particular kind, we know that we can extend it to one with complements. Thus,
complements need not be studied separately.

1.4.15 Examples — universal extensions need not be injective Let us
continue with the example P2 of 1.4.11. Over PerfBoolLat, the universal perfect
Boolean lattice is 22. The morphism η : P2 → 22 behaves as follows.

a 7→ (>,>)

b 7→ (>,⊥)

c 7→ (⊥,>)

d 7→ (⊥,>)

e 7→ (⊥,⊥)

Thus, c and d are identified in this universal pair; and, indeed, in every universal
extension. Since η is surjective, the result is the same in the other distributive
extension categories.

It is instructive to illustrate that we may construct a BPPO P3 with six elements
which has only one decomposition, thus implying that a universal extension (L, η)
over P3 must have that L is isomorphic to 2. Let P3 be the lattice (qua BPPO)
illustrated in Figure 1.4. We know from the discussion of P2 in 1.4.8 that the
diamond defined by the elements {a, b, c, d, e} cannot have any ideal binary decom-
position. Therefore, the only ideal binary decomposition of P3 is ({f}, {a, b, c, d, e}).
Hence, by 1.4.13, we have that (2, η3) is a universal extension of P3 for any of the
distributive extension categories, with η3 defined by a, b, c, d, e 7→ > and f 7→ ⊥.

1.5 Atoms in BPPO’s

Languages such as CUF allow types to be declared to be constant. A constant type
is constrained so that it may not have any proper subtypes other than ⊥. Within
a lattice-like framework, the formalization of a constant type is that of an atom.
In this section, we take a look at how such constraints may be viewed within our
theoretical framework.
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Figure 1.4: A bounded lattice whose universal distributive extension is 2.

1.5.1 Basic definitions In a bounded lattice L, an element a ∈ L is an atom
if for every x ∈ L, if x ≤ a then either x = ⊥ or else x = a. Unfortunately, there
does not appear to be a meaningful definition of an atom in a BPPO. We could
say that, given a BPPO P, a ∈ P is an atom if for every extension (L, η) of P, a
is an atom of L. However, it is always possible to find an extension of P in which
a is not an atom, so this definition is vacuous. Rather, the best that we can do is
to restrict attention to those extensions in which a is an atom. We thus make the
following definition regarding atoms in the context of a particular extension. Let P
be a BPPO, and let S ⊆ P . An extension (L, η) of P is atomic for S if for each
a ∈ S, a is an atom in L. We can then seek to characterize such atomic extensions.
Unfortunately, sets of atomic extensions, even distributive ones, do not share all of
the nice properties of sets of general distributive extensions. The following examples
illustrates some of the principal problems.

1.5.2 Examples Let P be the BPPO with P = {⊥,>, a, b}, and with no order
on the symbols other than the required ones; i.e., ⊥ ≤ a, ⊥ ≤ b, a ≤ >, and b ≤ >.
The only generalized join and meet operations are the trivial ones implied by this
order. Now suppose that we require a to be an atom; that is, suppose that S = {a}.
Then it is easy to see that there can be no universal extension to BdDiLat which
is atomic for S. For suppose that (L, η) is such an extension. Then there are two
possibilities: either η(b)∧ η(a) = η(a) or else η(b)∧ η(a) = ⊥ in L. Any other value
for this meet would invalidate the requirement that a be an atom. Now let (L1, η1)
and (L2, η2) be the simple extensions depicted on the left and right, respectively, in
Figure 1.5.

In these extensions, the associated morphism ηi is the identity on elements; the
target lattice L1 or L2 just has more structure than P. Now it is easy to see that no
universal extension (L, η) in which a is an atom has the property that there are g1

and g2 such that the diagram of Figure 1.6 is commutative for both i = 1 and i = 2.
Indeed, if η(a) ∧ η(b) = η(a) in L, then g1(η(a)) ∧ g1(η(b)) = g1(η(a)) in L1, i.e.,
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Figure 1.5: Two bounded distributive lattices in which a is an atom.

P L

L1

-η

Z
Z
Z
Z
Z
ZZ~

ηi

?

gi

Figure 1.6: Diagram to support argument of the impossibility of universal extensions
which preserve atoms.

a∧ b = a, which fails. Similarly, if η(a)∧η(b) = ⊥ in L, then g2(η(a))∧gi(η(b)) = ⊥
in L2, i.e., a ∧ b = ⊥, which fails.

There is a further problem with atoms. Unlike equational properties such as
being distributive or Boolean, the property of being an atom is not preserved under
morphic image. Given any bounded lattice L1 and any atom a ∈ L, we may build
a slightly larger lattice L2 in which a is not an atom, and an injective morphism
f : L1 → L2 which is the identity on L1. Just pick a name b 6∈ L1. Create L2 from
L1 by having L2 = L1 ∪ {b}. We put b “in between” a and ⊥ by defining, in L2,
b ∨ a = a, b ∧ a = b, and, for any other x ∈ L1, b ∨ x = a ∨ x and b ∧ x = a ∧ x. It
is easy to see that the lattice axioms are satisfied, and that a is no longer an atom.
Thus, we can always “embed away” the property of being an atom.

From a practical point of view, the previous examples illustrate that, if we wish
to specify that certain elements be atoms, then we cannot speak of the (up to
isomorphism) natural extension of the BPPO P to a given context, nor can we
characterize the property of an extension (L, η) of P by considering morphisms with
domain P, as we did in the previous section for other kinds of extensions. Rather,
we must be more careful. We proceed as follows.
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1.5.3 Atomic Extensions Let P be a BPPO, and let ∆ ⊆ {f | f : P → 2}.
The full natural extension of P defined by ∆ is defined to be (2∆, η∆), with η∆(a) =
〈f(a)〉f∈∆. An extension (L, η) is a natural extension of P with respect to ∆ if there
is an injective morphism ι which preserves atoms (i.e., maps atoms to atoms) such
that the diagram in Figure 1.7 commutes. Note that this is a generalization of the

P L

2∆

-η

Z
Z
Z
Z
Z
Z~

η∆

?

ι

Figure 1.7: Diagram for 1.5.3.

constructions used in 1.4.12 and 1.4.13; in those articles we have the special case
that ∆ = IdBinDecomp(P).

Now let S ⊆ P \ {⊥,>}. We say that ∆ renders S atomic if for every a ∈ S,
there is exactly one f ∈ ∆ such that f(a) = >. (In other words, f(a) = ⊥ for all
f ∈ ∆, save for possibly one.)

The following lemma is well-known, but it is crucial to our work, and easy to
prove, so we repeat it here.

1.5.4 Lemma Let L be a bounded distributive lattice. Then there is a perfect
Boolean lattice B and an embedding ι : L → B which preserves atoms.

Proof: Without loss of generality, we may take L to be a bounded bit-vector
lattice. Let R be the index set for the bits of the bit vectors. For each atom a ∈ L,
let Ra be the set of bits which are 1 in the representation of a. For a1, a2 distinct
atoms, it is clear that Ra ∩Rb = ∅, since a ∧ b = ⊥. Thus, we can replace, for each
atom a, the set Ra with a single element, without changing L, up to isomorphism.
Once we do this, we are left with the situation that each atom of L is represented
by a bit vector in which exactly one bit is nonzero. Let us call the new index set
R′. To complete the proof, we embed this modified L into the perfect lattice 2R′ .
Since the atoms of L were represented by elements with a single nonzero bit, they
continue to be atoms in 2R′ . 2

Finally, we come to our main characterization of extensions to a BPPO which
forces certain elements to be atoms.

1.5.5 Theorem — characterization of atoms Let P be a BPPO, let S ⊆
P \ {⊥,>}, and let (L, η) be an extension of P. Then
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(a) If ∆ ⊆ {f | f : P → 2} renders S atomic and (L, η) is natural with respect
to ∆, then (L, η) is atomic for S.

(b) If (L, η) is atomic for S, then there is a ∆ ⊆ {f | f : P → 2} which renders
S atomic.

Proof: Part (a) is immediate; note that the atoms of 2∆ are precisely the ∆-tuples
in which exactly one entry is > and the rest are ⊥. Thus, since ∆ renders S atomic,
it follows that each η∆(a) is an atom in 2∆ for each a ∈ S. But ι of Figure 1.7 is an
injection, and it is easy to see that in that case the inverse image of an atom must
be an atom. Thus, η(a) is an atom of L for each a ∈ S, and so (L, η) is atomic for
S.

To show part (b), we simply invoke 1.5.4, and use the fact that any perfect
Boolean lattice is of the form 2A for some set A. Thus, we can construct a morphism
h : P → 2A which preserves atoms. Now, we define ∆ = {πx ◦ η | x ∈ A}. Since an
element in 2A is an atom iff exactly one of its components is >, it follows that ∆
renders S atomic. 2

1.5.6 Theorem — independence of the extension category Let P be a
BPPO, and let S ⊆ P \ {⊥,>}. Then, if P has an extension (resp. injective
extension) which is atomic for S to any one of the distributive extension categories,
then it has such an extension to all of them.

Proof: This follows immediately from 1.5.4, since that result shows that we can
extend the extension to one in PerfBoolLat, which is a subcategory of all of the
others. 2

In summary, when dealing with specifications which require that certain types
must be atomic, we must look for specific extensions which yields this result, rather
than characterizing a universal extension which subsumes all others. In Section 2.5,
we will return to the issue of atoms by addressing some of the computational issues.

2. Computational Complexity of Decision Prob-
lems

In this section, we turn to the problem of determining the computational complexity
of deciding whether or not a BPPO has a distributive extension of one sort or
another. For obvious reasons, we now restrict our attention to finite structures.

2.1 Determining Consistency of Prespecifications

A specification that a user of a system such as CUF supplies is not likely to be a
BPPO. Rather, it will be some sort of “skeleton” that may be extended to a BPPO.
To assess the complexity of the whole process of taking a specification and deciding
whether or not it is extensible to a distributive lattice, we must therefore break
the process into two distinct steps. First, we must determine if the specification is



40 2. COMPUTATIONAL COMPLEXITY OF DECISION PROBLEMS

“well-formed,” that is, if it represents a consistent specification of a BPPO. Second,
if it does specify a BPPO, then we must decide whether or not it has the appropriate
form of extension.

In this subsection, we address the question of determining whether a prespec-
ification is well formed as a definition of a BPPO, and show that the problem of
determining this is solvable in deterministic polynomial time. To begin, we give the
definition of a prespecification.

2.1.1 BPPO prespecifications A finite BPPO prespecification is a pair S =
(P,C) in which

(i) P is a finite set, called the set of inner types. We call P ∪ {⊥,>} the set of
types of S, and denote it by Aug(P ).

(ii) C is a finite set, called the set of constraints. Each constraint in C is an
expression of one of the following three forms.

(a) (a < b), with a, b ∈ Aug(P ) and a 6= b.

(b) (
∨

S = a), with a ∈ Aug(P ) and S a nonempty subset of P containing
at least two distinct elements.

(c) (
∧

S = a), with a ∈ Aug(P ) and S a nonempty subset of P containing
at least two distinct elements.

It should be noted that a given constraint has many syntactic representations.
For example, if S = {a1, . . . , ak}, then (

∨
S = a) and (

∨{a1, . . . , ak} = a) denote
the same constraint, even though they are not the same string. Also, we require
that S in any rule of the form (

∨
S = a) or (

∧
S = a) have at least two distinct

elements, for otherwise the rule could only be consistent with a BPPO if S = {a},
which contributes nothing to the specification, since it follows from the axioms of a
BPPO.

The size of a rule of the form (a < b) is 2. The size of a rule of the form (
∨

S = a)
or (

∧
S = a) is Card(S) + 1, where Card(S) denotes the cardinality of S. The size of

S is Card(P ) plus the sum of the sizes of its rules, and is denoted Size(S).

A prespecification is supposed to represent, in abstract form, the same level of
specification language as, say, the CUF type definition language does. There are
some differences in detail, although this will not affect the overall complexity or
power. The appendix contains a more detailed description of this component of
CUF, together with a comparison of the two.

For a prespecification to be meaningful, it must be consistent — that is, it must
represent a BPPO. The next definition formalizes this idea.

2.1.2 Consistency of prespecifications Let S = (P,C) be a finite BPPO pre-
specification, and let B = (B,≤,>,⊥,

∨
,
∧

) be a BPPO. Informally, B is consistent
with S if it can be extended to S in a “natural” way. Formally, we say that B is
consistent with S if it satisfies the following conditions.
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(cs-i) B = Aug(P ).

(cs-ii) (a < b) ∈ C implies that a ≤ b in the poset of B.

(cs-iii) (
∨

S = a) ∈ C implies that
∨

: S 7→ a as an operation in B. Dually,
(
∧

S = a) ∈ C implies that
∧

: S 7→ a as an operation in B.

B is minimal if for every other consistent extension B1 = (B,≤1,>,⊥,
∨

1,
∧

1), we
have that a ≤ b implies a ≤1 b,

∨
S = a implies

∨
1 S = a, and

∧
S = a implies∧

1 S = a, for all a, b ∈ B and all nonempty S ⊆ B. We say that S is consistent if it
is consistent with some BPPO. In other words, a consistent prespecification is one
which can be “extended” to a BPPO.

2.1.3 The consistency decision problem The formal decision problem which
we shall address in this subsection is the following.

The decision problem PreBPPO-Consis:

Input: A BPPO prespecification S.

Question: Does S have a consistent extension to a BPPO?

2.1.4 Acyclicity and the partial order of prespecifications A key issue
that we need to address in determining whether or not a prespecification is consistent
is to determine whether or not it defines a partial order. If the implied order relation
is cyclic, then we cannot have a partial order, which is acyclic by definition. The
test is actually accomplished in two steps. In the first step, which we elaborate here,
we check for so-called weak acyclicity, in which the underlying graph is checked for
cycles.

Let S = (P,C) be a finite BPPO prespecification. The graph of S, denoted
Graph(S), is a directed graph with vertices consisting of the elements of Aug(P ),
and edges defined as follows6.

(i) (⊥,>) ∈ Graph(S).

(ii) For each a ∈ P , (⊥, a) ∈ Graph(S) and (a,>) ∈ Graph(S).

(iii) For each constraint of the form (a < b) in C, (a, b) ∈ Graph(S).

(iv) For each constraint of the form (
∨

S = a) in C, and each s ∈ S, (s, a) ∈
Graph(S).

(v) For each constraint of the form (
∧

S = a) in C, and each s ∈ S, (a, s) ∈
Graph(S).

S is said to be weakly acyclic if Graph(S) is acyclic. If S is weakly acyclic, we define
the weak partial order of S to be the reflexive and transitive closure Graph(S), which
we denote by Graph(S). In other words, (a, b) ∈ Graph(S) iff a = b or else there is a
directed path from a to b in Graph(S).

6We identify the graph with the set of its edges, so (x, y) ∈ Graph(S) means precisely that there
is an edge from x to y in the graph.
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2.1.5 Proposition — complexity of acyclicity issues Let S = (P,C) be a
finite BPPO prespecification.

(a) For any consistent extension of S to a BPPO B = (B,≤,>,⊥,
∨

,
∧

), we
must have that Graph(S) ⊆ ≤. Thus, if S is consistent, then it must be
weakly acyclic.

(b) It is decidable in deterministic time O(Size(S) · log(Card(P ))) whether or not
S is weakly acyclic.

(c) Graph(S) may be constructed from Graph(S) in deterministic time
O(Card(P )3).

Proof: Part (a) is immediate. For part (b), the rules of 2.1.4 provide a means
of enumerating the tuples (which represent the edges) of Graph(S). However, a
representation of a graph as a set of ordered pairs is not particularly amenable
to the efficient detection of cycles. Therefore, it is advantageous to build a more
useful representation of the graph. We employ a data structure, with the following
characteristics, for representing sets of items.

(i) The entire set of items may be traversed in time linear in the size of the set.

(ii) Given its name, any particular item may be reached in time logarithmic in
the size of the set.

(iii) A new item may be added in time logarithmic in the size of the set.

An appropriate data structure is a balanced binary search tree, such as a red-black
tree [CLR90, Ch. 14].

This data structure is used in two ways. First of all, the set of all nodes of
Graph(S) is represented in this way. Secondly, for each node a, there is a balanced
binary search tree, attached to node a, which represents the set of all nodes which
may be reached from a by following a single directed edge from tail to head. Given
a way to enumerate the edges of the graph in time linear in the number of tuples
(which is easily obtained from the definition of 2.1.4), such a representation may be
built in time O(Size(S) · log(Card(P ))). Indeed, the tuples of Graph(S) themselves
may be enumerated in time O(Size(S)). For each such tuple (a, b), its insertion
into the data structure involves two steps. First, a is inserted into the list of all
nodes of the graph. Second, b is inserted into the nodes list of a. Each step may be
performed in time O(log(Card(P ))). Thus, to build the graph, O(Size(S)) steps, each
of time complexity O(log(Card(P ))), must be performed, yielding the complexity
O(Size(S) · log(Card(P ))).

Now, to determine whether or not Graph(S) is acyclic, we start at ⊥ and traverse
the graph depth first. Nodes are marked as they are encountered in the traversal
in a forward direction, and the marks are erased upon backtracking over them.
The graph is cyclic if we encounter a marked node while traversing in the forward
direction; otherwise it is acyclic. In the data structure which we have described,
this traversal can be done in time proportional to the number of edges in the graph,
which is clearly O(Size(S)). See, for example [CLR90, Lemma 23.10]. Hence, the
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whole procedure of building the representation of the graph, and then testing it for
acyclicity, is bounded in time complexity by O(Size(S) · log(Card(P ))).

Finally, for part (c), we may employ one of the standard transitive closure algo-
rithms, which run in time θ(Card(P )3) [CLR90, pp. 562-563]. 2

2.1.6 Examples — weak acyclicity is not sufficient There may be order
dependencies implied by a prespecification S which are not recaptured in Graph(S).
We illustrate with a pair of examples.

Let S1 = (P1,C1) be the BPPO prespecification in which P1 = {a, b, c, d, e}, and
C1 = {(∨{a, b, c} = d), (

∨{a, b} = e)}. Then clearly we must have that e ≤ d, yet
this constraint is not recaptured by Graph(D).

Let S2 = (P2,C2) be the BPPO prespecification in which P2 = {a, b, c, d, e},
and C2 = {(∨{a, b, c} = d), (

∨{a, b, c} = e)}. This prespecification is inconsistent,
because we must have e = d. But this inconsistency does not cause Graph(S) to be
cyclic, and so is undetected by this test.

Here is a somewhat more complex example. Let S3 = (P3,C3) be the BPPO pre-
specification in which P2 = {a, b, c, d, e, f, g}, and C2 = {(∨{a, b} = f), (

∨{b, c} =
f), (

∨{a, c} = e), (
∨{f, g} = e)}. This prespecification is also inconsistent. Indeed,

from (
∨{a, b} = f) and (

∨{b, c} = f) we can conclude that (
∨{a, b, c} = f). Since

we have (
∨{a, c} = e), it must be the case that e ≤ f . However, (

∨{f, g} = e) im-
plies that f ≤ e, whence e = f , and so the prespecification is inconsistent. However,
Graph(S) is acyclic.

To detect these sorts of relationships between elements, we must perform a more
detailed analysis of how the rules interact. This is accomplished by examining the
behavior of ideals, as we next describe.

2.1.7 Ideals of prespecifications The notion of an ideal of a BPPO prespecifi-
cation is very similar to that of an ideal for a BPPO (see 1.3.4), and, in a consistent
BPPO prespecification, the two coincide. The details are as follows.

Let S = (P,C) be a finite BPPO prespecification. A ideal of S is a subset I ⊆ P
subject to the following conditions.

(i) ⊥ ∈ I.

(ii) x ∈ I and (y, x) ∈ Graph(S) implies y ∈ I.

(iii) S ⊆ I and (
∨

S = a) ∈ C implies a ∈ I.

Dually, a dual ideal of S = (P,C) is a subset I ⊆ P subject to the following
conditions.

(i) > ∈ I.

(ii) x ∈ I and (x, y) ∈ Graph(S) implies y ∈ I.

(c) S ⊆ I and (
∧

S = a) ∈ C implies a ∈ I.

Let ¹ be a partial order on Aug(P ), and let a ∈ Aug(P ). The principal preideal
of a with respect to ¹, denoted PrinIdeal(a,¹), is {x ∈ Aug(P ) | x ¹ a}. Dually,
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the dual principal preideal of a with respect to ¹, denoted DualPrinIdeal(a,¹), is
{x ∈ Aug(P ) | a ¹ x}. We say that ¹ is stable with respect to S if Graph(S) ⊆ ¹
and every principal preideal I with respect to ¹ is an ideal of S, and every dual
principal preideal of S with respect to ¹ is a dual ideal of S.

Intuitively, stability of¹means that applying the rules in C to principal preideals
and dual principal preideals will not add new elements to the sets. In other words,
the rules of C do not imply the necessity of adding new pairs to ¹ to make this
partial order consistent with them.

2.1.8 Lemma Let S be a finite BPPO prespecification which is weakly acyclic.
Then, if S admits a stable partial order, it admits a smallest such order ¹S, which
is given by a ¹S b iff a ¹ b for all stable partial orders ¹ with respect to S.

Proof: Assume that S admits a stable partial order, and let E be the set of
all stable partial orders on Aug(P ) with respect to S. Now it is clear that ∩E
is a partial order on P , and that it contains Graph(S). We need to show that
it is stable. To see this, first of all, note that for each a ∈ Aug(P ) we have
that ∩¹ ∈EPrinIdeal(a,¹) is an ideal of S which contains a. Indeed, this follows
immediately from the easily seen fact that any intersection of ideals is itself an
ideal. But ∩¹ ∈EPrinIdeal(a,¹) = PrinIdeal(a,¹S). Dually, we must have for each
a ∈ Aug(P ) that ∩¹ ∈EDualPrinIdeal(a,¹) is a dual ideal of S which contains a, and
that ∩¹ ∈EDualPrinIdeal(a,¹) = DualPrinIdeal(a,¹S). Hence, (∩E) =¹S is stable,
as required. 2

2.1.9 Notation If S is a weakly acyclic finite BPPO prespecification which ad-
mits a stable partial order, then we call S stable, and we denote the smallest such
stable partial order, as identified in the above lemma, by ¹S.

It is clear that if S does not have a stable partial order, then it cannot be extended
to a BPPO. Indeed, a stable partial order is the only kind that respects the ordering
requirements imposed by the rules. Let us illustrate this more completely with a
pair of examples.

2.1.10 Examples Let S1 = (P1,C1) be as in 2.1.6. Notice that e 6∈
PrinIdeal(d, Graph(S1)), yet e must be in every ideal which contains a, since ev-
ery such ideal must also include {a, b, c}. Hence Graph(S1) is not stable with respect
to S1. In this case though, if we add the pair (d, e) to this partial order, we do
obtain a stable one.

Now consider S2 = (P2,C2) of 2.1.6. In this case, we must have that d is in
every ideal containing e, and that e is in every ideal containing d. Since the set of
ideals of S2 must include principal preideals if an associated order ¹ is to be stable,
we see that there is no way to extend Graph(S2) to a stable partial order. Thus, not
every BPPO prespecification with a weakly acyclic partial order may be extended
to one with a stable partial order.

Similarly, with S3 = (P3,C3) of 2.1.6, we must have that e is in every ideal
containing f , and conversely.
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2.1.11 Proposition — complexity of deciding stability Let S = (P,C)
be a finite BPPO prespecification which is weakly acyclic. Then it is decidable in
deterministic time O(Card(P )4 · Size(S) · log(Size(S))) whether or not S has a stable
partial order. If it has one, this order may also be computed in deterministic time
O(Card(P )4 · Size(S) · log(Size(S))).

Proof: The high-level algorithm proceeds as in Figure 2.1.

1. For each p ∈ P
2. PI(p) := PrinIdeal(p, Graph(S));
3. DPI(p) := DualPrinIdeal(p, Graph(S));
4. End for each;
5. ¹ := Graph(S);
6. done := false;
7. Repeat
8. temprel := ∅;
9. For each p ∈ P
10. For each (

∨
S = a) in C

11. If S ⊆ PI(p) and a 6∈ PI(p)
12. then
13. temprel := temprel ∪ (a, p);
14. PI(p) := PI(p) ∪ PI(a);
15. End if;
16. End for each;
17. For each (

∧
S = a) in C

18. If S ⊆ DPI(p) and a 6∈ DPI(p)
19. then
20. temprel := temprel ∪ (p, a);
21. DPI(p) := DPI(p) ∪ DPI(a);
22. End if;
23. End for each;
24. End for each;
25. If temprel = ∅
26. then done := true;
27. else ¹ := ¹ ∪ temprel

28. End if;
29. until done;
30. If ¹ acyclic then success; else failure; End if.

Figure 2.1: Algorithm for 2.1.10

The idea of the algorithm is as follows. We simply iterate on the principal
preideals and dual principal preideals, adding elements which the join and meet
rules require to be present, but the partial order has missed. As long as we do
not get any cycles, the algorithm succeeds, while a cycle implies that two elements
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generate identical principal preideals or principal dual preideals, which means that
they cannot be distinct elements in any associated BPPO.

It is easy to see that this algorithm is correct. Proceeding a bit more formally,
we begin by building the principal ideal and dual principal ideal with respect to
Graph(S) for each element p ∈ P . These are represented by PI(p) and DPI(p),
respectively. Then, we iterate over each rule in C and each p ∈ P . For a rule of the
form (

∨
S = a), it must be the case that a is in every ideal which contains S. Thus,

if each element of S is in PI(p), but a is not, then we add PI(a) to PI(p). Note that
we add the entire ideal PI(a), and not just a. We also add the pair (p, a) to the
relation ¹. A similar rule is applied for dual ideals. We repeat this process until an
iteration does not produce any modifications. Since the underlying set P is finite,
this process must terminate. It is clear that the relation ¹ must be a subset of any
stable partial order for S, since it is a minimal one which is closed under application
of the rules of C. Thus, once this computation is completed, we just check to see
whether the resulting relation is acyclic.

Now let us turn to proving that the complexity is as stated. We assume an order-
ing on the types, and represent sets as linear linked lists. We start by representing
the set S in each rule of the form (

∨
S = a) and (

∧
S = a) as a linearly linked list.

This can be done, for all such rules, in time O(Size(S) · log(Size(S))).

In lines 1-4, for each p ∈ P , we build the principal preideal PrinIdeal(p, Graph(S)),
represented as PI(p). We can build linear-linked-list representation of the ideal in
time O(Size(Graph(S)) · log(Size(Graph(S)))). But Size(Graph(S)) ≤ Size(S), so this
complexity reduces to O(Size(S)·log(Size(S))). Similarly, we build the representation
for each DualPrinIdeal(p, Graph(S)). This must be done for each element of P , for a
total time bounded by O(Card(P ) · Size(S) · log(Size(S))).

Note that Size(S) ≤ Card(P )2 + 2 · Card(P ) · 2Card(P ), with the Card(P )2 term
representing the contribution of rules of the form a < b and the 2 ·Card(P ) · 2Card(P )

term representing the size bound on all join and meet rules. But then Card(P )2 +
2 · Card(P ) · 2Card(P ) ≤ 4 · Card(P ) · 2Card(P ), and so Size(S) ≤ 4 · Card(P ) · 2Card(P ).
Taking the log of both sides, we get that O(log(Size(S))) ⊆ O(Card(P )). Hence the
complexity lines 1-4 is bounded by O(Card(P )2 · Size(S)).

Now for the steps in the repeat loop of lines 7-29. A check of a condition
of the form S ⊆ PI(p) may be performed in time O(Card(P )), since both S and
PrinIdeal(a,¹) are represented as ordered lists. A similar check applies for the dual
preideals. Execution of a union of the form given on line 13 or 20 may be performed
in constant time, since we do not do any special structuring at that point. Execution
of a union of the form given on line 14 or 21 can be performed in time O(Card(P )),
since each ideal and dual ideal is represented as a linearly linked list, and computing
the union amounts to building the merger of the associated lists. The number of
rules in C is surely bounded by Size(S); therefore we may bound the time in each
execution of the pair of for loops on lines 10-16 and 17-23 by O(Card(P ) · Size(S)).
The outer for loop spanning lines 9-24 executes Card(P ) times, so the total time for
each execution of this outer loop is O(Card(P )2 · Size(S)).

For the if statement on lines 25-28, updating ¹ can take time O(Card(P )), since
at most 2 · Card(P ) tuples can be included in temprel in any one iteration of the
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outer for loop. This is smaller than the complexity of the outer for loop; thus,
the complexity of the body of the repeat loop, spanning lines 7-29, is O(Card(P )2 ·
Size(S)).

The number of times that the repeat loop is executed is bounded by Card(P )2,
since we must add a tuple to ¹ for the condition done to be false, and since ¹ is a
relation on P . Thus, the complexity of the entire repeat loop is O(Card(P )4·Card(S)).

Finally, when the loop is done, we must check to see if the resulting ¹ is acyclic.
This may be done in time proportional to the number of pairs in the relation, as
explained in the proof of 2.1.5. Thus, the complexity of this step is O(Card(P )2).
Putting this all together, we get a final complexity of O(Card(P )4 · Size(S)). 2

There is one more condition that we need to check. Namely, we need to make
sure that the stable partial order that we construct satisfies condition (bppo-iv);
that is, that any joins and meets which are defined are lub’s and glb’s in the partial
order. Fortunately, this is guaranteed with a stable partial order. The formalization
and proof follow.

2.1.12 Consistency of bounds Let S = (P,C) be a stable finite BPPO pre-
specification.

(a) S is lub consistent if, for each rule of the form (
∨

S = a) ∈ C, we have that
lub(S)↓ with lub(S) = a in ¹S.

(b) S is glb consistent if, for each rule of the form (
∧

S = a) ∈ C, we have that
glb(S)↓ with glb(S) = a in ¹S.

If S is both lub and glb consistent, then we say that it is bounds consistent.

2.1.13 Proposition — stability implies bounds consistency Let S = (P,C)
be a stable finite BPPO prespecification. Then, S is bounds consistent.

Proof: This is almost immediate. Let (
∨

S = a) ∈ C, and let b be an upper
bound for S. Then S ⊆ PrinIdeal(b,¹S). However, since ¹S is stable, we must have
that a ∈ PrinIdeal(b,¹S) as well. Thus, a ¹ b, and so S is lub consistent. The
property of glb consistency is proved similarly. 2

To carry the translation from BPPO prespecification to BPPO to a conclusion,
we must add all of the join and meet rules implied by those of the prespecification to
the final collection, for it is only in this way that we can identify precisely what the
generalized join and generalized meet operators will be. The next article identifies
this construction.

2.1.14 Extension to full join rules Let S = (P,C) be a stable finite BPPO
prespecification.

(a) The full join rule set for S, FJRS(S), is the smallest set of rules closed under
the following operations.

(i) (
∨

S = a) ∈ C implies (
∨

S = a) ∈ FJRS(S).
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(ii) If S ⊆ P and a = lub(S) in ¹S, then (
∨

S = a) ∈ FJRS(S).

(iii) If (
∨

S1 = a1), . . . , (
∨

Sk = ak) ∈ FJRS(S), (
∨{a1, . . . ak} = a) ∈

FJRS(C), then (
∨

(
⋃k

i=1 S) = a) ∈ FJRS(S).

(b) The relation Rel∨(S) ⊆ Pf (P ) × Aug(P ) is defined by (S, a) ∈ Rel∨(S) iff
(
∨

S = a) ∈ FJRS(S).

(a′) The full meet rule set for S, FMRS(S), is defined dually as the smallest set
of rules closed under the following operations.

(i′) (∧S = a) ∈ C implies (
∧

S = a) ∈ FMRS(S).

(ii′) If S ⊆ P and a = lub(S) in ¹S, then (
∧

S = a) ∈ FMRS(S).

(iii′) If (
∧

S1 = a1), . . . , (
∧

Sk = ak) ∈ FMRS(S), (
∧{a1, . . . ak} = a) ∈

FMRS(C), then (
∧ ⋃k

i=1 S = a) ∈ FMRS(S).

(b’) The relation Rel∧(S) ⊆ Pf (P ) × Aug(P ) is defined by (S, a) ∈ Rel∧(S) iff
(
∨

S = a) ∈ FJRS(S).

Note that the size of these construction may be exponential in the size of the input,
but that is not a fatal flaw, since we need not explicitly build these relations. All
that we need know is that such an extension exists, and we can determine that by
knowing that the prespecification is stable, which can be determined in deterministic
polynomial time.

2.1.15 Proposition — defining join and meet in prespecifications Let
S = (P,C) be a stable finite BPPO prespecification, with ¹ the associated partial
order. The following conditions then hold.

(a) Rel∨(S) and Rel∧(S) are partial functions.

(b) Any extension of S to a BPPO B = (B,≤,>,⊥,
∨

,
∧

) must have Rel∨(S) ⊆∨
and Rel∧(S) ⊆ ∧

.

Proof: This follows immediately from the characterization of ¹S in terms of
preideals and dual preideals, as given in 2.1.8 and 2.1.9. 2

Finally, we are able to formally identify the “natural” BPPO associated with a
consistent prespecification.

2.1.16 Consistency and the BPPO of a prespecification Given a stable
BPPO prespecification, S, we define the canonical BPPO of S to be CanBPPO(S) =
(Aug(P ),¹S,⊥,>, Rel∨(S), Rel∧(S)).

For the terminology to make sense, we must show that CanBPPO(S) is indeed a
BPPO; this and more we do in the following theorem.

2.1.17 Theorem — consistent extensions Let S = (P,C) be a finite BPPO
prespecification.

(a) S is consistent iff it is stable.
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(b) If S is consistent, then the canonical BPPO of S is the unique minimal con-
sistent extension of S.

(c) PreBPPO-Consis may be decided in deterministic polynomial time (in the size
of S).

Proof: We start with (a). If S is consistent, then in light of the discussion in
1.3.4, the associated BPPO B must embed into the lattice of all of its ideals. Thus,
in particular, the associated partial order must the stable. Conversely, if S is stable,
then we may verify that the canonical BPPO identified in 2.1.16 is indeed a BPPO.
Properties (bppo-i) – (bppo-iii) of 1.2.2 are immediate. Property (bppo-iv) follows
from bounds consistency (2.1.13). Finally, properties (bppo-vi) and (bppo-vii) follow
from the definitions (2.1.14) and consistency (2.1.15) of Rel∨(S) and Rel∧(S).

We have argued in the previous paragraph that the canonical BPPO of S is
indeed a BPPO. Unique minimality follows from 2.1.8 and 2.1.15(b).

Part (c) follows from the complexity results of 2.1.5 and 2.1.11. 2

Thus, the first critical step in processing a finite BPPO prespecification to deter-
mine if it is extendible to a distributive lattice, namely that of determining whether
or not it defines a BPPO at all, may be done in deterministic polynomial time.

As we noted above, the canonical BPPO associated with a consistent finite pre-
specification may be exponentially larger in size than the prespecification (in terms
of the number of join and meet rules). Therefore, it is important that we be able
to work with the prespecification, without being required explicitly to compute the
entire canonical BPPO. Fortunately, this is the case. Indeed, we may even deter-
mine when a candidate for a morphism into a lattice is indeed a morphism, just by
checking against the prespecification. The following proposition characterizes this
explicitly. The proof is a simple consequence of the definitions of the full sets of join
and meet rules of 2.1.14, as well as the characterization of stability in 2.1.8. Since
we do not explicitly use this result in this report, we omit the simple details of the
rather direct proof.

2.1.18 Proposition — characterization of morphisms Let S = (P,C) be
a consistent finite BPPO prespecification, let L be a distributive lattice, and let
f : Aug(P ) → L be a function. Then f is a morphism f : CanBPPO(P) → L iff the
following four conditions are satisfied

(i) For each p ∈ Aug(P ), f(⊥) ≤ f(p) and f(p) ≤ f(>).

(ii) For each constraint (a < b) ∈ C, f(a) ≤ f(b).

(iii) For each constraint (
∨

S = a) ∈ C, f(a) =
∨

f(S).

(iv) For each constraint (
∧

S = a) ∈ C, f(a) =
∧

f(S). 2

2.1.19 Terminology of BPPO’s extended to consistent prespecifications
As a terminological convenience, we extend the use of names of properties of BPPO’s
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to consistent BPPO prespecifications. The meaning is that the consistent prespeci-
fication S has the property iff CanBPPO(S) does. Thus, for example, if we say that
S is separable, we mean that CanBPPO(S) is separable.

2.2 The Basic NP-Complete Extension Problems

Being able to extend a finite BPPO prespecification to a BPPO means that the
prespecification may be extended to a lattice. This follows directly from 1.3.5. From
the main results of the previous subsection, we know that deciding whether or not
this is possible can be done in deterministic polynomial time. However, if we demand
that that extension be distributive, things become much more difficult. Indeed, in
this subsection, we shall show that demanding that the extension be distributive
causes the extension problem to become NP-complete. This is irrespective of the
kind of distributive extension we seek, as long as it is nontrivial. We begin with a
formalization of the problem statement.

2.2.1 Definitions of the basic problems We consider two basic decision prob-
lems, Dist-BinExt and Dist-InjExt. In each case, a problem instance is a BPPO
prespecification. Because of their importance, we highlight these problems clearly
below.

The decision problem Dist-BinExt:

Input: A BPPO prespecification S.

Question: Does S have a consistent extension to a BPPO, which in turn has
an extension to any of the distributive extension categories?

The decision problem Dist-InjExt:

Input: A BPPO prespecification S.

Question: Does S have an extension to a consistent BPPO, which in turn has
an injective extension to any of the distributive extension categories?

In light of 1.4.10, the answer to a query in each of these three problem categories
is independent of which distributive extension category we speak. And, by 1.4.12,
each question above is also equivalent to asking whether or not the prespecification
has a universal extension of the given type to the given category. In other words, the
three problems listed above cover all of the questions about extensions to distribu-
tive extension categories which we consider (except for questions involving constant
types).

We work with BPPO prespecifications rather than with BPPO’s themselves,
because the former represent the form in which such structures are typically specified
in computational applications, such as feature structure languages like CUF. The
actual BPPO corresponding to a consistent prespecification may be exponentially
larger in size, because of the tremendous expansion that the generalized associativity
rules can effect. Thus, to work with BPPO’s themselves might yield an artificially
low complexity measure.
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It is useful to know the complexity of the problems when restricted to certain
subsets of BPPO prespecifications. There are three particularly useful measures in
this regard. Given a BPPO prespecification S = (P,C), the height of S is the length
of the longest directed path in Graph(S). Note that this may be strictly less than
the length of the longest path in ¹S, as may be seen by considering the example
S1 of 2.1.6 and 2.1.10. Next, given a BPPO prespecification, the

∨
-fanout (or join

fanout) is the maximum of 1 and cardinality of S in the largest rule of the form
(
∨

S = a) ∈ R. Dually, the
∧
-fanout (or meet fanout) is the maximum of 1 and

cardinality of S in the largest rule of the form (
∧

S = a) ∈ R. Again, the fanout
of the BPPO of a consistent prespecification can be much larger than that of the
BPPO itself.

We formulate problems whose inputs are restricted to prespecifications bounded
by height and fanout. To highlight these problems, we list them below.

The decision problem Dist-BinExt(h, j,m):

Input: A BPPO prespecification S, with height bounded by h,
∨

-fanout
bounded by j, and

∧
-fanout bounded by m.

Question: Does S have an consistent extension to a BPPO, which in turn has
an extension to any of the distributive extension categories?

The decision problem Dist-InjExt(h, j,m):

Input: A BPPO prespecification S, with height bounded by h,
∨

-fanout
bounded by j, and

∧
-fanout bounded by m.

Question: Does S have an extension to a consistent BPPO, which in turn has
an injective extension to any of the distributive extension categories?

To allow for the case in which we do not place restrictions on some of these pa-
rameters, we also allow the argument ∞. Thus, Dist-BinExt(∞, 3, 3), is the problem
Dist-BinExt restricted to prespecifications in which the

∨
- and

∧
-fanout are each

restricted to be no larger than 3, but with no restriction on the height. Of course,
Dist-BinExt(∞,∞,∞) is just Dist-BinExt.

We begin with the “easy” part of the proof of NP-completeness — namely, that
the problems under consideration are in NP.

2.2.2 Proposition The problems Dist-BinExt and Dist-InjExt are each in NP.

Proof: Let S be a BPPO prespecification. First of all, by 2.1.16(c), we know that
we can determine in deterministic polynomial time whether or not S is consistent.
Now, if is consistent, we can simply guess at a solution and test. We use the
characterization of distributive extensions in terms of ideal binary decompositions.
By 1.4.7, we know that CanBPPO(S) has an extension pair iff it has an ideal binary
decomposition. But to test, we simply guess at such a decomposition, which, in
view of the characterization of 1.4.2, amounts to selecting a partition of Aug(P )
and seeing if it defines a morphism into 2. But such a test, in view of 2.1.17, may
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be performed in time which is deterministic polynomial in the size of S. Hence
Dist-BinExt is in NP.

The proof that Dist-InjExt is in NP is similar. This time, we use the characteri-
zation of 1.4.10 which characterizes injective decompositions in terms of separating
sets of ideal binary decompositions. But it is easy to see that such a separating
set need have at most (n2 − n)/2 members, where n is the cardinality of Aug(P ).
Indeed, there are (n · (n− 1))/2 pairs of elements in Aug(P ), and we need but one
morphism to separate each. So, we just guess at such a separating set, and test
each one, as described above, to see if it both separates the appropriate pair and is
a morphism. Hence, Dist-InjExt is also in NP. 2

Observe that the above result also implies that all problems of the form
Dist-BinExt(h, j, m), Dist-SpecExt(h, j,m) and Dist-InjExt(h, j,m) are in NP, for 1 ≤
h, j,m ≤ ∞, since they are restrictions of the problems studied in the above propo-
sition.

2.2.3 Notation for propositional formulas We assume a general familiarity
with propositional logic, particularly with the satisfiability problems associated with
modern computational complexity theory, as may be found in [GJ79] or [AHU74].
Here we just clarify notation and terminology. Given a propositional formula ϕ,
Vars(ϕ) denotes the set of (Boolean) variables (or proposition letters) which explic-
itly occur in ϕ. Given a set X of variables, we may say that ϕ is taken over X
provided Vars(ϕ) ⊆ X. The possibility that Vars(ϕ) is a proper subset of X is
not excluded. A literal is either a variable x or else its negation ¬x, and Var(`)
denotes the variable of the literal `. The literal set of X, denoted Literals(X), is
X ∪ {¬x | x ∈ X}. The complement of a literal is its negation; thus, the comple-
ment of x is ¬x, and the complement of ¬x is x. A clause is a disjunction (`1∨ . . . ∨`k)
of literals. A clause is trivial if it contains both a variable and its negation as literals.
(A trivial clause is always true.) A unit clause is a clause which is the disjunction
of exactly one literal. A formula is in conjunctive normal form (or CNF ) if it is a
conjunction of clauses; a CNF formula is nonredundant if it does not contain any
trivial clauses, clauses with duplicate literals, duplicate clauses, or pairs of distinct
clauses for which the literals of one are a subset of the literals of the other. Note
that we can always render a formula nonredundant in linear time. Given a natural
number k, a formula is in k-CNF if it is in CNF, and no clause contains more than
k literals. It is in strict k-CNF if each clause contains exactly k literals. A CNF
formula is unit free if it does not contain any unit clauses. A formula is in Negation
Normal Form (or NNF), if it is built up from the connectives ∨, ∧, and ¬, with
negation occurring only at the level of atoms. (In other words, it is built up from
literals using only the connectives ∨ and ∧.) The length of a formula is just the
length of the string representing it.

Let X be a set of variables. A truth assignment for X is a function f : X →
{⊥,>}.7 If ϕ is a formula with Vars(ϕ) ⊆ X, then we also call f an interpretation

7We use ⊥ to represent false and > to represent true. This convention will make translations
between logic and and BPPO prespecifications smoother, and the meaning of the symbols > and
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(with respect to X) for ϕ. Given a truth assignment f for X and a formula ϕ
with Vars(ϕ) ⊆ X, we define the truth value f̄(ϕ) ∈ {⊥,>} of ϕ for f in the usual
fashion. The interpretation f is called a model of ϕ if f̄(ϕ) = >, and ϕ is satisfiable
if it has a model. Mod(ϕ) denotes the set of all models of ϕ. Two formulas ϕ1 and
ϕ2 are logically equivalent with respect to X if Mod(ϕ1) = Mod(ϕ2).

The CNF satisfiability problem Sat-CNF takes as input a formula in CNF and
answers true if it is satisfiable, and false otherwise. The nonredundant CNF satis-
fiability problem Sat-Nonredundant-CNF is defined similarly, but for nonredundant
CNF formulas only. The k-CNF satisfiability problem, Sat-kCNF, (resp. exact k-CNF
satisfiability problem Sat-Exact-kCNF) is defined similarly, but for k-CNF (resp. ex-
act k-CNF) clauses. It is well-known that Sat-CNF and Sat-Exact-3CNF are each
NP-complete problems [GJ79, Thms. 2.6, 3.1], [AHU74, Thms. 10.3, 10.4]. It fol-
lows trivially that Sat-kCNF and Sat-Exact-kCNF are NP-complete for any k > 3, as
is Sat-Nonredundant-CNF. The 2-CNF satisfiability problem, Sat-2CNF, is defined
similarly, but is known to be solvable in deterministic polynomial time [EAS76, Sec.
2], from which it trivially follows that Sat-Exact-2CNF is also solvable in determin-
istic polynomial time.

In 1.4.9, we introduced the notion of separability for a BPPO, and used it to
characterize the existence of distributive extensions. Since our approach to showing
that the distributive extension problems are NP-hard is to transform satisfiability
problems to separability problems, we begin by introducing a corresponding notion
of separability for propositional formulas, which we will use in the transformation.

2.2.4 Separability and strong separability Let ϕ be a formula over the set
X = {x1, . . . , xn} of variables.

(a) A separator for a pair {xi, xj} ⊆ X is a two-element set {f=, f 6=} ⊆ Mod(ϕ)
with the property that

f=(xi) = f=(xj);
f 6=(xi) 6= f 6=(xj).

A separator for {xi,⊥}, with xi ∈ X, is a singleton {f} ⊆ Mod(ϕ) with the
property that f(xi) = >. Dually, a separator for {xi,>}, with xi ∈ X, is a
singleton {f} ⊆ Mod(ϕ) with the property that f(xi) = ⊥. Any singleton
{f} ⊆ Mod(ϕ) is a separator for {⊥,>}. Given a set Q of pairs of elements
from X ∪ {⊥,>}, a Q-separator for ϕ is a set ∆ ⊆ Mod(ϕ) which includes
as a subset a separator for each pair in Q. A (full) separator for ϕ (with
respect to X) is a set ∆ ⊆ Mod(ϕ) which includes as a subset a separator for
every pair of distinct elements in X ∪{⊥,>}. (Here ⊥ and > are just special
symbols; think of them as variables whose values are fixed. Their inclusion
is a technicality which will be essential in translation of these concepts to
BPPO’s.)

⊥ will always be clear from context. Also, when z ∈ {⊥,>}, with z representing a truth value, we
write ¬z to denote ⊥ if z = > and to denote > if z = ⊥.
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(b) A strong separator for a pair {xi, xj} ⊆ X is a four-element set
{f⊥⊥, f⊥>, f>⊥, f>>} ⊆ Mod(ϕ) such that

f⊥⊥(xi) = ⊥; f⊥⊥(xj) = ⊥;
f⊥>(xi) = ⊥; f⊥>(xj) = >;
f>⊥(xi) = >; f>⊥(xj) = ⊥;
f>>(xi) = >; f>>(xj) = >.

A (full) strong separator for ϕ (with respect to X) is a set ∆ ⊆ Mod(ϕ) which
includes as a subset a strong separator for every pair of distinct variables in
X, and, for each xi ∈ X, ∆ includes as elements a separator for {xi,⊥}
and a separator for {xi,>}. Under this definition, every strong separator
is a separator. Note that if ϕ is consistent and X has at least two distinct
elements, then the condition that ∆ include elements which separate {xi,>}
and {xi,⊥} for each xi ∈ X is redundant, since for every variable xi, there
must be models f, g ∈ Mod(ϕ) with f(xi) = ⊥ and g(xi) = >. This latter
property will often be used in proofs in which the nontrivial cases involve at
least two variables.

(c) Given S ⊆ X, a set ∆ ⊆ Mod(ϕ) renders S atomic if for each a ∈ S,
there is exactly one f ∈ ∆ with the property that f(a) = >. (This concept
will be used in Section 2.5 in connection with prespecifications involving
atoms. Notice the close connection with the definition of the same name for
decompositions of BPPO’s in 1.5.3.) Now if Q is a set of pairs of elements
of X ∪ {⊥,>}, then a set ∆ ⊆ Mod(ϕ) is a (Q,S)-separator for ϕ if it is a
Q-separator which also renders S atomic.

Based upon these definitions, we introduce four new decision problems. (Here k
denotes any natural number larger than 1.)

The decision problems Sep-CNF (resp. Sep-kCNF):

Input: A propositional formula ϕ, in CNF (resp. k-CNF) over a set X of
variables.

Question: Is ϕ separable with respect to X?

The decision problem StrongSep-CNF (resp. StrongSep-kCNF):

Input: A propositional formula ϕ, in CNF (resp. k-CNF) over a set X of
variables.

Question: Is ϕ strongly separable with respect to X?

One of the keys to our reduction proofs is to transform the property of satis-
fiability to that of strong separability. The following formula transformations are
central to this.
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2.2.5 Special formulas Let ϕ be any NNF formula over the set
X = {x1, . . . , xn} of variables. Let Y = {y1, . . . , yn} be another set of variables
of the same size, with X ∩ Y = ∅.

(a) Define ϕπ01 to be the formula obtained from ϕ by replacing each literal by its
complement.

(b) Define ϕπXY to be the formula obtained from ϕ obtained by replacing each
occurrence of xi with yi, for 1 ≤ i ≤ n. (Note specifically that all members
of X need not occur in ϕ for this to make sense.)

(c) Define ϕ̃ = (ϕ∨ϕπXY )∨(ϕ∨ϕπXY )π01 .

2.2.6 Lemma Let ϕ be any NNF formula over the set X = {x1, . . . , xn} of
variables. Then the following conditions are equivalent.

(a) ϕ̃ is strongly separable.

(b) ϕ̃ is separable.

(c) ϕ is satisfiable.

Proof: ((a) ⇒ (b)) This follows from the discussion of 2.2.4.
((b) ⇒ (c)) ϕ̃ is satisfiable iff ϕ is. Thus, if ϕ̃ is separable, ϕ must be satisfiable.
((c) ⇒ (a)) Suppose that ϕ is satisfiable. If ϕ contains fewer than two distinct
variables, then the result is immediate. If ϕ contains at least two distinct variables,
then it suffices to show that any two variables in X ∪ Y are strongly separable. Let
f ∈ Mod(ϕ). Then f is totally independent of the variables in Y (since the variables
in Y do not occur in ϕ), and so, regarding f as an interpretation for ϕ̃, we have that
any two variables in Y are strongly separable, since we can choose the truth values
of the variables in Y as we please without risking the loss of the property of being
a model of ϕ. Similarly, if we pick any f ∈ Mod(ϕπXY ), and regard it as a model of
ϕ̃, then we see that any two elements of X are strongly separable. Now, let x ∈ X
and y ∈ Y . Pick any f ∈ Mod(ϕ). (Thus, f depends only upon variables in X, and
is independent of variables in Y .) Define g : X ∪ Y → {⊥,>} by

g(v) =

{
f(v) if v ∈ X;
¬f(v) if v ∈ Y .

Then g ∈ Mod(ϕ). Now define h : X ∪ Y → {⊥,>} by

h(v) =

{
¬f(v) if v ∈ X;
f(v) if v ∈ Y .

and k : X ∪ Y → {⊥,>} by k(v) = ¬f(v). Then h, k ∈ Mod(ϕπ01) ⊆
Mod((ϕ∨ϕπXY )π01). Furthermore, {f, g, h, k} is a strong separator for {x, y}, as
required. 2
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2.2.7 Proposition Let ϕ be a CNF formula. Then ϕ̃ may be translated into
CNF in deterministic time polynomial in the size of ϕ.

Proof: Since ϕ̃ has only four disjuncts, the standard transformation of distribut-
ing the disjunction over the conjunction yields a formula which is O(s4) in size, with
s denoting the size of the original formula. 2

We are now ready to prove that Sep-CNF and StrongSep-CNF are NP-complete.
While these are not our ultimate results, the NP-completeness of these intermedi-
ate results is critical to showing the NP-completeness of the distributive extension
problems.

2.2.8 Theorem — NP-completeness of separability testing The problems
Sep-CNF and StrongSep-CNF are NP-complete.

Proof: First of all, let us show that these problems are in NP. Let ϕ be a formula
over the set X = {x1, . . . , xn} of variables. If n < 2, then the problem is trivial.
So, assume that X contains at least two distinct variables. Then a separator for ϕ
need contain at most n2 − n models. Indeed, there are (n · (n− 1))/2 ways to pick
a pair of variables from X, and we need at most two model for each. So, we pick
any set ∆ = {fij | 1 ≤ i < j ≤ n} ∪ {gij | 1 ≤ i < j ≤ n} of interpretations over X,
and we test to see whether {fij, gij} separates {xi, xj}. We can observe immediately
whether or not fij(xi) 6= fij(xj) and whether gij(xi) = gij(xj), and we can test
whether or not each is a model in time linear in the size of ϕ, just by substituting
and evaluating. Thus, we can test all n2 − n interpretations in deterministic time
O(Size(ϕ) · n2). For strong separability, the process is essentially the same, except
that we need to test 2 · (n2 − n) interpretations. Hence both problems are in NP.

The NP hardness of StrongSep-CNF is a consequence of 2.2.6 and 2.2.7, since we
know that Sat-CNF is NP complete, and these two results combined show that we
can transform Sat-CNF to StrongSep-CNF in polynomial time. The NP hardness of
Sep-CNF follows from the fact that ϕ̃ is separable iff it is satisfiable (2.2.6).

Since these problems are both in NP and are NP-hard, they are NP-complete.
2

We now turn to the problem of reducing separability of logical formulas to sep-
arability of BPPO’s. We begin by associating a BPPO prespecification with a CNF
formula.

2.2.9 The BPPO prespecification of a unit-free CNF formula Let X =
{x1, . . . , xn} be a finite set of variables, and let ϕ = ϕ1∧ . . . ∧ϕk be a unit-free CNF
formula over X. The BPPO prespecification of ϕ, denoted Sϕ = (Pϕ,Cϕ), is defined
as follows.

(i) Pϕ = Literals(X).

(ii) Cϕ consists of the following rules.

• For each x ∈ X, (
∨{x,¬x} = >), (

∧{x,¬x} = ⊥) ∈ Cϕ.
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• For each clause ϕi = (`i1∨ . . . ∨`i(mi)), (
∨{`i1, . . . , `i(mi)} = >) ∈ Cϕ.

Note that literals, regarded as members of Pϕ, are formal entities, and have no
special logical significance as members of the set of inner types. Also, not the the
property of unit freeness is essential. Otherwise, the definition of the rules in Cϕ

would not be well-defined, as the set S in a rule of the form (
∨

S = a) or (
∧

S = a)
must contain at least two distinct elements. However, this restriction will not prove
to be a problem.

2.2.10 Example It is not easy to give exact graphical representations of BPPO’s
or their prespecifications, because lub’s and glb’s are not always joins and meets,
respectively. But, with a little care, we can illustrate the general idea, and it is
helpful to envision how the above construction works. Figure 2.2 presents the rough
idea for the formula (a∨b∨c)∧(¬a∨b∨¬c). Think of the nodes labelled (>) as being the
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Figure 2.2: The BBPO prespecification associated with (a∨b∨c)∧(¬a∨b∨¬c).

same as the top node >, and the nodes labelled (⊥) as being the same as the bottom
node ⊥. We have drawn them separately to highlight the joins and meets which are
present. Lines without arrowheads link nodes which are actually the same, while
lines with arrowheads link distinct nodes. Note that we have a join to > and a meet
to ⊥ for each pair {a,¬a}, {b,¬b}, and {c,¬c}. We also have a join to > for the
literals corresponding to each of the two clauses: {a, b,¬c} and {¬a, b, c}. In other
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words, in addition to the obvious rules relating each variable to its complement, we
have a join rule of the form (

∨
S = >) for each literal whose set of literals is S. Note

that the height of this prespecification is only 2, and its fanout is the maximum
of 2 and the number of literals in the largest clause, which is 3 in the case of this
example.

It is clear from this construction that the resulting BPPO prespecification will
be weakly acyclic; we record this as a formal fact.

2.2.11 Lemma Let ϕ be a unit-free CNF propositional formula. Then Sϕ is
weakly acyclic. 2

What is more interesting is that the BPPO prespecification is almost the BPPO,
in the sense that only trivial new rules are added, and Graph(Sϕ) is the partial order
of the BPPO. Thus, the representation is a particularly simple one in this case.

2.2.12 Lemma Let ϕ be a unit-free CNF propositional formula. Then, if ϕ is
satisfiable, Sϕ is consistent, and we furthermore have the following.

(a) The height of Sϕ is 2.

(b) A rule R is in Rel∨(Sϕ) iff there are rules (
∨

S1 = >), . . . (
∨

Sk = >) ∈ Cϕ

such that R = (
∨

(
⋃k

i=1 Si) = >). Similarly, a rule is in Rel∧(Sϕ) iff there are
rules (

∧
S1 = ⊥), . . . (

∧
Sk = ⊥) ∈ Cϕ such that R = (

∧
(
⋃k

i=1 Si) = ⊥).

(c) For a, b ∈ Sϕ, a ¹Sϕ
b iff (a, b) ∈ Graph(Sϕ).

Proof: Claim (a) is immediate, because every join rule is of the form (
∨

S = >),
and every meet rule is of the form (

∧
S = ⊥). From claim (a), it follows that the

only way that a generalized associativity law could be used to generate a new join
rule would be to have two rules of the form (

∨
S1 = >) and (

∨
S2 = >) combine

to yield (
∨

(S1 ∪ S2) = >). New meet rules may be generated only by the dual
construction. Thus, claim (b) is satisfied. Claim (c) is now immediate as well, since
the only way that Graph(Sϕ) can fail to be ¹Sϕ

is to have the join and meet rules
contribute new entries, as shown in the proof of 2.1.11. 2

The next lemma is crucial, because it not only provides a strong connection be-
tween satisfiability of a logical formula and consistency of the corresponding BPPO
prespecification, but it also shows that the models of the formula correspond to the
ideal binary decompositions of the prespecification. This provides the key that we
need to show that the distributive extension problems are NP-complete.

2.2.13 Lemma Let ϕ be a unit-free CNF propositional formula. Then ϕ is sat-
isfiable iff Sϕ is consistent and CanBPPO(Sϕ) is somewhere separable. Furthermore,
whenever ϕ is consistent, there is a natural correspondence between Mod(ϕ) and the
ideal binary decompositions of CanBPPO(Sϕ), given by sending each f ∈ Mod(ϕ) to
the ideal binary decomposition (I, J) with

(a) I = {p ∈ Aug(Pϕ) | f̄(p) = ⊥};
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(b) J = {p ∈ Aug(Pϕ) | f̄(p) = >}.
Proof: First of all, assume that ϕ is satisfiable. Then, in view of part (c)
of the previous lemma, we can conclude that every principal preideal of Sϕ is in
fact an ideal. Hence, by definition, ¹Sϕ

is stable, and hence Sϕ is consistent, by
2.1.17(a). Next, let f ∈ Mod(ϕ). Define the function g : Pϕ → {⊥,>} to be the
restriction of f̄ to Pϕ. Then, given the characterization of join and meet rules in
part (b) of the previous lemma, we see that g must be the underlying function of
a morphism g : CanBPPO(Sϕ) → 2. Hence, by 1.4.2, CanBPPO(Sϕ) has an ideal
binary decomposition, and so is somewhere separable.

Conversely, assume that Sϕ is consistent and CanBPPO(Sϕ) has an ideal binary
decomposition (I, J). Define f : X → {⊥,>} to be the restriction of Ifn(I,J) to X.
It is immediate from the structure of Sϕ that f ∈ Mod(ϕ). Hence, by 2.2.12(c),
f ∈ Mod(ϕ), and so ϕ is satisfiable.

The correspondence between Mod(ϕ) and the ideal binary decompositions of
CanBPPO(Sϕ) follows from this construction. 2

We are finally in position to prove our main results. We can actually prove that
the problem Dist-BinExt is NP-complete even for join fanout 3 at this point, because
only satisfiability and not separability is involved. On the other hand, we cannot
put a bound on join fanout for Dist-InjExt at this point, because our transformation
from a satisfiable CNF formula to a separable one does not preserve the property of
having three literals per clause.

2.2.14 Theorem — NP-completeness of Dist-BinExt The problem
Dist-BinExt(2, 3, 2) is NP-complete. Thus, in particular, Dist-BinExt is NP-complete.

Proof: We have already shown in 2.2.2 that the problems are in NP. To complete
the proof, let ϕ be an exact 3-CNF propositional formula. Then ϕ is trivially unit
free. Now, from 2.2.13, we know that we can transform the satisfiability problem for
ϕ into the question of whether Sϕ is consistent and CanBPPO(Sϕ) has an ideal binary
decomposition. However, we know that we can perform the test of whether or not Sϕ

is consistent in deterministic polynomial time (2.1.17). Thus, since Sat-Exact-3CNF
is NP-complete, it must also be the case that deciding whether CanBPPO(Sϕ) has
an ideal binary decomposition is NP-complete. But this latter question is equivalent
to the one of asking whether CanBPPO(Sϕ) has a distributive extension, by 1.4.7.
Furthermore, we have by 2.2.12 that the height of Sϕ is 2. The join fanout of 3 and
meet fanout of two follow directly from the fact that ϕ is in 3-CNF. Thus, we have
that Dist-BinExt(2, 3, 2) is NP-complete. Since Dist-BinExt is more general, but also
in NP, it must be NP-complete as well. 2

The final key to establishing the NP-hardness of the injective distributive exten-
sion problem is to show that separability in logical formulas corresponds to separa-
bility of BPPO’s.

2.2.15 Proposition — separability is separability Let ϕ be a unit-free CNF
propositional formula. Then ϕ is separable iff Sϕ is consistent and its minimal ex-
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tension CanBPPO(Sϕ) to a BPPO has a separating set of ideal binary decomposi-
tions.

Proof: First of all, assume that ϕ is separable. Then, in particular, it is satisfiable,
and so by 2.2.13 we know that Sϕ is consistent and has an ideal binary decomposi-
tion. But, consider the structure of CanBPPO(Sϕ). The only elements, other than
⊥ and >, are the elements corresponding to the variables X = {x1, . . . , xn} over
which ϕ is defined, and the set {¬x1, . . . ,¬xn} of its complements. Now, by 2.2.13,
we have a natural correspondence between elements of Mod(ϕ) and ideal binary
decompositions. For a pair of the form {x,¬x}, any ideal binary decomposition will
separate them, since they are complements of each other. For pairs of literals {`1, `2}
arising from distinct variables, the fact that ϕ is separable ensures that there is an
f ∈ Mod(ϕ) with f(`1) 6= f(`2). But, under the correspondence described in 2.2.13,
the images of these elements must lie in different components of the ideal binary
decomposition defined by f . Thus, x and y are separable in CanBPPO(Sϕ). Simi-
larly, the pair {¬x,¬y} is separable. Finally, the condition of bivaluedness within
separability ensures that ⊥ and x, and > and x, will be separable in CanBPPO(Sϕ).
Hence, CanBPPO(Sϕ) has a separating set of ideal binary decompositions.

Conversely, assume that Sϕ is consistent and that CanBPPO(Sϕ) has a separating
set of ideal binary decompositions. Then, for each such ideal binary decomposition
(I, J), if we define a function f : X → {⊥,>} by

f(x) =

{
> if x ∈ I;
⊥ if x ∈ J ,

it is easy to see that f is a model of ϕ. But since the set of ideal binary decomposi-
tions is separating, so too will be the corresponding set of models of ϕ. Thus, ϕ is
separable, as required. 2

2.2.16 Theorem — NP-completeness of Dist-InjExt The problem
Dist-InjExt(2,∞, 2) is NP-complete. Thus, in particular, Dist-InjExt is NP-complete.

Proof: First of all, by 2.2.2, the problem is in NP. We know, from 1.4.10, that
a given BPPO has an injective distributive extension iff it has a separating set of
ideal binary decompositions. But we have shown in the preceding proposition that
we can reduce the question of separability of a unit-free propositional formula to
one of having a separating set of ideal binary decompositions in the corresponding
BPPO. Note further that by 2.2.12, the height of this BPPO is 2, as is its meet
fanout. Since Sat-Nonredundant-CNF is NP-complete, and since we can perform the
translation from CNF formula to BPPO prespecification in polynomial time, we
have that Dist-InjExt(2,∞, 2) is NP-complete. 2

2.3 Refinement of NP-Complete Extension Results

In this subsection, we present a pair of refinements to the results of the previous
section. First of all, we show that the problem Dist-InjExt remains NP-complete even
if we restrict the join fanout to three. The critical result necessary to show this is
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to establish that we can preserve strong separability while translating into 3-CNF.
Secondly, we show that the problems Dist-BinExt and Dist-InjExt both remain NP-
complete even if we restrict the join fanout to 2, provided that we allow a height of
3.

We begin with a careful study of the translation from CNF to 3-CNF.

2.3.1 3-CNF translations Let ϕ be a CNF formula over the set
X = {x1, . . . , xn} of variables. A 3-CNF translation of ϕ, into a CNF formula with
at most three literals per clause, is defined as follows. Suppose that ϕ may be written
as ϕ = ϕ1∧ . . . ∧ϕk, with the ϕi’s the clauses of ϕ, and with ϕi = (`i1∨ . . . ∨`iki

) the
representation of the ith clause in terms of its literals. We assume that all clauses,
and all literals within a given clause, are distinct. We also have an implicit ordering
on the clauses and on the literals within each clause, as reflected by the index set,
but this choice of ordering is completely arbitrary. Now, to get a 3-CNF translation,
replace each clause ϕi with the disjunction ϕ

(3)
i , defined as follows.

(i) If ϕi contains three or fewer literals, then let ϕ
(3)
i = ϕi.

(ii) If ϕi contains more than three literals, proceed as follows. Let
Zi = {zi1, . . . , zi(mi−3)} be a set of mi − 3 new variables, where mi is the
number of distinct literals in clause ϕi. Define

ϕ
(3)
i = (`i1∨`i2∨zi1)∧

(`i3∨¬zi1∨zi2)∧
...

(`ip∨¬zi(p−2)∨zi(p−1))∧
(`i(p+1)∨¬zi(p−1)∨zip)∧

...
(`i(mi−2)∨¬zi(mi−4)∨zi(mi−3))∧
(`i(mi−1)∨`imi

∨¬zi(mi−3))

We always take Zi ∩ Zj = ∅ for i 6= j, and X ∩ Zi = ∅ for all i. The set of variables
for ϕ(3) is thus X ∪ (

⋃k
i=1 Zi), with Zi = ∅ if ϕi has three or fewer literals.

This transformation is actually the standard one which is used to show that
Sat-Exact-3CNF is NP-complete [AHU74, Thm. 10.4]. We have repeated the full
construction here because we need to be very precise about how we label and handle
the variables in the process of establishing strong separability.

We also define the following two useful functions.

Before(zip) = {`it | 1 ≤ t ≤ p + 1};
After(zip) = {`it | p + 2 ≤ t ≤ mi}.

Note that, for any clause ϕi which contains more than three literals, for any variable
z ∈ Zi, both both Before(z) and After(z) contain at least two literals.

As a notational convenience, to avoid repeating a massive amount of detail at
each step, whenever we work with a CNF formula ϕ in that which follows, we shall
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assume that it has k clauses, and that the ith clause contains mi literals, as we
have described above. We shall also assume that the decomposition has exactly the
form described above, including the variable sets Zi and the implicit (but arbitrary)
ordering on the literals within the clauses.

Before proceeding, it is very useful to characterize just how models in the new
3-CNF formula relate to models in the original CNF formula. The following two
results provide the necessary constraints. In each case, the proof follows easily upon
examining the form of the 3-CNF transformation, and so is omitted.

2.3.2 Lemma Let ϕ be a CNF formula over the set X = {x1, . . . , xn} of vari-
ables. Then a function g : X ∪ (

⋃k
i=1) → {⊥,>} is in Mod(ϕ(3)) iff the following

conditions are satisfied.

(i) There is an f ∈ Mod(ϕ) such that for all x ∈ X, f(x) = g(x).

(ii) For each zip ∈ Zi:

• g(zip) = ⊥ implies that there exists a variable q ∈ Before(zip) with the
property that ḡ(`iq) = >;

• g(zip) = > implies that there exists a variable q ∈ After(zip) with the
property that ḡ(`iq) = >. 2

2.3.3 Proposition Let ϕ be a CNF formula.

(a) ϕ is satisfiable iff ϕ(3) is.

(b) If f ∈ Mod(ϕ), then any g : X ∪ (
⋃k

i=1 Zi) → {⊥,>} satisfying the following
conditions is in Mod(ϕ(3)).

(i) For all x ∈ X, g(x) = f(x).

(ii) For each i such that ϕi has more than three literals, there is a nonempty
subset S ⊆ {1, . . . , mi} with f̄(`is) = > for each s ∈ S, with

g(zip) =

{
> if p ≤ s1 − 2 or p + 2 ∈ S;
⊥ otherwise,

and s1 denoting the least element of S. 2

We can now establish that strong separability is preserved under this transfor-
mation.

2.3.4 Lemma Let ϕ be a nonredundant CNF formula. Then, if ϕ is strongly
separable, so too is ϕ(3).

Proof: Assume that ϕ is strongly separable. Let X be the set of variables
over which ϕ is taken. In view of the preceding proposition, it is clear that any
two variables which are strongly separable in ϕ are also strongly separable in ϕ(3).
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We need to consider the cases involving the variables introduced in the 3-CNF
transformation. Generally speaking, to give a complete description would require an
incredible amount of tedious detail. Therefore, we show only the “critical” choices,
and leave it to the reader to fill in the rest. The results of 2.3.2 and 2.3.3 are useful to
keep in mind when doing this. First of all, we consider two “Z” variables associated
with the same clause in ϕ; that is, a pair of the from {zip, ziq}. Without loss of
generality, assume that p < q. We have four cases to consider.

[f(zip) = ⊥; f(ziq) = ⊥]: To find an f ∈ Mod(ϕ(3)) with this property, start by
choosing a model g ∈ Mod(ϕ) with ḡ(`i1) = >. (This is possible because we
are assuming that ϕ is strongly separable.) We build a model f ∈ ϕ(3) which is an
extension of g. We may take f̄(zis) = ⊥ for all s, 1 ≤ s ≤ mi−3. This assignment

to the zis’s makes ϕ
(3)
i true. For the other clauses, we simply choose assignments

to the zrs’s which make the entire formula true. In view of 2.3.2, this is always
possible. Hence such an f exists in Mod(ϕ(3)).

[f(zip) = >; f(ziq) = >] This is similar to the previous case, except that we now
choose f̄(`i(mi)) = > and f̄(zis) = > for all s.

[f(zip) = ⊥; f(ziq) = >]: Choose a g ∈ Mod(ϕ) with ḡ(`i(p+1)) = > and ḡ(`i(q+2)) =
>. This is possible since ϕ is nonredundant, and so `i(p+1) and `i(q+2) are literals
of different variables. We extend g to an f ∈ Mod(ϕ(3)) with f(zip) = ⊥ and
f(ziq) = > by choosing S = {p + 1, q + 2} and applying part (b)(ii) of 2.3.3.

[f(zip) = >; f(ziq) = ⊥]: Here we choose an f ∈ Mod(ϕ) with f̄(`iq) = >. Then,
letting S = {q}, we may apply (b)(ii) of 2.3.3 to get the required model.

Next, we consider the case in which two “Z” variables, zip and zjq, are associated
with different clauses of ϕ, ϕi and ϕj.

[f(zip) = ⊥; f(zjq) = ⊥]: Since After(zip) and After(zjq) each contain at least two
literals, we may choose `ir ∈ After(zip) and `js ∈ After(zjq), with Var(`ir) 6=
Var(`js). Choose a model g ∈ Mod(ϕ) with ḡ(`ir) = ḡ(`js) = >. Extend it to
f ∈ Mod(ϕ(3)) with f(zit) = > for t ≤ r − 2 and f(zit) = ⊥ otherwise. The rest
of the extension is arbitrary, as long as it satisfies ϕ(3).

[f(zip) = >; f(zjq) = >]: Similar, except use Before(zip) and Before(zjq).

[f(zip) = ⊥; f(zjq) = >]: Similar, except use Before(zip) and After(zjq).

[f(zip) = >; f(zjq) = ⊥]: Similar, except use After(zip) and Before(zjq).

Finally, we must consider the case of a pair consisting of a variable x from X
and a “Z” variable zjq.

[f(x) = ⊥; f(zjq) = α]: Here α is either ⊥ or >; we will treat both cases at the same
time. Choose `ir ∈ Before(zip) with Var(`ir) 6= x. Pick g ∈ Mod(ϕ) with g(x) = α
and ḡ(`ir) = >. Extend g to a model of ϕ(3) by choosing f(zis) = > for s ≤ r− 2
and f(zis) = ⊥. Then, f(zip) = ⊥, as required.

[f(x) = ⊥; f(zjq) = α]: Similar, except choose `ir ∈ After(zip) with Var(`ir) 6= x.
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2

With this result in hand, the NP-completeness of the separability problems for
logical formulas in 3-CNF follows easily.

2.3.5 Theorem — NP-completeness of separability testing restricted to
3-CNF The problems Sep-3CNF and StrongSep-3CNF are NP-complete.

Proof: That these problems are in NP follows from 2.2.8, since 3-CNF formulas
are a special case of CNF formulas. The NP-hardness follows from 2.3.4, proceeding
exactly as in the proof of 2.2.8. 2

2.3.6 Proposition Let ϕ be a unit-free propositional formula. Then ϕ(3) is sep-
arable iff Sϕ(3) is consistent and its minimal extension CanBPPO(Sϕ(3)) to a BPPO
has a separating set of ideal binary decompositions.

Proof: The proof is similar to that of 2.2.15. 2

2.3.7 Theorem — NP-completeness of Dist-InjExt(2, 3, 2) The problem
Dist-InjExt(2, 3, 2) is NP-complete.

Proof: The proof goes as in 2.2.16. The only difference is that we now rely
on the stronger results 2.3.4 and 2.3.6 instead of 2.2.6 and 2.2.8, and transform
StrongSep-3CNF to Dist-InjExt(2, 3, 2). The join fanout bound of 3 is an obvious
consequence of the fact that we are using 3-CNF formulas. 2

Thus, we have the “(2, 3, 2)” bound for the injective extension problem of a
BPPO prespecification to a distributive lattice. We now turn to showing that we
can maintain NP-completeness in the “(3, 2, 2)” context. That is, we can reduce the
join fanout to 2 if we allow a height of 3.

2.3.8 (2,3)-hierarchical representations Let ϕ be a unit-free CNF formula.
The (2,3)-hierarchical representation of ϕ, denoted ϕ(2,3), is defined as follows. Let
ϕ(3) denote a formula equivalent to ϕ, constructed as described in 2.3.1. For each
clause ϕi of ϕ, let Wi = {wi1, . . . , wi(mi−2)} be a set of mi − 2 new variables. In
transforming ϕ to ϕ(2,3), we replace the clauses obtained from ϕi as follows.

(a) If ϕi contains fewer than three literals, then leave it as is.

(b) If ϕi = (`1∨`i∨`3) contains exactly three literals, then replace it with the
conjunction (wi1 ⇔ (`1∨`2))∧(wi1∨`3).

(c) If ϕi contains more than three variables, then first transform it into a con-
junction of clauses with at most three variables, as described in 2.3.1. Then,
perform the following further replacements.

(i) Replace (`i1∨`i2∨zi1) with (wi1 ⇔ (`i2∨zi1))∧(wi1∨`i1).

(ii) Replace each clause of the form (`ip∨¬zi(p−2)∨zi(p−1)) with (wi(p−1) ⇔
(¬zi(p−2)∨zi(p−1)))∧(wi(p−1)∨`ip).
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(iii) Replace (`i(mi−1)∨`imi
∨¬zi(mi−3)) with

(wi(mi−2) ⇔ (¬`imi
∨¬zi(mi−3)))∧(wi(mi−2)∨`i(mi−1)).

(d) If two of the wi1’s are equivalent to exactly the same disjunction of literals,
say (wi1 ⇔ (`1∨`2) and (wj1 ⇔ (`1∨`2), then replace each occurrence of wj1

with wi1.

Figure 2.3 shows in pictures how this transformation behaves for a clause of the
form (`1∨`2∨`3). The symbol (>) denotes a “virtual >,” as in Figure 2.2. Note that
which literals are “combined” to become w depend upon the form of the clause. The
rules identified above must be followed in the case that literals involving zij’s are
involved.

(>)

`1 `2 `3

(>)

`1 `2 `3

w;

�
�
�
�
�
���

A
A
A
A
A
AAK

�
���

A
AAK

A
A
A
A
A
AAK

�
���

Figure 2.3: The translation from join fanout three to join fanout two.

If the original formula ϕ is strongly separable, then the resulting (2,3)-hierarchical
formula is separable. The latter may not be strongly separable, but this is not a
hindrance to proving the final NP-completeness result. Indeed, the reason that we
established strong separability of ϕ(3) in 2.3.4, rather than just separability, was so
that we could use it in the lemma below.

2.3.9 Lemma Let ϕ be a nonredundant CNF formula.

(a) ϕ(2,3) is satisfiable iff ϕ is.

(b) If ϕ is strongly separable, then ϕ(2,3) is separable.

Proof: Part (a) is immediate, as these transformations clearly do not alter logical
satisfiability. As for part (b), the result follows readily if we make full use of the
fact that if ϕ is strongly separable, then so too is ϕ(3), as demonstrated in 2.3.4. We
only need to ensure that we can separate the new “W” variables from each other,
and from the other variables. In an equivalence of the form w ⇔ (`1∨`2), we know
that we can choose the values of `1 and `2 independently of each other, and so we
can separate `1 from w by choosing one model in which `1 is false and `2 true, and
then another in which both `1 and `2 are both false. Separability of w from the
other variables is automatic, since they are strongly separable from the members of
Var(`1) and Var(`2). To separate to “W” variables from each other, it suffices to
observe that if we have (wi ⇔ (`1∨`2) and (wj ⇔ (`3∨`4), then in view of 2.3.8(d),



66 2. COMPUTATIONAL COMPLEXITY OF DECISION PROBLEMS

we cannot have that {`1, `2} = {`3, `4}. Since the `i’s are strongly separable from
one another, it is easy to make a choice of pairs of models in which wi and wj will
be separated. 2

In analogy to 2.2.9, we define the BPPO corresponding to a (2,3)-hierarchical
formula.

2.3.10 The BPPO prespecification of (2,3)-hierarchical formula Let ϕ
be a unit-free CNF formula, and let ϕ(2,3) be its (2,3)-hierarchical representation.
Assume the notation introduced in 2.3.8. Then the BPPO prespecification asso-
ciated with ϕ(2,3), denoted Sϕ(2,3) = (Pϕ(2,3) ,Cϕ(2,3)), is defined as follows. Define

V = X ∪ Y ∪ (
⋃mi−3

i=1 Zi) ∪ (
⋃mi−2

i=1 Wi). Define Pϕ(2,3) and Cϕ(2,3) as follows.

(i) Pϕ(2,3) = Literals(V ).

(ii) Cϕ consists of the following rules.

• For each v ∈ V , (
∨{v,¬v} = >), we have (

∧{v,¬v} = ⊥) ∈ Cϕ(2,3) .

• For each two-literal clause (`1∨`2), we have (
∨{`1, `2} = >) ∈ Cϕ(2,3) .

• For each formula of the form (v ⇔ (`1∨`2)), we have
∨

({`1, `2} = v) ∈
Cϕ(2,3) .

Once again, we have a result corresponding to 2.2.15. We omit the details of the
proof, since they are entirely similar to those of 2.2.15.

2.3.11 Proposition Let ϕ be a nonredundant propositional formula. Then ϕ(2,3)

is separable iff Sϕ(2,3) is consistent and its minimal extension CanBPPO(Sϕ(2,3)) to a
BPPO has a separating set of ideal binary decompositions. 2

Finally, we have the NP-completeness of the “(3,2,2)” problems.

2.3.12 Theorem NP-completeness of (3,2,2) problems The problems
Dist-BinExt(3, 2, 2) and Dist-InjExt(3, 2, 2) are NP-complete.

Proof: We already know that the problems are in NP. It is easy to see that,
given a CNF formula ϕ, the height of Sϕ(2,3) = (Pϕ(2,3) ,Cϕ(2,3)) is 3, and both the
join and the meet fanouts are 2. The rest of the proof goes as in 2.2.14–2.2.16. The
only difference is that we rely on the stronger results 2.3.9 and 2.3.11 to obtain the
required separability. 2

2.4 Cases Solvable in Deterministic Polynomial Time

In this section, we turn to the question of asking for which classes of finite BPPO
prespecifications are extension questions to distributive structures solvable in de-
terministic polynomial time. To attack this problem, we need to “reverse” our
perspective a bit. This time, rather than looking to transform satisfiability to ex-
tensibility, we seek to transform extensibility to satisfiability in polynomial time. If
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the resulting satisfiability problem is solvable in deterministic polynomial time, then
so too will be the extensibility problem. To begin, then, we define the propositional
formula associated with a prespecification.

2.4.1 The formula of a prespecification Let S = (P,C) be a consistent finite
BPPO prespecification. The formula of S, denoted ϕS, is defined as follows.

(i) Vars(ϕS) = P .

(ii) ϕS is the conjunction of all formulas of the following form.

(a) For each (
∨

S = a) ∈ C with a ∈ P , the formula ((
∨

S) ⇔ a) is a
conjunct of ϕS. In the logical formula,

∨
denotes logical disjunction. Thus, if

S = {s1, . . . , sn}, then the formula is ((s1∨ . . . ∨sn) ⇔ a).

(b) For each (
∨

S = >) ∈ C, the formula (
∨

S) is a conjunct of ϕS. Thus, if
S = {s1, . . . , sn}, then the formula is (s1∨ . . . ∨sn).

(c) For each (
∧

S = a) ∈ C with a ∈ P , the formula ((
∧

S) ⇔ a) is a
conjunct of ϕS. In the logical formula,

∨
denotes logical conjunction. Thus, if

S = {s1, . . . , sn}, then the formula is ((s1∧ . . . ∧sn) ⇔ a).

(d) For each (
∨

S = >) ∈ C, the formula (
∧

S) is a conjunct of ϕS. Thus, if
S = {s1, . . . , sn}, then the formula is (s1∧ . . . ∧sn).

(e) For each (a < b) ∈ C, the formula (a ⇒ b) is a conjunct of ϕS.

Rules of the form (
∨

S = ⊥) and (
∧

S = >) are not considered because they can
never be part of a consistent prespecification.

Notice that we may effectively regard ϕS as being in CNF. Indeed, the formula
((s1∨ . . . ∨sn) ⇔ a) is equivalent to ((¬s1∨a)∧ . . . (¬sn∨a))∧(s1∨ . . . ∨sn∨¬a), and the
formula ((s1∧ . . . ∧sn) ⇔ a) is equivalent to ((¬a∨s1)∧ . . . ∧(¬a∨sn))∧(a∨¬s1∨ . . . ∨¬sn).
We shall often implicitly adopt this convention in our subsequent arguments.

2.4.2 Example The ideas of the above construction are best illustrated by ex-
ample. Let S = (P,C) be defined by P = {a, b, c, d} and C = {(∨{a, b, c} =
>), (

∧{c, d} = ⊥), (
∧{b, d} = a)}. Then

ϕS = (a∨b∨c)∧(¬c∨¬d)∧((b∧d) ⇔ a))

≡ (a∨b∨c)∧(¬c∨¬d)∧(¬b∨¬d∨a)∧(¬a∨b)∧(¬a∨d)

Because the variables of ϕS are exactly the inner types of S, it follows immedi-
ately that satisfiability of ϕS corresponds to somewhere separability of S, and that
separability, Q-separability, and strong separability of ϕS correspond to the concepts
of the same name in S. We record these facts in a formal lemma.

2.4.3 Lemma Let S = (P,C) be a consistent finite BPPO prespecification.

(a) S is somewhere separable iff it ϕS is satisfiable.

(b) S is separable (resp. strongly separable) iff ϕS is. 2
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(c) Given a set Q of pairs of elements from Aug(P ), S is Q-separable iff ϕS is.
2

Testing for separability of formulas involves testing for satisfiability under con-
ditions in which the truth values of certain variables are held fixed. We formalize
this idea with the idea of binding of variables in propositional formulas.

2.4.4 Binding of propositional formulas

(a) Let ϕ be a propositional formula taken over a set X of variables, and let
B = {`1, . . . , `k} be a set of literals over X. The formula ϕ[B] is defined to
be ϕ∧(`1∧ . . . ∧`k), and is called the binding of ϕ by B.

(b) Let F be a class of propositional formulas. We say that F is tractable for
bindings if there is a polynomial of one variable p such that for every formula
ϕ ∈ F and every set of bindings B, there is a formula ψ ∈ F which is logically
equivalent to ϕ[B], and which is computable by a function in O(p(length(ϕ))).

2.4.5 Examples Almost any “reasonable” class of formulas is tractable for bind-
ings. Simple examples include the CNF formulas, the k-CNF formulas for any k ≥ 1,
and the Horn formulas. Indeed, the idea behind a binding is to “fix” the value of
one or more variables, and we can typically find a shorter formula which reflects the
binding, so that p(x) may be taken to be the identity polynomial x in the above
definition. For example, if we start with a CNF formula ϕ, and wish to find an
equivalent formula to ϕ[`] for some literal `, we simply delete all clauses in which `
appears (since they will be true under the binding in any case), and remove all in-
stances of the complement of ` from all remaining clauses (since that complementary
literal cannot be true).

We are particularly interested in classes of formulas which are not only tractable
for bindings, but also admit deterministic polynomial-time testing for satisfiability.
The reason is reflected in the following lemma.

2.4.6 Lemma Let F be a class of propositional formulas which is closed un-
der conjunction and is tractable for bindings. Then, if satisfiability is solvable in
deterministic polynomial time for formulas in F , so too are the following questions:

(a) Given a formula ϕ over the set X of variables and a set Q of pairs of elements
of X ∪ {⊥,>}, the question of whether or not ϕ has a Q-separator.

(b) Given a formula ϕ over the set X of variables and a set S ⊆ P , the question
of whether or not there is a set ∆ ⊆ Mod(ϕ) which renders S atomic.

(c) The question of whether or not ϕ has a strong separator.

Proof: If ϕ is not satisfiable, then the answer to each of the above questions is
false. Therefore, in the following, we assume that ϕ is satisfiable. (a) Let ϕ be a
formula in F . To test for separability of a pair of the form {x,⊥} with x ∈ Vars(ϕ),
we simply test ϕ[{x}] for satisfiability. To test for separability of a pair of the
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form {x,>}, we test ϕ[{¬x}] for satisfiability. To test a pair of the form {x, y}
for separability with x, y ∈ Vars(ϕ), we need to verify that at least one of the
formulas in {ϕ[{x,¬y}], ϕ[{¬x, y}]} is satisfiable, and at least one of the formulas
in {ϕ[{x, y}], ϕ[{¬x,¬y}]} is satisfiable. If even one of the variables in {x, y} is not
in Vars(ϕ), then the pair is automatically separable. Thus, a test for separability
of a given pair {x, y} may be performed in polynomial time. Now if ϕ is taken
over the set X of variables, and n = Card(Vars(ϕ)), then any set Q of pairs of
elements from X ∪ {⊥,>} can have at most (n + 2) · (n + 1) pairs in which both
elements are in Vars(ϕ) ∪ {⊥,>}, which are the only pairs for which the test is
nontrivial. Thus, we need perform at most O(n2) such tests, each of which may be
performed in deterministic polynomial time. Hence the whole test may be performed
in deterministic polynomial time.
(b) Let ϕ be a formula in F , and let S ⊆ Vars(ϕ). Assume, without loss of generality,
that Vars(ϕ) = X = {x1, . . . , xn}, let k = Card(S), and introduce k new sets of
variables Xj = {x1j, . . . , xnj}, 1 ≤ j ≤ k. Let ϕj be the formula which is the
same as ϕ, except that for each i, 1 ≤ i ≤ n, xij has been substituted for xi. Let
ψ = (

∧n
j=1ϕj). In other words, each conjunct has its own set of variables, with

those of ϕj carrying j as a second subscript. Finally, let f : {1, . . . , k} → S be any
bijection, which will be used just for naming. Now, for 1 ≤ i, j ≤ k, let

`ij =

{
f(i)j if i = j;
¬f(i)j if i 6= j;

and define B = {`ij | 1 ≤ i ≤ k and 1 ≤ j ≤ n}. Some further clarification of the
notation is in order. For 1 ≤ i ≤ k, note that f(i) is a variable in S. Thus, f(i)j is a
subscripted variable in X, which is effectively a variable in Xj. For i = j, the literal
`ij = f(i)j asserts that, in the jth submodel ϕj, the variable f(i) (represented by
indexing as f(i)j) is true. For i 6= j, the literal `ij = ¬f(i)j asserts that the variable
f(i) (represented as f(i)j) is false in the jth model. Then, a model for ψ[B] will
effectively be k models for ϕ, with the jth model obtained by looking only at the
variables in Xj. Furthermore, it will only be the jth model which will have f(j) = >.
(That is, f(j)j = >, and f(j)m = ⊥ for all m 6= j.) Hence, ψ is satisfiable iff there is
a set of models which renders S atomic. The size of ψ is bounded by Size(ϕ)·Card(S),
which is certainly polynomial in the size of the input. The satisfiability check may
be performed in deterministic polynomial time, by assumption.
(c) To test ϕ for strong separability, we run four tests for each pair of variables from
Vars(ϕ). Namely, for each such pair {x, y}, we test ϕ[{x, y}], ϕ[{¬x, y}], ϕ[{x,¬y}],
and ϕ[{¬x,¬y}] for satisfiability. For a pair in which only one of the two variables
(say x) is in Vars(ϕ), we run only two satisfiability tests, one on ϕ[{y}] and one on
ϕ[{¬y}]. Again, it is easy to see that the whole collection of tests may be performed
in deterministic polynomial time. 2

We can now show that if we restrict height, join fanout, and meet fanout each
to at most two, then we obtain a class of extension problems which are solvable in
deterministic polynomial time.
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2.4.7 Theorem – Extension problems solvable in deterministic polyno-
mial time The problems Dist-BinExt(2, 2, 2) and Dist-InjExt(2, 2, 2) are each solv-
able in deterministic polynomial time.

Proof: The key is to observe that if a prespecification S = (P,C) is of height
2, then it can only have rules in C of the form identified in 2.4.1 parts (ii)(b), (d),
and (e). In other words, rules of the form (

∨
S = x) and (

∧
S = x) are not possible

unless x is > in the first case and ⊥ in the second. The fanout bound of 2 implies
that S cannot have more than two elements in such a rule. Thus, the conjuncts
of ϕS are clauses with two literals each; i.e., they are 2-CNF formulas. However,
the problem Sat-2CNF is known to be solvable in deterministic polynomial time
[EAS76]. From 2.4.6, we conclude that the tests for satisfiability and separability
each may be performed in deterministic polynomial time. But then 2.4.3 tells us that
somewhere separability and full separability of the prespecification itself is testable
in deterministic polynomial time. Finally, the characterizations of 1.4.10 show us
that the problems Dist-BinExt(2, 2, 2) and Dist-InjExt(2, 2, 2) must be solvable in
deterministic polynomial time as well. 2

There is another situation in which we can establish that the distributive ex-
tension problem is solvable in deterministic polynomial time – namely, when the
prespecification has only join rules or only meet rules. The decision problem is
effectively “trivial” in this case, once we have decided consistency of the prespecifi-
cation.

2.4.8 One-way prespecifications Let S = (P,C) be a finite BPPO prespec-
ification. We say that S is a join-only prespecification if C contains no nontrivial
meet rules. Dually, S is a meet-only prespecification if C contains no nontrivial join
rules. S is said to be one-way if it is either join only or else meet only.

2.4.9 Lemma Let S = (P,C) be a consistent one-way finite BPPO prespecifi-
cation. Then S is fully separable.

Proof: We start by assuming that S is join-only. Suppose that S is consistent.
Then, with respect to the order ¹S, we have by 2.1.7 and 2.1.8 that every principal
preideal with respect to ¹S is an ideal of S. Since S is join-only, it is clear that the
function f> : P → {⊥,>} defined by f>(a) = > for all a ∈ P is a model of ϕS. On
the other hand, for each a ∈ P , the function fa : P → {⊥,>} defined by

fa(x) =

{
⊥ if x ∈ PrinIdeal(a,¹S);
> otherwise;

is a model of ϕS. But if a, b ∈ P with a 6= b, then we cannot have PrinIdeal(a,¹S)
= PrinIdeal(b,¹S), since ¹S is a partial order, and hence antisymmetric. Thus, we
must have that either fa(b) = ⊥, or else that fb(a) = ⊥. Since we always have
fa(a) = fb(b) = >, it follows that either fa or else fb has the property that its
truth value on a is different than its truth value on b. Thus, at least one of {f>, fa}
and {f>, fb} must be a separator for the pair {a, b}, so that any two elements of P
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are separable. Since f> is a model, {f>} is a separator for {a,⊥} for any a ∈ P .
Finally, to show that a pair of the form {a,>} is separable, it suffices to note that
> is only in the principal ideal generated by itself. Thus, {fa}, as defined above, is
a separator for {a,>}. We can thus invoke 2.4.3(b) to show that S is separable.

The proof for a meet-only prespecification is entirely dual to the one given above.
2

We thus have that testing for distributive extensions of prespecifications with
only join rules or only meet rules (in addition to partial-order rules), consistency is
all that need be verified.

2.4.10 Theorem – another extension problem solvable in deterministic
polynomial time The problems Dist-BinExt(∞,∞, 1) and Dist-InjExt(∞, 1,∞)
are each solvable in deterministic polynomial time.

Proof: Since PreBPPO-Consis is solvable in deterministic polynomial time (see
2.1.17(c)), this follow immediately from the previous lemma. 2

2.4.11 Comparison to ALE-like systems The situation in which we have
no join rules is much closer to that of systems such as ALE. However, our for-
malism is still somewhat more general, in that we allow order relationships such
as a ≤ b and a ≤ c without requiring that

∧{b, c} = a. Nonetheless, the great
reduction in computational complexity which is achieved by disallowing join rules
is evident. Indeed, it is easy to see that for such a prespecification S, the resulting
formula ϕS is a Horn formula. This essentially means that all inferences may be
performed in deterministic time linear in the size of ϕS [DG84]. It also means that
the algorithms for consistency checking sketched in Section 2.1 may be simplified
substantially, although we do not develop the details here. The point to be made
here is that the major reason that the distributive extension problems that we ex-
amined in Sections 2.2 and 2.3 are NP-complete is that both joins and meets of
types are allowed. Allow only one, as in ALE, LKB, or LIFE, and the complexity
dips tremendously. Roughly, it reduces to a comparison between the complexity of
satisfiability of arbitrary formulas versus satisfiability of Horn formulas.

2.5 Special Computational Problems

In this section, we take a look at the computational problems involved in adding
some stronger constraints to finite BPPO prespecifications, particularly statements
that certain elements must be atoms. (Section 1.5 contains the basic definitions and
results about atoms within our context.) We also take a look at how Q-separability
affects the computational complexity of various problems.

2.5.1 Computational problems involving atoms We begin by identifying
some fundamental decision problems involving atoms. Basically, the problems iden-
tified in 2.2.1 are expanded to allow declarations of atoms as well.

The decision problem Atom-Dist-BinExt(h, j,m):
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Input: A BPPO prespecification S = (P,C), with height bounded by h,∨
-fanout bounded by j, and

∧
-fanout bounded by m, and a subset

S ⊆ P .

Question: Does S have a consistent extension to a BPPO, which is atomic for
S, to any of the distributive extension categories?

The decision problem Atom-Dist-InjExt(h, j,m:

Input: A BPPO prespecification S = (P,C), with height bounded by h,∨
-fanout bounded by j, and

∧
-fanout bounded by m, and a subset

S ⊆ P .

Question: Does S have a full separator which also renders S atomic?

The problems which were NP-complete without declarations of atoms remain
NP-complete even with these declarations. The formalization and proof are as fol-
lows.

2.5.2 Theorem — NP-completeness The problems Atom-Dist-BinExt(h, j, m)
and Atom-Dist-InjExt(h, j, m) are NP-complete for (h, j,m) = (2, 3, 2) and for (3, 2, 2).

Proof: The NP-hardness of these problems is immediate, because
Dist-BinExt(i, j, m) is a special case of Atom-Dist-BinExt(i, j,m) and
Dist-InjExt(i, j, m) is a special case of Atom-Dist-InjExt(i, j, m). We may thus refer
to 2.3.7 and 2.3.12 and be done. To show that the problems are in NP, we proceed
essentially as in 2.2.2. The only difference is that it must be checked whether a
candidate solution ∆ also renders the proposed atom set S atomic. But this can
clearly be done in time linear in the size of ∆. 2

When we take a problem which was previously solvable in deterministic polyno-
mial time and add atomic constraints, things may or may not become more complex,
depending upon the problem. In the “(2,2,2)” case, if the previous problem asked
only for the existence of a nontrivial extension, without any injectivity constraint,
then we continue to have a problem solvable in deterministic polynomial time.

2.5.3 Theorem — polynomial time solvability The problem
Atom-Dist-BinExt(2, 2, 2) is solvable in deterministic polynomial time.

Proof: Let S = (P,C) be a finite BPPO prespecification, and let S ⊆ P . If
S = ∅, then the problem reduces to Dist-BinExt(2, 2, 2), which we know is solvable
in deterministic polynomial time by 2.4.7. If S is nonempty, then any set ∆ which
renders S atomic must contain at least one ideal binary decomposition. But this
means that P has a distributive extension pair, by 1.4.7. Thus, it suffices to show
that we can find such a ∆ in deterministic polynomial time. To see how this is done,
let S = {s1, . . . , sn}, and for 1 ≤ i ≤ n, and let S(i) = {s1, . . . , si−1,¬si, si+1, . . . sn}.
Then there exists a ∆ which renders S atomic iff each of the formulas ϕ[S(i)], 1 ≤
i ≤ n is satisfiable. In view of 2.4.6, this question may be decided in deterministic
polynomial time, whence the result. 2
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On the contrary, if we try to combine injectivity with the declaration of atoms,
things appear to be much more complex. We do not provide a formal analysis, but
the following discussion will provide some idea of why this is the case.

2.5.4 Discussion of the problem Atom-Dist-InjExt(2, 2, 2) One might conjec-
ture at first that, in view of 2.4.7, that Atom-Dist-InjExt(2, 2, 2) is solvable in deter-
ministic polynomial time as well. However, it does not appear that this is the case.
Of course, it is certainly in NP, as it is a special case of the problems shown to be
NP-complete in the theorem above. Now, given a formula ϕ and a set S ⊆ Vars(ϕ),
we may use 2.4.6 to show that the individual test of full separability and whether or
not there is a set of models which renders S atomic may each separately be solved in
deterministic polynomial time. However, they do not appear to combine to yield a
polynomial time solution. The difficulty arises because requiring a set ∆ ⊆ Mod(ϕ)
to render S atomic places restrictions on the collection of models, whereas the pro-
cess of building a full separator simply combines models. Thus, a separator may be
constructed sequentially, one pair at a time, so adding models to ∆ does not destroy
the property of being a separator. However, the property of rendering S atomic
is not preserved under adding new models. Therefore, the two algorithms cannot
simply be combined. The results found in [GJS76] suggest that the problem is in
fact NP-complete, but we do not pursue this question further in this report.

If we look at type hierarchies defined only by meet rules, then adding declarations
of atoms is effectively trivial, as the following result shows.

2.5.5 Theorem — further deterministic polynomial time case The prob-
lems Atom-Dist-BinExt(∞, 1,∞) and Atom-Dist-InjExt(∞, 1,∞) is solvable in deter-
ministic polynomial time.

Proof: This is very easy; we simply apply the construction described in Section
0.2. The atoms in this construction are just the elements in the BPPO prespeci-
fication for which ⊥ is the only lesser element. No elements are coalesced, so the
extension is injective. 2

On the other hand, type hierarchies involving only join rules do not interact
cleanly with declarations of atoms. The following discussion gives some insights
into the problems involved.

2.5.6 Discussion of the problems Atom-Dist-BinExt(∞,∞, 1) and
Atom-Dist-InjExt(∞,∞, 1) We cannot use the “duality” between the (∞, 1,∞) and
(∞,∞, 1) cases, as we did in 2.4.9 and 2.4.10. This is because in a bounded lattice
the dual of an atom is not an atom, but rather a co-atom; that is, an element which
has no greater element other than >. In fact, even with a BPPO prespecification
with a meet fanout of one, the addition of more than one atom guarantees that
there is a nontrivial meet constraint. This is because for each pair of distinct atoms
{a, b}, we must have

∧ {a, b} = ⊥. For this reason, we conjecture that the problems
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Atom-Dist-BinExt(∞,∞, 1) and Atom-Dist-InjExt(∞.∞, 1) are NP-complete. How-
ever, the techniques which we have developed in this report do not appear to be
directly applicable to this problem, and so we leave it open.

We now turn to a brief examination of the issues surrounding Q-separability.
This is an important question because a user of a system may not always want or
need all declared types to be separable. Rather, it may be essential to separate only
certain identified types. We now show that problems of such Q-separability have the
same complexity (up to deterministic polynomial equivalence) as problems of full
separability. We being by formalizing the decision problems under investigation.

2.5.7 Questions involving Q-separability

The decision problem GenDistProb(h, j, m):

Input: A BPPO prespecification S = (P,C), with height bounded by h,∨
-fanout bounded by j, and

∧
-fanout bounded by m, and a set Q

of pairs of elements, each in P ∪ {⊥,>}.
Question: Does S have a consistent extension to a BPPO, which in turn has

an Q-injective extension, which is atomic for S, to any of the dis-
tributive extension categories?

2.5.8 Theorem — complexity results for GenDistProb The problem
GenDistProb(h, j, m) is NP-complete for (h, j,m) = (2, 3, 2) or (3, 2, 2), and is solv-
able in deterministic polynomial time for (h, j,m) = (2, 2, 2), (∞, 1,∞), and
(∞,∞, 1).

Proof: For the (2,3,2) and (3,2,2) cases, this follows immediately from 2.3.7 and
2.3.12, since Q-separability is a generalization of full separability. (The NP mem-
bership of these problems is proven in the same way as in 2.2.2). The deterministic
polynomial-time cases are handled as follows. For the (2,2,2) case, we proceed ex-
actly as in 2.4.7, save that we use 2.4.6(a) and 2.4.3(c) as the supporting arguments.
For the (∞, 1,∞) and (∞,∞, 1) cases, the proof of 2.4.10 works as well, since full
separability implies Q-separability for any Q. 2

2.5.9 Remarks on combining atoms and Q-separability Since full sepa-
rability is a special case of Q-separability, in view of the previous result, it should
be clear that combining questions of rendering a set S atomic and providing Q
separability does not introduce any radically new questions. The results in 2.5.2–
2.5.6 could have injectivity replaced with Q-separability without any change in the
identified complexities.

3. Conclusions and Further Directions
In this report, we have attempted to complement the practical work of the CUF sys-
tem by laying the theoretical foundations for the partially specified type hierarchies
which are central to that system. Specifically, we have accomplished the following.
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(a) We have formalized the framework — bounded posets with partial orders
(BPPO’s) — in which partially specified type hierarchies may be systemati-
cally studied.

(b) We have systematized the various types of extensions, to a complete hierarchy,
that a BPPO may have. Any such reasonable extension must be to a bounded
distributive lattice, but there are many variations within this theme.

(c) We have studied the impact that declarations of constant types — types which
cannot have nontrivial subtypes — have upon the nature of distributive ex-
tensions. Interestingly, without constant declarations, in all cases which we
consider, there is always a “natural” extension, which does not involve any
nondeterministic choice in the form of the extension. However, in the pres-
ence of constant declarations, this property disappears, and a choice between
several alternatives may need to be made. Thus, the addition of constant dec-
larations to a type declaration system has significant implications in terms of
nondeterminism.

(d) We have established a close connection between certain decision problems
in propositional logic and the decision problems connected with determining
whether or not a specification has an extension of a certain kind. We then
use this connection to establish results on the computational complexity of
deciding whether or not certain kinds of distributive extensions exist. Using
the height (length of the longest path in the specification) and fanout (the
number of elements in a join or meet specification), we show that even un-
der extremely tight constraints (one of these parameters equal to three and
the other two equal to two), all of the extension decision problems are NP-
complete. It is only when we drop down to relatively trivial cases that we
find problems which are soluble in deterministic polynomial time.

As future directions, the following seem the most useful.

(1) As is the case with most NP-complete problems, the extension problems
studied here need to be examined from angles which will yield efficient algo-
rithms for a useful variety of “practical” cases. Given the close connection
between extensibility and satisfiability of certain associated formulas, one
obvious tact would be to examine the relevance of characterizing formulas
which admit efficient tests for satisfiability, thus extending the rather basic
results of 2.4.7, 2.4.10, and 2.5.3. One possibility is to examine the relevance
of classes of so-called generalized Horn formulas [Asp80], [YD83], [CCH*90],
[Bun93]. These formulas all admit polynomial-time decision algorithms for
satisfiability. However, it is not clear that they provide a useful basis for
the kind of constraint specifications the arise in practice; this will need to be
studied more closely. Another tactic might be to note that real hierarchies
tend to be rather simple in their “intertwining” of the relationships between
the types. Perhaps by limiting the interaction of types in some way in accord
with typical use, tractable algorithms may be obtained.
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(2) The type hierarchies of feature-based systems such as CUF have features
attached to the types. CUF is particularly sophisticated in that it admits
polymorphic feature assignment — the same feature may be assigned to dif-
ferent types, with different semantics. It is a critical next step in this research
to integrate feature specification into our framework. Particularly, it is criti-
cal to examine what effect this integration would have on determining which
types must have distinct instantiations, and which may be collapsed to a
common type.

(3) Often, to obtain a distributive hierarchy, it becomes mandatory to require
that two types have identical instantiations (as in the case of a diamond or
pentagon in the specification). Currently, the CUF system does not require
types with distinct names to have distinct instantiations, unless the feature
declarations mandate this. CUF will not inform the user that two types must
have identical instantiations. It would clearly be a useful addition to the CUF
system to provide the user with information on which types must coincide
for the hierarchy to be distributive. Furthermore, it would be useful to allow
the user to specify, independently of any feature declarations, that two types
must be distinct. In short, it would be most useful if the user were to know
just how the type hierarchy is realized. Our theory provides the basis for the
study of this problem.

(4) It is clear from our results that allowing constant declarations complicates
matters substantially, in that “natural” extensions no longer exist and arbi-
trary choices must be made. In practical terms, this means that there will be
several disjunctive alternatives which must be considered. With a more thor-
ough understanding of just how such alternatives arise, a substantial saving
in the complexity of the algorithms which consider, in turn, the alternatives,
may be made. Particularly, in the absence of constant declarations, there
need be no nondeterminism in the collapsing of the hierarchy. Therefore, we
believe that a more thorough study of how the disjunctive alternatives are
identified and presented, in the light of our results, could result in a more
informative and efficient type management system for CUF-like systems.
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Appendix. Relationship to the CUF Formalism
The purpose of this appendix is to sketch how the formal results which were pre-
sented in this report are related to the more practical feature-structure programming
language CUF. It is not our aim to describe the entire CUF language, for which
we refer the reader to the document [DD93] or [Dor94]. Our attention is focused
entirely upon the type language, and we are selective rather than encyclopedic in
our presentation of details. As our primary goal is to convey the main idea rather
than to provide a complete theory, the style is less formal than in the body of the
paper; we often express our ideas with annotated examples rather than with rig-
orously presented algorithms. However, the ideas are quite straightforward, and it
should be no problem to fill in the details, if so desired.

We begin with a description of the fragment of the CUF language with which
we work.

A.1 The CUF type language We work only with the fragment of CUF that
deals with types; we do not address features on types, or the more general recursive
sorts. Also, for the moment, we do not deal with constant types. They will be
discussed in A.3 below.

The starting point is a set of type symbols T . CUF allows “identifier names,”
in typical programming language style, but for our purposes, we take T to be any
set. This set may be infinite, but only a finite number of type names are used in
any application. From T , we build Boolean expressions from the binary disjunction
operator (denoted ;), the binary conjunction operator (denoted &), and the negation
operator (denoted ~). The usual convention of ~ having a higher precedence than
either ; or & is followed. To simplify matters, in this discussion, we will assume
that ; and & have the same precedence, and that ambiguity must be resolved by the
use of parentheses. (CUF actually has rules which disambiguate expressions which
use operations which would otherwise have the same precedence.) A typical CUF
expression is shown below.

t1 & t2 & t3 & (t4 ; ~t5 ; ~(t6 & ~t3) ; t7) & t8
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An assignment is a sentence of the form t = E, in which t is a type and E is an
expression. A statement is either an expression or an assignment. A statement is
always terminated by a period. Thus,

t = t1 & t2 & t3 & (t4 ; ~t5 ; ~(t6 & ~t3) ; t7) & t8.

is a typical CUF assignment. Think of a CUF type program as a set of statements.
In CUF, an expression is thought of as a constraint which must be satisfied.

Thus, the constraint t1 & t2 means that the types t1 and t2 cannot have an
empty intersection, while the constraint ~(t1 & t2) means that t1 and t2 are
disjoint types. The latter constraint would be expressed by

∧{t1, t2} = ⊥ in a
BPPO prespecification; we will discuss the former constraint in A.2 below. An
assignment associates an expression with a type. Thus, as expected, t = t1 & t2

means the same thing as
∧{t1, t2} = t would in a BPPO prespecification.

CUF admits certain syntactic abbreviations. First of all, an expression of the
form E1 < E2, with E1 and E2 expressions, is an abbreviation for ~(E1) ; E2. Thus,
t1 < t2 is an abbreviation for ~t1 ; t2. An expression of the form
t1 | t2 | .. | tn expresses that the n types are disjoint, and is an abbrevia-
tion for the expression

(t1 ; t2 ; . . . ; tn) & ( &
i<j

(~ti ; ~tj))

The assignment t = t1 | t2 | .. | tn expresses that
t = t1 ; t2 ; .. ; tn and that the n types are disjoint. Similarly,
t < t1 | t2 | .. | tn expresses that t < (t1 ; t2 ; .. ; tn) and that the
n types are disjoint.

Although the overall CUF type system has the types bot (corresponding to
⊥) and top (corresponding to >), these types may not be used explicitly in type
specifications.

A.2 Translation of CUF expressions to BPPO prespecifications. In the
process of translating CUF programs to BPPO prespecifications, it is assumed that
there is an unlimited supply of new type symbols, and that such symbols may be
generated upon demand. It is further assumed that the CUF program is free of the
abbreviation symbols “|” and “<”; or rather that any expression involving them has
been converted to one involving the more primitive Boolean operators, as described
in A.1 above.

We will illustrate the translation process as it operates on the example CUF
program shown below.

t1 & t5 & t9.

t = t1 & t2 & t3 & (t4 ; ~t5 ; ~(t6 & ~t3) ; t7) & t8.

The process proceeds as follows. First of all, since a BPPO prespecification does
not allow expressions as statements (except for rules of the form a < b), for each
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statement that is an expression E (as opposed to an assignment statement), we
introduce a new type symbol s and replace the expression E with s = E. In the
program above, we replace the expression t1 & t5 & t9 with an assignment to the
new variable s0, yielding the following program

s0 = t1 & t5 & t9.

t = t1 & t2 & t3 & (t4 ; ~t5 ; ~(t6 & ~t3) ; t7) & t8.

Having translated each statement which is an expression to an assignment, we pro-
ceed to simplify the assignment statements to the point at which they may be
interpreted as BPPO rules. The approach is as follows. First of all, for each occur-
rence of negation which occurs in a scope wider than that of a single type symbol,
we generate a new type symbol and define the negated component separately. Con-
tinuing with the example program introduced above, with the new type symbol s1
we get

s0 = t1 & t5 & t9.

t = t1 & t2 & t3 & (t4 ; ~t5 ; ~s1 ; t7) & t8.

s1 = t6 & ~t3.

Next, for each negated type we define an explicit new type symbol corresponding to
its complement. Continuing with this example, we introduce the new type symbols
s2, s3, and s4, which represent the complements ~t5, s1, and t3, respectively.
We also introduce a new symbol btop, the “bogus top” symbol, and we have the
following declarations.

s0 = t1 & t5 & t9.

t = t1 & t2 & t3 & (t4 ; s2 ; s3 ; t7) & t8.

s1 = t6 & s4.

s2 | t5.

s3 | s1.

s4 | t3.

btop = s2 ; t5.

btop = s3 ; s1.

btop = s4 ; t3.

Next, we decompose all right-hand sides of assignment statements which contain
nestings of conjunction and disjunction, so that each right-hand side has only one
form. In our example, we introduce one more new type symbol s5, and have as our
final result the following.

s0 = t1 & t5 & t9.

t = t1 & t2 & t3 & s5 & t8.

s1 = t6 & s4.

s2 | t5.

s3 | s1.

s4 | t3.
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btop = s2 ; t5.

btop = s3 ; s1.

btop = s4 ; t3.

s5 = t4 ; s2 ; s3 ; t7.

Finally, we need to ensure that btop is the largest type. To so do, we introduce a
statement of the form t < btop for each type t, either from the regular program
or from the set which we added (except for btop itself). Thus, all told, we get
the program shown in Figure A.1. We now have a CUF program which corresponds
directly to a BPPO prespecification. To get the prespecification, we simply translate
in the obvious fashion; it is S = (P,C) with

P = {t, t1, t2, t3, t4, t5, t6, t7, t8, t9, s0, s1, s2, s3, s4, s5},

and with C shown in Figure A.1. Note that we are interpreting btop as the > in
S, so there is no need to explicitly translate the statements of the form t < btop,
since they are automatically implied in any BPPO.

This is almost a BPPO prespecification which is equivalent to the original CUF
program. But there are a few points of difference. Most importantly, we have intro-
duced new variables. If we want the BPPO prespecification to be truly equivalent
to the CUF program, then we cannot demand that these new variables be separable
from each other or from the original variables in the same vein that the original
variables might be from each other, since these new variables are not part of the
original specification. Thus, we have to be more selective about which variables we
demand be separable. To address this issue, we maintain two sets of pairs of types,
which we call the mandatory pairs and the regular pairs. We denote these pairs by
MandPair and RegPair, respectively.

The mandatory pairs are those which must be separated in any distributive
extension of the BPPO prespecification which is considered to faithfully model the
CUF program. When we translate an expression statement E to an assignment
statement s = E, by introducing the new variable s, we add the pair {s,⊥} to the
collection of mandatory separation pairs. This is because the semantics of the CUF
expression statement E is precisely that E must be satisfiable. Hence s cannot be
the empty type. Furthermore, for each type t that was used in the original CUF
program, we add the pair {t,⊥}. This just says that the original types must be
distinct from the empty type, which CUF requires in its consistency checks.

The regular pairs are those that must be separated to yield an injective distribu-
tive extension. For each type t that was used in the original CUF program, we
add the pair and {t,>}. This just says that the original types must be distinct
from the universe. Furthermore, for each pair of variables {t1, t2} from the original
CUF program, we add that pair to the collection of regular pairs. Note specifically
that we do not require that types which we introduced in the translation process
be separable from each other, from the original types, or even from ⊥, except in
the case that we translated an expression statement to an assignment statement.
Thus, in asking for a “legitimate” extension, we ask for Q-separability, with Q a set
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s0 = t1 & t5 & t9.

t = t1 & t2 & t3 & s5 & t8.

s1 = t6 & s4.

s2 | t5.

s3 | s1.

s4 | t3.

btop = s2 ; t5.

btop = s3 ; s1.

btop = s4 ; t3.

s5 = t4 ; s2 ; s3 ; t7.

s0 < btop.

s1 < btop.

s2 < btop.

s3 < btop.

s4 < btop.

s5 < btop.

t1 < btop.

t2 < btop.

t3 < btop.

t4 < btop.

t5 < btop.

t6 < btop.

t7 < btop.

t8 < btop.

t9 < btop.

C = { (
∧{t1, t5, t9} = s0)

(
∧{t1, t2, t3, s5, t8} = t)

(
∧{t6, s4} = s1)

(
∧{s2, s5} = ⊥)

(
∧{s3, s1} = ⊥)

(
∧{s4, t3} = ⊥)

(
∨{t6, s4} = s1)

(
∨{s2, s5} = >)

(
∨{s3, s1} = >)

(
∨{s4, t3} = >)

(
∨{t4, s2, s3, t7} = s5)}

Figure A.1: The final transformation of the example CUF program, and the corre-
sponding BPPO prespecification.

which contains all mandatory pairs, and whatever subset of regular pairs is deemed
appropriate for the particular application.
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The second issue that we must address is the bogus top btop; we must reconcile
how that relates to the “real” top top. This is quite simple. Although btop may not
be the top element in the CUF hierarchy (since CUF allows more complex types,
such as list types, which we do not consider here), it will be the top element in the
set of constructed types, because we have declared it to be such. Thus, while ~t

which we construct may not have the same denotation in a full CUF program as it
has here, this will not affect conditions of separability or extensibility in any way.

A.3 Constant types in CUF In addition to ordinary types, the CUF type lan-
guage allows constant types. They are indicated syntactically by using set brackets.
Thus, for example, the following statement declares type t to consist of the three
constant types a, b, and c.

r = {a, b, c}.

The semantics of this statement is the same as that of

r = a ; b ; c.

together with a declaration that the three types on the right hand side of the dec-
laration are atomic. Declaration of atoms may not occur within more complex
statements, so that an expression such as

t = t1 & (t2 ; {a, b, c}).

is not legal in CUF.
Our framework already provides the means to handle constants, as described in

Sections 1.5 and 2.5. To handle a CUF statement such as

r = {a, b, c}.

we simply replace it with

r = a ; b ; c.

in the CUF program. This means that the constraint
∨{a, b, c} = r is added to the

set of rules of the corresponding BPPO prespecification, and that is added {a, b, c}
to the set of elements to be rendered atomic.

We have thus shown that CUF programs may be translated to finite BPPO pre-
specifications with essentially the same semantics. We now illustrate the translation
in the opposite direction.

A.4 Translation from BPPO prespecifications to CUF For the most part,
anything that can be represented in a finite BPPO prespecification can be repre-
sented in a CUF program. Indeed, a rule of the form a < b may be realized as the
following CUF statement
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a < b.

The rules
∨{s1, . . . , sk} = a and

∨{t1, . . . , tm} = b may be realized by the following
two rules.

a = s1 ; ... ; sn.

b = t1 & ... & tn.

The only difficulty arises when we have rules involving ⊥ or >, as CUF does not
allow them to be used explicitly in rules. Now CUF does allow a direct equivalent
of a two-element meet rule, as

∧{s1, s2} = ⊥ may be realized as

s1 | s2.

However,

s1 | s2 | s3.

is not equivalent to
∧{s1, s2, s3} = ⊥, but rather to the three rules

∧{s1, s2} = ⊥,∧{s1, s3} = ⊥, and
∧{s2, s3} = ⊥ taken together. The only apparent way to model

effectively this sort of BPPO prespecification constraint in CUF is to create an an
“artificial ⊥” abot in the prespecification. Thus, we replace every rule of the form∧

S = ⊥ with the rule
∧

S = abot. The corresponding CUF statement becomes

abot = s1 & s2 & s3.

For each type name t in the domain under consideration, if we want every declared
type to have a nonempty instantiation (as CUF requires), we must also add a state-
ment of the form

t & ~abot

to ensure that t and abot do not have the same instantiation.
Similarly, to model a constraint of the form

∨{s1, . . . , sk} = >, we must in-
troduce an “artificial >,” and replace the rule with

∨{s1, . . . , sk} = atop. The
associated CUF statement becomes

atop = s1 ; s2 ; s3.
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