
Characterization of Type Hierarchies

with Open Specification

Stephen J. Hegner

Ume̊a University
Department of Computing Science

SE-901 87 Ume̊a, Sweden
hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Abstract. Type hierarchies which arise in applications are often de-
scribed incompletely; this missing information may be handled in a vari-
ety of ways. In this work, such incomplete hierarchies are viewed as open
specifications; that is, descriptions which are sets of constraints. The ac-
tual hierarchy is then any structure satisfying these constraints. For such
specifications, two forms of characterization are provided. The first is al-
gebraic and utilizes a generalization of weak partial lattices; it provides
a structure-based characterization in which optimality is characterized
via an initial construction. The second is logical, an inference-based rep-
resentation, in which models are characterized as products of models of
propositional-based specifications.

1. Introduction

Type hierarchies play a central rôle in the foundations of database and knowledge-
base systems; consequently, a vast literature surrounding them has developed.
Frameworks such as description logics [3] and formal concept analysis [10], as
well as formal models for object-oriented database systems themselves [2, 18, 19],
have evolved in response to the need for a comprehensive theoretical foundation.
The work reported in this paper lays the foundation for extending the ideas of
these formalisms to contexts in which information about the type hierarchy is
open, in the sense that specification is via a set of constraints rather than via
a single instance, so there may be none, one, or many instances which satisfy
those constraints.

1.1 Background: the relationship between subsumption, suprema and

infima Regardless of the specific formalism, the major underlying notion in a
type hierarchy is that of subsumption. Type τ1 is subsumed by type τ2, (or,
equivalently, τ2 subsumes τ1), written τ1 v τ2, just in case every object of type
τ1 is also an object of type τ2. Writing

�
(τ) to denote the collection of objects

of type τ , this subsumption is expressed as
�
(τ1) ⊆

�
(τ2).

Subsumption is often visualized using lattice like diagrams, such as that
of Fig. 1, which depicts information about a simple hierarchy for univer-

sity people. The symbol ⊥ represents
the empty type, with > the univer-
sal type of all such people. A line
from a higher object to a lower one
indicates subsumption; e.g., Grad v
Student.

It is tempting to make further
use of the lattice-like properties of
the infimum and supremum oper-
ations on the ordering induced by
type subsumption. For example, sup-
pose that it is known that Mary
is both an undergraduate (Mary ∈

>

Student Employee

Grad Ugrad Staff Faculty

Workstudy Admin

⊥

sssssss
KKKKK

KK

¦¦
¦¦ 99

9
¦¦

¦ 99
9

DD
DD

DD
DD

DD
DD

D 99 ¦¦¦ 99
9

¦¦¦

sssss

Fig. 1: Visualization of a simple type
hierarchy

�
(Ugrad)) and that she is a member of the staff (Mary ∈

�
(Staff)). Since

inf({Ugrad, Staff}) = Workstudy in this hierarchy, one might conclude that she
is a workstudy (Mary ∈

�
(Workstudy)). More generally, from the above hier-

archy, one might conclude that
�
(Ugrad) ∩

�
(Staff) =

�
(Workstudy). In [16],

this has been called the natural meet semantics. However, it is not appropri-
ate to presume this semantics universally; rather such a decision must be based
upon further information. Regardless of whether or not it is named and repre-
sented explicitly, there is a type τ which embodies precisely those people who
are both undergraduates and staff members, i.e.,

�
(τ) =

�
(Ugrad)∩

�
(Staff). If

this type τ is represented explicitly in the hierarchy, then it must have the same
objects as Workstudy. However, it is quite possible that the hierarchy of Fig. 1
is just a partial representation of the total state of affairs, with τ not explicitly
represented. For example, undergraduate students could be hired to do grounds
maintenance, which might not be classified as workstudy. The point is that, from
the subsumption relationships, it can only be concluded that Workstudy v τ ; to
conclude that Workstudy = τ , further information is needed.

The ideas described above are central to an operation known as (conjunctive)
type unification, which may be described as follows. Given that it is known that
an object a is of both type τ1 and of type τ2, determine the most specific type
τ for which a is of type τ . Such unification is of fundamental importance in
parsing of natural language, particularly within formalisms such as HPSG [17],
which employ type hierarchies to classify linguistic objects. Indeed, in parsers
built using systems designed to support such parsing, which include ACQUILEX
[4], CUF [7], and TFS [20], the underlying database is effectively a large type
hierarchy, which embodies both the lexicon and the grammar, without recourse
to traditional phrase-structure grammars. Even in systems such as ALE [5],
which does incorporate an underlying context-free grammar, type unification
plays a central rôle.

There is a dual question, which looks at infima rather than suprema. Again
referring to Fig. 1, suppose that it is known that Mary is a student (Mary ∈
Student). The fact that Student = sup({Grad,Ugrad}) in the hierarchy sug-
gests that Mary must be either an undergraduate or a graduate student. How-

2

ever, there could easily be another class of student, such as nondegree stu-
dents, which is not represented explicitly in the hierarchy. The conclusion that
�
(Student) =

�
(Grad) ∪

�
(Ugrad) is not automatic; it depends upon further in-

formation. In [16], this property is called the natural join semantics. Although
not as widely used in constraint-based problem solving as conjunctive unifica-
tion, the corresponding operation of disjunctive unification has seen use in the
management of solution search [8].

1.2 Focus of this work The work reported in this paper was motivated by
an interest in coming to grips, in a formal manner, with the semantics of the
infimum and supremum operations in type hierarchies, particularly in applica-
tions involving unification. More often than not, in the current literature, such
hierarchies are described in terms of subsumption only, and while infimum (and
often supremum as well) is used in the computational process, the semantics
of these operators is not described explicitly. The reader is thus left to reverse
engineer the framework in order to determine these important details.

The starting point of the work presented here is that all constraints on the
hierarchy are to be expressed via formulas of the forms (

d
{τ1, τ2, .., τn} = τ) and

(
⊔
{τ1, τ2, .., τn} = τ), with

d
denoting a generalized meet operation, and

⊔
a

generalized join operation. The semantics of these operations are
(
⋂
{

�
(τ1),

�
(τ2), ..,

�
(τn)} =

�
(τ)) and (

⋃
{

�
(τ1),

�
(τ2), ..,

�
(τn)} =

�
(τ)), re-

spectively, with
�
(ω) denoting the set of objects of type ω. It is important to note

that operations of extended arity are required. It is quite possible for
d
{τ1, τ2, τ3}

to be defined without any stated definition for
d
{τ1, τ2},

d
{τ1, τ3}, or

d
{τ2, τ3}.

The subsumption τ1 v τ2 is expressed via the constraint (
d
{τ1, τ2} = τ1). A

description based upon constraints of this form is called an open specification
because it does not state the complete properties of a single hierarchy; rather, it
provides constraints which any model hierarchy must obey. There may be none,
one, or several such models for a given set of constraints.

In this work, there is no explicit notion of attribute; thus, it differs fun-
damentally from work in description logics and formal concept analysis. This
decision, however, was not made due to any lack of belief in the importance of
these concepts. Clearly, a meaningful notion of attribute, and its behavior under
order-induced operations, is central to any comprehensive theory of type hierar-
chies. At the same time, it seems clear that any attempt to introduce attributes
into the work at this initial stage would only complicate matters and cloud de-
velopment of the fundamental issues. A useful formalism of simple attribute-free
types under open specification must precede the development of a more com-
plex formalism which incorporates attributes. The focus here is upon how pure
types behave in the presences of open specification. Once this is understood, the
results should be combined with the more general notions embodied in other
formalisms.

1.3 Content and organization of this paper The work reported here is
based, to a substantial degree, on the papers [13], [16], and [15]. Nonetheless, the
method of presentation, and even some of the results, particularly with respect
to algebraic characterization, are entirely new.

3

The primary emphasis of this paper is the characterization of type hierarchies
under open specifications; that is, the development of mathematical principles
necessary to model and compute upon such hierarchies. Two major avenues of
characterization are presented and contrasted. In Section 3, an algebraic charac-
terization, based upon a generalized form of bounded partial lattice, and couched
in a general framework which makes use of universal constructions, is provided.
In Section 4, a logical characterization, based upon propositional logic, is given.
Each of these approaches has its strengths and weaknesses, as are exposed in
the presentation.

An additional topic of great importance in this area is that of computational
complexity and algorithms for the manipulation of and inference on such hierar-
chies. Unfortunately, space limitations preclude a thorough treatment. However,
the most important results are summarized in Section 5.

Finally, Section 2 provides a common backdrop of basic definitions and re-
sults, in support of both of the characterizations, while Section 6 provides some
conclusions and further directions.

1.4 Prerequisites and notation Of course, it is presumed that the reader
has an appreciation for the central rôle of type hierarchies in computer science
in general and database systems in particular. Beyond that, a knowledge of
standard propositional logic is expected. It is also assumed that the reader has
a basic knowledge of the theory of partial orders and lattices; the necessary
background may be obtained from standard references such as [12] and [6]. To
minimize the possibility of confusion with the corresponding logical symbols ∧
and ∨, the order relation and the lattice-like operations of join, and meet in
such structures will always be denoted with the squared symbols v, t, and u,
respectively. A bounded lattice is denoted as L = (L,t,u,>,⊥), with > the
greatest element and ⊥ the least element. In particular, the boldface symbol
(e.g., L) denotes the entire structure, while the normal symbol L denotes just
the underlying set. This font convention will also be used with other algebraic
structures (e.g., the generalized bounded weak partial lattices of Section 3).

A very small amount of category theory background will prove helpful. Specif-
ically, isomorphisms are always characterized as morphisms which have both left
and right inverses. In addition, some familiarity with the ideas of free and initial
objects would prove helpful, although full definitions are always given. A suitable
reference is [1].

The following specific notation, which may be a bit less than standard, is
used. If f is a partial function, then f(s)↓ (resp. f(s)↑) means that f is defined
(resp. undefined) on argument s. If A is a set, then 2A (resp. 2A

f
) denotes the set

of all subsets (resp. finite subsets) of A, while Card(A) denotes the cardinality
of A.

2. Constraints and Models

In this section, the formal foundations for the description of type hierarchies via
open specification are presented. The presentation follows most closely that of

4

[15]. However, some of the ideas, particularly those related to morphisms and
completions, are new and were developed in support of the algebraic character-
ization of the next section.

2.1 Elementary positive constraints A clean set is any finite set P which
does not contain either of the special symbols ⊥ and >. Define Aug(P) = P ∪
{⊥,>}. The elements ⊥ and > are called the extreme types; the elements of P
are called the base types. As shall soon be formalized, > (resp. ⊥) represents the
greatest (resp. least) type in the hierarchy.

The most fundamental class of constraint is the elementary positive con-
straint, of which there are two basic forms.1 An elementary positive meet con-
straint has the form (

d
{τ1, τ2, .., τn} = τ), with the τi’s and τ members of

Aug(P). The set of all such constraints over P is denoted ElemConstr+u . Dually,
an elementary positive join constraint has the form (

⊔
{τ1, τ2, .., τn} = τ), with

the set of all such constraints denoted by ElemConstr+t . Combining these two
classes, ElemConstr+(P) denotes ElemConstr+u (P) ∪ ElemConstr

+
t (P).

2.2 Interpretation of types Let P be a clean set of types. An interpretation
over P is a pair S = (� , �

), in which � is a finite nonempty set, called the

universe of objects, and
�

: Aug(P) → 2 � is a function which associates a
subset of � to each type in Aug(P), subject to the conditions that

�
(>) = �

and
�
(⊥) = ∅. Think of

�
(τ) as the set of all objects of type τ .

An interpretation S = (� , �
) is to be viewed as the specification for a unique,

complete type hierarchy over P , in which all infima and suprema have their
natural semantics. Specifically, define Lat(S) to be the smallest set of subsets
of � which contains every member of {

�
(τ) | τ ∈ Aug(P)}, and which is closed

under union and intersection. It is easy to see that Lat(S) admits the structure
of a finite, bounded distributive lattice, with union as join, intersection as meet,
� as top element and ∅ as least element. This lattice is denoted Lat(S) =
(Lat(S),∪,∩, � , ∅).

The size of an interpretation S = (� , �
) is the cardinality of � ; an inter-

pretation of size m is often called an m-element interpretation. In particular, a
one-element interpretation is of the form S = ({a},

�
).

Let S = (� , �
) be an interpretation for P . For each nonempty subset � ⊆ � ,

define the � -projection of S to be S| � = (� , �

| �), with
�

| � : Aug(P) → 2 �
given by X 7→

�
(X) ∩ � . Conversely, let Si = (� i,

�
i) be interpretations for

P for i = 1, 2. Assume further that � 1 ∩ � 2 = ∅. The product interpretation

S1 × S2 is given by (� 1 ∪ � 2,
�

1 ×
�

2), with
�

1 ×
�

2 : Aug(P)→ 2 � 1∪ � 2 given
by X 7→

�
1(X) ∪

�
2(X). This definition extends easily to any finite number of

interpretations. Note that, for any interpretation S = (� , �
),

∏
a∈ � S|{a} is just

S, up to a renaming of
�
.

1 The definition here differs slightly from that found in [15]; in which equality is
replaced by subsumption. This is of no major consequence, since the two formalisms
are equivalent in expressive power. See 2.7 for a further discussion.

5

2.3 Satisfaction of constraints The constraint (
d
{τ1, τ2, .., τn} = τ) is satis-

fied by the interpretation S = (� , �
) if

�
(τi)∩

�
(τ2)∩..∩

�
(τn) =

�
(τ). Similarly,

(
⊔
{τ1, τ2, .., τn} = τ) is satisfied by S if

�
(τi)∪

�
(τ2)∪ ..∪

�
(τn) =

�
(τ). In gen-

eral, if ϕ ∈ ElemConstr+(P) and S is an interpretation, thenM |= ϕ denotes that
ϕ is satisfied by S; in this case, S is called a model of ϕ. If Φ ⊆ ElemConstr+(P),
S |= Φ holds iff S |= ϕ for each ϕ ∈ Φ. The set of all S for which S |= ϕ (resp.
S |= Φ) holds is denoted ModP (ϕ) (resp. ModP (Φ)). Two sets Φ1 and Φ2 of
constraints over P are equivalent if ModP (Φ1) = ModP (Φ2).

Following standard notation from mathematical logic, if ϕ ∈ ElemConstr+(P)
(resp. Ψ ⊆ ElemConstr+(P)), and Φ ⊆ ElemConstr+(P), then Φ |= ϕ (resp.
Φ |= Ψ) holds just in case ModP (Φ) ⊆ ModP (ϕ) (resp. ModP (Φ) ⊆ ModP (Ψ)).
Although this assigns double duty to the symbol |=, no confusion can result,
since the nature of the first argument (interpretation or constraint) identifies the
usage unambiguously.

2.4 Abbreviations and variants In addition to these elementary constraints,
there are a few notational variants which are important enough to warrant their
own notation. First of all, (τ1 v τ2) is an abbreviation for (

d
{τ1, τ2} = τ1).

Second, (τ1 = τ2) is an abbreviation for (
d
{τ1} = τ2).

In addition to these definitions, the notational variant of infix (as opposed
to prefix) notation is allowed for all forms of constraints. Thus, for example,
(τ1 u τ2 u τ3 = τ) is a perfectly acceptable (and obvious) abbreviation for
(
d
{τ1, τ2, τ3} = τ). This notation in no way implies that meets for subsets

(e.g., τ1 u τ2) are defined.

2.5 Open specification Let P be a clean set of types. An elementary positive
open specification is a pair (P, Φ) in which Φ ⊆ ElemConstr+(P).

2.6 Examples In each of the cases below, let (Q,Ω) be the elementary positive
open specification with Q = {τa, τb, τc} and Ω = {(τa t τc = >), (τc v τb)}.

(a) Let � 1 = � 2 = � 3 = � 4 = { � }, and define
�

1 : Aug(Q) → 2 � 1 by τa 7→ { � },
τb 7→ ∅, τc 7→ ∅;

�
2 : Aug(Q) → 2 � 2 by τa 7→ { � }, τb 7→ { � }, τc 7→ ∅;

�
3 : Aug(Q) → 2 � 3 by τa 7→ ∅, τb 7→ { � }, τc 7→ { � };

�
4 : Aug(Q) → 2 � 4 by

τa 7→ { � }, τb 7→ { � }, τc 7→ { � }. Then
�

i = (� i,
�
i) for i = 1 . . . 4 are models

for (Q,Ω). It is not difficult to see that they are the only one-element models,
up to renaming of elements.

(b) Let � 5 = { � , � }, and define
�

5 : Aug(Q) → 2 � 5 by τa 7→ { � }, τb 7→ {� },
τc 7→ {� }. Then

�
5 = (� 5,

�
5) is a model for (Q,Ω). This model also satisfies

positive constraints which are not embodied in Ω, including (a u c = ⊥) and
(b = c).

(c) Let � 6 = { � , � , � }, and define define
�

6 : Q→ 2 � 6 by τa 7→ { � , � }, τb 7→ {� , � },
τc 7→ { � }.

�
5 = (� 5,

�
5) is also a model for (Q,Ω). It still satisfies a positive

constraint not embodied in Ω, namely (a u c = ⊥).

(d) Let � 7 = { � , � , � , � , � }, and define
�

7 : Q → 2 � 7 by τa 7→ { � , � , � , � }, τb 7→
{ � , � , � }, τc 7→ { � , � }.

�
7 = (� 7,

�
7) is a model for (Q,Ω). While this model

6

does not satisfy any positive constraints not embodied in Ω, as do
�

4 and
�

5

above, it is redundant in that the elements � and � are not distinguishable.

(e) Let � 8 = { � , � , � , � }, and define
�

8 : Q → 2 � 8 by τa 7→ { � , � , � }, τb 7→ {� , � , � },
τc 7→ { � , � }.

�
8 = (� 8,

�
8) is a model for (Q,Ω). This model is “optimal” in

the sense that it neither enforces unnecessary constraints, as do
�

4 and
�

5,
nor does it introduce superfluous elements, as does

�
6. See 3.13 for a further

discussion of this idea.

2.7 Subsumption-based constraints In [15], the basic forms of the con-
straints are taken to be (

d
{τ1, τ2, , . . . τn} v τ) and (τ v

⊔
{τ1, τ2, . . . , τn});

i.e., equality is replaced by subsumption. This choice was made because such
subsumption constraints are more suitable to the computational algorithms of
that paper. On the other hand, the equality constraints used in this paper
are more natural and intuitive when characterization — particularly algebraic
characterization — is the principal topic. These two representations are effec-
tively equivalent. The equality constraint (

d
{τ1, τ2, , . . . τn} = τ) is equivalent

to the subsumption constraint (
d
{τ1, τ2, , . . . τn} v τ) together with the set

{(τ v τ1), (τ v τ2), . . . , (τ v τn)}. To represent the subsumption constraint
(
d
{τ1, τ2, , . . . τn} v τ) using equality constraints, use (

d
{τ1, τ2, , . . . τn} = σ)

together with (
d
{σ, τ} = σ). Here σ is a new type symbol not used previously.

The join constraints are represented similarly.

3. Algebraic Characterization

While an open specification is not a lattice, it is nonetheless apparent that the
constraints look very much like constraints on a lattice. A major difference is
that, with an open specification, there is no guarantee that τ1uτ2 and τ1tτ2 will
be defined for an arbitrary pair {τ1, τ2} ⊆ P . Thus, a natural question to ask is
whether there is some sort of algebraic characterization of open specifications and
their models, using a lattice-like notion with partial operations. In this section,
this question is answered in the affirmative.

The author’s initial report on open specification [13] contains a rather de-
tailed development of their algebraic properties. While these results remain valid,
simpler and more concise characterizations, which have not been previously pub-
lished, have been discovered since the appearance of [13]. In this section, many
of these newer results are presented.

3.1 Generalized Bounded Weak Partial Lattices In [12, Ch. I, Sec. 5],
Grätzer describes two notions, the partial lattice and the weak partial lattice.
Roughly speaking, a partial lattice may be characterized as a subset of a lattice
under the induced operations, while a weak partial lattice is a set with partial
lattice-like operations. Grätzer also provides an example of a weak partial lattice
which cannot be embedded in a partial lattice.

Neither of these concepts is directly applicable to the modelling of open speci-
fications. Most importantly, the definitions given in [12] have their meet and join
operations restricted to pairs of elements, while the constraints described here

7

allow these operations to take finite subsets as arguments. This is an essential dif-
ference, as it is quite possible to have

d
{τ1, τ2, . . . , τn} and/or

⊔
{τ1, τ2, . . . , τn}

defined without having the these operations defined on any proper subset of
{τ1, τ2, . . . , τn} of cardinality greater than one. On the other hand, it is quite
possible to extend the definitions of [12] to this more general context. The ap-
propriate one to generalize for the context at hand is the weak partial lattice.
The definition given here, which originally appeared in [13, 1.2.3], generalizes
that of [12] to meet and join operations with more than two arguments, and
adds universal bounds as well.

A generalized bounded weak partial lattice (GBWPL) is a five-tuple L =
(L,

⊔
,
d
,>,⊥) in which the following nine conditions are satisfied.

(gbwpl:1) L is a set (the underlying set).

(gbwpl:2)
⊔

: 2L
f
→ L is a partial operation, called the generalized join.

(gbwpl:3)
d

: 2L
f
→ L is a partial operation, called the generalized meet.

(gbwpl:4) ⊥,> ∈ L with ⊥ 6= >.

The operations
⊔

and
d

are subject to the following conditions.

(gbwpl:5)
⊔
∅ = ⊥ and

d
∅ = >.

(gbwpl:6) For all a ∈ L,
⊔
{a} = a,

d
{a} = a,

⊔
{a,⊥} = a,

d
{a,>} = a.

(gbwpl:7) If S1, S2, . . . , Sn are finite subsets of L with
⊔
Si ↓ for all i, 1 ≤ i ≤ n,

then
⊔
(
⋃n

i=1 Si)↓ iff
⊔
{
⊔
S1,

⊔
S2, . . .

⊔
Sn}↓, and

⊔
{
⊔
S1,

⊔
S2, . . .

⊔
Sn} =⊔

(
⋃n

i=1 Si) in this case.

(gbwpl:8) If S1, S2, . . . , Sn are finite subsets of L with
d
Si ↓ for all i, 1 ≤ i ≤ n,

then
d
(
⋃n

i=1 Si)↓ iff
d
{
d
S1,

d
S2, . . .

d
Sn}↓, and

d
{
d
S1,

d
S2, . . .

d
Sn} =d

(
⋃n

i=1 Si) in this case. The constraints of (gbwpl:7) and (gbwpl:8) are called
the generalized associativity laws.

(gbwpl:9) If S is a finite subset of L with
⊔
S ↓, then for all a ∈ S,

d
{a,

⊔
S}↓

with
d
{a,

⊔
S} = a. Dually, for all a ∈ S,

⊔
{a,

d
S} ↓ with

⊔
{a,

d
S} = a.

These are called the generalized absorption identities.

In (gbwpl:5), the condition
⊔
{a} = a is a restatement of the idempotency

of the join, which becomes a ∨ a = a in a lattice. The condition
⊔
{a,⊥} = a

states that ⊥ is the least element. The other two new conditions are dual. In
(gbwpl:9), The condition

d
{a,

⊔
S} = a for a ∈ S and

⊔
S ↓ is a generalization

of the absorption identity a ∧ (a ∨ b) = a of an ordinary lattice [12, Cond. (L4),
p. 5]. The other condition is dual.

Let L1 = (L,
⊔
,
d
,>,⊥) and L2 = (L,

⊔
,
d
,>,⊥) be GBWPL’s. A mor-

phism f : L1 → L2 is a function f : L1 → L2 subject to the following constraints.

(gbwpl:mor1) For a finite S ⊆ L1, if
⊔
S ↓, then

⊔
(f(S)) ↓ and f(

⊔
S) =⊔

(f(S)). Dually, if
d
S ↓, then

d
(f(S))↓ and f(

d
S) =

d
(f(S)).

(gbwplmor:mor2) f(⊥) = ⊥ and f(>) = >.

It is easy to see that f : L1 → L2 is an isomorphism iff the underlying
function is a bijection which preserves and reflects >, ⊥, and all meets and
joins.

Any bounded lattice may be viewed as a GBWPL in which all of the opera-
tions are total; that is, for any finite S ⊆ L,

d
S and

⊔
S are defined. Conversely,

8

any GBWPL for which all such operations are total is a bounded lattice; this is
easily verified from the axioms.

Given a GBWPL L = (L,
⊔
,
d
,>,⊥) and a subset M ⊆ L containing

{>,⊥}, the restriction of L to M is the GBWPL L|M = (M,
⊔
,
d
,>,⊥). The

operations of L|M are just those of L, restricted toM . Note that this means that
all components of an operation must lie inM . For example, if

d
{τ1, τ2, . . . , τn} =

τ holds in L, then for it to apply to L|M , the entire subset {τ1, τ2, . . . , τn, τ}
must lie in M . It is easy to see that such a restriction of a GBWPL is always a
GBWPL; the conditions (gbwpl:5)-(gbwpl:9) never generate any new elements,
other than > and ⊥, so it is never necessary to add any additional elements to
M to maintain the GBWPL properties.

Finally, the notion of the product
∏

i∈I of a family {Li | i ∈ I} of GBWPL’s
is well defined, with the obvious coordinatewise operations.

3.2 Notational convention For the rest of this section, unless noted other-
wise, fix (P, Φ) to be an elementary positive open specification.

3.3 Representations of open specifications A GBWPL representation of
(P, Φ) is a pair (L, f) in which L is a GBWPL and f : Aug(P)→ L is a function
which satisfies the following rules.
(rep:1) f(>) = > and f(⊥) = ⊥.
(rep:2) For τ1, τ2, . . . , τn, τ ∈ Aug(P), if (

d
{τ1, τ2, . . . , τn} = τ) ∈ Φ, then

(
d
{f(τ1), f(τ2), . . . , f(τn)} = f(τ)) holds in L.

(rep:3) For τ1, τ2, . . . , τn, τ ∈ Aug(P), if (
⊔
{τ1, τ2, . . . , τn} = τ) ∈ Φ, then

(
⊔
{f(τ1), f(τ2), . . . , f(τn)} = f(τ)) holds in L.

A morphism h : (L, f) → (M, g) of GBWPL repre-
sentations is a GBWPL morphism h : L → M with the
property that that the diagram to the right commutes. It
is easy to see that h is an isomorphism of representations
iff it is an isomorphism of the underlying GBWPL’s.

Aug(P)
f

//

g
##GG

GG
GG

GG
G L

h

²²
Â
Â
Â

M

A representation (L, f) is surjective precisely in the case that f is a surjec-
tive function. It is always possible to derive a surjective representation from an
arbitrary one; just replace L with L|f(Aug(P)).

Finally, if {(Li, fi) | i ∈ I} is a family of representations of (P, Φ), so too is
(
∏

i∈I Li,
∏

i∈I fi), with
∏

i∈I fi sending τ to the tuple whose ith entry is f(τ).

Perhaps the most fundamental example of a representation of an open spec-
ification is one which arises from a model of the specification. The following
proposition is immediate.

3.4 Examples The examples of 2.6 may easily be transformed to GBWPL
representations. Indeed, it is easy to see that, for any model

�
i = (� i,

�
i) of

(Q,Ω), (Lat(
�

i), � i) is a GBWPL representation. Here � i : Aug(Q) → Lat(
�

i)
is the function which is identical to

�
i, save that its codomain is restricted to

Lat(
�

i). Of course, these representations are in fact bounded lattices, with all
meets and joins defined.

9

To obtain a “best” GBWPL representation of (Q,Ω), define
� � �
8 = (

�
8,

⊔
,
d
,>,⊥) to be the GBWPL in which

�
8 = Q ∪ {⊥,>}; the con-

straints of this GBWPL are those which include (τa t τc = >) and (τc v τb),
together with those constraints implied by these under the rules given in 3.1. Note
that the closure of this set of constraints includes, in particular, (τa t τb = >).
Define � 8 : Aug(Q) →

�
8 to be the natural identity embedding τx 7→ τx. Then

(
� � �
8, � 8) is a GBWPL representation for (Q,Ω). This representation is best in the

sense that it includes neither unnecessary constraints nor superfluous informa-
tion. The precise meaning of “best” is developed in 3.5-3.7 below.

It might seem that one could always obtain a best GBWPL representation of
(P, Φ) as a GBWPL whose elements are precisely the members of Aug(P), and
whose constraints are a natural closure of the obvious translation of Φ. However,
this is not always the case, since Φ may force the collapsing of certain elements.
For example, let R = {κi | 1 ≤ i ≤ 6}, and let Γ =
{(

∨
{κ1, κ2} = κ5), (

∨
{κ2, κ3} = κ5), (

∨
{κ1, κ3} = κ4), (

∧
{κ2, κ3} = κ6),

(
∧
{κ1, κ6} = ⊥), ((κ5 ≤ κ4)}. Then, as shown in [16, 5.5], any model (� , �

) of
(R,Γ) has the property that

�
(κ4) =

�
(κ5). This means that, when construct-

ing a GBWPL representation from R, the elements {κ4, κ5} must be collapsed
into a single equivalence class. This idea is expanded below; in particular in the
development of the canonical representation 3.6.

3.5 Initial representations In view of the preceding examples, there are many
representations of an open specification. The next task is to characterize formally
the notion of a best representation, as illustrated by the final two examples above.
Such a representation must be optimal in the sense that it contains just the
right amount of information, without adding superfluous elements, and without
imposing unnecessary constraints. In the world of arrows, the standard way to
characterize such entities is via a free construction [1, Chap. 7]; or, equivalently,
via an initial object.

Formally, an initial GBWPL representation for (P, Φ) is a GBWPL repre-
sentation (L, η) with the property that, for any other GBWPL representation
(M, g), there is a unique GBWPL morphism h : (L, η) → (M, g). Such a repre-
sentation is unique, up to isomorphism [1, 7.3].

3.6 Canonical representations The notion of an initial representation is ab-
stract, and says nothing about how to construct one. The canonical representa-
tion, described next, provides a concrete realization of an initial representation.

Assume that (P, Φ) has at least one representation. Define the equivalence
relation ≡(P,Φ) on Aug(P) by τ1 ≡(P,Φ) τ2 iff f(τ1) = f(τ2) for all representations
(L, f) of (P, Φ). For τ ∈ Aug(P), [τ]≡(P,Φ)

denotes the equivalence class of τ in
≡(P,Φ). When no confusion can result, the subscript will be dropped; i.e., [τ].
Further, for A ⊆ Aug(P), [A] denotes {[τ] | τ ∈ A}. For ϕ ∈ Φ, let [ϕ] denote the
constraint on [Aug(P)] obtained by replacing all members of Aug(P) with their
respective equivalence classes. For example, (

d
{τ1, τ2, . . . , τn} = τ) becomes

(
d
{[τ1], [τ2] . . . , [τn]} = [τ]). Define [Φ] = {[ϕ] | ϕ ∈ Φ}.
Next, define GBWPL(P, Φ) = ([Aug(P)]

⊔
,
d
, [>], [⊥]). The constraint

(
d
{[τ1], [τ2] . . . , [τn]} = [τ]) holds in GBWPL(P, Φ) iff for every GBWPL rep-

10

resentation (L, f) of (P, Φ), (
d
{f(τ1), f(τ2) . . . , f(τn)} = f(τ)) holds in L. Simi-

larly, the constraint (
⊔
{[τ1], [τ2] . . . , [τn]} = [τ]) holds in GBWPL(P, Φ) iff for ev-

ery GBWPL representation (L, f) of (P, Φ), (
⊔
{f(τ1), f(τ2) . . . , f(τn)} = f(τ))

holds in L.
The pair CanRep(P, Φ) = (GBWPL(P, Φ), [−]≡(P,Φ)

), with
[−]≡(P,Φ)

: Aug(P) → [Aug(P)] given by τ 7→ [τ], is called the canonical rep-
resentation of (P, Φ). Of course, it remains to be shown that GBWPL(P, Φ) =
([Aug(P)]

⊔
,
d
, [>], [⊥]) is indeed a GBWPL; this is the next topic.

3.7 Proposition If (P, Φ) has a GBWPL representation, then it has an initial
GBWPL representation, which is given by CanRep(P, Φ).

Proof Assume that (P, Φ) has a GBWPL representation. Begin with the class
A of all GBWPL representations of (P, Φ), and pare this collection down in two
ways. First of all, limit it to just the surjective representations; in view of the
discussion at the end of 3.3, each original element of A will give rise to such a
surjective relative. Next, pare the resulting collection down by choosing just one
representative of each isomorphism class. Note that this resulting collection B

is not only a set, but a finite one, since P is finite.
Denote B explicitly as

{(Mj , fj) | j ∈ J}, and form
the product

∏
B =

(
∏

j∈J Mj ,
∏

j∈J fj). The

diagram to the right shows that
(
∏
B)|(

∏
j∈J fj)(Aug(P)) is an ini-

tial GWBPL representation for
(P, Φ). Let (L, g) be any GBWPL
representation of (P, Φ) what-
ever. The first and fourth verti-
cal morphisms are just the nat-

Aug(P)

∏
j∈J fj

//

g

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

(
∏

j∈J M)|(
∏
j∈J fj)(Aug(P))

²²
²²∏

j∈J M

πk
²²

Mk

∼=²²

L|g(Aug(P))

²²
²²

L

ural injections. The second morphism πk is the obvious projection; and the third
morphism ∼= is the isomorphism between (L|g(Aug(P)), g) and its representative

(Mk, fk) in B. Finally, it is immediate from the way in which CanRep(P, Φ) has
been defined that

∏
B is isomorphic to CanRep(P, Φ). 2

3.8 Examples
� � �
8 with the natural embedding of 3.4 is already a canonical

representation of (Q,Ω). To obtain the canonical representation of (R,Γ) of 3.4,
the types κ4 and κ5 must be identified in the equivalence relation ≡(R,Γ).

As illustrated by the conversions in 3.4 of the example models in 2.6, every
model S = (� , �

) of (P, Φ) gives rise to a GBWPL representation of same which
in fact a bounded lattice; namely, Lat(S). This leads naturally to the converse
question, which asks whether an arbitrary representation (L, f) in which L is a
bounded lattice identifies a model. The answer is a qualified yes. Two additional
conditions must be met are, first, the lattice must be distributive, and, second,
the mapping f must be dense in L, so that no superfluous elements arise. The
details follow.

11

3.9 Dense mappings and completions Let L = (L,t,u,>,⊥) be a
bounded lattice, let A be any set, and let f : A → L be a function. f is said to
dense in L if the smallest sublattice of L containing f(A) is L itself.

A GBWPL representation (L, f) for (P, Φ) in which L is a lattice is said to be
dense just in case f : Aug(P)→ L is dense in L. By construction, the representa-
tion (Lat(L),

�
) associated with an interpretation S = (� , �

) is dense. Similarly,
if h : (L1, f1) → (L2, f2) is a morphism of GBWPL’s, with L2 furthermore a
lattice, then h is said to be dense if h(L1) dense in L2.

A representation (L, f) of (P, Φ) in which L is a bounded distributive lattice
and f is dense is called a completion of (P, Φ). Note in particular that for every
model S = (� , �

) of (P, Φ), the representation (Lat(S),
�
) is a completion. The

following proposition shows that, up to isomorphism, all completions arise in
this fashion.

3.10 Proposition Let (L, f) be a completion of (P, Φ). Then there is a model
S = (� , �

) for (P, Φ) with the property that (Lat(S),
�
) is isomorphic to (L, f).

In particular, L must be finite.

Proof In view of the characterization theorem of Birkhoff and Stone [12, Ch. II,
Sec. 1, Thm. 19], L may be taken to be a ring of sets over a (finite) set A. Define
� = A, and take

�
to be identical to f , save that the codomain is extended to

be all of 2 � . It is immediate that S = (� , �
) is a model for (P, Φ). Furthermore,

since f is dense, it follows immediately from the definition of Lat(S) that Lat(S)
and L are identical. Thus, the pair (� , �

) is the desired model. 2

3.11 Theorem: algebraic characterization of models There is a nat-
ural bijective correspondence between comple-
tions (L, f) of (P, Φ) and dense GBWPL mor-
phisms h from (GBWPL(P, Φ), [−]≡(P,Φ)

) to dis-

tributive lattices, as illustrated in the diagram
to the right. Thus, every S ∈ Mod(Φ) is repre-
sented, up to isomorphism, by a dense GBWPL

Aug(P)
[−]≡(P,Φ)

//

f

''OOOOOOOOOOOOO
GBWPL(P, Φ)

h

²²

L

morphism from CanRep(P, Φ) to a distributive lattice.

Proof The proof follows immediately from the fact that the canonical represen-
tation CanRep(P, Φ) is in fact initial, as shown in 3.7. 2

3.12 The central rôle of distributivity In view of the above theorem, as
well as the very definition of completion in 2.5, it is clear that any completion of
an open specification must be distributive. If a diagram such as that of Fig. 1
(which is easily shown not to be distributive) is presented as a description of
the hierarchy under consideration, then it is certain that some information is
missing. Either natural semantics do not hold for meet or for join (in which case
the diagram is a partial description of an open specification), or else there are
some types which are equivalent (in which case the actual hierarchy would take
the form of a distributive quotient of the one presented).

12

3.13 Initial and canonical models In general, a satisfiable open specification
(P, Φ) will have many models. All of these models must satisfy every constraint
in Φ, but some may satisfy other constraints as well. It turns out that there is
a unique (up to isomorphism) model, called the canonical model, which satisfies
as few constraints as possible; in fact, it satisfies only those constraints which
are a consequence of Φ.

Space limitations do not permit presentation of the full construction here;
rather, the reader is referred to [16, 3.3-3.8] for details. However, a brief dis-
cussion is in order. A set A of subsets of P is called a crown of P if whenever
C1, C2 ∈ A and C1 ⊆ C2, then C1 = C2. Crown(P) denotes the set of all crowns
of P , while Crown>(P) denotes Crown(P) ∪ {>}. The set Crown>(P) has the
structure of a bounded distributive lattice, with > the upper bound and {∅} the
least element. The join operation is union followed by removal of elements which
are proper subsets of others, while the meet operation is pairwise intersection.

In general, the canonical model is a quotient of this lattice of crowns. The
key point to be observed here is that this lattice can be very large. If Φ does not
contain any constraints, then the canonical model is the lattice of crowns itself.
Note that this is a super-exponential construction. In general, there is no way to
represent it explicitly when P contains more than a few elements. The bottom
line is that any explicit representation of the canonical model is impossible for
all but the most trivial of situations.

3.14 Hierarchies with complements In some applications, it is desired that
types in the hierarchy have complements. It is possible to extend the results
given here to such hierarchies; the key idea is to replace bounded distributive
lattices with Boolean algebras in the characterization. The rôle of GBWPL’s
does not change. Some results along these lines are presented in [13].

3.15 Limitations Despite the elegance of this algebraic characterization, there
are some inherent limitations. First of all, only positive, equality constraints are
readily characterizable. It is possible to check for satisfaction of other types of
constraints, such as type inequality constraints (e.g., (τ1 6= τ2) indirectly, but
there is no direct construction of canonical models which satisfy such constraints.

Another major limitation is that the characterization is not computational;
that is, there are no obvious tools of any efficiency for computing whether models
exist, or for answering queries about existing models. Therefore, it is important
to have an alternate characterization without these weaknesses. The logical char-
acterization, presented in the next section, is a step in this direction.

4. Logical Characterization

In this section, a logical characterization of open specifications is developed. The
approach consists of two distinct branches. First, a syntax for formulas, as well
as a semantics, for constraints over a clean system P of types is developed from
the elementary constraints introduced in Section 2. Second, a mapping from such
formulas to a special propositional logic, denoted LP , is introduced. It is shown

13

that the two logics are equivalent for one-element models; that is, models for
which the underlying universe contains only one element.

The advantage of tying the constraint logic to propositional logic is that there
exists a wealth of knowledge on the theoretical and practical aspects of solving
satisfiability and model identification problems within propositional logic. Thus,
with this approach, computational tools are ready at hand.

Unfortunately, one element models are not adequate to model all situations.
Therefore, additional results are needed which show how to combine one-element
models (qua propositional models) to obtain general models of sets of constraints.
Much of this section is devoted to the presentation of such results.

Some of the basic ideas in this section are based upon the initial part of [15].
However, the presentation given here emphasizes logical characterization in a
general form, while the emphasis of that of [15] is upon laying the foundations for
the development of efficient inference algorithms on certain classes of constraints.
(See 5.3).

4.1 Notational convention Throughout this section, P denotes a clean set of
types.

4.2 General constraints and their semantics The set UnresConstr(P) of
unrestricted constraints over P is built up from ElemConstr+(P) using the usual
logical connectives ∧, ∨, ¬. The semantics of such constraints is the obvious one; if
S is an interpretation over P and ϕ, ϕ1, ϕ2 ∈ UnresConstr(P), then S |= (ϕ1∧ϕ2)
iff S |= ϕ1 and S |= ϕ2; S |= (ϕ1∨ϕ2) iff S |= ϕ2 or S |= ϕ2; S |= (¬ϕ) iff S 6|= ϕ.

The positive (unrestricted) constraints, denoted UnresConstr+(P), is the sub-
set of UnresConstr(P) which is constructed using only the connectives ∧ and
∨; without negation. Given an arbitrary set Φ ⊆ UnresConstr(P), the subset
Φ ∩ UnresConstr+(P) is denoted Φ+.

The definition of open specification is also extended to this more general
context. Specifically, an open specification (resp. positive open specification) is a
pair (P, Φ) in which P is a clean set of types and Φ ⊆ UnresConstr(P) (resp.
Φ ⊆ UnresConstr+(P).

4.3 The propositional logic of one-element models Define the proposi-
tional logic LP to have as proposition symbols the set { � τ | τ ∈ Aug(P)}. Also,
within this context, false and true will be used to denote special propositions
which always have the values false and true, respectively. For ϕ ∈
ElemConstr+(P), associate a formula

�
(ϕ) according to Table 1.�

is extended to formulas in UnresConstr(P) in the obvious manner:
�
((ϕ1∧ϕ2)) = (

�
(ϕ1)∧

�
(ϕ2));

�
((ϕ1∨ϕ2)) = (

�
(ϕ1)∨

�
(ϕ2));

�
((¬ϕ)) = (¬

�
(ϕ1)).�

may furthermore be extended to one-element interpretations. Let S = ({a},
�
)

be any one-element interpretation for P . Define the interpretation (i.e., truth as-
signment)

�
(S) in LP to be true on the propositions in the set

{ � τ ∈ Aug(P) |
�
(τ) = {a}}, and false otherwise.

Using this translation to propositional logic, it is possible to characterize the
one-element models of an arbitrary family of constraints in a simple fashion. The
proof of the following is immediate from the definition of

�
.

14

Constraint ϕ Associated Logical Formula
�
(ϕ)

(
d
{τ1, τ2, .., τn} = τ) (� τ1∧ � τ2∧ . . . ∧ � τn) ⇔ � τ

(
⊔
{τ1, τ2, .., τn}) = τ (� τ1∨ � τ2∨ . . . ∨ � τn) ⇔ � τ

Table 1. Translation from constraints to propositional logic.

4.4 Theorem — propositional models as models of open specifications

Let (P, Φ) be an open specification. A one-element interpretation S = ({a},
�
)

for P is a model of (P, Φ) iff
�
(S) is a model of

�
(Φ). 2

In order to use the above result in a more general context, it is necessary
to understand how one-element models combine to form arbitrary models. The
next result shows that, at least for positive constraints, there is a direct compo-
nentwise decomposition.

4.5 Proposition Let (P, Φ) be a positive open specification, and let (� , �
) be

an interpretation for P . Then S is a model for (P, Φ) iff for each ϕ ∈ Φ and
every a ∈ � , S|{a} |= ϕ.

Proof For Φ ⊆ ElemConstr+(P), the result is immediate, since the basic set oper-
ations involved (∪, ∩, and =) are all defined pointwise. For ϕ = ϕ1∧ϕ2∧ . . . ϕn ∈
UnresConstr+(P), with each ϕi ∈ ElemConstr+(P), it suffices to note thatM |= ϕ

iff M |= ϕi for each i, and then to replace Φ with (Φ ∪ {ϕ1, ϕ2, . . . , ϕn}) \
{ϕ}. Thus, the results holds whenever Φ ⊆ UnresConstr+(P). Next, suppose
that ϕ ∈ UnresConstr(P) is of the form (ϕ1∨ϕ2∨ . . . ϕn) for ϕ1, ϕ2, . . . , ϕn ∈
UnresConstr+(P), By definition, there must be some i,, 1 ≤ i ≤ n, for which
S |= ϕi. The above result then applies. The most general case now follows easily
by induction on the structure of the formula. 2

4.6 Some issues with negative constraints Unfortunately, the above char-
acterization does not extend to contexts with negation in the constraints. For
example, consider an open specification which includes the three constraints
(τ1 6= τ2), (τ1 6= τ3), and (τ2 6= τ3). Any model of these constraints must be
based upon a universe with at least two distinct elements, since three distinct
types are required. In general, a collection of constraints which mandates at least
n distinct elements requires a universe of at least n elements. The following two
paragraphs establish some more general results in the direction of model size.

4.7 Conjunctive normal form for constraints An ElemConstr(P)-clause is
an element of UnresConstr(P) of the form ϕ1∨ϕ2∨ . . . ∨ϕn, with ϕi ∈
ElemConstr(P) for 1 ≤ i ≤ n. In this context, each ϕi ∈ ElemConstr(P) is
called a ElemConstr(P)-literal. A formula ϕ ∈ UnresConstr(P) is said to be in
UnresConstr(P)-CNF (or just CNF, if the context is clear) if it is the conjunction
of ElemConstr(P)-literals. It is easy to see that any constraint in UnresConstr(P)

15

may be converted to an equivalent one which is in CNF. The procedure is anal-
gous to that used for ordinary propositional formulas. This leads to the following
results.

4.8 Theorem – characterization of model size Let (P, Φ) be an open spec-
ification with each member of Φ in CNF. If (P, Φ) is satisfiable, then it has a
model of cardinality no greater than the total number of ElemConstr(P)-clauses
in all formulas of Φ.

Proof Assume that (P, Φ) is satisfiable, and let S = (� , �
) be a model. Without

loss of generality, Φ may be taken to be a single constraint ψ in CNF. If it is
not of that form, just replace it with the conjunction of its members. Now, let
ϕ = `1∨`2∨ . . . ∨`n be a conjunct of ψ. By assumption, ϕ is an ElemConstr(P)-
clause. Furthermore, it must be the case that S |= ϕ, so that S |= `i for some
i. If `i ∈ ElemConstr+(P), then every one-element projection S|{a} is a model
of `i, in view of 4.5. On the other hand, if `i ∈ ElemConstr−(P), then ¬`i must
fail to be a model for some one-element projection S|{a}, again in view of 4.5.
In any case, there is a element aϕ ∈ � with the property that S|aϕ |= ϕ. Define
A = {aϕ | ϕ is a conjunct of ψ}. Then, S|A |= ψ, and Card(A) is, by construction,
no larger than the number of clauses in Φ. 2

This bound on model size also provides a simple way of establishing decid-
ability of satisfaction of open specification.

4.9 Corollary – decidability The question of whether or not an arbitrary
open specification (P, Φ) is satisfiable is decidable.

Proof First, convert Φ to CNF. Then, compute the bound on model size n stip-
ulated by the above theorem. Up to isomorphism, there can be only a finite
number of models of size n or less, which can be tested, in turn. 2

5. Complexity and Algorithms

The major focus of this paper is characterization. However, it is important to
give a flavor for the computational implications of adopting an open-specification
modelling strategy. Therefore, a brief overview of the most important aspects
are provided here.

5.1 Important problems on open specifications Let Ω = (P, Φ) be an
open specification.
Satisfiability: Does Ω have a model? In other words, does there exist an inter-

pretation S such that S |= Φ?
Query solution: Given ϕ ∈ Constraints(P), does Φ |= ϕ hold?

It is important to point out that query solution is a particularly important
problem, in light of the combinatorial explosion which can easily result when
attempting to construct a canonical model.

16

5.2 Theorem — complexity results Let S = (P, Φ) be an open specification.

(a) The satisfiability problem for Ω is NP-complete.
(b) The query solution problem for Ω is co-NP-complete.

These results remain valid even under the following circumstances:
(i) The context is limited to positive constraints.
(i) The context is limited to positive equality constraints.
(iii) The context is limited to constraints with fanout at most three (that is, con-

straints which involve the operations
d

and
⊔

on at most three elements).
The size of an instance is the length of the associated formula. 2

Sketch of Proof (a) Given the result 4.4 of the previous section, it should be no
surprise that these problems are closely related to the satisfaction problem for
propositional formulas, which is known to be NP-compete [11, Sec. 2.6]. However,
a formal proof of the NP-completeness of satisfiability for open specifications
must present a reduction in the opposite direction, showing that satisfiability
for propositional formulas can be reduced to satisfiability for open specifications.
The proof is quite nontrivial; complete details may be found in [13, Sec. 2].
(b) This is immediate from (a), since Φ |= ϕ iff Φ ∪ {¬ϕ} is unsatisfiable.

5.3 Efficient inference over a class of constraints Despite the intractabil-
ity results described above, it is possible to develop efficient inference algorithms
over a useful subset of constraints. Results in this direction are reported in [15].
These results are based upon the fundamental observation that inference on
Horn clauses is computable in linear time [9], [14].

6. Conclusions and Further Directions

Two distinct forms of characterization of openly specified type hierarchies have
been provided. The algebraic characterization provides insight into the structure
of such hierarchies, and in particular provides a canonical representation, in
the form of a generalized bounded weak partial lattice, which recaptures in
algebraic form a structure which embodies exactly those constraints which the
specification mandates. The logical characterization provides a representation,
in terms of propositional logic, which provides the basis for effective inference
on the properties of such hierarchies.

For open specification to become a useful tool, it is clear that substantial
further advances must be made in the tractability of inference on such structures.
Classes of constraints which are at the same time useful in modelling those
hierarchies which arise in practice and amenable to tractable inference algorithms
must be identified. Although significant first steps in this direction appear in [15],
significant further steps remain to be taken. Finally, in many situation there
is further structure associated with the hierarchy. The computational results
must be extended to representations which involve attributes, such as description
logics [3] and formal concept analysis [10], as well as associated methods, as are
commonly found in the object-oriented database context [2, 18, 19].

17

References

[1] J. Adámek, H. Herrlich, and G. Strecker. Abstract and Concrete Categories.
Wiley-Interscience, 1990.

[2] C. Beeri. A formal approach to object-oriented databases. Data and Knowledge

Engineering, 5:353–382, 1990.
[3] A. Borgida. Description logics in data management. IEEE Trans. Knowledge

Data Engrg., 7:671–682, 1995.
[4] T. Briscoe, V. de Paiva, and A. Copestake, editors. Inheritance, Defaults, and the

Lexicon. Cambridge University Press, 1993.
[5] B. Carpenter and G. Penn. ALE: The Attribute Logic Engine user’s guide, Version

3.1 Beta. Technical report, Bell Laboratories and Universität Tübingen, 1998.
[6] B. A. Davey and H. A. Priestly. Introduction to Lattices and Order. Cambridge

University Press, 1990.
[7] J. Döerre and M. Dorna. CUF – a formalism for linguistic knowledge representa-

tion. In J. Dörre, editor, Computational Aspects of Constraint-Based Linguistic

Description, DYANA-2 Deliverable R.1.2.A, pages 3–22. ESPRIT, 1993.
[8] J. Dörre and A. Eisele. Feature logic with disjunctive unification. In Proceedings

of the COLING 90, Volume 2, pages 100–105, 1990.
[9] W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfia-

bility of propositional Horn clauses. J. Logic Programming, 3:267–284, 1984.
[10] B. Ganter and R. Wille. Formal Concept Analysis. Springer-Verlag, 1999.
[11] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman,

1979.
[12] G. Grätzer. General Lattice Theory. Birkhäuser Verlag, second edition, 1998.
[13] S. J. Hegner. Distributivity in incompletely specified type hierarchies: Theory

and computational complexity. In J. Dörre, editor, Computational Aspects of

Constraint-Based Linguistic Description II, DYANA-2, ESPRIT Basic Research

Project 6852, Deliverable R1.2B, pages 29–120. DYANA, 1994.
[14] S. J. Hegner. Properties of Horn clauses in feature-structure logic. In C. J.

Rupp, M. A. Rosner, and R. L. Johnson, editors, Constraints, Languages and

Computation, pages 111–147. Academic Press, 1994.
[15] S. J. Hegner. Efficient inference algorithms for databases of type hierarchies with

open specification. Submitted for publication, 2001.
[16] S. J. Hegner. Computational and structural aspects of openly specified type hi-

erarchies. In M. Moortgat, editor, Logical Aspects of Computational Linguistics,
Third International Conference, LACL ’98 Grenoble, France, December 1998, Se-

lected Papers, in press, 2001.
[17] C. Pollard and I. A. Sag. Head-Driven Phrase Structure Grammar. University of

Chicago Press, 1994.
[18] K.-D. Schewe and B. Thalheim. Fundamental concepts of object oriented

databases. Acta Cybernetica, 11:49–84, 1993.
[19] J. Van den Bussche. Formal Aspects of Object Identity in Database Manipulation.

PhD thesis, University of Antwerp, 1993.
[20] R. Zajac. Notes on the Typed Feature System, Version 4, January 1991. Technical

report, Universität Stuttgart, Institut für Informatik, Project Polygloss, 1991.

18

