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Abstract. Domains for spatial and temporal data are often multigran-
ular in nature, possessing a natural order structure defined by spatial
inclusion and time-interval inclusion, respectively. This order structure
induces lattice-like (partial) operations, such as join, which in turn lead
to join rules, in which a single domain element (granule) is asserted to
be equal to, or contained in, the join of a set of such granules. In general,
the efficient representation of such join rules is a difficult problem. How-
ever, there is a very effective representation in the case that the rule is
bigranular ; i.e., all of the joined elements belong to the same granularity,
and, in addition, complete information about the (non)disjointness of all
granules involved is known. The details of that representation form the
focus of the paper.

1 Introduction

In a multigranular attribute, the domain elements are related by order-like and
even lattice-like operations, leading to a much richer family of integrity con-
straints than is found in the traditional monogranular setting. The ideas are
best illustrated via example. Let Rsumb〈APlc, ATim, BBth〉 be the schema in which
the spatial attribute APlc identifies certain geographical areas of Chile, the tem-
poral attribute ATim identifies intervals of time, and the thematic attribute BBth

has numerical values representing the number of births. A tuple of the form
〈p, t, b〉 denotes that in the region defined by p, for the time interval defined by
t, the number of births was b. An example instance for this schema is shown in
Fig. 1. Think of the two tables of that figure to be part of a single relation; the
division is for expository reasons, as well as to conserve space. In that instance,
for domain elements (called granules) of APlc, the suffix prv identifies the name
as that of a province, rgn identifies a region, cmn identifies a county, while
urb identifies a metropolitan area. For ATim, Y2017Qx denotes quarter x of year

2017, while Y2017 represents the entire year. Such a multigranular schema and
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APlc ATim BBth

Los Lagos rgn Y2017Q1 b1
Osorno prv Y2017Q1 b2

Llanquihue prv Y2017Q1 b3
Chiloé prv Y2017Q1 b4
Palena prv Y2017Q1 b5

Puerto Montt cmn Y2017Q1 b6
Puerto Varas cmn Y2017Q1 b7

Gran Puerto Montt urb Y2017Q1 b8

APlc ATim BBth

B́ıoB́ıo rgn Y2017 b′1
B́ıoB́ıo rgn Y2017Q1 b′2
B́ıoB́ıo rgn Y2017Q2 b′3
B́ıoB́ıo rgn Y2017Q3 b′4
B́ıoB́ıo rgn Y2017Q4 b′5

Fig. 1. Multigranular relational instance

instance may arise, for example, when data of varying granularities of space and
time are integrated, into a single schema, with respect to the same thematic
attribute (here BBth).

It is clear that the ordinary functional dependency (FD) {APlc, ATim} → BBth

is expected to hold. However, there are also several other natural dependen-
cies, induced by the structure of the multigranular domains. Each of the four
listed provinces is contained in the region Los Lagos, expressed formally as
Osorno prv v Los Lagos rgn, Llanquihue prv v Los Lagos rgn, Chiloé prv v
Los Lagos rgn, and Palena prv v Los Lagos rgn. Similarly, both counties, as
well as the metropolitan area of Gran Puerto Montt, are contained in the
province Llanquihue; Puerto Montt cmn v Llanquihue prv , Puerto Varas cmn v
Llanquihue prv , and Gran Puerto Montt urb v Llanquihue prv . For the temporal
domain, each of the quarters of 2017 is contained in the entire year: Y2017Qx v
Y2017 for x ∈ {1, 2, 3, 4}. Since the number of births is monotonic with respect
to region size and time-interval size, these conditions in turn lead to the con-
straints bi ≤ b1 for i ∈ {2, 3, 4, 5}, bi ≤ b3 for i ∈ {6, 7, 8}, and b′i ≤ b′1 for
i ∈ {2, 3, 4, 5}.

More is true, however. The region Los Lagos is composed exactly of the four
provinces listed, without any overlap, written as the disjoint-join equality rule
(r-LLr) below.

Los Lagos rgn =
⊔
⊥ {Osorno prv , Llanquihue prv ,Chiloé prv ,Palena prv}

(r-LLr)
Specifically, the symbol

⊔
means that the four provinces cover the region com-

pletely, while the embedded ⊥ means that the join is disjoint ; that is, that
the regions do not overlap. This leads to the spatial aggregation constraint∑5
i=2 bi = b1. Additionally, the metropolitan area of Gran Puerto Montt lies

entirely within the combined areas of the counties Puerto Montt and Puerto
Varas, leading to the disjoint-join subsumption rule (r-Llp) shown below, and
consequently the spatial aggregation constraint b8 ≤ b6 + b7.

Gran Puerto Montt urb v
⊔
⊥ {Puerto Montt cmn,Puerto Varas cmn} (r-Llp)
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Such aggregation constraints arise in the same fashion for temporal multi-
granular attributes, such as ATim. For example, the disjoint-join equality rule
(r-YQ2017) shown below holds, leading to the temporal aggregation constraint∑5
i=2 b

′
i = b′1.

Y2017 =
⊔
⊥ {Y2017Q1 ,Y2017Q2 ,Y2017Q3 ,Y2017Q4} (r-YQ2017)

Aggregation constraints arising from join rules, as illustrated by the exam-
ples above, are instances of TMCDs or thematic multigranular comparison de-
pendencies, which are developed in detail in [8], including a notion of tolerance
which replaces absolute equality with an approximate one (to account for differ-
ences arising from rounding and measurement errors). In order to enforce such
TMCDs, it is first of all essential to know which ones hold. This, in turn, re-
quires a means to determine which disjoint-join rules hold. Although a formal
semantics and inference mechanism for such rules is developed in [8], it is quite
resource expensive to enforce all TMCDs by identifying the associated join rules
via direct inference. The focus of this paper is the development of a compact
and efficient representation for certain types of join rules which occur frequently
in practice.

Key to these results are the observation that the granules of a multigranular
attribute may be partitioned naturally into so-called granularities (hence the
term multigranular) of disjoint members, as illustrated in Fig. 2 for both space
and time. Arrows of the form G1 −� G2 represent the basic refinement order
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Fig. 2. Granularity hierarchies for Chile and for time

of granularities, in the sense that for every granule g1 of granularity G1 there
is a granule g2 of granularity G2 with g1 v g2. Inline, this typically written
G1 ≤ G2. Thus, every county is contained in a (unique) province, every province
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is contained in a (unique) region, and every region is contained in Chile. Similarly,
every metropolitan area is contained in a region, (although not necessarily in a
single province.)

In support of the representation of rules, there are two additional binary
relations on granularities which are of fundamental importance, equality join
order, denoted E, and subsumption join order, denoted 4. G1 E G2 holds just
in case every granule g2 of granularity G2 is the (necessarily disjoint) join of
some granules of granularity G1; i.e., if g2 =

⊔
⊥ S holds for some finite set S of

granules of G2. As can be seen in Fig. 2, with the symbol E embedded in a line
indicating that this relation holds between the granularities which it connects,
this condition characterizes many practical situations. As a concrete example,
Province E Region, with (r-LLp) a specific instance of a join rule arising from
it. Similarly, for the time hierarchy, (r-YQ2017) is a specific instance of a rule
arising from Quarter E Year.

The main result of this paper regarding E may be summarized as follows.
Let NRel〈G1,G2〉

denote the relation which identifies pairs 〈g1, g2〉 of granules from
〈G1, G2〉 (i.e., with g1 of granularity G1 and g2 of granularity G2) which are not
disjoint. Then, it must be the case that S = {g2 | 〈g1, g2〉 ∈ NRel〈G1,G2〉

}; in other
words, S must be exactly the set of all granules of g2 which are not disjoint from
g1. As a specific example, to identify those provinces which lie in Los Lagos rgn,
it is only necessary to retrieve {g | 〈Los Lagos rgn, g〉 ∈ NRel〈Region,Province〉}; no
complex inference procedure is necessary. In assessing this solution, it must be
remembered that knowledge about granules, including subsumption, disjoint-
ness, and join, is specified via statements. There is the possibility that a given
assertion is unresolvable; i.e., it is not possible to establish that it is true or it
is false. (See Summary 2.7 for details.) What is remarkable about this result is
that no such unresolvability can occur for 〈G1, G2〉 disjointness. For G1 E G2 to
hold, it must be the case that for any pair 〈g1, g2〉 of granules of 〈G1, G2〉, it is
the case that the disjointness of 〈g1, g2〉 is resolvable.

This idea applies also, subject to an additional condition, when subsumption
replaces equality. G1 4 G2 holds just in case every granule of G1 is subsumed
by the join of some granules in G2; i.e., if g2 v

⊔
⊥ S holds for some finite set

S of granules of G2. This is illustrated in particular by rule (r-Llp), as an in-
stance of County 4 MetroArea. Of course, G1 E G2 always implies G1 4 G2,
but this example shows that the converse need not hold. The additional con-
dition which must be imposed is that the join be resolved minimal, meaning
that if any element is removed from the join set, the assertion becomes resolv-
ably false. In other words, both Gran Puerto Montt urb 6v Puerto Montt cmn and
Gran Puerto Montt urb 6v Puerto Varas cmn must follow from the rules. In this
case, to determine the counties in which Gran Puerto Montt urb lies, it is only
necessary to retrieve {g | 〈Gran Puerto Montt urb, g〉 ∈ NRel〈County,MetroArea〉}.

To clarify the terminology, a join rule g =
⊔
⊥ S is bigranular if every granule

in S is of the same granularity G2. (Since granules of the same granularity are
disjoint, it must be the case that the granularity G1 of g is different from that
of the members of S, hence the term bigranular.) Thus, any rule arising from
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the application of a condition of the form G1 E G2 or G1 4 G2 is necessarily
bigranular.

The representations developed above are termed implicit, since a rule of the
form g =

⊔
⊥ S or g v

⊔
⊥ S is represented by a way to recover S from the

appropriate NRel〈-,-〉. In the remainder of this paper, the details of how and why
this method of representing of join rules works are developed.

The paper is organized as follows. Section 2 provides necessary details of the
multigranular framework developed in [8]. Section 3 develops the general ideas of
minimality for join rules, while Sec. 4 contains the main results of the paper on
the representation of bigranular join rules. Finally, Sec. 5 contains conclusions
and further directions.

2 Multigranular Attributes and Their Semantics

The results of this paper are based upon the formal model of multigranular at-
tributes, as developed in [8]. It is thus appropriate to begin with a summary
of that framework. Although [7] covers similar material, it is of a preliminary
nature, so the reader is always referred to [8] for clarification of details. For ter-
minology and notation regarding logic, consult [11], while for issues surrounding
order structures, including posets, see [3]. For basic concepts surrounding the
relational model, see [9].

Notation 2.1 (Special mathematical notation). X1 ( X2 (resp. X1 ⊆f
X2 denotes that X1 is a proper (resp. finite) subset of X2. The cardinality of
the set X is denoted Card(X).

Overview 2.2 (Constrained granulated attribute schemata). In the or-
dinary relational model with SQL used for data definition, several attributes may
use the same data type. For example, two distinct attributes may be declared
to be of the same type VARCHAR(10). Similarly, in the multigranular model, sev-
eral distinct attributes may be declared to be of the same type. Such a type
is called a constrained granulated attribute schema, or CGAS, and is a triple
S = (Glty〈S〉,GrAsgn〈S〉,Constr±〈S〉) in which Glty〈S〉 is a poset of granular-
ities and GrAsgn〈S〉 is a granule assignment, both elaborated in Summary 2.3
below, while Constr±〈S〉 is a unified set of constraints, elaborated in Summary
2.5 below.

Summary 2.3 (Granularities and granules). A granularity poset for the
CGAS S is an upper-bounded poset Glty〈S〉 = (Glty〈S〉,≤Glty〈S 〉,>Glty〈S 〉); that
is, it is poset with a greatest element >Glty〈S〉. The two diagrams of Fig. 2 repre-
sent the specific granularity posets for S replaced by C and T, respectively, with
G1 ≤Glty〈C〉 G2 (resp. G1 ≤Glty〈T〉 G2) iff there is an arrow of the form G1 −� G2

in the associated diagram. In that which follows, S will be used to represent a
general CGAS, while C (for Chile) and T (for time) will be used to represent, re-
spectively, the spatial and the temporal schema whose granularities are depicted
in Fig. 2.
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A granule assignment GrAsgn〈S〉 = (Gnle〈S〉, ΠGnle〈S〉) for S extends the
idea of a domain assignment for an ordinary relational attribute, in the sense
that it assigns (with one exception) every granule to a granularity. Gnle〈S〉 =
(Granules〈S〉,vS ,>S ,⊥S ) is the (bounded) granule preorder, while ΠGnle〈S〉 =
{Granules〈S|G〉 | G ∈ Glty〈S〉} is a partition of Granules6⊥〈S〉 = Granules〈S〉 \
{⊥S} that identifies which granules are assigned to which granularities. The
bottom granule ⊥S (the least element of the preorder Gnle〈S〉) is not a member
of Granules〈S|G〉 for any granularity G, while the top granule >S (the greatest
element of the preorder Gnle〈S〉) lies in Granules〈S|>Glty〈S〉〉.

The orders of granularities and granules are closely related. Specifically, for
granularities G1 and G2, G1 ≤Glty〈S〉 G2 iff for every g1 ∈ Granules〈S|G1〉, there is
a g2 ∈ Granules〈S|G2〉 with the property that g1 vS g2. Since Gnle〈S〉 is only a
preorder, distinct granules may be equivalent, in the sense that g1 vS g2 vS g1.
Write [g1]Gnle〈S〉 to denote the equivalence class of g1; thus, with g1, g2 as above,

g2 ∈ [g1]Gnle〈S〉 and [g1]Gnle〈S〉 = [g2]Gnle〈S〉 . To avoid problems, the special

notation g1
id
= g2 will be used to mean that g1 and g2 are the same granule,

with the meaning of g1 = g2 deferred until Summary 2.5, when semantics are
discussed. With this in mind, further conditions may be stated. First of all,
the top granularity >Glty〈S〉 is the only one which may contain equivalent but
not identical granules. It contains the top granule >S (the greatest element of
the poset Gnle〈S〉), as well as any granule equivalent to it. For example, in
the CGAS C, [>C ]Gnle〈C〉 = [Chile]Gnle〈C〉 (see Fig. 2). Otherwise, non-identical

granules of the same granularity may not be equivalent, and they furthermore
must have the bottom granule as GLB (greatest lower bound). More precisely,
if g1 and g2 are of the same non->Glty〈S〉 granularity, and g1 6

id
= g2, then both

([g1]Gnle〈S〉 6= [g2]Gnle〈S〉) and (GLBGnle〈S〉〈{g1, g2}〉 = ⊥S) hold.

Summary 2.4 (Semantics of granules). A granule structure σ =
σ = (Dom〈σ〉,GnletoDomσ) for the granule assignment GrAsgn〈S〉 provides set-
based semantics. Dom〈σ〉 is a (not necessarily finite) set, called the domain of
σ, and GnletoDomσ : Granules〈S〉 → 2Dom〈σ〉 is a function which assigns to each
granule a subset of the domain. In this assignment, granule subsumption trans-
lates to set inclusion (g1 vS g2 implies GnletoDomσ(g1) ⊆ GnletoDomσ(g2)),
granule disjointness translates to empty intersection (if g1 and g2 are of the same
granularity with g1 6

id
= g2, then GnletoDomσ(g1) ∩ GnletoDomσ(g2) = ∅); equiv-

alent granules have identical semantics ((GnletoDomσ(g1) = GnletoDomσ(g2))⇔
[g1]Gnle〈S〉 = [g2]Gnle〈S〉); and the bottom granule maps to the empty set

(GnletoDomS(⊥S) = ∅).
As already mentioned in Sec. 1, for a spatial attribute such as C, a natural

granular structure might be σChile, the subset of the real plane R×R represent-
ing Chile, with GnletoDomσChile

(g) exactly the geographic region corresponding
to granule g. While such a structure is mathematically correct, it involves an
enormous amount of detail, much more than is necessary in many cases. It is
for this reason that the semantics of a multigranular attribute is modelled not
by a single granular structure, but rather by any such structure which satisfies
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the constraint, or rules, of the schema, as defined in Summary 2.5 below. For a
more complete explanation, see [8, 3.6].

Summary 2.5 (Rules). In [8, Sec. 3], general constraints for GGASs and their
semantics are developed extensively. In this paper, only those constraint types
which are used in the theory developed here are sketched.

The primitive basic rules over the CGAS S, denoted, PrBaRules〈S〉 are of
the following two forms.

(pjrule-i) A subsumption join rule is of the form (g vS

⊔
S
S) for

{g} ∪ S ⊆ Granules6⊥〈S〉. The elemental subsumption rule (g1 vS g2), with
g1, g2 ∈ Granules6⊥〈S〉, is shorthand for (g1 vS

⊔
S
{g2}).

(psrule-ii) A basic disjointness rule is of the form (
d

S
{g1, g2} = ⊥S) for

g1, g2 ∈ Granules6⊥〈S〉 and [g1]S 6= [g2]S .

Extending the notion of semantics of Summary 2.4 to PrBaRules〈S〉, a granule
structure σ for S is a model of the subsumption rule (g vS

⊔
S
S) if

GnletoDomσ(g) ⊆
⋃
s∈S GnletoDomσ(s), while σ is model of the basic disjoint-

ness rule (
d

S
{g1, g2} = ⊥S) if GnletoDomσ(g1) ∩ GnletoDomσ(g2) = ∅. For

Φ ⊆ PrBaRules〈S〉, ModelsS〈Φ〉 denotes the collection of all models of Φ.

For any CGAS S, the built-in rules BuiltInRules〈S〉 are those which are
satisfied by every granular structure σ for S. These include the subsumption rule
(g1 vS g2) whenever g1 vS g2 holds,3 as well as

d
S
{g1, g2} = ⊥S whenever

g1 6
id
= g2 are of the same granularity.

A complex rule is a conjunction of primitive basic rules. Write Conjuncts〈ϕ〉
to denote the set of conjuncts of the complex rule ϕ. Thus, if ϕ = ϕ1∧ϕ2∧ . . . ∧ϕk,
then Conjuncts〈ϕ〉 = {ϕ1, ϕ2, . . . , ϕk}. The most important kind of complex rules
are the complex join rules:

(cjrule-i) An equality join rule is of the form (g =
⊔

S
S), for {g} ∪ S ⊆

Granules6⊥〈S〉. Its definition in terms of primitive basic rules is
ConjunctsS〈(g =

⊔
S
S)〉 = {(g vS

⊔
S
S)} ∪ {(gi vS g) | gi ∈ S}.

(cjrule-ii) A disjoint-join subsumption rule, written as (g vS

⊔
⊥

S
S) for {g} ∪

S ⊆ Granules6⊥〈S〉, is defined in terms of primitive basic join rules as
ConjunctsS〈(g vS

⊔
⊥

S
S)〉 =

Conjuncts〈(g vS

⊔
S
S)〉 ∪ {(

d
S
{g1, g2} = ⊥S) | gi, gj ∈ S and gi 6

id
= g2}.

(cjrule-iii) A disjoint-join equality rule, written as (g =
⊔
⊥

S
S) for {g} ∪ S ⊆

Granules6⊥〈S〉. is defined in terms of primitive basic join rules as
ConjunctsS〈(g =

⊔
⊥

S
S)〉 =
ConjunctsS〈(g =

⊔
S
S)〉 ∪ ConjunctsS〈(g vS

⊔
⊥

S
S)〉.

For convenience, a complex rule will be represented by its set of conjuncts. Thus,
every complex rule is a regarded as a finite nonempty set of primitive basic rules.

3 vS is the granule preorder defined in the granule assignment GrAsgn〈S〉 (see
Summary 2.3) while vS is the general subsumption relation used to define rules.
For g1, g2 ∈ Granules〈S〉, it is always the case that g1 vS g2 implies (g1 vS g2)).
The converse is not required to hold, although in practice it usually does.
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For simplicity, the example rules in Sec. 1 were presented without qualifying
subscripts on the operators. Using the notation for specific granular attributes in-
troduced in Summary 2.3, for example, rule (r-Llp) should be written more prop-

erly as Gran Puerto Montt urb vC

⊔
⊥

C
{Puerto Montt cmn,Puerto Varas cmn}. It

is assumed that the reader will add these qualifying symbols, as necessary.

Summary 2.6 (Negation of rules). It is also necessary to work with nega-
tions of primitive basic rules over the CGAS S ; the most important example is
negation of disjointness; for g1, g2 ∈ Granules6⊥〈S〉, write (

d
S
{g1, g2} 6= ⊥S)

to mean ¬(
d

S
{g1, g2} = ⊥S). Similarly, (g1 6vS g2) means ¬(g1 vS g2)

and (g1 6vS S) means ¬(g1 vS S). The set of all negations of primitive ba-
sic rules is denoted NegPrBaRules〈S〉. The granule structure σ is a model of
ψ = ¬ϕ ∈ NegPrBaRules〈S〉, iff it is not a model of ϕ; i.e., ModelsS〈ψ〉 is the
collection of all granule structures which do not lie in ModelsS〈ϕ〉.

For Φ,Φ′ ⊆ PrBaRules〈S〉, define Not〈Φ〉 = {(¬ϕ) | ϕ ∈ Φ}. Thus,
NegPrBaRules〈S〉 = Not〈PrBaRules〈S〉〉.

Finally, it is convenient to combine positive and negated rules into one set.
Define AllPrBaRules〈S〉 = PrBaRules〈S〉 ∪ NegPrBaRules〈S〉. For Φ ⊆
AllPrBaRules〈S〉, ModelsS〈Φ〉 =

⋂
{ModelsS〈ϕ〉 | ϕ ∈ Φ}.

Summary 2.7 (Satisfiability and Resolvability). Continuing with S a
CGAS, for ϕ ∈ AllPrBaRules〈S〉 and Φ ⊆ AllPrBaRules〈S〉, define semantic
entailment Φ |=S ϕ to mean that ModelsS〈Φ〉 ⊆ ModelsS〈ϕ〉, and for Φ′ ⊆
AllPrBaRules〈S〉, Φ |=S Φ′ to mean that ModelsS〈Φ〉 ⊆ ModelsS〈Φ′〉. In other
words, Φ imposes stronger constraints than does Φ′. ϕ (resp. Φ) is satisfiable (or
consistent) if it has a model; i.e., ModelsS〈ϕ〉 6= ∅ (resp. ModelsS〈Φ〉 6= ∅).

Let Φ ⊆ AllPrBaRules〈S〉 and ϕ ∈ PrBaRules〈S〉. Say that ϕ is resolvable
from Φ, written Φ |=±S ϕ, if one of Φ |=S ϕ or else Φ |=S ¬ϕ holds. In other
words, the truth value of ϕ is determined by Φ; either ϕ is true in every model
of Φ, or else ϕ is false in every model of ϕ.

The set PrBaRules〈S〉 has the property of admitting Armstrong models [6],
in the precise sense that for any consistent Φ ⊆ PrBaRules〈S〉, there is a model
which satisfies only those members of Φ. This means that members of
NegPrBaRules〈S〉 whose negations are not entailed by Φ may be added to Φ
in any combination while retaining satisfiability. See [8, 3.15-3.20] for details.

Finally, Constr±〈S〉 ⊆ AllPrBaRules〈S〉 is a consistent set of rules, represent-
ing the set of constraints of S, as first identified in Overview 2.2. In [8] this set
is represented as a pair 〈Constr(S), cwa〈S〉〉, with Constr(S) the positive con-
straints and cwa〈S〉 those to be negated; Constr±〈S〉 = Constr(S)∪Not〈cwa〈S〉〉
provides the equivalence of notation.

3 Minimality of Join Rules

Roughly, a join rule is minimal if removing any of the joined granules results in
a rule which is no longer a consequence of the constraints. In this section, this
idea of minimality is developed formally.
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Context 3.1 (CGAS). Unless stated specifically to the contrary, for the re-
mainder of this paper, let S = (Glty〈S〉,GrAsgn〈S〉,Constr±〈S〉) denote an
arbitrary CGAS.

Notation 3.2 (Components of join rules). There are four variants of join
rule over S, identified in (pjrule-i) and (cjrule-i)–(cjrule-iii) of Summary 2.5,
collectively denoted JRules〈S〉. A join rule over S is thus a statement of the
form (g �

⊔
? S) with � ∈ {=, vS}, and

⊔
? ∈ {

⊔
S
,
⊔
⊥

S
}, for g ∈ Granules6⊥〈S〉,

and S ⊆ Granules6⊥〈S〉 nonempty. Using terminology borrowed from logic, g is
called the head of the rule while S is called the body, denoted by Head〈ϕ〉 and
Body〈ϕ〉, respectively, for ϕ ∈ JRules〈S〉. In addition, CompOp〈ϕ〉 ∈ {=, vS}
denotes the operator of the rule, and JoinOp〈ϕ〉 ∈ {

⊔
S
,
⊔
⊥

S
} denotes the join

operation of the rule. In other words, CompOp〈ϕ〉 is just � and JoinOp〈ϕ〉 is
just

⊔
?

S
, as defined above. The new notation is introduced in order to be able

to parameterize these items in terms of the underlying rule ϕ. Thus, ϕ may be
written, somewhat cryptically, as (Head〈ϕ〉 CompOp〈ϕ〉 JoinOp〈ϕ〉 Body〈ϕ〉).

Definition 3.3 (Primitive reduction and minimality of join rules). The
primitive reduction of ϕ ∈ JRules〈S〉 by Z ⊆ Body〈ϕ〉, denoted PrReduct〈ϕ : Z〉,
is obtained by removing the members of Z from Body〈ϕ〉, and by replacing,
if necessary, equality with subsumption as the comparison operator. Formally,
PrReduct〈ϕ : Z〉 is the rule ϕ′ ∈ JRules〈S〉 with Body〈ϕ′〉 = Body〈ϕ〉 \ Z and
JoinOp〈ϕ〉 =

⊔
S

, while Head〈ϕ′〉 and CompOp〈ϕ′〉, remain unchanged from ϕ.
If Body〈ϕ′〉 is a proper subset of Body〈ϕ〉; i.e., Body〈ϕ′〉 ( Head〈ϕ〉, then ϕ′

is called a proper primitive reduction of ϕ. For example, letting ϕ be the rule
(r-LLr) of Sec. 1, with Z = {Osorno prv ,Chiloé prv},

PrReduct〈ϕ : Z〉 = (Los Lagos rgn vC

⊔
C
{Llanquihue prv ,Palena prv}).

ϕ ∈ JRules〈S〉 is minimal (for S) if for no proper primitive reduction ϕ′ of
ϕ is it the case that Constr±〈S〉 |=S ϕ′. More formally, ϕ is minimal if for no
nonempty Z ⊆ Body〈ϕ〉 is it the case that Constr±〈S〉 |=S PrReduct〈ϕ : Z〉. In
other words, if any nonempty subset of the body is removed, the resulting rule is
no longer a consequence of Constr±〈S〉. ϕ is resolved minimal (for S) if for every
nonempty Z ⊆ Body〈ϕ〉 it is the case that Constr±〈S〉 |=S ¬PrReductS〈ϕ : Z〉.
Put another way, if any element of the body is removed, and the comparison
operator is replaced by subsumption, the rule becomes false. If ϕ is minimal
but not resolved minimal, then it is called unresolved minimal. Both forms of
minimality may be characterized by the removal of single elements from the
body. Define the primitive reduction set of ϕ, denoted RedSet〈ϕ〉, to be

{PrReductS〈ϕ : {h}〉 | h ∈ Body〈ϕ〉} if Card(Body〈ϕ〉) ≥ 2,
and to be ∅ otherwise. For example, letting ϕ again be (r-LLr),
RedSet〈ϕ〉 = {(Los Lagos rgn vC

⊔
C
{Osorno prv , Llanquihue prv ,Chiloé prv}),

(Los Lagos rgn vC

⊔
C
{Osorno prv , Llanquihue prv ,Palena prv}),

(Los Lagos rgn vC

⊔
C
{Osorno prv ,Chiloé prv ,Palena prv}),

(Los Lagos rgn vC

⊔
C
{Llanquihue prv ,Chiloé prv ,Palena prv})}.

For ϕ to be minimal, no element of RedSet〈ϕ〉 may be implied by the constraints,
while to be resolved minimal, the negation of every such element must be so
implied. This is formalized by the following, whose proof is immediate.
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Observation 3.4 (Removing single elements suffices). Let ϕ ∈ JRules〈S〉
with Constr±〈S〉 |=S ϕ.

(a) ϕ is minimal iff for no ψ ∈ RedSet〈ϕ〉 does Constr±〈S〉 |=S ψ hold.

(b) ϕ is resolved minimal iff Constr±〈S〉 |=S Not〈RedSet〈ϕ〉〉. 2

Proposition 3.5 (Disjoint equality join implies resolved minimality).
A disjoint equality join rule ϕ for which Constr±〈S〉 |=S ϕ is resolved minimal.

Proof. Writing ϕ as (g =
⊔
⊥

S
S), according to Summary 2.5, it has the repre-

sentation ConjunctsS〈ϕ〉 =
(g vS

⊔
S
S) ∪ {(s vS g) | s ∈ S} ∪ {(

d
S
{s, s′} = ⊥S) | s, s′ ∈ S and s 6 id= s′}

in terms of primitive basic rules. Now, let σ ∈ ModelsS〈Constr±〈S〉〉 and choose
any s ∈ S. Since σ(s) 6= ∅, σ(s) ∩ σ(s′) = ∅ for all s′ ∈ S \ {s}, and σ(g) =⋃
{σ(s′′) | s′′ ∈ S}, it follows that σ(g) (

⋃
{s′′ ∈ S | s′′ 6 id= s}. Since σ is an arbi-

trary model of Constr±〈S〉, it follows that Constr±〈S〉 |=S

¬(g vS S \ {s}) = ¬PrReductS〈ϕ : {s}〉. Finally, since s is arbitrary, the proof
follows from Observation 3.4(b). 2

Discussion 3.6 (Subsumption join and minimal rules). In view of
Proposition 3.5, (r-LLr) is automatically resolved minimal. This is clear, since if
any of the provinces are removed from the body, the subsumption will fail. How-
ever, this idea does not extend to subsumption join. For example, any metropoli-
tan area of Chile lies within the join of all counties; e.g.,

(Gran Puerto Montt urb vC

⊔
⊥

C
Granules〈C|County〉).

This rule is not even unresolved minimal; there are only two counties with which
Gran Puerto Montt is not disjoint. Thus, resolved minimality must be asserted
explicitly for a rule such as (r-Llp) of Sec. 1.

Definition 3.7 (Resolved-minimal join rules). For any ϕ ∈ JRules〈S〉, de-
fine RMinSet〈ϕ〉 = Not〈RedSet〈ϕ〉〉, and define the resolved minimization of ϕ
to be ResMin〈ϕ〉 = ConjunctsS〈ϕ〉 ∪ RMinSet〈ϕ〉. In light of Observation 3.4(b),
RMinSet〈ϕ〉 consists of exactly those constraints necessary to make ϕ a resolved
minimal join rule. For ϕ set to (r-Llp) of Sec. 1,

ResMin〈ϕ〉 = {¬(Gran Puerto Montt urb vC Puerto Montt cmn),
¬(Gran Puerto Montt urb vC Puerto Varas cmn)}

Just as the basic join symbol
⊔

S
is embellished with ⊥ to yield

⊔
⊥

S
to indicate

disjoint join, it is also useful to embellish the symbol to indicate resolved minimal
joins. More precisely, for any type of join rule ϕ identified in Notation 3.2, replac-

ing
⊔

S
by

⊔rmin

S
, or

⊔
⊥

S
by

⊔
⊥
rmin

S
, denotes its resolved minimization. For this paper,

the concrete case of interest is the resolved-minimal disjoint subsumption join

rule (g vS

⊔
⊥
rmin

S
S), shorthand for ConjunctsS〈(g vS

⊔
⊥

S
S)〉 ∪ RMinSet〈(g vS⊔

⊥
S
S)〉. Formally, the resolved-minimal disjoint equality join rule (g =

⊔
⊥
rmin

S
S),

shorthand for ConjunctsS〈(g =
⊔
⊥

S
S)〉 ∪ RMinSet〈(g =

⊔
⊥

S
S)〉, is also used,

but in view of Proposition 3.5, every disjoint equality join rule is resolved mini-
mal, so the property is redundant. The set of all rules which are of one of these
resolved forms is called the resolved minimal join rules, denoted RMJRules〈S〉.
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ϕ ∈ RMJRules〈S〉 has JoinOp〈ϕ〉 ∈ {
⊔rmin

S
,
⊔
⊥
rmin

S
} but is otherwise syntactically

identical to a rule in JRules〈S〉. As a concrete example, to express that it is
resolved minimal, (r-Llp) may be rewritten as

Gran Puerto Montt urb vC

⊔
⊥

rmin

C
{Puerto Montt cmn,Puerto Varas cmn} (r-Llp′)

4 Bigranular Join Rules and Their Representation

In this section, the main results of the paper, on the implicit representation of
multigranular join rules, are developed.

Definition 4.1 (Granularity pairs). A granularity pair over S is an ordered
pair 〈G1, G2〉 ∈ Glty〈S〉 × Glty〈S〉 with G1 6= G2.

Context 4.2 (Granularity names and granularity pairs). For the remain-
der of this section, unless stated specifically to the contrary, let G1, G2, G3 ∈
Glty〈S〉. In particular, 〈G1, G2〉 and 〈G2, G3〉 are granularity pairs.

Definition 4.3 (Join-order properties of granularity pairs). The notions
of equality-join order and subsumption-join order, introduced informally in Sec.
1, are formalized as follows.

(ej-ord) 〈G1, G2〉 has the equality-join order property, written G1 ES G2, if
(∀g2 ∈ Granules〈S|G2〉)(∃S ⊆f Granules〈S|G1〉)

(Constr±〈S〉 |=S (g2 =
⊔

S
S)).

(sj-ord) 〈G1, G2〉 has the subsumption-join order property, written G1 4S G2,
if
(∀g2 ∈ Granules〈S|G2〉)(∃S ⊆f Granules〈S|G1〉)

(Constr±〈S〉 |=S (g2 vS

⊔rmin

S
S)).

While the join in these rules is not explicitly disjoint, in applications to bigranular
rules (Definition 4.6), it will always be disjoint (Proposition 4.7).

Observation 4.4 (Equality join implies subsumption join). If G1 ES G2

holds, then so too does G1 4S G2.

Proof. Equality is a special case of subsumption, and equality join is always
minimal (Proposition 3.5). 2

Definition 4.5 (Biresolvability and equiresolvability). In order to charac-
terize these order properties in terms of simpler ones, several new notions are es-
sential. Local resolvability (for disjointness, subsumption, or both) characterizes
resolvability at a fixed g2 ∈ Granules〈S|G2〉, while full resolvability characterizes
the corresponding property for all such g2. Formally, given g2 ∈ Granules〈S|G2〉,
the pair 〈G1, G2〉 is locally disjointness resolvable (resp. locally subsumption re-
solvable) at g2 if for every g1 ∈ Granules〈S|G1〉, Constr±〈S〉 |=±S (

d
S
{g1, g2} =

⊥S) (resp. Constr±〈S〉 |=±S (g1 vS g2)). If 〈G1, G2〉 is locally disjointness resolv-
able (resp. locally subsumption resolvable) for every g2 ∈ Granules〈S|G2〉, then
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it is called fully disjointness resolvable (resp. fully subsumption resolvable). Call
〈G1, G2〉 locally biresolvable at g2 (resp. fully biresolvable) if it is both locally
disjointness resolvable and locally subsumption resolvable at g2 (resp. both fully
disjointness resolvable and fully subsumption resolvable).

The pair 〈G1, G2〉 is equiresolvable if subsumption and nondisjointness re-
solve equivalently. More formally, 〈G1, G2〉 is equiresolvable at g2 if, for every
g1 ∈ Granules〈S|G1〉, Constr±〈S〉 |=S (g1 vS g2) holds iff Constr±〈S〉 |=S

(
d

S
{g1, g2} 6= ⊥S) holds; and Constr±〈S〉 |=S (g1 6vS g2) holds iff

Constr±〈S〉 |=S (
d

S
{g1, g2} = ⊥S) holds. Call 〈G1, G2〉 fully equiresolvable

if it is equiresolvable at each g2 ∈ Granules〈S|G2〉.

Definition 4.6 (Bigranular join rules). A join rule ϕ is of type 〈G1, G2〉 if
Head〈ϕ〉 ∈ Granules〈S|G1〉 and Body〈ϕ〉 ⊆ Granules〈S|G2〉. Such a rule is also
called bigranular.

Proposition 4.7 (Bigranular implies disjoint). If a join rule ϕ is bigran-

ular, then it is disjoint; i.e., JoinOp〈ϕ〉 ∈ {
⊔
⊥

S
,
⊔
⊥
rmin

S
}.

Proof. Distinct granules of the same granularity are disjoint; in particular, the
granules of Body〈ϕ〉 have that property. 2

The main characterization result for resolved minimality, in its most general
form, is presented next.

Proposition 4.8 (Characterization of resolved minimality). Let ϕ be a
minimal join rule of type 〈G1, G2〉 with the property that Constr±〈S〉 |=S ϕ. The
following three conditions are then equivalent.

(a) 〈G1, G2〉 is locally disjointness resolvable at Head〈ϕ〉.
(b) ϕ is resolved minimal.

(c) Body〈ϕ〉 =
{g1 ∈ Granules〈S|G1〉 | Constr±〈S〉 |=S (

d
S
{g1,Head〈ϕ〉} 6= ⊥S)}.

Proof. (a) ⇒ (c): Regardless of whether or not (a) holds,
{g1 ∈ Granules〈S|G1〉 | Constr±〈S〉 |=S (

d
S
{g1,Head〈ϕ〉} 6= ⊥S)} ⊆ Body〈ϕ〉,

since distinct elements of Granules〈S|G1〉 must be disjoint. If (a) holds, then
every g′1 ∈ Granules〈S|G1〉 \

{g1 ∈ Granules〈S|G1〉 | Constr±〈S〉 |=S (
d

S
{g1,Head〈ϕ〉} 6= ⊥S)}

must have the property that Constr±〈S〉 |=S (
d

S
{g′1,Head〈ϕ〉} = ⊥S), by the

very definition of local disjoint resolvability. Clearly, such a granule is not needed
in Body〈ϕ〉. Hence (c) holds.

(c) ⇒ (b): Assume that (c) holds. For any g′1 ∈ Body〈ϕ〉, it is clear that
Constr±〈S〉 |=S ¬PrReduct〈ϕ : {g′1}〉, since there is no way that (Head〈ϕ〉 vS

Body〈ϕ〉 \ {g′1}) can hold, owing to the disjointness of distinct granules of G1.
Hence ϕ is resolved minimal.

(b) ⇒ (a): Assume that ϕ is resolved minimal. Then for any g′1 ∈ Body〈ϕ〉,
Constr±〈S〉 |= ¬(PrReduct〈ϕ : {g′1}〉). Since distinct granules of G1 are disjoint,
this implies that Constr±〈S〉 |=S (

d
S
{g′1,Head〈ϕ〉} 6= ⊥S). On the other hand,
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let g′′1 ∈ Granules〈S|G1〉\Body〈ϕ〉. If Constr±〈S〉 6|=S (
d

S
{g′′1 ,Head〈ϕ〉} = ⊥S),

then there must be a model σ of Constr±〈S〉 for which σ ∈
ModelsS〈(

d
S
{g′′1 ,Head〈ϕ〉} 6= ⊥S)〉 also. In that case, owing to the disjointness

of distinct granules of G1, it would necessarily be the case that g′′1 ∈ Body〈ϕ〉, a
contradiction. Hence it must be the case that Constr±〈S〉 |=S

(
d

S
{g′′1 ,Head〈ϕ〉} = ⊥S), and so 〈G1, G2〉 is locally disjointness resolvable at

Head〈ϕ〉, as required. 2

The above result provides in particular a succinct characterization of the
subsumption join order 4 in terms of subsumption join rules. Notice that, in
contrast to the case for E, resolved minimality must be asserted explicitly.

Theorem 4.9 (Characterization of subsumption join order). Let
〈G1, G2〉 be a granularity pair. The following conditions are equivalent.

(a) G1 4S G2.

(b) For each g2 ∈ Granules〈S|G2〉,
g2 vS

⊔
⊥
rmin

S
{g1 ∈ Granules〈S|G1〉 | Constr±〈S〉 |=S (

d
S
{g1, g2} 6= ⊥S)},

and this is the only possibility for a resolved minimal rule ϕ with
Head〈ϕ〉 = g2 and Body〈ϕ〉 ⊆ Granules〈S|G1〉.

Furthermore, if either (a) or (b) holds, then 〈G1, G2〉 is both fully biresolvable
and fully equiresolvable.

Proof. Follows directly from Proposition 4.8 using Definition 4.3(sj-ord). 2

For the special case of equality join, the results of Proposition 4.8 may be re-
fined as follows, establishing resolved minimality, local biresolvability and equire-
solvability, as well as characterization of the body in terms of both subsumption
and nondisjointness.

Proposition 4.10 (Resolved minimality for equality join). Let ϕ be an
equality-join rule of type 〈G1, G2〉 with the property that Constr±〈S〉 |=S ϕ. The
following properties then hold.

(a) ϕ is resolved minimal.

(b) 〈G1, G2〉 is locally biresolvable as well as locally equiresolvable at Head〈ϕ〉.
(c) Body〈ϕ〉 = {g1 ∈ Granules〈S|G1〉 | Constr±〈S〉 |=S (g1 vS Head〈ϕ〉)}

= {g1 ∈ Granules〈S|G1〉 | Constr±〈S〉 |=S (
d

S
{g1,Head〈ϕ〉} 6= ⊥S)}.

Proof. Part (a) follows immediately from Proposition 4.7, Proposition 3.5, and
Proposition 4.8(b), whereupon the equality of the first and third expressions of
(c) follows from Proposition 4.8(c). To complete the proof, it suffices to note that,
by the very definition of disjoint-join equality rule (Summary 2.5(cjrule-iii)),
(g vS Head〈ϕ〉) for every g ∈ Body〈ϕ〉. Since granules ofG1 are pairwise disjoint,
and since Head〈ϕ〉 =

⊔
S
Body〈ϕ〉, is follows that no granule g ∈ Granules〈S|G1〉\

Body〈ϕ〉 can have the property that (g vS Head〈ϕ〉). Hence, the remaining
equality of (c) holds, from which (b) then follows directly. 2

A characterization of equality join order E, similar to that of Theorem 4.9
but expanded to include subsumption, may now be established.
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Theorem 4.11 (Characterization of equality-join order). Let 〈G1, G2〉
be a granularity pair. The following conditions are equivalent.

(a) G1 ES G2.

(b) For each g2 ∈ Granules〈S|G2〉,
g2 =

⊔
⊥
rmin

S
{g1 ∈ Granules〈S|G1〉 | Constr±〈S〉 |=S (g1 vS g2)}

=
⊔
⊥
rmin

S
{g1 ∈ Granules〈S|G1〉 | Constr±〈S〉 |=S (

d
S
{g1, g2} 6= ⊥S)},

and this is the only possibility for a minimal rule ϕ with
Head〈ϕ〉 = g2 and Body〈ϕ〉 ⊆ Granules〈S|G1〉.

Furthermore, if either (a) or (b) holds, then 〈G1, G2〉 is both fully biresolvable
and fully equiresolvable.

Proof. Follows directly from Proposition 4.10 using Definition 4.3(ej-ord). 2

Discussion 4.12 (Consequences of the characterizations). The main
thrust of the results developed so far in this section is that even though there
may be many granule structures which are models for the constraints associated
with G1 4S G2 and G1 ES G2, all of these models agree on which granules of
G1 are and are not disjoint from granules of G2. Furthermore, this disjointness
information is sufficient to recover completely the join rules. This information is
represented via the relation nondisjointness relation NRelS:〈-,-〉, as introduced in
Sec. 1. The corresponding relation SRelS:〈-,-〉 for subsumption is similarly used,
as its special properties will prove to be useful in the representation of rules as-
sociated with ES. The formalization of these ideas are found in Definition 4.13
and Theorem 4.14 below.

Definition 4.13 (The fundamental relations of a granularity pair). De-
fine the nondisjointness relation for 〈G1, G2〉 as
NRelS:〈G1,G2〉

= {〈g1, g2〉 ∈ Granules〈S|G1〉 × Granules〈S|G2〉 |
Constr±〈S〉 |=S (

d
S
{g1, g2} 6= ⊥S)}.

Similarly, define the subsumption relation for 〈G1, G2〉 as
SRelS:〈G1,G2〉

= {〈g1, g2〉 ∈ Granules〈S|G1〉 × Granules〈S|G2〉 |
Constr±〈S〉 |=S (g1 vS g2)}.

Note that if 〈G1, G2〉 is fully equiresolvable (Definition 4.5), in particular if
G1 ES G2 (Theorem 4.11), then NRelS:〈G1,G2〉

= SRelS:〈G1,G2〉
.

The main theorem for implicit representation is the following.

Theorem 4.14 (Representation of bigranular join rules using funda-
mental relations).

(a) If G1 4S G2 holds, then for every g2 ∈ Granules〈S|G2〉 and every
S ⊆f Granules〈S|G1〉,

Constr±〈S〉 |=S (g2 vS

⊔
S
S) iff {g1 | 〈g1, g2〉 ∈ NRelS:〈G1,G2〉

} ⊆ S.
In particular,

Constr±〈S〉 |=S (g2 vS

⊔
⊥
rmin

S
S) iff S = {g1 | 〈g1, g2〉 ∈ NRelS:〈G1,G2〉

}.
(b) If G1 ES G2 holds, then for every g2 ∈ Granules〈S|G2〉 and every

S ⊆f Granules〈S|G1〉, Constr±〈S〉 |=S (g2 =
⊔

S
S) iff

S = {g1 | 〈g1, g2〉 ∈ NRelS:〈G1,G2〉
} = {g1 | 〈g1, g2〉 ∈ SRelS:〈G1,G2〉

}.
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Proof. The proof follows immediately from Theorem 4.9 and Theorem 4.11. 2

Discussion 4.15 (Equality-join order is transitive). It is easy to see that
the equality-join order relation is transitive. More precisely, if G1 ES G2 and
G2 ES G3 both hold, then so too does G1 ES G3. This follows immediately
from the first equality of Theorem 4.11(b) and the fact that the subsumption
relation vS is transitive. To illustrate the utility of this observation via example,
referring to the hierarchy to the left in Fig. 2, since both Province EC Region and
County EC Province, it is also the case that County EC Region, and, furthermore,

SRelC:〈County,Region〉 = SRelC:〈County,Province〉 ◦ SRelC:〈Province,Region〉,
with ◦ denoting relational composition. Thus, it is not necessary to represent all
pair of the form Gi ES Gj , but rather only a base set, from which the others
may be obtained via transitivity. In both diagrams of Fig. 2, the edges labelled
with E identify such base sets.

This transitivity property is not shared by the subsumption-join order rela-
tion 4S, as is easily verified by example.

Discussion 4.16 (Implementation of bigranular constraints via
implicit representation). A PostgreSQL-based system, providing multigran-
ular features, is under development at the University of Concepción. Called
MGDB, it is based upon the theory of [8], employing further the ideas elabo-
rated in this paper. MGDB supports neither detailed spatial models (based upon
regions in R2) nor the detailed spatial operations described in [4]. Rather, it is
a relational extension which supports multigranular attributes. A main feature
is support for basic spatial relationships, such as nondisjointness, subsumption,
and join, without the need for an elaborate R2 model. A second feature is that
spatial and temporal attributes are both recaptured using the same underlying
formalism.

Currently, MGDB is implemented via additional relations on top of an ordi-
nary relational schema. Thus, each multigranular attribute S is represented as
an ordinary attribute, together with additional relations which recapture its spe-
cial properties. In particular, for each such attribute and each granularity pair
〈G1, G2〉, the relations NRelS:〈G1,G2〉

and SRelS:〈G1,G2〉
are stored, either funda-

mentally or as views (see below for more detail), to the extent that the associated
information is known. In addition, there is a special ternary relation GrPrPropS,
with a tuple of this relation of the form 〈G1, G2, c〉, with c a code which identifies
the relationship between the granularities G1 and G2. The code may represent
combinations of G1 ≤S G2, G1 ES G2, and G1 4S G2, as well as other rela-
tionships not covered in this paper. Given a granule g2 ∈ Granules〈S|G2〉, and
a request to determine which granules of G1 are related to it via a join rule
which is a consequence of a bigranular property, it is only necessary to look in
GrPrPropS to determine the type of join rule (e.g., equality or subsumption),
and then to determine the body via a lookup, in NRelS:〈G1,G2〉

, which granules
of G1 form the body of that rule. Since the rules are recovered via retrieval
of the appropriate tuples in these relations, and not directly as formulas, the
representation is termed implicit.
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For economy, some of the relations of the form DRelS:〈G1,G2〉
and SRelS:〈G1,G2〉

are implemented as views. For example, if either ofG1 ≤S G2 orG1 ES G2 holds,
then DRelS:〈G1,G2〉

and SRelS:〈G1,G2〉
are the same relation, so only one need be

stored explicitly. Likewise, SRelS:〈G1,G3〉
= SRelS:〈G1,G2〉

◦ SRelS:〈G2,G3〉
if either

of G1 ≤S G2 ≤S G3 or G1 ES G2 ES G3 holds, so SRelS:〈G1,G3〉
may then be

represented as a view defined by relational join. This means that relationships
such as equality join, as sketched in Discussion 4.15, require virtually no addi-
tional storage for representation. While a tuple of the form 〈G1, G3, c〉 must be
present in GrPrPropS, no additional space is required to represent SRelS:〈G1,G3〉

or NRelS:〈G1,G3〉
.

A substantial superset of the hierarchies shown in Fig. 2, including electoral
as well as administrative subdivisions of Chile in the spatial case, forms the core
of the test database. All such data are obtained from publicly available sources.
This spatial hierarchy is very rich in granularity pairs related by EC and 4C.
Time intervals, as illustrated in the rightmost hierarchy of Fig. 2, form part of
the test database as well. The system will be discussed in more detail in a future
paper.

Discussion 4.17 (Relationship to other work). An extensive literature
comparison for the general multigranular framework used in this paper may be
found in [8, Sec. 6]. Only literature relevant to the topics of this paper which
are not developed in [8] are noted here. A fairly extensive presentation of gran-
ular relationships may be found in [1], including in particular the equality join
relation E, there called groups into, as well as the combination of ordinary gran-
ularity order ≤ and equality join E, there called partitions. It does not cover the
subsumption join relation 4. Although [1] is specifically about the time domain,
many of the concepts presented there apply equally well to spatial and other
domains. This is reinforced not only by the work of this paper, but also by pa-
pers such as [2] and [10], which apply the concepts of [1] to the spatial domain.
In addition, [12] provides a development of the equality-join operator E for the
spatial domain, there denoted |=. Reference [5] provides further insights into the
multigranular framework within the context of time granularity.

5 Conclusions and Further Directions

A method for representing bigranular join rules implicitly in a multigranular
relational DBMS has been developed. As such rules occur frequently in practice,
the technique promises to prove central to an implementation. Indeed, they have
already been used in an early implementation of the system MGDB.

There are two main avenues for future work. First, the main reason that
the techniques of this paper were developed is that direct implementation of
join rules proved too inefficient in practice. While most rules are bigranular,
there are often some which are not. One topic of future work is to find a way
to integrate the methods of this paper with representation of non-bigranular
rules, in a way which preserves the efficacy of the implementation. A second and
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very major topic is to extend MGDB with its own query language and interface.
Currently, MGDB is a testbed for ideas, but to be useful as a stand-alone system,
it must be augmented to have its own query language and interface, so that the
implementation of the multigranular features is transparent to the user.
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